Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Gauge theories

Quantum field theory is extended to include purely virtual “cloud sectors”, which allow us to define point-dependent observables, including a gauge invariant metric and gauge invariant matter fields, and calculate their off-shell correlation functions perturbatively in quantum gravity. Each extra sector is made of a cloud field, its anticommuting partner, a cloud function and a cloud Faddeev-Popov determinant. Thanks to certain cloud symmetries, the ordinary correlation functions and S matrix elements are unmodified. The clouds are rendered purely virtual, to ensure that they do not propagate unwanted degrees of freedom. So doing, the off-shell, diagrammatic version of the optical theorem holds and the extended theory is unitary. Every insertion in a correlation function can be dressed with its own cloud. The one-loop two-point functions of dressed scalars, vectors and gravitons are calculated. Their absorptive parts are positive, cloud independent and gauge independent, while they are unphysical if non purely virtual clouds are used. Renormalizability is proved to all orders by means of an extended Batalin-Vilkovisky formalism and its Zinn-Justin master equations. The purely virtual approach is compared to other approaches available in the literature.

PDF

arXiv: 2207.12401 [hep-th]

We extend quantum field theory by including purely virtual “cloud” sectors, which allow us to define physical off-shell correlation functions of gauge invariant quark and gluon fields. Thanks to certain “cloud symmetries”, the new sectors do not change the fundamental physics. In particular, the ordinary correlation functions and the S matrix amplitudes remain the same. Each cloud sector is made of a cloud field, its anticommuting partner, a cloud function and a cloud Faddeev-Popov determinant. Every field insertion in a correlation function can be made gauge invariant by dressing it with an independent cloud. The cloud sectors are rendered purely virtual, to ensure that they do not propagate extra degrees of freedom. The off-shell, diagrammatic version of the optical theorem holds, and the extended theory is unitary. The one-loop two-point functions of the dressed quarks and gluons are calculated. Their absorptive parts are gauge independent, cloud independent and positive (while they are cloud dependent and possibly negative, if the clouds are defined by means of the Feynman prescription). A gauge/cloud duality simplifies the computations and shows that the gauge choice is just a particular cloud. Renormalizability is proved to all orders by means of an extended Batalin-Vilkovisky formalism and its Zinn-Justin master equations. We compare the purely virtual approach with the Coulomb nonlocal dressing of Dirac for QED, and the one of Lavelle and McMullan for non-Abelian gauge theories. We also comment on the use of Wilson lines and ‘t Hooft composite fields.

PDF

arXiv: 2207.11271 [hep-ph]

We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

PDF

Phys. Rev. D 94 (2016) 025028 | DOI: 10.1103/PhysRevD.94.025028

arXiv: 1606.06348 [hep-th]

We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost numbers satisfy a variant of the Kluberg-Stern–Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\Lambda $ associated with them is kept fixed, the theory is super-renormalizable and has the property that, once the gauge anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the $\Lambda $ divergences are subtracted away and $\Lambda $ is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.

PDF

Phys. Rev. D 91 (2015) 105016 | DOI: 10.1103/PhysRevD.91.105016

arXiv: 1501.07014 [hep-th]

Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

PDF

Phys. Rev. D 92 (2015) 025027 | DOI: 10.1103/PhysRevD.92.025027

arXiv: 1501.06692 [hep-th]

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Buy hard copy on
amazon.com
amazon.it
amazon.de
amazon.fr
amazon.es
amazon.co.uk
amazon.jp
 

Contents:

Preface

1. Functional integral

  • 1.1 Path integral
    • Schroedinger equation
    • Free particle
  • 1.2 Free field theory
  • 1.3 Perturbative expansion
    • Feynman rules
  • 1.4 Generating functionals, Schwinger-Dyson equations
  • 1.5 Advanced generating functionals
  • 1.6 Massive vector fields
  • 1.7 Fermions

2. Renormalization

  • 2.1 Dimensional regularization
    • 2.1.1 Limits and other operations in $D$ dimensions
    • 2.1.2 Functional integration measure
    • 2.1.3 Dimensional regularization for vectors and fermions
  • 2.2 Divergences and counterterms
  • 2.3 Renormalization to all orders
  • 2.4 Locality of counterterms
  • 2.5 Power counting
  • 2.6 Renormalizable theories
  • 2.7 Composite fields
  • 2.8 Maximum poles of diagrams
  • 2.9 Subtraction prescription
  • 2.10 Regularization prescription
  • 2.11 Comments about the dimensional regularization
  • 2.12 About the series resummation

3. Renormalization group

  • 3.1 The Callan-Symanzik equation
  • 3.2 Finiteness of the beta function and the anomalous dimensions
  • 3.3 Fixed points of the RG flow
  • 3.4 Scheme (in)dependence
  • 3.5 A deeper look into the renormalization group

4. Gauge symmetry

  • 4.1 Abelian gauge symmetry
  • 4.2 Gauge fixing
  • 4.3 Non-Abelian global symmetry
  • 4.4 Non-Abelian gauge symmetry

5. Canonical gauge formalism

  • 5.1 General idea behind the canonical gauge formalism
  • 5.2 Systematics of the canonical gauge formalism
  • 5.3 Canonical transformations
  • 5.4 Gauge fixing
  • 5.5 Generating functionals
  • 5.6 Ward identities

6. Quantum electrodynamics

  • 6.1 Ward identities
  • 6.2 Renormalizability of QED to all orders

7 Non-Abelian gauge field theories

  • 7.1 Renormalizability of non-Abelian gauge theories to all orders
    • Raw subtraction

A. Notation and useful formulas

PDF

We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the $\gamma $ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.

PDF

Phys. Rev. D 89 (2014) 125024 | DOI: 10.1103/PhysRevD.89.125024

arXiv: 1405.3110 [hep-th]

We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

PDF

Eur. Phys. J. C 74 (2014) 3083 | DOI: 10.1140/epjc/s10052-014-3083-0

arXiv: 1402.6453 [hep-th]

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

PDF

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

arXiv: 1311.2704 [hep-th]


Let $S(\Phi,U,K,K_{U})$ denote the solution of the master equation $(S,S)=0$, where $\{\Phi ^{A},U\}$ are the fields and $\{K_{A},K_{U}\}$ are the sources coupled to the $\Phi ^{A}$- and $U$-gauge transformations. If we replace $U$ with the solution $U^{*}(\Phi ,K,K_{U})$ of the $U$-field equations
\begin{equation}
\frac{\delta _{r}S}{\delta U}=0,
\end{equation}
then the action
\begin{equation}
S^{*}(\Phi ,K,K_{U})=S(\Phi ,U^{*}(\Phi ,K,K_{U}),K,K_{U})
\end{equation}
satisfies the master equation $(S^{*},S^{*})=0$ in the reduced set of fields and sources $\Phi,K$.

Read the proof →

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


PDF