## Quantum field theory

**Program**

Talk given at the Department of Physics and Astronomy of Southampton University, UK, on Nov 16th, 2018

I introduce the concept of fake particle and study how it is used to formulate a consistent theory of quantum gravity. Fakeons arise from a new quantization prescription, alternative to the Feynman one, for the poles of higher-derivative theories, which avoids the problem of ghosts. The fake particles mediate interactions and simulate true particles in many situations. Nevertheless, they are not asymptotic states and cannot be detected directly. The Wick rotation and the S matrix are regionwise analytic and the amplitudes can be calculated in all regions starting from the Euclidean one by means of an unambiguous, but nonanalytic operation. By reconciling renormalizability and unitarity in higher-derivative theories, the models containing both true and fake particles are good candidates to explain quantum gravity. In pole position is the unique theory that is strictly renormalizable. One of the major physical predictions due to the fakeons is the violation of microcausality. I discuss the classical limit of the theory and the acausal corrections to the Einstein equations.

Talk given at the conference

**Max Planck Institute for Mathematics in the Sciences, Leipzig**

October 04, 2018

I claim that the best correspondence principle for quantum field theory and quantum gravity is made of unitarity, locality and proper renormalizability (which is a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. It emerges from a new quantization prescription, which introduces the notion of fake particle, or “fakeon”, and uses it to resolve the long-standing problem of the higher-derivative ghosts. I discuss the major physical prediction of the theory, which is the violation of causality at small distances. The correspondence principle identifies the gauge interactions uniquely in form, but does not predict the gauge group. On the other hand, the matter sector remains almost completely unrestricted.

We discuss the fate of the correspondence principle beyond quantum mechanics, specifically in quantum field theory and quantum gravity, in connection with the intrinsic limitations of the human ability to observe the external world. We conclude that the best correspondence principle is made of unitarity, locality, proper renormalizability (a refinement of strict renormalizability), combined with fundamental local symmetries and the requirement of having a finite number of fields. Quantum gravity is identified in an essentially unique way. The gauge interactions are uniquely identified in form. Instead, the matter sector remains basically unrestricted. The major prediction is the violation of causality at small distances.

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004