## Classical gravity

**Seminar given at the Department of Physics and Astronomy of the University of Bologna on May 30th, 2019**

A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription. I also discuss the possibility that the Higgs boson might be a fakeon.

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of nonrenormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions $d>3$. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

Mod. Phys. Lett. A 30 (2015) 1540004 | DOI: 10.1142/S0217732315400040

The classical action of quantum gravity, determined by renormalization, contains infinitely many independent couplings and can be expressed in different perturbatively equivalent ways. We organize it in a convenient form, which is based on invariants constructed with the Weyl tensor. We show that the FLRW metrics are exact solutions of the field equations in arbitrary dimensions, and so are all locally conformally flat solutions of the Einstein equations. Moreover, expanding the metric tensor around locally conformally flat backgrounds the quadratic part of the action is free of higher derivatives. Black-hole solutions of Schwarzschild and Kerr type are modified in a non-trivial way. We work out the first corrections to their metrics and study their properties.

JHEP 1305 (2013) 028 | DOI: 10.1007/JHEP05(2013)028

We prove the renormalizability of various theories of classical gravity coupled with interacting quantum fields. The models contain vertices with dimensionality greater than four, a finite number of matter operators and a finite or reduced number of independent couplings. An interesting class of models is obtained from ordinary power-counting renormalizable theories, letting the couplings depend on the scalar curvature R of spacetime. The divergences are removed without introducing higher-derivative kinetic terms in the gravitational sector. The metric tensor has a non-trivial running, even if it is not quantized. The results are proved applying a certain map that converts classical instabilities, due to higher derivatives, into classical violations of causality, whose effects become observable at sufficiently high energies. We study acausal Einstein-Yang-Mills theory with an R-dependent gauge coupling in detail. We derive all-order formulas for the beta functions of the dimensionality-six gravitational vertices induced by renormalization. Such beta functions are related to the trace-anomaly coefficients of the matter subsector.

Class. Quant. Grav. 24 (2007) 1927 | DOI: 10.1088/0264-9381/24/8/003

arXiv: hep-th/0611131

I prove that classical gravity coupled with quantized matter can be renormalized with a finite number of independent couplings, plus field redefinitions, without introducing higher-derivative kinetic terms in the gravitational sector, but adding vertices that couple the matter stress-tensor with the Ricci tensor. The theory is called “acausal gravity”, because it predicts the violation of causality at high energies. Renormalizability is proved by means of a map M that relates acausal gravity with higher-derivative gravity. The causality violations are governed by two parameters, a and b, that are mapped by M into higher-derivative couplings. At the tree level causal prescriptions exist, but they are spoiled by the one-loop corrections. Some ideas are inspired by the usual treatments of the Abraham-Lorentz force in classical electrodynamics.

JHEP 0701 (2007) 062 | DOI: 10.1088/1126-6708/2007/01/062

arXiv:hep-th/0605205