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Adler-Bardeen TheoremAnd Manifest Anomaly CancellationTo All Orders In Gauge TheoriesDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa, Italydamiano.anselmi@df.unipi.itAbstractWe reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all or-ders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining thedimensional-regularization technique with the higher-derivative gauge invariant regularization,we prove the theorem in the most general perturbatively unitary renormalizable gauge theoriescoupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancel-lation to all orders is manifest, namely no subtractions of �nite local counterterms are requiredfrom two loops onwards. Our approach is based on an order-by-order analysis of renormalization,and, di�erently from most derivations existing in the literature, does not make use of argumentsbased on the properties of the renormalization group. As a consequence, the proof we give alsoapplies to conformal �eld theories and �nite theories.
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1 IntroductionThe Adler-Bardeen theorem [1, 2] is a crucial property of quantum �eld theory, and one of thefew tools to derive exact results. In the literature various statements go under the name of�Adler-Bardeen theorem�. They apply to di�erent situations. The original statement by Adlerand Bardeen says that (I) the Adler-Bell-Jackiw axial anomaly [3] is one-loop exact. The secondstatement, which is the one we are going to study here, says that (II) (there exists a subtractionscheme where) gauge anomalies vanish to all orders, if they vanish at one loop. Statement II isimportant to justify the cancellation of gauge anomalies to all orders in the standard model. Athird statement concerns the one-loop exactness of anomalies associated with external �elds.Statement I is expressed by a well-known operator identity for the divergence of the axialcurrent. By means of a diagrammatic analysis, Adler and Bardeen were able to provide the sub-traction scheme where that identity is manifestly one-loop exact in QED [1]. They emphasizedthat higher-order corrections vanish, unless they contain the one-loop triangle diagram as a sub-diagram. Said like this, statement I intuitively implies statement II. However, the original proofof Adler and Bardeen applies only to QED.Other approaches to the problem have appeared, since the paper by Adler and Bardeen, inAbelian and non-Abelian gauge theories [2]. Statement I can be proved using arguments basedon the properties of the renormalization group [4, 5, 6], regularization independent algebraictechniques [7], or an algebraic/geometric derivation [8] based on the Wess-Zumino consistencyconditions [9] and the quantization of the Wess-Zumino-Witten action. Statement II can also beproved using renormalization-group (RG) arguments, with the dimensional regularization [10] orregularization-independent approaches [11].More recently, statement II was proved by the author of this paper in standard model ex-tensions with high-energy Lorentz violation [12], which are renormalizable by �weighted powercounting� [13]. The approach of [12] is closer to the original approach by Adler and Bardeen, inthe sense that it does not make use of RG arguments, algebraic methods or geometric shortcuts,it naturally provides the subtraction scheme where the all-order cancellation is manifest, and it isbasically a diagrammatic analysis, although instead of dealing directly with diagrams, it uses theBatalin-Vilkovisky formalism [14] to manage relations among diagrams in a compact and e�cientway.In the present paper we prove statement II in the most general perturbatively unitary, renor-malizable gauge theories coupled to matter, and elaborate further along the guidelines of ref.[12]. We upgrade the approach of [12] in a number of directions, emphasize properties that werenot apparent at that time, and expand the arguments that were presented concisely. We alsogain a certain clarity by dropping the Lorentz violation. A side purpose of this investigation isto develop new techniques and tools to prove all-order theorems in quantum �eld theory with a2
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smaller e�ort.Our results make progress in several directions. To our knowledge, if we exclude ref. [12]and this paper, statement II has been proved beyond QED only making use of arguments basedon the renormalization group. However, RG arguments do not provide the subtraction schemewhere the all-order cancellation is manifest, and are not su�ciently general. For example, theyare powerless when the beta functions identically vanish, so they exclude conformal �eld theoriesand �nite theories, where however the Adler-Bardeen theorem does hold. Actually, RG techniquesfail even when the �rst coe�cients of the beta functions vanish [10, 11]. Our approach does notsu�er from these limitations. Another reason to avoid shortcuts is that in the past the Adler-Bardeen theorem caused some confusion in the literature, therefore new proofs, and even moregeneralizations, should be as transparent as possible. In this paper we pay attention to all details.The all-order cancellation of gauge anomalies is a property that depends on the scheme, but theexistence of a good scheme is not evident. Knowing the scheme where the cancellation is manifestis very convenient from the practical point of view, because it saves the e�ort of subtracting adhoc �nite local counterterms at each step of the perturbative expansion. For example, using thedimensional regularization and the minimal subtraction scheme the cancellation of two-loop andhigher-order corrections to gauge anomalies in the standard model is not manifest, and �nite localcounterterms must be subtracted every time.To �nd the right subtraction scheme we need to de�ne a clever regularization technique. Itturns out that using the Batalin-Vilkovisky formalism and combining the dimensional regulariza-tion with the gauge invariant higher-derivative regularization, the subtraction scheme where theAdler-Bardeen theorem is manifest emerges quite naturally [12].It is well-known that, in general, gauge invariant higher-derivative regularizations do notregularize completely, because some one-loop diagrams can remain divergent. From our viewpoint,this is not a weakness, because it allows us to separate the sources of potential anomalies fromeverything else. We just have to use a second regulator, the dimensional one, to deal with the fewsurviving divergent diagrams.The regularization we are going to use introduces two cuto�s: ε = 4 − D, where D is thecontinued complex dimension, and an energy scale Λ for the higher-derivative regularizing terms.The regularized action must be gauge invariant in D = 4, to ensure that the higher-derivativeregulator has the minimum impact on gauge anomalies. The physical limit is de�ned letting εtend to 0 and Λ to ∞. When we have two or more cuto�s, physical quantities do not depend onthe order in which we remove them. More precisely, exchanging the order of the limits ε→ 0 and
Λ → ∞ is equivalent to change the subtraction scheme. That kind of scheme change is howevercrucial for our arguments.Consider �rst the limit Λ → ∞ followed by ε → 0. When D 6= 4 the limit Λ → ∞ isregular in every diagram and gives back the dimensionally regularized theory: no Λ divergences3
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appear, but just poles in ε. In this framework there are no known subtraction schemes where theAdler-Bardeen theorem holds manifestly.Now, consider the limit ε → 0 followed by Λ → ∞. At �xed Λ we have a higher-derivativetheory. If properly organized, that theory is superrenormalizable and contains just a few (one-loop) divergent diagrams, which are poles in ε and may be removed by rede�ning some parameters.At a second stage, we study the limit Λ → ∞, where Λ divergences appear and are removed byrede�ning parameters and making canonical transformations. We call the regularization techniquede�ned this way dimensional/higher-derivative (DHD) regularization.Intuitively, if gauge anomalies are trivial at one loop, there should be no further problems athigher orders, because the higher-derivative regularization is manifestly gauge invariant. Thus,we expect that the DHD regularization provides the framework where the Adler-Bardeen theoremis manifest. However, it is not entirely obvious that the two regularization techniques can bemerged to achieve the goal we want. Among the other things, ε evanescent terms are aroundall the time and the O(1/Λn) regularizing terms can simplify power-like Λ divergences, causingtroubles. Nevertheless, with some e�ort and a nontrivial amount of work we can prove that alldi�culties can be properly dealt with.Summarizing, the statement we prove in this paper isTheorem. In renormalizable perturbatively unitary gauge theories coupled to matter, thereexists a subtraction scheme where gauge anomalies manifestly cancel to all orders, if they aretrivial at one loop.Once we have this result, we know that no matter what scheme we use, it is always possible to�nd ad hoc �nite local counterterms that ensure the cancellation of gauge anomalies to all orders.Then we are free to use the more common minimal subtraction scheme and the pure dimensionalregularization technique.The paper is organized as follows. In sections 2-7 we prove the theorem in non-Abelian Yang-Mills theory coupled to left-handed chiral fermions. This model is su�ciently general to illustratethe key points of the proof, as well as the main arguments and tools, but relatively simple to freethe derivation from unnecessary complications. At the end of the paper, in section 8, we showhow to include the missing �elds, namely right-handed fermions, scalars and photons, and coverthe most general perturbatively unitary renormalizable gauge theory coupled to matter. Section9 contains our conclusions. In appendix A we recall the calculation of gauge anomalies in chiraltheories. In appendix B we recall the proof of a useful formula.The proof for Yang-Mills theory coupled to chiral fermions is organized as follows. In sections2 and 3 we formulate the dimensional and DHD regularization techniques. In sections 4-6 weprove the Adler-Bardeen theorem in the higher-derivative theory, studying the limit ε → 0 at Λ�xed. Precisely, in section 4 we work out the renormalization, in section 5 we study the one-loopanomalies and in section 6 we prove the anomaly cancellation to all orders. In section 7 we take4
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the limit Λ → ∞ and conclude the proof of the Adler-Bardeen theorem for the �nal theory.2 Dimensional regularization of chiral Yang-Mills theoryWe �rst prove the Adler-Bardeen theorem in detail in four-dimensional non-Abelian Yang-Millstheory coupled to left-handed chiral fermions. This model o�ers a su�ciently general arena toillustrate the key arguments and tools of our approach. At the same time, we make some cleverchoices to prepare the generalization (discussed in section 8) to the most general perturbativelyunitary gauge theories coupled to matter. To begin with, in this section we dimensionally regu-larize chiral gauge theories and point out a number of facts and properties that are normally notemphasized, but are rather important for the arguments of this paper.Consider a gauge theory with gauge group G and left-handed chiral fermions ψIL in certainirreducible representations RIL of G. If G is the product of various simple groups Gi, we useindices a, b, . . . for G and indices ai, bi, . . . for Gi. Denote the gauge coupling gi of each Gi with
gri, where ri are parameters of order one that we incorporate into the G structure constants fabcand the anti-Hermitian matrices T a associated with the representations of matter �elds. We call
g the overall gauge coupling. We organize the matrices T a in block-diagonal form, where eachblock refers to a ψIL and its representation RIL. When we write T aψIL we understand that T a isreplaced by the appropriate block. More fermions in the same irreducible representations may bepresent. With these conventions, the matrices T a still satisfy [T a, T b] = fabcT c and the classicalaction reads

Sc = −1

4

∑

i

ζi

∫
F aiµνF

aiµν +

∫
ψ̄ILı /Dψ

I
L, (2.1)where F aiµν = ∂µA

ai
ν − ∂νA

ai
µ + gif

aibiciAbiµA
ci
ν (no sum over this kind of index i being understood,here and in the rest of the paper) is the Gi �eld strength, Dµψ

I
L = ∂µψ

I
L+gT

aAaµψ
I
L is the fermioncovariant derivative and ı is used for √−1 to avoid confusion with the index i. The parameters

ζi could be normalized to 1, but for future uses it is convenient to keep them free, because theyare renormalized by poles in ε. Analogous parameters in front of the fermionic kinetic terms arenot necessary.To keep the presentation simple we make some simplifying assumptions that do not restrictthe validity of our arguments. Speci�cally, we do not include right-handed fermions and scalar�elds, and assume that the groups Gi are non-Abelian, so there is no renormalization mixingamong gauge �elds, even when more copies of the same simple group are present. In section 8we explain how to relax these assumptions and cover the most general Abelian and non-Abelianperturbatively unitary renormalizable gauge theories coupled to matter.Let us brie�y recall the Batalin-Vilkovisky formalism for general gauge theories [14]. Theclassical �elds φ = {Aaµ, ψIL, ψ̄IL}, together with the ghosts C, the antighosts C̄ and the Lagrange5
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multipliers B for the gauge �xing are collected into the set of �elds Φα = {Aaµ, Ca, C̄a, Ba, ψIL, ψ̄

I
L}.An external source Kα with opposite statistics is associated with each Φα, and coupled to the

Φα transformations Rα(Φ, g). We have Kα = {Kµa,Ka
C ,K

a
C̄
,Ka

B ,K
I
ψ, K̄

I
ψ}. If X and Y arefunctionals of Φ and K their antiparentheses are de�ned as

(X,Y ) ≡
∫ (

δrX

δΦα
δlY

δKα
− δrX

δKα

δlY

δΦα

)
, (2.2)where the integral is over spacetime points associated with repeated indices. The master equation

(S, S) = 0must be solved with the �boundary condition� S(Φ,K) = Sc(φ) at C = C̄ = B = K = 0in D = 4, where Sc(φ) is the classical action (2.1). The solution S(Φ,K) is the action we startwith to quantize the theory.In the model we are considering the gauge algebra closes o� shell, so there exists a variableframe where S(Φ,K) is linear in K. The non-gauge-�xed solution of the master equation is
Sngf(Φ,K) = Sc(φ) + SK ,where the functional

SK(Φ,K) =−
∫
Rα(Φ, g)Kα = −

∫
(DµC

a)Kµa +
g

2

∫
fabcCbCcKa

C −
∫
BaKa

C̄

+g

∫ (
ψ̄ILT

aCaKI
ψ + K̄I

ψT
aCaψIL

)collects the symmetry transformations of the �elds, DµC
a = ∂µC

a+gfabcAbµC
c being the covariantderivative of the ghosts. The gauge-�xed solution of the master equation reads

Sgf(Φ,K) = Sngf + (SK ,Ψ) = Sc(φ) + (SK ,Ψ) + SK , (2.3)where Ψ(Φ) is the �gauge fermion�, a functional of ghost number −1 that collects the gauge-�xingconditions. For convenience, we choose standard linear gauge-�xing conditions and write
Ψ(Φ) =

∫ ∑

i

C̄ai
(
∂µAaiµ +

ξi
2
Bai

) (2.4)where ξi are gauge-�xing parameters.The naïve D-dimensional continuation of the action (2.1) is not well regularized, becausechiral fermions do not have good propagators. To overcome this di�culty, we proceed as fol-lows. As usual, we split the D-dimensional spacetime manifold R
D into the product R

4 × R
−εof ordinary four-dimensional spacetime R

4 times a residual (−ε)-dimensional evanescent space
R
−ε. Spacetime indices µ, ν, . . . of vectors and tensors are split into bar indices µ̄, ν̄, . . ., whichtake the values 0,1,2,3, and formal hat indices µ̂, ν̂, . . ., which denote the R

−ε components. For6
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example, momenta pµ are split into pairs pµ̄, pµ̂, or equivalently p̄µ, p̂µ. The �at-space met-ric ηµν =diag(1,−1, . . . ,−1) is split into ηµ̄ν̄ =diag(1,−1,−1,−1) and ηµ̂ν̂ = −δµ̂ν̂ . When wecontract evanescent components we use the metric ηµ̂ν̂ , so for example p̂2 = pµ̂ηµ̂ν̂p

ν̂. We as-sume that the continued γ matrices γµ satisfy the continued Dirac algebra {γµ, γν} = 2ηµν .We de�ne γ5 = ıγ0γ1γ2γ3, PL = (1− γ5)/2, PR = (1 + γ5)/2 and the charge-conjugation matrix
C = −ıγ0γ2 in the usual fashion. Full SO(1,D−1) invariance is lost in most expressions, replaced
SO(1, 3) × SO(−ε) invariance.The action (2.1) gives the fermion propagator PL(ı//̄p)PR, which involves only the four-dimensional components p̄µ of momenta. Therefore, it does not fall o� in all directions of inte-gration for p→ ∞. Applying the rules of the dimensional regularization, fermion loops integrateto zero. To provide fermions with correct propagators we introduce right-handed ψIL-partners ψIRthat decouple in four dimensions and are inert under every gauge transformations. We include
ψR and ψ̄R into the set of �elds Φ. It is not necessary to introduce sources K for them.Speci�cally, we start from the regularized classical action

Scr = −1

4

∑

i

ζi

∫
F aiµνF

aiµν +

∫
ψ̄ILı /Dψ

I
L + SLR = Sc + SLR, (2.5)which is the sum of the unregularized classical action (2.1) plus a correction

SLR = ςIJ

∫
ψ̄IRı/∂ψ

J
L + ς∗JI

∫
ψ̄ILı/∂ψ

J
R +

∫
ψ̄IRı/∂ψ

I
R, (2.6)where ςIJ are constants that form an invertible matrix ς. The only nontrivial o�-diagonal entriesof ς (and of all the matrices MIJ we going to meet in this paper) are those that mix equivalentirreducible representations RIL. The reason why the matrix ς is kept free is that later on it willhelp us reabsorb the renormalization constants of ψIL, since SLR is nonrenormalized (see below).Using the polar decomposition, we can write ς = U †

RDUL, where UL and UR are unitarymatrices and D is a positive-de�nite diagonal matrix. In the basis where ς is replaced by itsdiagonal form D ≡ diag(ςI) the propagators of the Dirac fermions ψI = ψIL + ψIR are
ıδIJ

/̄p+ ςI /̂p

p̄2 + ς2I p̂
2

(2.7)and coincide with the usual propagators for ςI = 1.Next, observe that (SK , SK) = 0 in arbitrary D. The regularized gauge-�xed action is (up toan extension that will be discussed later)
Sr0(Φ,K) = Sc + SLR + (SK ,Ψ) + SK = Sgf + SLR, (2.8)and satis�es

(Sr0, Sr0) = 2ıg

∫
Ca
(
(∂µ̂ψ̄

I
R)γ

µ̂T aςIJψ
J
L + ψ̄ILς

∗
JIT

a /̂∂ψJR

)
= O(ε), (2.9)7
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where �O(ε)� is used to denote any expression that vanishes in four dimensions. We have used
PR /∂PR = PR /̂∂PR and a similar relation with R → L. Observe that Sr0 is invariant under theglobal symmetry transformations of the group G.Given a (dimensionally) regularized classical action S(Φ,K), the regularized generating func-tionals Z and W are de�ned by the formulas

Z(J,K) =

∫
[dΦ] exp

(
ıS(Φ,K) + ı

∫
ΦαJα

)
= exp ıW (J,K), (2.10)and the generating functional Γ(Φ,K) = W (J,K)−

∫
ΦαJα of one-particle irreducible diagramsis the Legendre transform of W (J,K) with respect to J , where the sources K act as spectators.Often it is necessary to pay attention to the action used to de�ne averages. We denote the averages

〈· · · 〉 de�ned by the action S as 〈· · · 〉S (at Jα 6= 0). The anomaly functional is
A = (Γ,Γ) = 〈(S, S)〉S (2.11)and collects the set of one-particle irreducible correlation functions containing one insertion of

(S, S). The last equality of formula (2.11) can be proved by making the change of �eld variables
Φα → Φα + θ(S,Φα) inside the functional integral (2.10), where θ is a constant anticommutingparameter. The proof is recalled in appendix B, together with comments on the meaning of theformula.No one-particle irreducible diagrams can be constructed with external legs ψ̄R or ψR, because
ψ̄R and ψR do not appear in any vertices. Thus, the total Γ functional satis�es

Γ(Φ,K) = Γ(Φ,K)|ψ̄R=ψR=0 + SLR.We have anticipated that the action (2.8) is not the �nal dimensionally regularized actionwe are going to use. Before moving to the appropriate extension Sr, we must describe thecounterterms generated by Sr0, list a number of properties that can be used to restrict the Sr0extensions and point out some subtleties concerning the dimensional regularization.First, observe that the counterterms are B, KB and KC̄ independent. Indeed, the source
KB appears nowhere in Sr0, while KC̄ appears only in −

∫
BKC̄ . Moreover, the gauge �xingconditions are linear in the �elds, and the B-dependent terms of Sr0 are at most quadratic in Φ.Therefore, no nontrivial one-particle irreducible diagrams can have external B legs.Second, the action Sr0 does not depend on the antighosts C̄ai and the sources Kµai separately,but only through the combinations Kµai +∂µC̄

ai . The Γ functional must share the same property.Indeed, an antighost external leg actually carries the structure ∂µC̄ai , since all vertices containingantighosts do so. Given a diagram with Kµai or ∂µC̄ai on external legs, we can construct almostidentical diagrams by just replacing one or more legs Kµai with ∂µC̄ai , or vice versa.8
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Third, power counting and ghost-number conservation ensure that the counterterms are linearin the sources K. Using square brackets to denote dimensions in units of mass, we have [Kµa] =

[Ka
C ] = 2, and [Kψ] = 3/2. These sources have negative ghost numbers. Therefore, the dimensionof a term that is more than linear in K and has vanishing ghost number necessarily exceeds 4.2.1 Structure of the dependence on the overall gauge couplingIt is useful to single out how the functionals depend on the overall gauge coupling g. The tree-levelfunctionals we work with have the g structure

Xtree(Φ,K, g) = 1

g2
X ′tree(gΦ, gK). (2.12)If the action satis�es this condition at the tree level, then the renormalized action and the Γfunctional have the g structure

X(Φ,K, g) =
∑

L>0

g2(L−1)X ′
L(gΦ, gK), (2.13)where XL collects the L-loop contributions. Basically, there is an additional factor g2 for everyloop. Indeed, when the action is of the form (2.12), every vertex is multiplied by a power gN−2,where N is the number of its Φ plus K legs. Then, a one-particle irreducible diagram with Lloops, I internal legs, E external legs and vi vertices with i legs is multiplied by

∏

i>2

gvi(i−2) = g2I+E−2V = gE−2g2L = gEg2(L−1),having used L− I + V = 1 and ∑i>2 ivi = 2I + E. We see that for L ≥ 1 we have one power of
g for each external leg and a residual factor g2(L−1), in agreement with (2.13).The g structures (2.12) and (2.13) are preserved by the antiparentheses: if the functionals
X(Φ,K, g) and Y (Φ,K, g) satisfy (2.12), or (2.13), then the functional (X,Y ) satis�es (2.12), or(2.13), respectively.2.2 Properties of the dimensional regularization of chiral theoriesNow we recall a few properties of the dimensional regularization of chiral theories, which areimportant for the rest of our analysis. It is well-known that divergences are just poles in ε.Instead, the terms that disappear when D → 4, called �evanescences�, can be of two types: formalor analytic. Analytically evanescent terms, brie�y denoted by �aev�, are those that factorize atleast one ε, such as εFµνFµν , εψ̄Lı /DψL, etc. Formally evanescent terms, brie�y denoted by �fev�,are those that formally disappear when D → 4, but do not factorize powers of ε. They arebuilt with the tensor δµ̂ν̂ and the evanescent components x̂, p̂, ∂̂, γ̂, Â of coordinates, momenta,derivatives, gamma matrices and gauge �elds. Examples are ψ̄Lı /̂∂ψR, (∂µ̂Aaν)(∂µ̂Aνa), etc.9



14A1Renorm
The distinction between formally evanescent and analytically evanescent expressions is tosome extent ambiguous. Consider for example a basis ψ̄1γ

ρ1···ρkψ2 of fermion bilinears, where ψ1,
ψ2 can be ψL or Kψ, and γρ1···ρk is the completely antisymmetric product of γρ1 , · · · , γρk . Indimensional regularization these bilinears are nonvanishing for every k, and they are evanescentfor k > 4. We have several ways to rearrange the products of two or more fermion bilinearsby using Fierz identities, and such rearrangements can convert formally evanescent objects intoanalytically evanescent ones. For example, given some spinors ψn, n = 1, 2, 3, 4, we can expandthe matrix ψ2ψ̄3 in the basis made of γρ1···ρk , k = 0, . . . ,∞. We have

ψ2ψ̄3 = − 1

f(D)

∞∑

k=0

(−1)k(k−1)/2

k!
γρ1···ρk(ψ̄3γρ1···ρkψ2),where f(D) =tr[1]. Using this identity we �nd, for example,

(ψ̄1γ
µ̂ψ2)(ψ̄3γµ̂ψ4) =

ε

f(D)
(ψ̄1ψ4)(ψ̄3ψ2)−

2

f(D)
(ψ̄1γ

ρ̂ψ4)(ψ̄3γρ̂ψ2)−
ε

f(D)
(ψ̄1γ

ρψ4)(ψ̄3γρψ2)+· · ·(2.14)Basically, this equation has the form �fev = fev + aev�. The existence of such relations posessome problems, which we now describe.Feynman diagrams may generate �divergent evanescences�, brie�y denoted by �divev�. Theyare made of products between poles and formal evanescences, such as (∂µ̂A
a
ν)(∂

µ̂Aνa)/ε. Thetheorem of locality of counterterms demands that we renormalize divergent evanescences away,together with ordinary divergences (see below). However, this makes sense only if we can de�nedivergent evanescences unambiguously, which could be problematic due to the observations madeabove. For example, if we multiply both sides of formula (2.14) by 1/ε we get a relation of thetype �divev = �nite + divev�.Ultimately, the problem does not arise in the theories we are considering here, for the followingreasons. Both the classical action and counterterms are local functionals, equal to integrals oflocal functions of dimension 4. In the paper we also show that the �rst nonvanishing contributionsto the anomaly functional (2.11) are local, equal to integrals of local functions of dimension 5. Afermion bilinear ψ̄1γ
ρ1···ρkψ2 has dimension 3, so power counting implies that the classical action,as well as counterterms and local contributions to anomalies, cannot contain products of twoor more fermion bilinears. Therefore, they are not a�ected by the ambiguities discussed above.Those ambiguities can only occur in the convergent sector of the theory, where they are harmless,since both analytic and formal evanescences must eventually disappear.Thanks to the properties just mentioned, it is meaningful to require that the action Sr0, aswell as its extensions constructed in the rest of this paper, do not contain analytically evanescentterms. More precisely, the coe�cients of every Lagrangian terms should be equal to their four-dimensional limits. This request is important to avoid unwanted simpli�cations between ε factors10
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and ε poles, when divergent parts are extracted from bilinear expressions such as (Γ,Γ). It canbe considered part of the de�nition of the minimal subtraction scheme. For the same reason, wemust be sure that the antiparentheses do not generate extra factors of ε, or poles in ε, which isproved below.Finite nonevanescent contributions will be called �nev�. We need a convention to de�ne thesequantities precisely, otherwise they can mix with evanescent terms. For example, we need to statewhether C̄∂2C, or C̄∂̄2C, or a combination such as (1 + αε)C̄∂̄2C + βC̄∂̂2C, where α and β areconstants, is taken to be nonevanescent. The convention we choose is that nonevanescent terms aremaximally symmetric with respect to the D-dimensional Lorentz group. For the arguments of thispaper we just need to focus on local functionals contributing to counterterms and anomalies. Inthe case of counterterms the nonevanescent terms are those appearing in the action Sr0, which are
SO(D)-invariant when chiral fermions are switched o�. In the case of anomalies the nonevanescentterms are SO(D)-invariant unless they contain the tensor εµνρσ or chiral fermions.2.3 Evanescent extension of the classical actionIt is convenient to extend the action Sr0 by adding all formally evanescent terms that have thefeatures of divergent evanescences, multiplied by independent parameters η. In this way it ispossible to subtract divergent evanescences by means of η rede�nitions. Denoting the correctioncollecting such terms with Sev, the extended action reads
Sr(Φ,K) = Sr0(Φ,K) + Sev(Φ,K) = Sc + SLR + Sev + (SK ,Ψ) + SK = Sgf + SLR + Sev. (2.15)Then the generating functionals (2.10), the functional Γ and the anomaly functional A of (2.11)are turned into those de�ned by Sr.Each term of Sev is the integral of a monomial of dimension 6 4, globally invariant under G.It not necessarily gauge invariant, since gauge invariance is violated away from four dimensions.Moreover, Sev is B, KB , KC̄ , ψ̄R and ψR independent, linear in K and depends on C̄ai and thesources Kµai only through the combinations Kµai + ∂µC̄ai . It is also independent of KC , Kψ,
K̄ψ, ψL and ψ̄L, because no formally evanescent terms can be built with these objects. By powercounting and ghost-number conservation the terms proportional to Kµai +∂µC̄ai are independentof matter �elds. In the end, Sev has the form

Sev(Φ,K) = Scev(A)− ∫ ∑
i

Raiµev(A,C)(Kµai + ∂µC̄ai). (2.16)We can further restrict Sev. Indeed, Sr0 satis�es (2.12). Therefore, the divergent evanescenceshave the form (2.13) with L > 1, and can be renormalized with an Sev of the form (2.12). Precisely,11
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we can de�ne the parameters η so that Sev is linear in η and its g dependence has the form
Sev(Φ,K, g, η) = 1

g2
S′ev(gΦ, gK, η) ≡ 1

g2
S′
cev(gA, η)− 1

g2

∫ ∑

i

Rai ′µev(gA, gC, η)(gKµai +g∂µC̄ai),(2.17)so Sr also satis�es (2.12).Basically, the terms of Sev are similar to those appearing in Sr0, but contain some evanescentcomponents of momenta and/or gauge �elds, and are broken into gauge noninvariant pieces. Wehave
Raiµev = η1i∂µ̂C

ai + η2igf
aibiciAbiµ̂C

ci, (2.18)while examples of contributions to Scev are
Scev =∑

i

∫ (
η3i(∂µA

ai
ν̂ )(∂

µAν̂ai) + η4i(∂µ̂A
ai
ν )(∂

µ̂Aνai) + η5i(∂µ̂A
ai
ν̂ )(∂

µ̂Aν̂ai)
)

+
∑

i

∫ (
η6i(∂µ̂A

µ̂ai)(∂νA
νai) + η7i(∂µ̂A

µ̂ai)(∂ν̂A
ν̂ai) + η8iA

ai
µ̂ A

µ̂ai
) (2.19)

+
∑

i

∫ (
η9igf

aibiciAaiµ A
bi
ν̂ ∂

µAν̂ci + · · ·
)
.The terms multiplied by η3i, · · · η8i are quadratic and modify the propagators of the gauge �elds

Aaiµ and the Lagrange multipliers Bai . We do not need to report here the modi�ed propagators,which are rather involved. We have checked, with the help of a computer program, that theysatisfy the requirements we need. In particular, if k denotes their momentum, (i) they areregular when any evanescent components k̂ of k are set to zero; (ii) when the propagators aredi�erentiated with respect to any components k̄, k̂, or to parameters of positive dimensions (suchas η8i), their behaviors for large k2 improve by at least one power; (iii) they have a regular infraredbehavior, which corresponds to the decoupling of the evanescent components Aaiµ̂ . Finally, theirdenominators are SO(1, 3) × SO(−ε) scalars, like the denominators of the fermion propagators(2.7).The extended action (2.15) satis�es
(Sr, Sr) = (Sr0, Sr0) + O(η)O(ε) = O(ε) + O(η)O(ε),where (Sr0, Sr0) is given by (2.9).2.4 Structure of correlation functionsNow we analyze the evaluation of correlation functions. We use the same notation for a functionand its Fourier transform, since no confusion is expected to arise.12
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In momentum space, the terms of the classical action can be written in the form

∫ (n+r∏

i=1

dDki
(2π)D

)
Φα1(k1) · · ·Φαn(kn)Kβ1(kn+1) · · ·Kβr(kn+r)T

β1···βr
µ1···µpα1···αn

Gµ1···µp(k1, · · · , kn+r),(2.20)where k1, · · · , kn+r are the external momenta.The constants T β1···βrµ1···µpα1···αn collect all tensors ηµν ,
εµνρσ , δµ̂ν̂ , γ matrices, structure constants fabc and matrices T a. In particular, every projectoronto hat components of momenta, �elds and sources is moved inside T β1···βrµ1···µpα1···αn . Momentumconservation ensures that

Gµ1···µp(k1, · · · , kn+r) = (2π)Dδ(D)(P )G̃µ1···µp(k1, · · · , kn+r), P =

n+r∑

i=1

ki, (2.21)where the tensors G̃µ1···µp are polynomials that depend on n+ r − 1 external momenta.Propagators can be decomposed as sums of terms of the form
T ′
µ1···µpα1α2

N
µ1···µpprop (k)

Dprop(k) , (2.22)where T ′
µ1···µpα1α2

is a constant tensor, Nµ1···µpprop (k) is a polynomial SO(1,D − 1) tensor, and
Dprop(k) is a polynomial SO(1, 3)×SO(−ε) scalar. The reason whyDprop(k) is not fully SO(1,D−
1) invariant is that the regularized propagators do not have SO(1,D−1)-scalar denominators, dueto the parameters ςI of formula (2.7) and the parameters η provided by the extension Sr0 → Srdiscussed above.The Feynman diagrams of Γ and A have structures inherited from the structures (2.20) and(2.22) of the vertices and propagators. They can be written as sums of contributions of theform (2.20), with tensors Gµ1···µp that satisfy (2.21), but now G̃µ1···µp are integrals over internalmomenta p of rational functions

Nµ1···µp(p, k)

D(p, k)
, (2.23)where the polynomial Nµ1···µp(p, k) appearing in the numerator is an SO(1,D−1) tensor, and thepolynomial D(p, k) appearing in the denominator is an SO(1, 3) × SO(−ε) scalar. At ςIJ = δIJ ,

η = 0 the integrals G̃µ1···µp are full SO(1,D − 1) tensors. Note that G̃µ1···µp have a regular limitwhen the evanescent components k̂ of the external momenta k tend to zero.For example, we can write
∫

dDp

(2π)D
(p̂2)2

(p̄2 + ς2I p̂
2 −m2)2((p − k)2 −m2)

= δµ̂ν̂δρ̂σ̂G̃
µνρσ(k,m), (2.24)where

G̃µνρσ(k,m) =

∫
dDp

(2π)D
pµpνpρpσ

(p̄2 + ς2I p̂
2 −m2)2((p− k)2 −m2)

.13
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Then we include δµ̂ν̂δρ̂σ̂ inside the constants T β1···βrµ1···µpα1···αn . The remaining completely symmetrictensor G̃µνρσ(k,m) is an integral with the properties listed above.It may be useful to write (2.20) in the more compact form

∫
Lµ1···µp(Φ,K)Gµ1···µp(k1, · · · , kn+r), (2.25)and then organize the expressions Lµ1···µp(Φ,K) by using the basis of fermion bilinears ψ̄1γ

ρ1···ρkψ2,and explicitly evaluate traces of spinor indices and contractions of Lorentz indices. At the end, allLorentz indices appear in gauge �elds, fermion bilinears, the tensor εµνρσ (if present) and Gµ1···µp ,and are contracted among one another, possibly after projections onto bar or hat components.It is also convenient to expand
Gµ1···µp(k) =

∑

i

Π
µ1···µp
i (k)Gi(k) = (2π)Dδ(D)(P )

∑

i

Π
µ1···µp
i (k)G̃i(k), (2.26)where Gi(k) and G̃i(k) are SO(1, 3)×SO(−ε) scalars, and Π

µ1···µp
i (k) are polynomials constructedwith ηµν , εµνρσ , δµ̂ν̂ and the n+r−1 independent momenta k. Then we can write the contribution(2.25) to Γ or A as ∫

LiG
i, (2.27)where

Li = Lµ1···µp(Φ,K)Π
µ1···µp
i (k)are also SO(1, 3) × SO(−ε) scalars. After these operations, the Lorentz indices appear in gauge�elds, fermion bilinears, momenta k and the tensor εµνρσ . They are contracted among themselves,possibly after projections onto bar or hat components. At this point, traces and index contractionsmust be evaluated explicitly, because they may produce factors ε, which are important for theexpansions and limits that we are going to de�ne.The analytic expansion around ε = 0 of (2.25) or (2.27) is de�ned by expanding the scalars

Gi(k) in powers of ε without a�ecting the evanescent components of external momenta. Theanalytic limit is the order zero of the analytic expansion, once the poles in ε have been subtractedaway. The formal limit ε → 0 is the limit where the evanescent components of gauge �elds,external momenta and fermion bilinears are dropped. The limit ε → 0 is the analytic limitfollowed by the formal limit.For the reasons explained above, the analytic and formal limits may be ambiguous in the con-vergent sector of the theory, but they are unambiguous in the divergent sector. More importantly,the limit ε→ 0 is always unambiguous. Since the tensors Gµ1···µp are regular when any evanescentcomponents k̂ of the external momenta k are set to zero, the formal limits of (2.25) and (2.27)are well-de�ned.When we use the expressions �O(ε)� or �ev� we mean any quantity that vanishes in the limit
ε→ 0. Clearly, ev = aev + fev. 14
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2.5 Locality of countertermsNow we comment on the locality of counterterms. The forms of the regularized propagators ensurethat a su�cient number of derivatives with respect to physical k̄ and/or evanescent k̂ componentsof external momenta k kills the overall divergences of Feynman diagrams. If we subtract thedivergent evanescences, together with the ordinary divergences, up to some order n, then bothordinary divergences and divergent evanescences of order n + 1 are polynomial in k̄ and k̂. The
Sr0-extension Sr = Sr0 + Sev of formula (2.15) allows us to subtract all of them in a way that ise�cient for the proof of the Adler-Bardeen theorem.To complete the analysis it is useful to describe what happens if for some reason we do notsubtract some divergent evanescences. We use the abbreviations �loc� and �nl� to denote localand nonlocal contributions, respectively. At one loop we miss counterterms of the form

~
loc fev
ε

. (2.28)Consequently, at two loops we also miss counterterms for subdivergences. Using the vertex (2.28)inside one-loop diagrams we get contributions of the form
~
2

( loc nev
ε

+
loc fev
ε

+ nl)+ ~
2

( loc fev
ε2

+
nl fev
ε

+ nl fev) . (2.29)The �rst three terms are generated when the formal evanescence enters the diagram, is convertedinto a factor ε and simpli�es a pole in ε. Symbolically, we express this occurrence (which is thebasic mechanism that originates potential anomalies) asfev ∩ one-loop → ~ (loc nev+ loc fev+ O(ε) nl) . (2.30)The last three terms of (2.29) describe what happens when the formal evanescence remains outsidethe diagram.The �rst term of (2.29) must be subtracted, so the missing counterterms at two loops are
~
2 loc fev

ε2
, ~

2 loc fev
ε

, ~
2nl fev

ε
. (2.31)Even if the last term of this list is nonlocal, we still have no problem, since the residues of thepoles in ε are formally evanescent. However, when we use the �rst and third terms of (2.31) insideone-loop diagrams, the formal evanescence can simplify another pole, by the mechanism (2.30),and give

~
3nl nev

ε
+ ~

3nl fev
ε2

+ ~
3nl fev

ε
+ ~

3nlplus local poles. We see that nonlocal, nonevanescent divergences appear at three loops. Theseare only partially compensated by analogous contributions originated by the subtraction of the�rst term of (2.29). Those due to the �rst term of (2.31), in particular, do not seem to disappear.On the other hand, it is safe to subtract the divergent evanescences order by order, togetherwith nonevanescent divergences. In this paper we adopt this prescription.15
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2.6 Properties of the antiparenthesesNow we study how divergences and evanescences propagate through the antiparentheses. Indeed,in the proofs of renormalizability to all orders and the Adler-Bardeen theorem, it is necessary toextract divergent parts of antiparentheses such as A = (Γ,Γ) or (Γ,A). This operation is not assimple as it sounds, because we must be sure that the antiparentheses themselves do not generatepoles or factors of ε, in order to be able to say that, for example, the divergent part of (Sr,Γ(1))is equal to (Sr,Γ

(1)div), where Γ(1) it the one-loop contribution to Γ and Γ
(1)div is the divergent partof Γ(1). Speci�cally, we prove that(i) the antiparentheses (Xconv, Yconv) of convergent functionals Xconv and Yconv are convergent;(ii) the antiparentheses (Xconv, Yev) of convergent functionals Xconv and evanescent function-als Yev are evanescent;(iii) the antiparentheses (X,Y ) do not generate either poles in ε or factors of ε if X, Y and

(X,Y ) do not involve products of two or more fermion bilinears.For the uses we have in mind it is convenient to rephrase property (iii) more explicitly as(iii′) the antiparentheses (XA, YB) of functionals XA and YB with the properties speci�ed bytheir subscripts A and B, satisfy the identities
(Xfev, Ynev/fev)= fev, (Xdivev, Ynev/fev/divev) = divev, (Xev, Yfev) = ev,
(Xnev, Ydiv)|div= (Xnev, Ydiv), (Xnev, Ynev)|nev = (Xnev, Ynev), (2.32)

(Xnev, Ynevdiv)|nevdiv = (Xnev, Ynevdiv),as long as XA, YB and (XA, YB) do not involve products of two or more fermion bilinears.To prove these properties it is convenient to write the antiparentheses in momentum space.We have ∫
dDx

δrX

δΦα(x)

δlY

δKα(x)
=

∫
dDp

(2π)D
δrX

δΦα(p)

δlY

δKα(−p)
(2.33)and a similar relation obtained by exchanging Φ and K. Let us write formulas (2.27) for X, Yand (X,Y ) as

X =

∫
LiXG

i
X , Y =

∫
LjYG

j
Y , (X,Y ) =

∫
Lij(X,Y )G

ij
XY .Using (2.26) we �nd that the p integral of formula (2.33) can be readily done and gives

GijXY = (2π)Dδ(D)(P )G̃iX G̃
j
Y ,where P is the total momentum of G̃iX plus the one of G̃jY . We see that the scalar �cores� Giof correlation functions just multiply each other in momentum space, which cannot generate newpoles in ε or factors of ε. 16
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It remains to study the relation between Lij(X,Y ) and LiX , LjY . The antiparentheses canproduce index contractions by means the paired functional derivatives δ/δAµ-δ/δKµ and δ/δψ-

δ/δKψ . Clearly, no such operations can generate poles in ε. This observation is su�cient to provestatements (i) and (ii).As far as statement (iii) is concerned, we must assume that the functionals X, Y and (X,Y )do not involve products of two or more fermion bilinears. Therefore, they are free of ambiguitiesof type (2.14). The contraction of Lorentz indices brought by δ/δAµ and δ/δKµ gives a tensor
ηµν with mixed indices (namely one index from X and one index from Y ). The contraction ofspinorial indices brought by δ/δψ and δ/δKψ gives structures such as

ψ̄1γ
ρ1···ρkγσ1···σlψ2,where the ρ indices come from X and the σ indices come from Y . Anticommuting the γ's wecan rearrange the indices so that ρ1 < ρ2 < · · · < ρk and σ1 < σ2 < · · · < σl. Reordering theindices we may get minus signs from further anticommutations or from squares of γ matrices withidentical indices. In the end, we get a formula like

ψ̄1γ
ρ1···ρkγσ1···σlψ2 =

∑
±ψ̄1γ

ρ1···ρ̆m···ρkσ1···σ̆n···σlψ2

∏
ηρmσn ,where the breves denote missing indices that go into the tensors ηµν . Again, we get only tensors

ηµν with mixed indices. We recall that all Lorentz indices, possibly after projection onto bar orhat components, are contracted with gauge �elds, fermion bilinears, momenta and possibly εµνρσ,and that, by assumption, no products of two or more fermion bilinears are involved. Then it isobvious that the contractions originated by the antiparentheses cannot produce ε factors. Usingthese properties it is easy to check that identities (2.32) hold, so statement (iii) is also proved.Statement (iii) also says that the antiparentheses cannot convert formal ε evanescences intoanalytic ones. It applies, for example, to local functionals X and Y that are equal to the integralsof functions of dimensions nX , nY 6 5, such that nX + nY 6 8, because then X, Y and (X,Y )cannot contain products of two or more fermion bilinears. In the paper we will apply statement(iii) to the divergent contributions to Γ and the �rst nonvanishing contributions to the anomalyfunctional A of (3.10).3 DHD regularizationThe dimensional regularization alone does not provide the subtraction scheme where the can-cellation of gauge anomalies is manifest to all orders. To �nd the right scheme, we modifythe regularization technique by adding higher-derivative terms that preserve gauge invariance in17
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D = 4. We take the non-gauge-�xed regularized classical action

ScΛ = Sc + SLR − 1

4

∫
F aµν

(
D2

Λ2

)8
F aµν +

∑

I

∫
ψ̄ILı /D

(
D2

Λ2

)3
ψIL + SΛLR, (3.1)where

SΛLR =
∑

I

∫
ψ̄I ı/∂

(
∂2

Λ2

)3
ψI −

∑

I

∫
ψ̄ILı/∂

(
∂2

Λ2

)3
ψIL. (3.2)The higher-derivative structures of (3.1) and (3.2) are chosen to simplify the arguments of ourderivations.We gauge �x ScΛ using modi�ed gauge-�xing functions of the form

G
ai
Λ = Q (2) ∂µAaiµ , Q (2) = 1 +

λ′

Λ16
2

8, (3.3)and a modi�ed gauge fermion
ΨΛ(Φ) =

∑

i

∫
C̄ai

(
G
ai
Λ +

1

2
Pi (2)B

ai

)
, Pi (2) = ξi +

ξ′

Λ16
2

8,where λ′ and ξ′ are other (dimensionless) gauge-�xing parameters.Finally, we add
SΛev = Scev(A)− ∫ ∑

i

Raiµev(A,C)
(
Kµai +Q (2) ∂µC̄ai

)
,which di�ers from Sev only because the combinations Kµai + ∂µC̄ai are replaced by Kµai +

Q (2) ∂µC̄ai .The regularized gauge-�xed action reads
SΛ(Φ,K) = ScΛ + SΛev + (SK ,ΨΛ) + SK , (3.4)where SK is the same as before, and satis�es

(SΛ, SΛ) = 2g

∫
Ca
(
(∂µ̂hIJ(∂

2)ψ̄IR)ıγ
µ̂T aψJL + ψ̄ILT

aı /̂∂h∗JI(∂
2)ψJR

)
+ O(η)O(ε), (3.5)where hIJ(∂2) = (ςIJΛ

6 + δIJ(∂
2)3)/Λ6. The reason why it is useful to separate the termsproportional to the parameters η will become clear later.It is straightforward to derive the propagators and check that the ones of gauge �elds,

〈Aµ(k)Aν(−k)〉0, and the ones of ghosts, 〈C(k)C̄(−k)〉0, fall o� as 1/(k2)9 for large momenta
k, while the propagators 〈A(k)B(−k)〉0 fall o� as k/(k2)9, and 〈B(k)B(−k)〉0 as 1/(k2)8. Forexample, in the �Feynman gauge� ξi = λ′ = ξ′ = 1 at η = 0 we have

〈Aµ(k)Aν(−k)〉0 = − ıηµν
k2Q(−k2) , 〈C(k)C̄(−k)〉0 =

ı

k2Q(−k2) . (3.6)18
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The fermion propagators, on the other hand, fall o� as p/(p2)4.For a while we need to work at �nite Λ, where the action SΛ is super-renormalizable. To makeits super-renormalizability manifest, it is convenient to parametrize it so that the Λ denominatorscancel out. Let us �rst ignore the terms SΛev. We de�ne tilde �elds and tilde parameters as

Ãaµ =
Aaµ
Λ8

, ψ̃I =
ψI

Λ3
, g̃ = Λ8g, ζ̃i = Λ16ζi, (3.7)and r̃i = ri. The covariant derivatives remain Λ independent. To cancel the Λ denominators ofthe gauge-�xing sector we de�ne ˜̄Ca = C̄a/Λ8, B̃a = Ba/Λ8 and C̃a = Ca/Λ8. Finally, we de�nethe tilde sources

(K̃µa, K̃a
C , K̃

a
C̄ , K̃

a
B , K̃

I
ψ,
˜̄K
I

ψ) = (Λ8Kµa,Λ8Ka
C ,Λ

8Ka
C̄ ,Λ

8Ka
B ,Λ

3KI
ψ,Λ

3K̄I
ψ),so the tilde map is a canonical transformation combined with a rede�nition of parameters.As far as SΛev is concerned, using (2.17) and the linearity in η we can write it as

S̃Λev =
1

g̃2
S′
cev(g̃Ã,Λ16η)− 1

g̃2

∑

i

∫
Rai ′µev(g̃Ã, g̃C̃, η)(g̃K̃µai + g̃Q̃ (2) ∂µ ˜̄C

ai
)
, (3.8)where Q̃ (2) = Λ16 + λ′28.In the tilde parametrization the full action reads

S̃Λ(Φ̃, K̃)≡SΛ(Φ(Φ̃),K(K̃)) = −1

4

∑

i

∫
F̃ aiµν

(
ζ̃i + (D̃2)8

)
F̃ aiµν

+

∫
˜̄ψ
I

Lı /̃D
(
Λ6 + (D̃2)3

)
ψ̃IL +

∫
˜̄ψ
I

Rı/∂
(
Λ6 + (∂2)3

)
ψ̃IR

+

∫
˜̄ψ
I

Rı/∂
(
ςIJΛ

6 + δIJ(∂
2)3
)
ψ̃JL +

∫
˜̄ψ
I

Lı/∂
(
ς∗JIΛ

6 + δIJ(∂
2)3
)
ψ̃JR

+
∑

i

∫
B̃aiQ̃ (2) ∂µÃaiµ +

1

2

∑

i

∫
B̃ai P̃i (2) B̃

ai −
∑

i

∫
˜̄C
ai
Q̃ (2) ∂µD̃µC̃

ai

−
∫
Rα(Φ̃, g̃)K̃α + S̃Λev, (3.9)where P̃i (2) = ξ̃i + ξ′28, ξ̃i = ξiΛ

16.The DHD-regularized generating functional ZΛ reads
ZΛ(J,K) =

∫
[dΦ] exp

(
ıSΛ(Φ,K) + ı

∫
ΦαJα

)
= exp ıWΛ(J,K),and the generating functional ΓΛ(Φ,K) = WΛ(J,K) −

∫
ΦαJα of one-particle irreducible dia-grams is the Legendre transform of WΛ(J,K) with respect to J . Since no one-particle irreducible19
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diagrams with external legs ψR, ψ̄R can be constructed, the action SΛ and the Γ functional ΓΛdepend on ψR, ψ̄R in exactly the same way. The DHD-regularized anomaly functional is

AΛ = (ΓΛ,ΓΛ) = 〈(SΛ, SΛ)〉SΛ
. (3.10)When we switch to the tilde parametrization we write Z̃Λ, W̃Λ, Γ̃Λ and ÃΛ. See appendix B forthe proof of the last equality of (3.10).The tilde action S̃Λ is polynomial in Λ, has properly normalized propagators and contains onlyparameters of nonnegative dimensions in units of mass. However, the tilde �elds have negativedimensions, which in principle may jeopardize the (super)renormalizability we want to prove.Precisely, we have

[Ã] = [ ˜̄C] = [C̃] = −7, [B̃] = −6, [ψ̃] = −3

2
, [g̃] = 8,while [K̃aµ] = [K̃a

C ] = [K̃a
C̄
] = 10, [K̃B ] = 9 and [K̃ψ] = 9/2. The problem is solved as follows.Since SΛ has the form (2.12), the g̃ structure of S̃Λ is the tilde version of (2.12). The tilde versionof formula (2.13) ensures that the counterterms have the g̃ structure

∑

L>1

g̃2(L−1)FL(g̃Φ̃, g̃K̃), (3.11)where the L-loop local functionals FL depend polynomially on the other dimensionful parametersof the theory. Then we see that the theory is indeed superrenormalizable, because the dimensionsof all products g̃Φ̃ and g̃K̃ are strictly positive.3.1 The DHD limitThe basic idea behind the DHD regularization is to ��rst send ε to zero, then Λ to in�nity�.However, we must formulate the rules of such limits more precisely, since certain caveats demandattention. We distinguish the higher-derivative theory from the �nal theory. The higher-derivativetheory is the one de�ned by the classical action SΛ (or S̃Λ, if we use the tilde parametrization),where the scale Λ is kept �xed and treated like any other parameter, instead of a cuto�. It issuper-renormalizable and regularized by the dimensional technique. Its divergences, which arepoles in ε, are subtracted in the next section using the minimal subtraction scheme. The �naltheory is obtained by taking the limit Λ → ∞ on the renormalized higher-derivative theory, aftersubtracting the Λ divergences that emerge in that limit.Having already expanded in ε, we may wonder what types of divergences appear in the �naltheory. We have products Λk lnk′ Λ of powers and logarithms of Λ, but we also have terms thatare evanescent in ε and divergent in Λ. To understand what to do with these, we distinguish twotypes of them, according to whether the ε evanescence is analytic or formal.20
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(i) First, consider analytic evanescences in ε multiplied by products Λk lnk′ Λ, such as εΛ2 ln Λ.Since we �rst send ε to zero, these quantities are not true divergences and must be neglected. Inany case, they cannot be subtracted away, because the theorem of locality of counterterms doesnot apply to them. Consider for example the integral

∫
dDp

(2π)D
Λ4

(p2 +m2)(Λ4 + (p2)2)
=

Λ4−εm2
[
cos
(
πε
4

)
+ Λ2

m2 sin
(
πε
4

)
− Λε

mε

]

2Dπ(D−2)/2Γ(D2 )(Λ
4 +m4) sin

(
πε
2

) ,where for the purposes of our present discussion the mass m can also play the role of an externalmomentum. Expanding the right-hand side in powers of ε we �nd that the O(ε0) terms, whichare equal to
1

32π2

(
πΛ2 − 2m2 ln

Λ2

m2

)
+ O(

m

Λ
),have a Λ-divergent part that is polynomial in m, as expected, while the O(ε1) terms have a

Λ-divergent part that contains expressions such as
Λ2 ln

Λ2

m2
, m2 ln2

Λ2

m2
,which are not polynomial in m.(ii) Next, consider formal evanescences times Λk lnk′ Λ, such as (ln Λ)∂µAν̂∂µAν̂ . These can(actually, must, for the reasons explained in subsection 2.5) be subtracted away (as long as theircoe�cients are calculated at ε = 0), because the form of regularized propagators ensures thatcounterterms are polynomial in both physical and evanescent components of external momentaand �elds.(iii) Formally evanescent expressions multiplied by products Λk lnk′ Λ and factors of ε are justlike case (i) and should not be subtracted away.(iv) For completeness, we point out a forth type of ε-evanescent Λ divergences, that is to saynonlocal contributions of type (ii), which can appear as artifacts of inconvenient manipulations.Precisely, because of the ambiguities encoded in formula (2.14) some quantities of type (i) can beconverted into nonlocal divergences of type (ii). These conversions should just be avoided. Tothis purpose, it is su�cient to note that the structure (2.20) of diagrams and the expansion ofthe integrals Gµ1···µp only generate ε-evanescent Λ divergences of types (i), (ii) and (iii). In theevent that �aev → fev conversions� of type (2.14) are accidentally applied, nonlocal divergencesof type (ii) can just be ignored, because they cannot mix with the local terms belonging to thepower-counting renormalizable sector and they are resummable into contributions of type (i).To summarize, the Λ divergences are equal to Λk lnk

′

Λ times local monomials of the �elds,the sources and their derivatives. From the point of view of the dimensional regularization, thosemonomials may be nonevanescent or formally evanescent, and their coe�cients must be evaluatedin the analytic limit ε→ 0. 21
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We can thus de�ne the procedure with which we renormalize the �nal theory and de�ne thephysical quantities. We call it the DHD limit. We still organize the contributions to Γ and Ain the form (2.20). Referring to (2.25) and (2.27), the DHD limit is made of the analytic limit

ε → 0, followed by the limit Λ → ∞, followed by the formal limit ε→ 0. We also have the DHDexpansion, that is to say the analytic expansion around ε = 0 followed by the expansion around
Λ = ∞.The three steps that de�ne the DHD limit are unambiguous in the divergent sector, which doesnot contain products of more than one fermion bilinears. Instead, the �rst and third steps areambiguous in the convergent sector. What is important is that the DHD limit is also unambiguousin the convergent sector.It is useful to recapitulate the DHD limit in symbolic form. We �rst expand around ε = 0 at
Λ �xed, and �nd poles, �nite terms and evanescent terms:

1

ε
,

δ̂

ε
, ε0, δ̂ε0, ε, δ̂ε.The symbols appearing in this list have the following meanings: 1/ε denotes any kinds of di-vergences in ε, δ̂ is any formally evanescent quantity, ε0 is any quantity that is convergent andnonevanescent in the analytic limit ε → 0, and ε denotes any analytic evanescence. After theexpansion, we subtract the poles and remain with

ε0, δ̂ε0, ε, δ̂ε. (3.12)The terms proportional to ε vanish in the DHD limit. The terms δ̂ε0 also vanish in that limit,but for some time we treat them together with the ε0 terms. Next, we study the Λ dependence.Expanding the coe�cients of every surviving terms (3.12) around Λ = ∞, we �nd
ε0Λ, δ̂ε0Λ, ε0Λ0, δ̂ε0Λ0,

ε0

Λ
,

δ̂ε0

Λ
,

εΛ, δ̂εΛ, εΛ0, δ̂εΛ0,
ε

Λ
,

δ̂ε

Λ
, (3.13)where Λ denotes any kind of Λ-divergent expression (such as Λk lnk′ Λ, with k, k′ > 0 and k+k′ >

0), while Λ0 is any Λ-convergent, non-Λ-evanescent expression, and 1/Λ is any Λ-evanescentexpression. Then we subtract the Λ divergences of the DHD limit, namely the terms of types ε0Λand δ̂ε0Λ. After that we remain with
ε0Λ0, δ̂ε0Λ0,

ε0

Λ
,

δ̂ε0

Λ
, εΛ, δ̂εΛ, εΛ0, δ̂εΛ0,

ε

Λ
,

δ̂ε

Λ
. (3.14)At this point we are ready to take the DHD limit, which drops all contributions of this list butthe ε0Λ0 terms. 22
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4 Renormalization of the higher-derivative theoryIn this section and the next two we study the higher-derivative regularized theory S̃Λ, keeping Λ�xed and (mostly) using the tilde parametrization. We �rst work out the renormalization of thetheory, then study its one-loop anomalies and �nally prove the anomaly cancellation to all orders.The counterterms (3.11) are local and largely constrained. We know that i) they are inde-pendent of B̃, K̃C̄ , K̃B , ψ̃R and ˜̄ψR and ii) do not depend on antighosts ˜̄Cai and sources K̃µaiseparately, but only through the combinations K̃µai + Q̃(2)∂µ ˜̄C

ai . Indeed, we have arranged
SΛev to preserve these properties. Actually, we have chosen the higher-derivative structure of SΛto simplify the counterterms even more: iii) they cannot depend on the sources K̃ and matter�elds ψ̃, because each product g̃K̃, g̃ψ̃ has dimension greater than 4; iv) they cannot containantighosts, because of points (ii) and (iii); v) they cannot contain ghosts, because all objectswith negative ghost numbers are excluded by points (iii) and (iv); vi) they can only be one-loop,because each loop carries an extra factor g̃2, which has dimension 16. In the end, there can onlybe one-loop divergences of the form

∂2(g̃Ã)2, ∂(g̃Ã)3, (g̃Ã)4 (4.1)(where derivatives can act on any objects to their right), and those obtained from these expressionsby suppressing some g̃Ã's or derivatives.The anomaly functional (3.10), if nonvanishing and nontrivial (in a sense speci�ed below), isthe anomaly of the higher-derivative theory. In the tilde parametrization we have
ÃΛ = (Γ̃Λ, Γ̃Λ) = 〈(S̃Λ, S̃Λ)〉S̃Λ

. (4.2)The one-loop contribution Ã
(1)
Λ is

Ã
(1)
Λ = 2(S̃Λ, Γ̃

(1)
Λ ) = 〈(S̃Λ, S̃Λ)〉S̃Λ

∣∣∣one-loop , (4.3)where Γ̃
(1)
Λ is the one-loop contribution to Γ̃Λ. Using (2.32) and (3.4) we see that (S̃Λ, S̃Λ) =fev. The right-hand side of (4.3) collects one-loop Feynman diagrams containing insertions offormally evanescent vertices. The formal evanescences can: (a) remain attached to external legsand momenta, or (b) be turned into one or more factors ε. In case (a) they give local divergentevanescences plus nonlocal evanescences. In case (b) the factors ε can simplify a local divergentpart and give local nonevanescent contributions, in addition to (generically nonlocal) evanescences.Therefore, we can write

Ã
(1)
Λ = Ã

(1)
Λnev + Ã

(1)
Λdivev + Ã

(1)
Λev, (4.4)where Ã

(1)
Λnev is local, convergent and nonevanescent, Ã(1)

Λdivev is local and divergent-evanescentand Ã
(1)
Λev is evanescent and possibly nonlocal. 23
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Now we take the divergent part of equation (4.3). Decompose Γ̃(1)

Λ as the sum of its divergentpart Γ̃
(1)
Λdiv and its convergent part Γ̃

(1)
Λconv. Recalling that the antiparentheses of convergentfunctionals are convergent, we obtain that (S̃Λ, Γ̃(1)

Λconv) is convergent. Properties (2.32) apply to
(S̃Λ, Γ̃

(1)
Λdiv), so we have the identity

(S̃Λ, Γ̃
(1)
Λdiv) = 1

2
Ã

(1)
Λdivev. (4.5)Now, formula (4.1) tells us that Γ̃

(1)
Λdiv is just a functional of g̃Ã. Therefore, its antiparenthesiswith S̃Λ is only sensitive to S̃K and the K-dependent contributions to S̃Λev, which we denote by

S̃ΛK ev. Moreover, we can further decompose Γ̃
(1)
Λdiv as the sum of a nonevanescent divergent part

Γ̃
(1)
Λnevdiv and a divergent evanescence Γ̃

(1)
Λdivev. So doing, we �nd

(S̃K + S̃ΛK ev, Γ̃(1)
Λnevdiv + Γ̃

(1)
Λdivev) = 1

2
Ã

(1)
Λdivev. (4.6)At this point, taking the nonevanescent divergent part of this equation, we obtain

(S̃K , Γ̃
(1)
Λnevdiv) = 0,which just states that Γ̃(1)

Λnevdiv is gauge invariant. Going back to the nontilde parametrization, wehave Γ̃(1)
Λnevdiv(g̃Ã) = Γ

(1)
Λnevdiv(gA). By power counting, Γ(1)

Λnevdiv can only be a linear combinationof the invariants F aiµνF aiµν , and can be subtracted by rede�ning the parameters ζi. The rest,
Γ
(1)
Λdivev, can be subtracted by rede�ning the parameters η of Sev. The renormalized action ŜΛ isobtained by making the replacements

ζi → ζi +
fi
ε
g2, η → η +

f ′

ε
g2, (4.7)in SΛ, where fi, f ′ are calculable numerical coe�cients. Since SΛ is linear in ζ and η, we have

ŜΛ = S̃Λ − Γ̃
(1)
Λdiv. (4.8)Moreover, using (4.5) and (Γ̃

(1)
Λdiv, Γ̃(1)

Λdiv) = 0 we �nd
(ŜΛ, ŜΛ) = (S̃Λ, S̃Λ)− Ã

(1)
Λdivev. (4.9)The generating functional Γ̂Λ de�ned by ŜΛ is convergent to all orders, because formula(3.11) ensures that no divergences can appear beyond one loop. Finally, Γ̂Λ and the anomaly

ÂΛ = (Γ̂Λ, Γ̂Λ) are obtained by making the replacements (4.7) inside Γ̃Λ and ÃΛ = (Γ̃Λ, Γ̃Λ),respectively. Clearly, ÂΛ is convergent, because Γ̂Λ is convergent, and because the antiparenthesesof convergent functionals are convergent. 24
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5 One-loop anomaliesIn this section we study the one-loop anomalies, and relate those of the �nal theory, which aretrivial by assumption, to those of the higher-derivative theory, which turn out to be trivial as aconsequence.We begin with the one-loop contributions Â(1)

Λ and Ã
(1)
Λ to ÂΛ and ÃΛ. First, we observe that

ÂΛ = 〈(ŜΛ, ŜΛ)〉ŜΛ
= 〈(ŜΛ, ŜΛ)〉S̃Λ−Γ̃

(1)
Λdiv = 〈(ŜΛ, ŜΛ)〉S̃Λ

+ O(~2).Indeed, the correction Γ̃
(1)
Λdiv to the action provides O(~) vertices. If we use those vertices in one-particle irreducible diagrams together with vertices of (ŜΛ, ŜΛ), we must close at least one loop,which gives O(~2) contributions. Using (4.9), we have

ÂΛ = 〈(S̃Λ, S̃Λ)〉S̃Λ
− Ã

(1)
Λdivev + O(~2) = ÃΛ − Ã

(1)
Λdivev + O(~2),thus (4.4) gives

Â
(1)

Λ = Ã
(1)
Λnev + Ã

(1)
Λev. (5.1)As a check, recall that ÂΛ is convergent, so the divergent evanescences Ã

(1)
Λdivev must disappearfrom Â

(1)

Λ .We know that Ã
(1)
Λnev is the integral of a local function of dimension 5 and ghost number 1.Recalling that a factor g̃ is attached to every external leg, we have

Ã
(1)
Λnev =

∫
dDx g̃C̃aÃ

a
(g̃Φ̃, g̃K̃), (5.2)where Ã

a are local functions of ghost number zero and dimension 4. However, Ã(1)
Λnev cannotdepend on the sources K̃ and the matter �elds ψ̃, because the products g̃K̃ and g̃ψ̃ have dimensionsgreater than 4.Working out (S̃Λ, S̃Λ) in detail, it is easy to check that it does not depend on B̃ai and dependson K̃µai and ˜̄Cai only through the combinations K̃µai + Q̃(2)∂µ ˜̄C

ai . Therefore, the same mustbe true of Ã(1)
Λ , which means that Ã(1)

Λnev cannot depend on either ˜̄C or B̃. Then the functions Ãacannot even contain ghosts. Summarizing, we can write
Ã

(1)
Λnev =

∫
dDx g̃C̃aÃ

a
(g̃Ã). (5.3)Recall that the antiparentheses satisfy the identity (X, (X,X)) = 0 for any functional X.Taking X = Γ̂Λ, we obtain

(Γ̂Λ, ÂΛ) = 0, (5.4)25
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which are the Wess-Zumino consistency conditions [9], written using the Batalin-Vilkovisky for-malism. In particular, at one loop we have

(S̃Λ, Â
(1)

Λ ) = −(Γ̂
(1)
Λ , (S̃Λ, S̃Λ)). (5.5)In section 2 we have proved that the antiparenthesis of an evanescent functional with a convergentfunctional is evanescent. Thus,

(Γ̂
(1)
Λ , (S̃Λ, S̃Λ)) = ev = O(ε).For the same reason, (S̃Λ, Ã(1)

Λev) and (S̃ΛK ev, Ã(1)
Λnev) are evanescent. Using these facts, togetherwith (5.1) and (5.3), formula (5.5) givesev = (S̃Λ, Ã

(1)
Λnev + Ã

(1)
Λev) = (S̃Λ, Ã

(1)
Λnev) + ev = (S̃K + S̃ΛK ev, Ã(1)

Λnev) + ev = (S̃K , Ã
(1)
Λnev) + ev.At this point, we take the nonevanescent part of both sides and note that relations (2.32) applyto (S̃K , Ã

(1)
Λnev), because, thanks to (5.3), no products of more fermion bilinears are involved inthese antiparentheses. We �nd

(S̃K , Ã
(1)
Λnev) = 0. (5.6)Now, Ã(1)

Λnev is the (potential) one-loop anomaly of the higher-derivative regularized theory
S̃Λ, de�ned keeping Λ �xed. The �nal theory is instead obtained taking the DHD limit. We mustrelate Ã(1)

Λnev to the potential one-loop anomaly A
(1)
f nev of the �nal theory. Indeed, we are assumingthat A(1)

f nev is trivial (the �nal theory cannot have gauge anomalies at one loop), but we have noinformation of this type as regards Ã(1)
Λnev.We know how Ã

(1)
Λnev depends on g̃. The other dimensionful parameters of S̃Λ (such as ζ̃i and

ξ̃i), as well as the powers of Λ multiplying various terms (such as ˜̄ψILı /̃Dψ̃IL), have dimensionsgreater than 4. They cannot contribute to Ã
(1)
Λnev, because the local functions Ãa are polynomialin them and have dimension 4. Thus, Ã(1)

Λnev can only depend on g̃C̃, g̃Ã, r̃i, λ′, ξ′, η1i and η2i.Using (5.3), switching to nontilde variables, and recalling that g̃Ã = gA, g̃C̃ = gC, we obtain that
A

(1)
Λnev is Λ independent. Now we show that actually A

(1)
Λnev coincides with the one-loop anomaly

A
(1)
f nev of the �nal theory.To prove this fact, we need to take Λ to in�nity and study the DHD limit at one loop. A morecomprehensive study of the DHD limit will be carried out later. The terms that are divergentin this limit are denoted by �Ddiv�, to distinguish them from the divergences considered so far,which strictly speaking were �εdiv�. Recall that, according to the de�nition of DHD limit, the

Λ-divergent parts cannot contain analytic ε evanescences, but can contain formal ε evanescences.
26
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Consider ÂΛ = (Γ̂Λ, Γ̂Λ) and take the one-loop DHD-divergent part of this equation. Using(5.1) and recalling that A(1)

Λnev is Λ independent, we get
1

2
A

(1)
Λev ∣∣∣Ddiv = (SΛ, Γ̂

(1)
Λ )
∣∣∣Ddiv = (SΛ, Γ̂

(1)
ΛDdiv)∣∣∣Ddiv

= (SΛ − Sr, Γ̂
(1)
ΛDdiv)∣∣∣Ddiv + (Sr, Γ̂

(1)
ΛDdiv)∣∣∣Ddiv = (Sr, Γ̂

(1)
ΛDdiv), (5.7)where Γ̂

(1)
ΛDdiv is the one-loop DHD-divergent part of Γ̂Λ. In the last step we have dropped thecontribution involving (SΛ − Sr, Γ̂

(1)
ΛDdiv), since this quantity vanishes in the limit Λ → ∞. Thereason is that, by formulas (2.15) and (3.4), the di�erence SΛ−Sr is made of O(1/Λ6) terms, andthe powerlike Λ divergences contained in Γ̂

(1)
ΛDdiv cannot exceed Λ4. Actually, this is one of thereasons why we have chosen the particular higher-derivative structure of the theory SΛ. Moreover,to make the last step of (5.7) we have applied (2.32) to (Sr, Γ̂

(1)
ΛDdiv). Because of the analysis ofsection 3, the Λ divergences of Γ̂(1)

ΛDdiv can be of two types, with respect to the limit ε → 0:nonevanescent or formally evanescent. Thanks to (2.32), the antiparentheses with Sr also givenonevanescent or formally evanescent contributions, wherefrom the last equality of (5.7) follows.Subtracting the Λ divergences Γ̂(1)
ΛDdiv from ŜΛ, we can de�ne the one-loop renormalized action

Ŝf ren of the �nal theory, which reads
Ŝf ren = ŜΛ − Γ̂

(1)
ΛDdiv + O(~2).For the moment we do not need to specify the O(~2) terms of this subtraction (but later we willhave to be precise about them). The anomaly of the �nal theory is

Af = 〈(Ŝf ren, Ŝf ren)〉Ŝf ren ,and its one-loop nonevanescent part is the quantity A
(1)
f nev we want, where the subscript �nev�close to the subscript �f � denotes the contributions that do not vanish in the DHD limit. Wehave

Af = 〈(ŜΛ − Γ̂
(1)
ΛDdiv, ŜΛ − Γ̂

(1)
ΛDdiv)〉ŜΛ−Γ̂

(1)
ΛDdiv + O(~2) = ÂΛ − 2(SΛ, Γ̂

(1)
ΛDdiv) + O(~2)

= (SΛ, SΛ) +A
(1)
Λnev +A

(1)
Λev − 2(Sr, Γ̂

(1)
ΛDdiv)− 2(SΛ − Sr, Γ̂

(1)
ΛDdiv) + O(~2). (5.8)In these manipulations we have used the formula

ÂΛ = 〈(ŜΛ, ŜΛ)〉ŜΛ
= 〈(ŜΛ, ŜΛ)〉ŜΛ−Γ̂

(1)
ΛDdiv + O(~2),which holds because at one loop the vertices of Γ̂(1)

ΛDdiv, which are already O(~), cannot contributeto one-particle irreducible diagrams containing one insertion of (ŜΛ, ŜΛ).27



14A1Renorm
At one loop, using (5.7), we obtain

A
(1)
f = A

(1)
Λnev +A

(1)
Λev − A

(1)
Λev ∣∣∣Ddiv − 2(SΛ − Sr, Γ̂

(1)
ΛDdiv). (5.9)We are ready to take the DHD limit. Recall that (SΛ − Sr, Γ̂

(1)
ΛDdiv) tends to zero for Λ →

∞, while A
(1)
Λnev does not change. On the other hand, A

(1)
Λev and its Λ-divergent part do notseparately tend to zero, because they can contain (local) terms that are formally ε evanescentand Λ divergent. However, those terms are precisely A

(1)
Λev ∣∣∣Ddiv. Therefore, they disappear in thedi�erence A

(1)
Λev − A

(1)
Λev ∣∣∣Ddiv. Finally, using (5.3), we get

A
(1)
f nev = A

(1)
Λnev =

∫
dDx gCaAa(gA), (5.10)as we wanted.Let us write the most general structure of the functions Aa(gA). We know that they havedimension 4 and are sums of terms of the form gp∂kAp. Power counting gives k + p ≤ 4, hencewe have

Aa ∼ g2∂2A2 + g3∂A3 + g4A4,plus the terms obtained from these by suppressing some gA's or some derivatives. Now it remainsto collect all pieces of information found so far and solve (5.6). We call condition (5.6) a littlecohomological problem, because it involves a structure (5.3) that contains a �nite number ofterms, in our case just a few, and its solution can be worked out directly. We recall the solutionwithout proof, because the proof is well-known and not necessary for the other derivations ofthis paper. The solution can be split into the sum of trivial and nontrivial contributions. Trivialcontributions are those of the form (SK , χ), where χ = χ(gA) is a local functional of the gauge�elds A, equal to the integral of a local function of dimension 4 and ghost number 0, and havinga g structure corresponding to the one-loop sector of formula (2.13). In the tilde parametrization,we write χ as χ̃(g̃Ã). The only nontrivial contributions to A
(1)
f nev are proportional to the famousBardeen formula [15]. In appendix A, the coe�cient of the Bardeen term is calculated using ourregularization technique. In the end, we have

A
(1)
f nev = A

(1)
Λnev = − ıg3

12π2

∫
dDx εµνρσTr

[
∂µC

(
Aν∂ρAσ +

g

2
AνAρAσ

)]
+ (SK , χ), (5.11)where C = CaT a, Aµ = AaµT

a, the Bardeen term being the integral on the right-hand side.One-loop gauge anomalies vanish when the trace appearing in (5.11) vanishes. Typically, thecancellation is possible when the gauge group is a product group and the theory contains varioustypes of fermionic �elds in suitable representations, as in the standard model.28
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Now we go back to the higher-derivative theory (the DHD limit being completed in section 7),precisely to the classical action ŜΛ of formula (4.8). The trivial contributions (SK , χ) to anomaliescan be canceled out by rede�ning the action as

Ŝ′
Λ(Φ,K) = ŜΛ(Φ,K)− 1

2
χ(gA), (5.12)because then

Â
′

Λ = 〈(Ŝ′
Λ, Ŝ

′
Λ)〉Ŝ′

Λ
= 〈(ŜΛ, ŜΛ)〉ŜΛ

− (ŜΛ, χ) + O(~2) = ÂΛ − (SK + SΛK ev, χ) + O(~2).In the last step we used the fact that χ is K independent. Thus, at one loop we have
Â

′(1)

Λ = A
(1)
Λnev +A

(1)
Λev − (SK , χ) + ev, Â

′(1)

Λnev = A
(1)
Λnev − (SK , χ),which means that when the Bardeen term vanishes Â′(1)

Λnev = 0, Â′(1)

Λ = ev.Finally, observe that the new Γ functional Γ̂′
Λ is still convergent to all orders. The reason isthat it is convergent at one loop and the action

Ŝ′
Λ = SΛ − Γ

(1)
Λdiv − 1

2
χ (5.13)has the g structure (2.13). Then, using tilde variables, the counterterms must have the form(3.11), which however forbids divergent contributions from two loops onwards. The anomalyfunctional Â′

Λ = (Γ̂′
Λ, Γ̂

′
Λ) is also convergent to all orders and has the g structure (2.13).The next step is to prove the anomaly cancellation to all orders in the higher-derivative theory.After that, we will have to complete the DHD limit by renormalizing the Λ divergences.6 Manifest Adler-Bardeen theorem in the higher-derivative the-oryIn this section we prove that gauge anomalies manifestly cancel to all orders in the higher-derivative theory SΛ. We assume that the �nal theory has no one-loop anomalies, which, accordingto the previous section, implies that the higher-derivative theory shares the same property, namely

A
(1)
Λnev = (SK , χ), Â′(1)

Λnev = 0. Then, the one-loop contribution Â
′(1)

Λ to the anomaly functional
Â

′

Λ is evanescent, so we can write
Â

′

Λ = O(ε) + O(~2). (6.1)Here the �O(ε)� includes the tree-level contribution (SΛ, SΛ).Now we move on to higher orders. We have to study the diagrams with two or more loops,and one insertion of
E ≡ (Ŝ′

Λ, Ŝ
′
Λ) = (S̃Λ, S̃Λ)− Ã

(1)
Λnev − Ã

(1)
Λdivev − (S̃ΛK ev, χ̃), (6.2)29
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calculated with the action (5.13). We have switched back to the tilde parametrization, used (4.5),and replaced (S̃Λ, χ̃) by (S̃K +S̃ΛK ev, χ̃) and (S̃K , χ̃) by Ã

(1)
Λnev. Both E and Â

′

Λ have the structure(3.11) and (S̃Λ, S̃Λ) is formally evanescent. To �x the notation, let us start from formula (2.20),applied to the `-loop diagrams containing one (S̃Λ, S̃Λ) insertion. We write them as sums ofcontributions of the form
G
(`)
A

=

∫
Φ̃α1(k1) · · · Φ̃αn(kn)K̃β1(kn+1) · · · K̃βr(kn+r)T

(`)β1···βr
Aµ1···µpα1···αn

G
(`)µ1···µp
A

(k1, · · · , kn+r),(6.3)where the tensors T (`)β1···βr
Aµ1···µpα1···αn

are constant and evanescent, and the integrations over momentaare understood. We recall that G(`)µ1···µp
A

(k1, · · · , kn+r) are the integrals coming from Feynmandiagrams, once all tensors ηµν , εµνρσ , δµ̂ν̂ , the γ matrices, the structure constants fabc and thematrices T a are moved outside into the structures T (`)
A

. We call the divergent parts of G(`)µ1···µp
A�nontrivial� if they are not killed by the structures T (`)

A
.Let us �rst reconsider the case ` = 1. It is useful to describe the right-hand side of (6.2)from the point of view of the integrals G(1)µ1···µp

A
. The divergent parts of G(1)µ1 ···µp

A
can be ofthree types: (a) divergences that are turned into nonevanescent contributions by T (1)

A
, which aresubtracted by Ã

(1)
Λnev; (b) divergences that remain divergent when T (1)

A
is applied to them, whichare subtracted by Ã

(1)
Λdivev; (c) divergences that are turned into evanescences by T (1)

A
, which canbe subtracted by further, one-loop, local evanescent terms L̃(1)ev with the g̃ structure (3.11). Wewrite E = E1 + E2, where

E1 = (S̃Λ, S̃Λ)− Ã
(1)
Λnev − Ã

(1)
Λdivev − L̃(1)ev , E2 = L̃(1)ev − (S̃ΛK ev, χ̃).The subtractions included in E1 cancel all nontrivial divergences of G(1)µ1 ···µp

A
. Instead, 〈E2〉collects the diagrams with one E2 insertion. They can also be expressed in the form (6.3) andstudied along the same lines. From now on we understand that the expressions (6.3) refer to thediagrams with one (S̃Λ, S̃Λ) insertion or one E2 insertion.Each contribution G

(1)
A

is then equipped with counterterms G(1)
Acounter, so that the di�erence

G
(1)
A

− G
(1)
Acounter = ∫ Φ̃α1(k1) · · · Φ̃αn(kn)K̃β1(kn+1) · · · K̃βr(kn+r)T

(1)β1···βr
Aµ1···µpα1···αn

G
(1)µ1 ···µp
Asubtr (k),involves fully convergent subtracted integrals G(1)µ1···µp

Asubtr . Now, the evanescences provided by T (1)
Acannot simplify any divergences, so the �nal result Â′(1)

Λ is evanescent, in agreement with (6.1).At higher loops it is useful to make a similar analysis. We begin with ` = 2. The integrals
G

(2)µ1 ···µp
A

are automatically equipped with the counterterms that subtract their nontrivial subdi-vergences: �rst, the action Ŝ′
Λ is equipped with its own counterterms and, second, the subtractionscontained in E1 provide counterterms for the integrals G(1)µ1 ···µp

A
associated with (S̃Λ, S̃Λ). Instead,30
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the two-loop contributions of E2 do not have subdivergences, because E2 is one-loop. When we in-clude counterterms for subdivergences, we can identify subtracted integrals G(2)µ1···µp

A
−G(2)µ1···µp

Asubdivthat have local divergent parts G(2)µ1 ···µp
Adiv (by the theorem of locality of counterterms) and possi-bly nonlocal �nite parts G(2)µ1···µp

A�nite . When T (2)
A

acts on G(2)µ1 ···µp
Adiv , it gives local contributions to

Â
′(2)

Λ , which can be nonevanescent (due to simpli�ed divergences), evanescent or still divergent.However, local contributions must have the structure (3.11), which implies that they are zero. In-deed, using the tilde parametrization, they are polynomial in the dimensionful parameters of S̃Λand carry an overall factor g̃2, which has dimension 16. We conclude that the overall divergences
G

(2)µ1 ···µp
Adiv are trivial, because they are killed by T (2)

A
. When T (2)

A
acts on G(2)µ1 ···µp

A�nite it just gives(possibly nonlocal) evanescent contributions to Â
′(2)

Λ . Finally, we have
Â

′(2)

Λ = O(ε). (6.4)Therefore, formula (6.1) is promoted to the next order, and we can write Â
′

Λ = O(ε) + O(~3),where now �O(ε)� includes the evanescent contributions appearing on the right-hand side of (6.4).At this point we can proceed by induction. Assume that for some ` > 2,

Â
′

Λ = O(ε) + O(~`+1), (6.5)and that the overall divergent parts G(L)µ1···µp
Adiv of the subtracted integrals G(L)µ1 ···µp

A
−G

(L)µ1···µp
Asubdivare trivial for 2 6 L 6 `. Denote the contributions of order ~`+1 to Â

′

Λ with Â
′(`+1)

Λ . A diagram-matic analysis similar to the one carried out above shows that Â′(`+1)

Λ is the sum of a local part
Â

′(`+1)

Λ loc =
∑
T
(`+1)
A

G
(`+1)
Adiv , plus a possibly nonlocal evanescent part Â

′(`+1)

Λev =
∑
T
(`+1)
A

G
(`+1)
A�nite.However, Â

′(`+1)

Λ loc must have the structure (3.11), which means that it vanishes. In the end,
G

(`+1)µ1 ···µp
Adiv are also trivial, and Â

′(`+1)

Λ = Â
′(`+1)

Λev . Thus, if the inductive assumptions hold forsome `, they must also hold with ` → ` + 1 and therefore for ` = ∞. We conclude that theanomaly is evanescent to all orders:
Â

′

Λ = (Γ̂′
Λ, Γ̂

′
Λ) = O(ε). (6.6)This result proves that if the �nal theory is anomaly-free at one loop, the higher-derivativetheory SΛ is anomaly-free to all orders. It is important to stress that the DHD-regularizationframework provides the subtraction scheme where this property is manifest : after the subtractionof (SK , χ) at one loop, no analogous subtractions are necessary at higher orders.This is not the �nal result we want, though. To get there we still need to take Λ to in�nityand complete the DHD limit.

31
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7 Manifest Adler-Bardeen theorem in the �nal theoryWe are �nally ready to study anomaly cancellation to all orders in the �nal theory. In this sectionwe study the Λ dependence and complete the DHD limit, according to the rules of subsection 3.1.The subtraction of Λ divergences proceeds relatively smoothly, and preserves the master equationto all orders up to terms that vanish in the DHD limit.Call Sn and Γn the action and the Γ functional DHD-renormalized up to (and including) nloops, where S0 = Ŝ′

Λ = ŜΛ − χ/2 is the action (5.13). The action Sn must satisfy two inductiveassumptions to all orders in ~:(I) Γn has a regular limit for ε→ 0 at �xed Λ, and(II) the local functional
(Sn, Sn) ≡ En (7.1)is �truly ε-evanescent at �xed Λ�, that is to say a local functional such that 〈En〉 tends to zerowhen ε→ 0 at �xed Λ.More precisely, Γn is a sum of terms (3.14) up to n loops (because it is DHD-convergent tothat order) and a sum of terms (3.12) from n+1 loops onwards. Instead, 〈En〉 = (Γn,Γn) containsthe terms (3.14) except ε0Λ0 and ε0/Λ up to n loops, and the terms (3.12) except ε0 from n+ 1loops onwards. Thanks to (6.6) we know that the inductive hypotheses are true for n = 0.The theorem of locality of counterterms ensures that the (n + 1)-loop divergent part Γ

(n+1)
ndivof Γn is a local functional. Since Γn has a regular limit for ε→ 0 at �xed Λ, Γ(n+1)

ndiv contains onlydivergences in Λ, not in ε. Precisely, we can write
Γ
(n+1)
ndiv = Γ

(n+1)
ndivnev + Γ

(n+1)
ndivfev,where Γ

(n+1)
ndivnev and Γ

(n+1)
ndivfev collect the terms ε0Λ and δ̂ε0Λ of the list (3.13), respectively.Now we study the (n + 1)-loop divergent part of (Γn,Γn). We take the (n + 1)-loop DHD-divergent non-ε-evanescent part of

(Γn,Γn) = 〈(Sn, Sn)〉 = 〈En〉, (7.2)which means the terms of types ε0Λ of the list (3.13). Recall that SΛ is equal to the action Sr of(2.15) plus O(1/Λ6) terms, so (SΛ−Sr,Γ(n+1)
ndiv ) is convergent for Λ → ∞. Moreover, Sr is equal to

Sgf, which by formula (2.3) is non-ε-evanescent, plus ∫ ψ̄IRı/∂ψIR plus ε-evanescent terms. Notingthat the divergent part of 〈En〉 is just made of terms δ̂ε0Λ, we obtain
(Sgf,Γ(n+1)

ndivnev) = 0. (7.3)Deriving (7.3) from (7.2) we have expanded Γn =
∑∞

k=0 ~
kΓ

(k)
n in powers of ~ and dropped allcontributions (Γ(k)

n ,Γ
(n+1−k)
n ) with 0 < k < n+1, because they are convergent in the DHD limit.32
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Note that Γ(k)

n , 0 < k < n + 1, may contain terms εΛ. Now, the powers of Λ can get simpli�edinside (Γ
(k)
n ,Γ

(n+1−k)
n ). However, Γn is convergent for ε → 0 and the antiparentheses cannotgenerate poles, so the resulting contributions remain negligible in the DHD limit. We must justpay attention not to manipulate the terms εΛ in inconvenient ways (see subsection 3.1 for details).Since the theory is power-counting renormalizable, (7.3) is another little cohomological prob-lem, therefore it can be solved directly. Moreover, it is a purely four-dimensional problem, sinceall ε-evanescent terms have been dropped. Its solution is well-known and states that Γ(n+1)

ndivnev canbe reabsorbed by rede�ning the parameters of Sgf and making a canonical transformation inside
Sgf. Using the nonrenormalization of the B- and KC̄-dependent terms, and power counting, thecanonical transformation is generated by a functional

Fn(Φ,K
′) =

∫ ∑

i

(Z
1/2
nAiA

ai
µ K

′µai + Z
1/2
nCiC

aiK ′ai
C + Z

−1/2
nAi C̄

aiK ′ai
C̄

+ Z
−1/2
nAi B

aiK ′ai
B )

+

∫ (
ψ̄ILZ

1/2∗
nJI K

′J
ψ + K̄ ′I

ψ Z
1/2
nIJψ

J
L

)
, (7.4)and the parameter rede�nitions read

r′i = Zniri, ξ′i = ξiZnAi, (7.5)where ZnAi, ZnCi, ZnIJ and Zni are ε-independent Λ-divergent renormalization constants. The rirede�nitions encode the renormalizations of gauge couplings. Instead, the ξi rede�nitions followfrom the nonrenormalization of the terms quadratic in B. In the parametrization we are usingthere are no rede�nitions of g and ζi.Making the canonical transformation (7.4) and the rede�nitions (7.5) on Sgf we get
Sgf → Sgf − Γ

(n+1)
ndivnev + O(~n+2).However, the classical action we have been using is not Sgf, and not even Sr = Sgf+SLR+Sev, but

Sn, whose classical limit is SΛ, therefore we must inquire what happens by making the operations(7.4) and (7.5) on SΛ.Let us begin from Sr. Since SLR is nonrenormalized, we must also make the rede�nitions
ς ′IJ = ςIKZ

−1/2
nKJ . (7.6)When we apply (7.4) and (7.5) to Sev we generate new formally ε-evanescent, Λ-divergent termsof order ~

n+1, which change Γ
(n+1)
ndivfev into some new Γ

′(n+1)
ndivfev, plus O(~n+2). The divergences

Γ
′(n+1)
ndivfev are not constrained by gauge invariance, but just locality and power counting. They canbe subtracted rede�ning the parameters η of Sev, since Sev was added precisely for this purpose.We denote the operations that subtract Γ(n+1)

ndiv with Tn. They include the canonical transfor-mation (7.4), the rede�nitions (7.5) and (7.6), and the η rede�nitions that subtract Γ′(n+1)
ndivfev. Note33
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that Tn = 1 + O(~n+1). We have

TnSr = Sr − Γ
(n+1)
ndiv + O(~n+2).It remains to check what happens when the operations Tn act on SΛ. Observe that, since no

ε divergences are around, the operations Tn are independent of ε and divergent in Λ. However,the di�erence SΛ − Sr is of order 1/Λ6 and the operations Tn cannot contain powers of Λ greaterthan 4. Thus, (Tn − 1)(SΛ − Sr) vanishes in the DHD limit. Call Sn+1 the action obtained byapplying Tn on Sn. We have
Sn+1 = TnSn= Sn + (Tn − 1)SΛ + O(~n+2) = Sn + (Tn − 1)Sr + (Tn − 1)(SΛ − Sr) + O(~n+2)

= Sn − Γ
(n+1)
ndiv + (Tn − 1)(SΛ − Sr) + O(~n+2). (7.7)This formula tells us that the operations Tn do renormalize the divergences due to Sn in the DHDlimit. Therefore, Sn+1 is the (n+1)-loop DHD-renormalized action, namely it gives a generatingfunctional Γn+1 that is convergent up to (and including) n+ 1 loops in the DHD limit.Moreover, since the canonical transformations generated by (7.4) act multiplicatively on �eldsand sources, the operations Tn act on the Γ functional precisely as they act on the action. There-fore, Γn+1 = TnΓn. Since the operations Tn are ε-independent, we conclude that Γn+1 is regularwhen ε → 0 at �xed Λ, to all orders in ~, which promotes the inductive assumption (I) to n+ 1loops.Finally, the operations Tn preserve the antiparentheses. Applying them to (7.1) we also obtain

(Sn+1, Sn+1) = TnEn.Now, taking the average of this equation we get
Tn〈En〉n = Tn(Γn,Γn) = (Γn+1,Γn+1) = 〈(Sn+1, Sn+1)〉n+1 = 〈TnEn〉n+1,where 〈· · ·〉k means that the average is calculated with the action Sk. If we take the limit of

Tn〈En〉n for ε → 0 at �xed Λ we get zero, because by assumption (II) 〈En〉n tends to zero for
ε → 0 at �xed Λ. We conclude that the local functional En+1 ≡ TnEn is truly ε evanescent at�xed Λ. Therefore, assumption (II) is also promoted to n+ 1 loops.Since all inductive assumptions have been successfully promoted to n + 1 loops, the DHD-renormalized action SR = S∞ satis�es

(SR, SR) = ER,where 〈ER〉 vanishes in the DHD limit, because it contains only the terms of (3.14) except ε0Λ0 and
ε0/Λ. Finally, the DHD-renormalized Γ functional ΓR = Γ∞ is such that the anomaly functional

AR = (ΓR,ΓR) = 〈(SR, SR)〉SR
= 〈ER〉 = O(ε)34
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tends to zero in the DHD limit, which means that gauge anomalies cancel out to all orders.The DHD framework de�nes a subtraction scheme where the cancellation takes place naturallyand manifestly. In any other framework, the right scheme must be identi�ed step-by-step, fromtwo loops onwards, by �ne-tuning local counterterms.Some �nal comments are in order. Because of (4.7) higher-order divergent terms of the form
ΛplnkΛ/ε are generated along the way. They appear in SR and in the partially renormalizedactions Sn. Our renormalization procedure (which is just made of rede�nitions of parameters,�elds and sources) makes them cancel opposite contributions coming from diagrams. Therefore,they do not appear in the Γ functionals ΓR and Γn, which are indeed regular in the limit ε → 0at Λ �xed.In several steps of the proof we have used the fact that SΛ = Sr + O(1/Λ6). It is importantthat the higher-derivative regularized classical action SΛ does not contain terms with fewer inversepowers of Λ. Consistently with this, renormalization does not require to turn them on. Theoperations Tn may contain powerlike divergences, which can generate terms with less than 6inverse powers of Λ when they act on SΛ − Sr. Those terms are at least one loop and notdivergent, so they do not a�ect the structure of the classical action SΛ.8 Standard Model and more general theoriesIn this section we show how to extend the proof of the previous sections to the standard modeland the most general perturbatively unitary, power-counting renormalizable theories. We justneed to include photons Vµ, scalar �elds ϕ and right-handed fermions χR, which were droppedso far for simplicity. Depending on the representations, we can also add Majorana masses to thefermions ψL.We begin from the fermions. The starting classical action (2.1) is modi�ed as follows:

Sc → Sc +

∫
χ̄IRı /Dχ

I
R + Sm,where Sm collects the mass terms, when allowed by the representations:

Sm = −
∫ (

χ̄IRmIJψ
J
L + ψ̄ILm

∗
JIχ

J
R

)
−
∫

(ψ̄cILMIJψ
J
L+ ψ̄

I
LM

∗
JIψ

cJ
L )−

∫
(χ̄cIRM

′
IJχ

J
R+ χ̄IRM

∗′
JIχ

cJ
R ).(8.1)The functional SK that collects the symmetry transformations is also extended:

SK → SK + g

∫ (
χ̄IRT

aCaKI
χ + K̄I

χT
aCaχIR

)
.Clearly, Ψ and (SK ,Ψ) are unmodi�ed. To regularize the right-handed fermions we mirror whatwe did for the left-handed ones. In the same way as we added partners ψR for ψL that decouple35
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in four dimensions, we add partners χL for χR that also decouple when D → 4. The correctionto SLR is

SLR → SLR + ς ′IJ

∫
χ̄ILı/∂χ

J
R + ς ′∗JI

∫
χ̄IRı/∂χ

J
L +

∫
χ̄ILı/∂χ

I
L.Massive terms involving the regularizing partners ψIR and χIL can also be added. Di�erently from(8.1), they are not renormalized, so their coe�cients must be independent of the ones appearingin (8.1). The evanescent corrections Sev of formula (2.16) are a�ected only in the sector Scev,which is extended to include terms such as the integrals of

χ̄IRı/∂ψ
J
L, ψ̄ILı/∂χ

J
R, χ̄IR /Aψ

J
L, ψ̄IL /Aχ

J
R, (8.2)multiplied by independent constants. Evanescent terms of the Majorana type may also be allowed.Next, we add the higher-derivative regularizing terms

∫
χ̄IRı /D

[(
D2

Λ2

)3
−
(
∂2

Λ2

)3]
χIR +

∫
χ̄Iı/∂

(
∂2

Λ2

)3
χIto SΛ, where χI = χIL + χIR. The gauge fermion ΨΛ does not change, as well as SΛev − Scev.Tilde �elds and sources are de�ned as before and every argument of the proof can be extendedstraightforwardly. Now, wave-function renormalization constants can mix right-handed fermionswith conjugates of left-handed ones. The contributions of right-handed fermions to the one-loopanomalies A(1)

f nev = A
(1)
Λnev are given by a formula similar to (5.11), the only di�erence being thatthe trace appearing in the Bardeen term on the right-hand side is calculated on the appropriaterepresentations T aR (C → CaT aR, Aµ → AaµT

a
R) and is multiplied by a further minus sign. Theone-loop gauge anomalies A(1)

f nev are trivial when the Bardeen terms cancel out in the total, andthere exists a local functional χ(gA) such that A(1)
f nev = (SK , χ).Scalars can be added by making the replacements

Sc→Sc +

∫
(Dµϕ)

†(Dµϕ) +m2

∫
ϕ†ϕ+

λ

4

∫
(ϕ†ϕ)2 + SY ,

SK →SK − g

∫ (
ϕ†T aCaKϕ +K†

ϕT
aCaϕ

)
,where SY denotes the Yukawa terms. As before, the renormalized action is linear in the sources

K, by ghost number conservation and power counting. The evanescent corrections Scev includenew terms such as the integrals of
(∂µ̂ϕ)

†(∂µ̂ϕ), (∂µ̂ϕ)
†T a(Aµ̂aϕ), (8.3)while SΛev − Scev does not change. The higher-derivative regularizing terms are

∫
(Dµϕ)

†

(
D2

Λ2

)4

(Dµϕ),36
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so the tilde �elds and sources

ϕ̃ =
ϕ

Λ4
, K̃ϕ = Λ4Kϕ,are such that [g̃ϕ̃] = 5, [g̃K̃ϕ] = 14. With these choices, the matter �elds and their sources stillcannot contribute to the one-loop counterterms Γ̃

(1)
Λdiv of the higher-derivative theory S̃Λ, nor tothe nonevanescent one-loop gauge anomalies Ã(1)

Λnev. Moreover, we still have SΛ − Sr = O(1/Λ6).Therefore, all arguments used in the proof of the previous sections generalize straightforwardly.Finally, we add photons. Assume that the group G contains N U(1) factors and denote theirgauge �elds with V u
µ , u = 1, . . . N . Then make the replacements
Sc→Sc −

1

4

∫
ζuvW

u
µνW

vµν , Dµπ
I → Dµπ

I + iQuV u
µ π

I ,

SK →SK −
∫

(∂µC
u)Kµu − ıg

∫
Cu
∑

π

(πI†QKI
π −KI†

π Qπ
I),where W u

µν = ∂µV
u
ν − ∂νV

u
µ , ζuv is an invertible constant matrix, πI is any matter �eld in theirreducible representation RI of G, and πI†,KI†

π stand for π̄I , K̄I
π if πI is a fermion. We de�neextended G indices â, b̂, . . . to include both sets of indices u, v, . . . and a, b, . . ., and write Aâµ =

{V u
µ , A

a
µ}. The U(1) charges of matter �elds are denoted by gquI . We also write T â = {iQu, T a},where Qu acts on πI by multiplying it by quI . The change of the gauge fermion (2.4) is

Ψ(Φ) → Ψ(Φ) +

∫
C̄u
(
∂µAuµ +

ξuv
2
Bv

)
.The sector Scev of Sev is also extended, to include V -dependent evanescent terms similar to thosealready met in (2.19), (8.2) and (8.3). Instead, SΛev − Scev remains the same, since the U(1)ghosts decouple.The action ScΛ is extended to include the higher-derivative regularizing terms

−1

4

∫
W u
µν

(
∂2

Λ2

)8
W uµν ,while the change of gauge fermion is

ΨΛ(Φ) → ΨΛ(Φ) +

∫
C̄u
(
Q (2) ∂µV u

µ +
1

2
Puv (2)B

v

)
,where

Puv (2) = ξuv +
δuvξ

′

Λ16
2

8.Finally, SΛev inherits the modi�cations made on Scev. Tilde �elds and sources are de�ned as be-fore. The one-loop renormalization of the higher-derivative theory S̃Λ is made of the replacements(4.7) plus similar replacements
ζuv → ζuv +

fuv
ε
g237
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for ζuv, where fuv are calculable constants.Let us describe the nontrivial contributions to the one-loop gauge anomalies A

(1)
f nev. Wehave terms of the Badreen type and terms proportional to CuW v

µνW
zµν . Using di�erentialforms, the terms of the Bardeen type are linear combinations of B1 =
∫
Tr [dC∧A∧dA] and

B2 =
∫
Tr [dC∧A∧A∧A], as in formula (5.11), where now C = C âT âf , A = AâµT

â
f dx

µ, d = dxµ∂µand T âf are the matrices T â restricted to the fermions. The coe�cient of B1 is the same as informula (5.11), apart from the minus sign associated with right-handed fermions. The coe�cientof B2 is uniquely determined by the coe�cient of B1, but it di�ers from the one of formula (5.11)any time U(1) gauge �elds and/or ghosts are involved. The terms proportional to CWµνW
µν canonly appear in (unusual) situations where global U(1) gauge symmetries are potentially anoma-lous. One-loop gauge anomalies are trivial when all these terms cancel out, and there exists alocal functional χ(gA) such that A(1)

f nev = (SK , χ).The correction to the canonical transformation (7.4) reads
Fn(Φ,K

′) → Fn(Φ,K
′) +

∫
(V u
µ Z

1/2
nuvK

′µv + CuZ1/2
nuvK

′v
C + C̄uZ−1/2

nuv K
′v
C̄ +BuZ−1/2

nuv K
′v
B ),and the rede�nitions (7.5) are accompanied by

qu ′I = Z−1/2
nuv q

v
I , ξ′uv = Z1/2

nuwξwzZ
1/2
nzv,so that the U(1) gauge-�xing sector (SK ,Ψ), including the ghost action, as well as the U(1) sectorof SK , are nonrenormalized.With the rules of this section gauge anomalies manifestly cancel to all orders in the mostgeneral perturbatively unitary, renormalizable gauge theory coupled to matter, as long as theyvanish at one loop. We stress again that the proof we have given also works when the theoryis conformal or �nite, or the �rst coe�cients of its beta functions vanish, where instead RGtechniques are powerless.9 ConclusionsWe have reconsidered the Adler-Bardeen theorem, focusing on the cancellation of gauge anomaliesto all orders, when they are trivial at one loop. The proof we have worked out is more powerfulthan the ones appeared so far and makes us understand aspects that the previous derivations wereunable to clarify. Key ingredients of our approach are the Batalin-Vilkovisky formalism and aregularization technique that combines the dimensional regularization with the higher-derivativegauge invariant regularization. The most important result is the identi�cation of the subtractionscheme where gauge anomalies manifestly cancel to all orders. We have not used renormalization-group arguments, so our results apply to the most general perturbatively unitary, renormalizable38
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gauge theories coupled to matter, including conformal �eld theories, �nite theories, and theorieswhere the �rst coe�cients of the beta functions vanish.In view of future generalizations to wider classes of quantum �eld theories, we have paidattention to a considerable amount of details and delicate steps that emerge along with the proof.We are convinced that the techniques developed here may help us identify the right tools toupgrade the formulation of quantum �eld theory and simplify the proofs of all-order theorems.Appendix A. Calculation of one-loop anomaliesIn this appendix we illustrate our approach by calculating the one-loop coe�cient of the Bardeenanomaly in chiral gauge theories. That coe�cient is scheme independent, so we can work at
Λ = ∞, which means use the dimensionally regularized action Sr of (2.15). Actually, we canequivalently use the action Sr0 of (2.8), because it is easy to check that the contributions due to
Sev do not contain fermion loops. Therefore, they cannot generate the tensor εµνρσ.For simplicity, we �rst work with chiral QED and then generalize the result to non-Abeliantheories. The action reads

Sr0(Φ,K) =−1

4

∫
FµνF

µν +

∫
ψ̄ıγµ∂µψ −

∫
qLψ̄Lγ

µAµψL + (SK ,Ψ) + SK ,

SK =−
∫
(∂µC)Kµ + ıqL

∫
(ψ̄LCKψ + K̄ψCψL)−

∫
BKC̄ , (A.1)where qL is the charge and the gauge fermion is

Ψ =

∫
C̄

(
∂µAµ +

ξ

2
B

)
.We have

(Sr0, Sr0) =−2qL

∫
C
(
ψ̄L /̂∂ψR + (∂µ̂ψ̄R)γ

µ̂ψL

)

=2

∫
C(∂µJ

µ) + 2ıqL

∫
C

(
ψ̄L

δlS̄

δψ̄L
− δrS̄

δψL
ψL

)
,where Jµ = qLψ̄Lγ

µψL is the gauge current and S̄(Φ) = S(Φ, 0).We focus on the matter-independent contributions AB to the anomaly A = 〈(Sr0, Sr0)〉Sr0 , sowe can take the ghosts outside the average. Switching to momentum space, we get
AB = −2ıqL

∫
dDp

(2π)D
C(−k) tr[/̂p(PR − PL)〈ψ(p + k1)ψ̄(−p + k2)〉

]
.Here and below the integrals on momenta k in AB are understood. We expand the fermion two-point function in powers of the gauge �eld. The linear term gives a contribution that by power39
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counting and ghost number conservation is proportional to

∫
(2C)(∂µAµ) = (SK , χ

′), χ′ =
1

2

∫
(∂µAν)(∂

µAν).It can be subtracted away as explained in formula (5.12). Then we concentrate on the contribu-tions A′
B to AB that are quadratic in the gauge �eld. We observe that one fermion propagatoris sandwiched between two PL's or two PR's, which projects its numerator onto the evanescentsector, and the other two propagators are sandwiched between PL and PR, which projects theirnumerators onto the physical sector. We get

A′
B = −2q3L

∫
dDp

(2π)D
C(−k)p̂2

(p+ k1)2p2(p− k2)2
tr[PL/k /A(k1)/p /A(k2)] .The photons and their momenta k1, k2 can be taken to be strictly four dimensional. Turning toEuclidean space and using

Iµ =

∫

Eucl

dDp

(2π)D
p̂2p̄µ

(p+ k1)2p2(p− k2)2
=

1

96π2
(kµ1 − kµ2 ) + O(ε),we obtain

A′
B = − q3L

12π2

∫
C(−k)εµνρσk1µAν(k1)k2ρAσ(k2),where ε0123 = 1. Converting to coordinate space and including the trivial contributions, we �nallyget

AB =
q3L

48π2

∫
CεµνρσFµνFρσ + (SK , χ).After subtraction of the trivial terms the divergence of the current averages to

〈∂µJµ〉 =
q3L

96π2
εµνρσFµνFρσ − ıqL

(
ψ̄L

δlS̄

δψ̄L
− δrS̄

δψL
ψL

)
.Incidentally, the calculation shows that AB receives no contributions proportional to ∫ CFµνFµν .This term is in principle allowed by the cohomological constraint (5.6) in Abelian theories, butactually does not show up. If it did, it would imply that the global symmetry associated with thegauge symmetry is anomalous, which is of course not true.The calculation just done also proves formula (5.11), after inserting matrices T a and structureconstants fabc where appropriate.Appendix B. Formula of the anomaly functionalIn this appendix we recall the proof of the last equalities of formulas (2.11) and (3.10), whichexpress the anomaly functional A. We show that

(Γ,Γ) = 〈(S, S)〉, (B.1)40
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where S is a dimensionally regularized action, the average is de�ned by the functional integral(2.10) and Γ is the Legendre transform of W , de�ned by the same integral.Recall that, using the dimensional regularization technique, local perturbative �eld rede�ni-tions have Jacobian determinants identically equal to one. Indeed, from the diagrammatic pointof view such Jacobians are equal to 1 plus integrals of polynomials of the momenta p in dDp,which vanish. Now, if we make the change of �eld variables

Φα → Φα + θ(S,Φα) = Φα − θ
δrS

δKαin the functional integral (2.10), where θ is a constant anticommuting parameter, we obtain
−ιθ

∫ 〈
δrS

δKα

δlS

δΦα

〉
− ιθ

∫ 〈
δrS

δKα

〉
Jα = 0.Using this identity, and recalling that the two terms of the antiparentheses (2.2) are equal when

X and Y coincide and have bosonic statistics, we get
1

2
〈(S, S)〉 = −

∫ 〈
δrS

δKα

δlS

δΦα

〉
=

∫ 〈
δrS

δKα

〉
Jα.The average of δrS/δKα is equal to δrW/δKα, which is also δrΓ/δKα, because the sources K areinert in the Legendre transform that de�nes Γ. Using Jα = −δlΓ/δΦα, we arrive at

1

2
〈(S, S)〉 =

∫
δrW

δKα
Jα = −

∫
δrΓ

δKα

δlΓ

δΦα
=

1

2
(Γ,Γ).For other details, see for example the appendix of ref. [16]. Note that the dimensionalregularization is crucial for the derivation. Clearly, formula (B.1) also works if we use the DHDregularization, because the dimensional one is embedded in it. We then obtain formula (3.10).If a dimensionally regularized action S satis�es (S, S) = 0 in arbitrary D = 4− ε dimensions,then gauge anomalies are manifestly absent, as in QED and QCD, and formula (2.11) correctlygives A = 0. When chiral fermions are present, as in the standard model, we have the γ5problem. A dimensionally regularized action S cannot equip chiral fermions with well-behavedpropagators, and satisfy (S, S) = 0 in D dimensions at the same time. The naïve fermionicpropagators, given by the starting action (2.1), do not depend on the evanescent components p̂ ofmomenta. Then, according to the rules of the dimensional regularization, fermion loops integrateto zero, which means that the the starting action (2.1) is not well regularized. The action must bemodi�ed to equip fermions with well-behaved propagators, for example by adding the correction

SLR of formula (2.6). Once this is done, however, S satis�es (S, S) = O(ε), as shown in formulas(2.9) and (3.5). The evanescent terms O(ε), inserted in the diagrams belonging to the average
〈(S, S)〉 = 〈O(ε)〉, can simplify poles 1/ε and give �nite, potentially anomalous contributions, asshown in the calculation of the previous appendix.It is worth to stress that our investigation only concerns gauge anomalies, so A = 0 does notexclude the presence of other types of anomalies, such as the axial anomaly of QED.41
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