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Abstract

We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all or-
ders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the
dimensional-regularization technique with the higher-derivative gauge invariant regularization,
we prove the theorem in the most general perturbatively unitary renormalizable gauge theories
coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancel-
lation to all orders is manifest, namely no subtractions of finite local counterterms are required
from two loops onwards. Our approach is based on an order-by-order analysis of renormalization,
and, differently from most derivations existing in the literature, does not make use of arguments
based on the properties of the renormalization group. As a consequence, the proof we give also

applies to conformal field theories and finite theories.
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1 Introduction

The Adler-Bardeen theorem [I], 2] is a crucial property of quantum field theory, and one of the
few tools to derive exact results. In the literature various statements go under the name of
“Adler-Bardeen theorem”. They apply to different situations. The original statement by Adler
and Bardeen says that (I) the Adler-Bell-Jackiw axial anomaly [3] is one-loop exact. The second
statement, which is the one we are going to study here, says that (IT) (there exists a subtraction
scheme where) gauge anomalies vanish to all orders, if they vanish at one loop. Statement II is
important to justify the cancellation of gauge anomalies to all orders in the standard model. A
third statement concerns the one-loop exactness of anomalies associated with external fields.

Statement I is expressed by a well-known operator identity for the divergence of the axial
current. By means of a diagrammatic analysis, Adler and Bardeen were able to provide the sub-
traction scheme where that identity is manifestly one-loop exact in QED [I]. They emphasized
that higher-order corrections vanish, unless they contain the one-loop triangle diagram as a sub-
diagram. Said like this, statement I intuitively implies statement II. However, the original proof
of Adler and Bardeen applies only to QED.

Other approaches to the problem have appeared, since the paper by Adler and Bardeen, in
Abelian and non-Abelian gauge theories [2]. Statement I can be proved using arguments based
on the properties of the renormalization group [4 [5l 6], regularization independent algebraic
techniques [7], or an algebraic/geometric derivation [8] based on the Wess-Zumino consistency
conditions [9] and the quantization of the Wess-Zumino-Witten action. Statement II can also be
proved using renormalization-group (RG) arguments, with the dimensional regularization [10] or
regularization-independent approaches [11].

More recently, statement II was proved by the author of this paper in standard model ex-
tensions with high-energy Lorentz violation [12], which are renormalizable by “weighted power
counting” [13]. The approach of [12] is closer to the original approach by Adler and Bardeen, in
the sense that it does not make use of RG arguments, algebraic methods or geometric shortcuts,
it naturally provides the subtraction scheme where the all-order cancellation is manifest, and it is
basically a diagrammatic analysis, although instead of dealing directly with diagrams, it uses the
Batalin-Vilkovisky formalism [14] to manage relations among diagrams in a compact and efficient
way.

In the present paper we prove statement II in the most general perturbatively unitary, renor-
malizable gauge theories coupled to matter, and elaborate further along the guidelines of ref.
[12]. We upgrade the approach of [12] in a number of directions, emphasize properties that were
not apparent at that time, and expand the arguments that were presented concisely. We also
gain a certain clarity by dropping the Lorentz violation. A side purpose of this investigation is

to develop new techniques and tools to prove all-order theorems in quantum field theory with a
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smaller effort.

Our results make progress in several directions. To our knowledge, if we exclude ref. [12]
and this paper, statement II has been proved beyond QED only making use of arguments based
on the renormalization group. However, RG arguments do not provide the subtraction scheme
where the all-order cancellation is manifest, and are not sufficiently general. For example, they
are powerless when the beta functions identically vanish, so they exclude conformal field theories
and finite theories, where however the Adler-Bardeen theorem does hold. Actually, RG techniques
fail even when the first coefficients of the beta functions vanish [10} [11]. Our approach does not
suffer from these limitations. Another reason to avoid shortcuts is that in the past the Adler-
Bardeen theorem caused some confusion in the literature, therefore new proofs, and even more
generalizations, should be as transparent as possible. In this paper we pay attention to all details.

The all-order cancellation of gauge anomalies is a property that depends on the scheme, but the
existence of a good scheme is not evident. Knowing the scheme where the cancellation is manifest
is very convenient from the practical point of view, because it saves the effort of subtracting ad
hoc finite local counterterms at each step of the perturbative expansion. For example, using the
dimensional regularization and the minimal subtraction scheme the cancellation of two-loop and
higher-order corrections to gauge anomalies in the standard model is not manifest, and finite local
counterterms must be subtracted every time.

To find the right subtraction scheme we need to define a clever regularization technique. It
turns out that using the Batalin-Vilkovisky formalism and combining the dimensional regulariza-
tion with the gauge invariant higher-derivative regularization, the subtraction scheme where the
Adler-Bardeen theorem is manifest emerges quite naturally [12].

It is well-known that, in general, gauge invariant higher-derivative regularizations do not
regularize completely, because some one-loop diagrams can remain divergent. From our viewpoint,
this is not a weakness, because it allows us to separate the sources of potential anomalies from
everything else. We just have to use a second regulator, the dimensional one, to deal with the few
surviving divergent diagrams.

The regularization we are going to use introduces two cutoffs: ¢ = 4 — D, where D is the
continued complex dimension, and an energy scale A for the higher-derivative regularizing terms.
The regularized action must be gauge invariant in D = 4, to ensure that the higher-derivative
regulator has the minimum impact on gauge anomalies. The physical limit is defined letting e
tend to 0 and A to co. When we have two or more cutoffs, physical quantities do not depend on
the order in which we remove them. More precisely, exchanging the order of the limits € — 0 and
A — oo is equivalent to change the subtraction scheme. That kind of scheme change is however
crucial for our arguments.

Consider first the limit A — oo followed by ¢ — 0. When D # 4 the limit A — oo is

regular in every diagram and gives back the dimensionally regularized theory: no A divergences
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appear, but just poles in €. In this framework there are no known subtraction schemes where the
Adler-Bardeen theorem holds manifestly.

Now, consider the limit e — 0 followed by A — oco. At fixed A we have a higher-derivative
theory. If properly organized, that theory is superrenormalizable and contains just a few (one-
loop) divergent diagrams, which are poles in € and may be removed by redefining some parameters.
At a second stage, we study the limit A — oo, where A divergences appear and are removed by
redefining parameters and making canonical transformations. We call the regularization technique
defined this way dimensional/higher-derivative (DHD) regularization.

Intuitively, if gauge anomalies are trivial at one loop, there should be no further problems at
higher orders, because the higher-derivative regularization is manifestly gauge invariant. Thus,
we expect that the DHD regularization provides the framework where the Adler-Bardeen theorem
is manifest. However, it is not entirely obvious that the two regularization techniques can be
merged to achieve the goal we want. Among the other things, € evanescent terms are around
all the time and the O(1/A™) regularizing terms can simplify power-like A divergences, causing
troubles. Nevertheless, with some effort and a nontrivial amount of work we can prove that all
difficulties can be properly dealt with.

Summarizing, the statement we prove in this paper is

Theorem. In renormalizable perturbatively unitary gauge theories coupled to matter, there
exists a subtraction scheme where gauge anomalies manifestly cancel to all orders, if they are
trivial at one loop.

Once we have this result, we know that no matter what scheme we use, it is always possible to
find ad hoc finite local counterterms that ensure the cancellation of gauge anomalies to all orders.
Then we are free to use the more common minimal subtraction scheme and the pure dimensional
regularization technique.

The paper is organized as follows. In sections 2-7 we prove the theorem in non-Abelian Yang-
Mills theory coupled to left-handed chiral fermions. This model is sufficiently general to illustrate
the key points of the proof, as well as the main arguments and tools, but relatively simple to free
the derivation from unnecessary complications. At the end of the paper, in section 8, we show
how to include the missing fields, namely right-handed fermions, scalars and photons, and cover
the most general perturbatively unitary renormalizable gauge theory coupled to matter. Section
9 contains our conclusions. In appendix A we recall the calculation of gauge anomalies in chiral
theories. In appendix B we recall the proof of a useful formula.

The proof for Yang-Mills theory coupled to chiral fermions is organized as follows. In sections
2 and 3 we formulate the dimensional and DHD regularization techniques. In sections 4-6 we
prove the Adler-Bardeen theorem in the higher-derivative theory, studying the limit ¢ — 0 at A
fixed. Precisely, in section 4 we work out the renormalization, in section 5 we study the one-loop

anomalies and in section 6 we prove the anomaly cancellation to all orders. In section 7 we take
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the limit A — oo and conclude the proof of the Adler-Bardeen theorem for the final theory.

2 Dimensional regularization of chiral Yang-Mills theory

We first prove the Adler-Bardeen theorem in detail in four-dimensional non-Abelian Yang-Mills
theory coupled to left-handed chiral fermions. This model offers a sufficiently general arena to
illustrate the key arguments and tools of our approach. At the same time, we make some clever
choices to prepare the generalization (discussed in section 8) to the most general perturbatively
unitary gauge theories coupled to matter. To begin with, in this section we dimensionally regu-
larize chiral gauge theories and point out a number of facts and properties that are normally not
emphasized, but are rather important for the arguments of this paper.

Consider a gauge theory with gauge group G and left-handed chiral fermions zbi in certain
irreducible representations Ri of G. If G is the product of various simple groups G;, we use
indices a, b, ... for G and indices a;, b;, ... for G;. Denote the gauge coupling g; of each G; with
gr;, where r; are parameters of order one that we incorporate into the G structure constants fe°
and the anti-Hermitian matrices T associated with the representations of matter fields. We call
g the overall gauge coupling. We organize the matrices T in block-diagonal form, where each
block refers to a zﬁi and its representation Ri. When we write T“¢£ we understand that T is
replaced by the appropriate block. More fermions in the same irreducible representations may be
present. With these conventions, the matrices 7% still satisfy [T, T?] = f2°T* and the classical

action reads

Se= =326 [ e+ [ aad, 2.1)

where Fjii = 0, A7 — 0, A} + g f “ibiciAi’jA,cj (no sum over this kind of index i being understood,
here and in the rest of the paper) is the G; field strength, D,ﬂ/}i = (%wi—i-gT“Azwi is the fermion
covariant derivative and 2 is used for v/—1 to avoid confusion with the index i. The parameters
¢; could be normalized to 1, but for future uses it is convenient to keep them free, because they
are renormalized by poles in €. Analogous parameters in front of the fermionic kinetic terms are
not necessary.

To keep the presentation simple we make some simplifying assumptions that do not restrict
the validity of our arguments. Specifically, we do not include right-handed fermions and scalar
fields, and assume that the groups G; are non-Abelian, so there is no renormalization mixing
among gauge fields, even when more copies of the same simple group are present. In section 8
we explain how to relax these assumptions and cover the most general Abelian and non-Abelian
perturbatively unitary renormalizable gauge theories coupled to matter.

Let us briefly recall the Batalin-Vilkovisky formalism for general gauge theories [14]. The
classical fields ¢ = {AZ, ¢£= 1/%}, together with the ghosts C, the antighosts C' and the Lagrange
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multipliers B for the gauge fixing are collected into the set of fields ®* = { A}, C, Ce, Byl 41y,
An external source K, with opposite statistics is associated with each ®“, and coupled to the
®* transformations R*(®,g). We have K, = {K" K& K& K§ K[, K]} If X and Y are
functionals of ® and K their antiparentheses are defined as

[ (6X &Y 65X §Y
(X, Y)= / <5<1>a 0K, 0K, 5<1>a> ’ (22)

where the integral is over spacetime points associated with repeated indices. The master equation
(9,.9) = 0 must be solved with the “boundary condition” S(®, K) = S.(¢) at C =C =B =K =0
in D = 4, where S.(¢) is the classical action (2.I). The solution S(®, K) is the action we start
with to quantize the theory.

In the model we are considering the gauge algebra closes off shell, so there exists a variable

frame where S(®, K) is linear in K. The non-gauge-fixed solution of the master equation is
Sugt(®, K) = Se() + Sk,
where the functional
Sk (®,K) = / R*(®,9)Ky = — / (DLC*) K" +2 / elel v / BUK%,
+g / (VLT C K}, + KT C)

collects the symmetry transformations of the fields, D,,C* = 0,C%+gf “bCAZCC being the covariant

derivative of the ghosts. The gauge-fixed solution of the master equation reads
ng(q)7 K) = Sngf + (SK7 \Il) = Sc((ﬁ) + (SK, \Il) + SK7 (23)

where W(®) is the “gauge fermion”, a functional of ghost number —1 that collects the gauge-fixing

conditions. For convenience, we choose standard linear gauge-fixing conditions and write
=, &
(P) = / > e <8“AZ' + 5 B (2.4)
i

where §; are gauge-fixing parameters.

The naive D-dimensional continuation of the action (2.I)) is not well regularized, because
chiral fermions do not have good propagators. To overcome this difficulty, we proceed as fol-
lows. As usual, we split the D-dimensional spacetime manifold R” into the product R* x R~
of ordinary four-dimensional spacetime R* times a residual (—¢)-dimensional evanescent space
R™¢. Spacetime indices pu,v,... of vectors and tensors are split into bar indices f, 7, ..., which

take the values 0,1,2,3, and formal hat indices fi, 7, ..., which denote the R™® components. For
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example, momenta p* are split into pairs p#, p#, or equivalently p*, p*. The flat-space met-
ric 1, =diag(1l,—1,...,—1) is split into npy =diag(l,—1,—-1,—1) and 1z = —045. When we
contract evanescent components we use the metric 7,5, so for example P2 = pﬂnﬂ,;p9 . We as-
sume that the continued 7 matrices v* satisfy the continued Dirac algebra {v#,7"} = 2nH".
We define v5 = 1799123, P, = (1 —75)/2, Pr = (1 +75)/2 and the charge-conjugation matrix
C = —17y%4? in the usual fashion. Full SO(1, D —1) invariance is lost in most expressions, replaced
SO(1,3) x SO(—¢) invariance.

The action (2I)) gives the fermion propagator Pr(:/p)Pg, which involves only the four-
dimensional components p* of momenta. Therefore, it does not fall off in all directions of inte-
gration for p — oco. Applying the rules of the dimensional regularization, fermion loops integrate
to zero. To provide fermions with correct propagators we introduce right-handed zbi—partners 1/)11%
that decouple in four dimensions and are inert under every gauge transformations. We include
g and ¥ into the set of fields ®. It is not necessary to introduce sources K for them.

Specifically, we start from the regularized classical action
_ _1 . a; [a; pv i 1 _
Ser = —7 > G | FFer 4 [ il + Sir = Se+ Sir, (2.5)
i
which is the sum of the unregularized classical action (ZI]) plus a correction
i =<t [ hodvod + <1 [ oo+ [ oo, 20

where ¢7; are constants that form an invertible matrix ¢. The only nontrivial off-diagonal entries
of ¢ (and of all the matrices Mj; we going to meet in this paper) are those that mix equivalent
irreducible representations Ri. The reason why the matrix ¢ is kept free is that later on it will
help us reabsorb the renormalization constants of wi, since Spr is nonrenormalized (see below).

Using the polar decomposition, we can write ¢ = U;%DU 1, where Uy, and Upg are unitary
matrices and D is a positive-definite diagonal matrix. In the basis where ¢ is replaced by its

diagonal form D = diag(s;) the propagators of the Dirac fermions ¢! = zﬁi + 1/)11% are

251‘]7?5 b (2.7)
52 | 252 :
P+ <D
and coincide with the usual propagators for ¢; = 1.

Next, observe that (Sk, Sk) = 0 in arbitrary D. The regularized gauge-fixed action is (up to

an extension that will be discussed later)
Sro(®, K) = Sc + Sur + (Sk, ¥) + Sk = Sgt + SR, (2.8)

and satisfies

(S10:500) = 219 [ € (iR Tos10 + G5, T Do) = OFc), (2.9)

7
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where “O(e)” is used to denote any expression that vanishes in four dimensions. We have used
Pr@Pr = PRéPR and a similar relation with R — L. Observe that S,¢ is invariant under the
global symmetry transformations of the group G.

Given a (dimensionally) regularized classical action S(®, K), the regularized generating func-
tionals Z and W are defined by the formulas

Z2(J,K) = / [d®] exp <15(¢,K) + / <I>0‘Ja> = exp W (J, K), (2.10)

and the generating functional I'(®, K) = W (J, K) — [ ®*J, of one-particle irreducible diagrams
is the Legendre transform of W (J, K) with respect to J, where the sources K act as spectators.
Often it is necessary to pay attention to the action used to define averages. We denote the averages
(---) defined by the action S as (---)g (at J, # 0). The anomaly functional is

A= ([,T) =((5,9))s (2.11)

and collects the set of one-particle irreducible correlation functions containing one insertion of
(S,S). The last equality of formula (2.I1]) can be proved by making the change of field variables
O¥ — O 4 (S, P%) inside the functional integral (2.I0]), where € is a constant anticommuting
parameter. The proof is recalled in appendix B, together with comments on the meaning of the
formula.

No one-particle irreducible diagrams can be constructed with external legs 1)r or ¥g, because

Yr and g do not appear in any vertices. Thus, the total I' functional satisfies

We have anticipated that the action (2.8]) is not the final dimensionally regularized action
we are going to use. Before moving to the appropriate extension S,., we must describe the
counterterms generated by S,g, list a number of properties that can be used to restrict the S,g
extensions and point out some subtleties concerning the dimensional regularization.

First, observe that the counterterms are B, Kp and Kz independent. Indeed, the source
Kp appears nowhere in Sy, while K& appears only in — [ BKs. Moreover, the gauge fixing
conditions are linear in the fields, and the B-dependent terms of S,q are at most quadratic in .
Therefore, no nontrivial one-particle irreducible diagrams can have external B legs.

Second, the action S,o does not depend on the antighosts C% and the sources K#% separately,
but only through the combinations K#% +8MC_’C”. The I" functional must share the same property.
Indeed, an antighost external leg actually carries the structure 8MC_’CL¢, since all vertices containing
antighosts do so. Given a diagram with K#% or §,C® on external legs, we can construct almost

identical diagrams by just replacing one or more legs K% with 9,C%, or vice versa.
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Third, power counting and ghost-number conservation ensure that the counterterms are linear
in the sources K. Using square brackets to denote dimensions in units of mass, we have [K#?] =
[K&] =2, and [Ky] = 3/2. These sources have negative ghost numbers. Therefore, the dimension

of a term that is more than linear in K and has vanishing ghost number necessarily exceeds 4.

2.1 Structure of the dependence on the overall gauge coupling

It is useful to single out how the functionals depend on the overall gauge coupling g. The tree-level

functionals we work with have the g structure
1
Xiree (P, K, g) = g—2X{ree(g<I>,gK). (2.12)

If the action satisfies this condition at the tree level, then the renormalized action and the I’

functional have the g structure

X(®,K,9) =Y ¢*"" VX7 (g2, gK), (2.13)

L>0
where X7, collects the L-loop contributions. Basically, there is an additional factor ¢? for every
loop. Indeed, when the action is of the form (ZIZ), every vertex is multiplied by a power g™ =2,
where N is the number of its ® plus K legs. Then, a one-particle irreducible diagram with L

loops, I internal legs, E external legs and v; vertices with ¢ legs is multiplied by

ng(i—m _ PIHE2V _ (B=202L B 2AL-1)
i>2
having used L — I +V =1 and ), ,iv; = 2] + E. We see that for L > 1 we have one power of
g for each external leg and a residual factor 2“1 in agreement with (2.I3).
The g structures (2.12)) and ([2.I3]) are preserved by the antiparentheses: if the functionals

X(®?,K,g) and Y (®, K, g) satisty (Z12)), or (2I3)), then the functional (X,Y") satisfies (2.12), or
(Z13)), respectively.

2.2 Properties of the dimensional regularization of chiral theories

Now we recall a few properties of the dimensional regularization of chiral theories, which are
important for the rest of our analysis. It is well-known that divergences are just poles in e.
Instead, the terms that disappear when D — 4, called “evanescences”, can be of two types: formal
or analytic. Analytically evanescent terms, briefly denoted by “aev”, are those that factorize at
least one ¢, such as F},, F*", eIy, etc. Formally evanescent terms, briefly denoted by “fev”,
are those that formally disappear when D — 4, but do not factorize powers of €. They are
built with the tensor d;; and the evanescent components Z, p, 81 A, A of coordinates, momenta,

derivatives, gamma matrices and gauge fields. Examples are ¢r1dg, (Q;A,‘ﬁ)(aﬂA” @), etc.



14A1 Renorm

The distinction between formally evanescent and analytically evanescent expressions is to
some extent ambiguous. Consider for example a basis ¢ y?1 Pkhy of fermion bilinears, where 1,
1 can be 9 or Ky, and 1"k is the completely antisymmetric product of ¥**,--- 4Pk In
dimensional regularization these bilinears are nonvanishing for every k, and they are evanescent
for £ > 4. We have several ways to rearrange the products of two or more fermion bilinears
by using Fierz identities, and such rearrangements can convert formally evanescent objects into
analytically evanescent ones. For example, given some spinors ¥,, n = 1,2,3,4, we can expand
the matrix 1993 in the basis made of v*1"?% k= 0,...,00. We have

1 0 (_1)k(k—1)/2
f(D) 2 k!

k=0

Yorhy = — VPR (Y3 py e V2),

where f(D) =tr[1]. Using this identity we find, for example,

3

f(D)

2
f(D)

€

f(D) (7/_)17p¢4)(?;3’yp¢2)+' .

(2.14)

Basically, this equation has the form “fev = fev + aev”. The existence of such relations poses

(b1v"h2) (Y3yatha) = (V194) (P302) (17 0a) (P37502)

some problems, which we now describe.

Feynman diagrams may generate “divergent evanescences”, briefly denoted by “divev”. They
are made of products between poles and formal evanescences, such as (9;A%)(0"A"®)/e. The
theorem of locality of counterterms demands that we renormalize divergent evanescences away,
together with ordinary divergences (see below). However, this makes sense only if we can define
divergent evanescences unambiguously, which could be problematic due to the observations made
above. For example, if we multiply both sides of formula ([2.I4]) by 1/ we get a relation of the
type “divev = finite 4+ divev”.

Ultimately, the problem does not arise in the theories we are considering here, for the following
reasons. Both the classical action and counterterms are local functionals, equal to integrals of
local functions of dimension 4. In the paper we also show that the first nonvanishing contributions
to the anomaly functional (ZI1]) are local, equal to integrals of local functions of dimension 5. A
fermion bilinear 1);77"P*1) has dimension 3, so power counting implies that the classical action,
as well as counterterms and local contributions to anomalies, cannot contain products of two
or more fermion bilinears. Therefore, they are not affected by the ambiguities discussed above.
Those ambiguities can only occur in the convergent sector of the theory, where they are harmless,
since both analytic and formal evanescences must eventually disappear.

Thanks to the properties just mentioned, it is meaningful to require that the action S, as
well as its extensions constructed in the rest of this paper, do not contain analytically evanescent
terms. More precisely, the coefficients of every Lagrangian terms should be equal to their four-

dimensional limits. This request is important to avoid unwanted simplifications between ¢ factors

10
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and e poles, when divergent parts are extracted from bilinear expressions such as (I',I"). It can
be considered part of the definition of the minimal subtraction scheme. For the same reason, we
must be sure that the antiparentheses do not generate extra factors of €, or poles in e, which is
proved below.

Finite nonevanescent contributions will be called “nev”. We need a convention to define these
quantities precisely, otherwise they can mix with evanescent terms. For example, we need to state
whether C9%2C, or CO?C, or a combination such as (1 4+ ag)C9*C + ﬁééQC, where a and 3 are
constants, is taken to be nonevanescent. The convention we choose is that nonevanescent terms are
maximally symmetric with respect to the D-dimensional Lorentz group. For the arguments of this
paper we just need to focus on local functionals contributing to counterterms and anomalies. In
the case of counterterms the nonevanescent terms are those appearing in the action S,q, which are
SO(D)-invariant when chiral fermions are switched off. In the case of anomalies the nonevanescent

terms are SO(D)-invariant unless they contain the tensor e#*#7 or chiral fermions.

2.3 Evanescent extension of the classical action

It is convenient to extend the action S,g by adding all formally evanescent terms that have the
features of divergent evanescences, multiplied by independent parameters n. In this way it is
possible to subtract divergent evanescences by means of 1 redefinitions. Denoting the correction

collecting such terms with Sey, the extended action reads
ST(CI), K) = Sro(fl), K) + SeV(CI), K) =S.+ SLr + Sev + (SK, \I/) + Sk = ng + SLR + Sev- (2.15)

Then the generating functionals (Z10), the functional I" and the anomaly functional A of (2.11))
are turned into those defined by S,.

Each term of Sey is the integral of a monomial of dimension < 4, globally invariant under G.
It not necessarily gauge invariant, since gauge invariance is violated away from four dimensions.
Moreover, Sey is B, K, Ka, g and ¥g independent, linear in K and depends on C% and the
sources K% only through the combinations K*% + 9*C%. It is also independent of K¢, Ky,
K}p, tr, and 9y, because no formally evanescent terms can be built with these objects. By power
counting and ghost-number conservation the terms proportional to K#® 4 9*C% are independent
of matter fields. In the end, Sy, has the form

See(®, K) = Seer(A) — / SR (A, C) (KM + 94 C). (2.16)

We can further restrict Sey. Indeed, Sy satisfies (2.12]). Therefore, the divergent evanescences
have the form (2.I3]) with L > 1, and can be renormalized with an Se, of the form (2I2]). Precisely,

11
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we can define the parameters 1 so that Sy is linear in 7 and its g dependence has the form

1 aQ. Q; ~a;
Sev(®, K, g,m) = 9—25év(g<1>,gK, n) = Séev gA,n)— /ZRMeV (9A, gC.n)(gKH" + go*C*),

(2.17)
so S, also satisfies (2.12)).
Basically, the terms of Se, are similar to those appearing in Sy, but contain some evanescent
components of momenta and/or gauge fields, and are broken into gauge noninvariant pieces. We
have

pev

Ry, = mi0pC" + 772i9faibiciz4ff ce, (2.18)

while examples of contributions to Scey are
Scev = Z / <ﬁ3i(8uAgi)(8“Aﬁai) + 04i (0. AL ) (O AV + n5i(aﬂAgi)(aﬂA0ai))
+ Z / (776@'(8*1‘4&%)(8”14%) + 171 (0p AP) (0, A”) + nSiAf;Aﬂ“i) (2.19)
+ Z/ (779igfaibiciAZiAgi8“A’70i 4. > )

The terms multiplied by ns;, - - - ns; are quadratic and modify the propagators of the gauge fields
AZ@' and the Lagrange multipliers B%. We do not need to report here the modified propagators,
which are rather involved. We have checked, with the help of a computer program, that they
satisfy the requirements we need. In particular, if & denotes their momentum, (i) they are
regular when any evanescent components k of k are set to zero; (ii) when the propagators are
differentiated with respect to any components k, l;:, or to parameters of positive dimensions (such
as 7)g;), their behaviors for large k% improve by at least one power; (ii4) they have a regular infrared
behavior, which corresponds to the decoupling of the evanescent components AZZ Finally, their
denominators are SO(1,3) x SO(—¢) scalars, like the denominators of the fermion propagators
20).
The extended action (215 satisfies

(Sr, Sr) = (870, Sr0) + 0(n)0(e) = O(e) + O(n)O(e),
where (Sy9, Sr0) is given by (2.9).

2.4 Structure of correlation functions

Now we analyze the evaluation of correlation functions. We use the same notation for a function

and its Fourier transform, since no confusion is expected to arise.

12
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In momentum space, the terms of the classical action can be written in the form

n—+r D
/(H (27r)D> O (k) D ”(kn)Kﬂl(an)”’Kﬁr(kn+r)Tff.,,ﬁ;al...anG“l M (ky, e k),
i=1

(2.20)
BB

where ki, -, knyr are the external momenta.The constants 7},;.. «;-.a, collect all tensors 7,
Euvpo, Opp, 7 matrices, structure constants fe¢ and matrices T In particular, every projector
onto hat components of momenta, fields and sources is moved inside Tffﬁ;alan Momentum

conservation ensures that

n—+r
Gt (kyy - k) = (2m) 28PN (PYGMH2 (k- ki), pP= Zki’ (2.21)
=1

where the tensors GH#1"#» are polynomials that depend on n + r — 1 external momenta.
Propagators can be decomposed as sums of terms of the form
. Np!” (1)

—_ 2.22
M1 ppO1 o2 Dprop(k) ’ ( )

where T}, .., 4,4, 18 @ constant tensor, Npiop!” (k) is a polynomial SO(1,D — 1) tensor, and
Dprop (k) is a polynomial SO(1, 3) xSO(—¢) scalar. The reason why Dyrop (k) is not fully SO(1, D—
1) invariant is that the regularized propagators do not have SO(1, D —1)-scalar denominators, due
to the parameters ¢; of formula (2.7)) and the parameters 1 provided by the extension S,o — S,
discussed above.

The Feynman diagrams of I' and A have structures inherited from the structures (2.20) and
222)) of the vertices and propagators. They can be written as sums of contributions of the
form (220), with tensors GH1"Fr that satisfy (2Z2I), but now GH1"Fr are integrals over internal

momenta p of rational functions

Nnufl"'nufp (p7 k)
D(p,k)

where the polynomial N#1#»(p, k) appearing in the numerator is an SO(1, D —1) tensor, and the

(2.23)

polynomial D(p, k) appearing in the denominator is an SO(1,3) x SO(—¢) scalar. At ¢;;7 = 17,
n = 0 the integrals G*"*#» are full SO(1,D — 1) tensors. Note that G#1""» have a regular limit
when the evanescent components k of the external momenta k tend to zero.

For example, we can write

dar 5212 i
/ (27T)pD (P + s7p% — ﬂl(f)z)((p R —m?) 0406 GMP7 (K, m), (2.24)

where

- dPp p'p"p’p?
uvpo —
GHP7 (k, m) / 2m)P (p? 4 <Fp? — m?)%((p — k)? —m?)’

13
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Then we include 6,055 inside the constants Tffﬁ;alan The remaining completely symmetric

tensor é’“’p"(k, m) is an integral with the properties listed above.

It may be useful to write (Z20) in the more compact form
[ B @ OG- ), (2.25)

and then organize the expressions Ly, ..., (®, K) by using the basis of fermion bilinears AP PEg
and explicitly evaluate traces of spinor indices and contractions of Lorentz indices. At the end, all
Lorentz indices appear in gauge fields, fermion bilinears, the tensor €,,,,s (if present) and G #r,
and are contracted among one another, possibly after projections onto bar or hat components.

It is also convenient to expand

Gt (k) = Y T (k)G (k) = (2m) P8P (P) Y TR (k)G (k) (2.26)

where G;(k) and G;(k) are SO(1,3) x SO(—¢) scalars, and IT!"" "7 (k) are polynomials constructed

with 7., €uvpo, Opp and the n+r—1 independent momenta k. Then we can write the contribution

225) to T or A as

/ LiG", (2.27)
where

L; = Lm...up(@,K)Hflm“p(k)

are also SO(1,3) x SO(—¢) scalars. After these operations, the Lorentz indices appear in gauge
fields, fermion bilinears, momenta k and the tensor €,,,,. They are contracted among themselves,
possibly after projections onto bar or hat components. At this point, traces and index contractions
must be evaluated explicitly, because they may produce factors €, which are important for the
expansions and limits that we are going to define.

The analytic expansion around € = 0 of (2.25]) or (2.27) is defined by expanding the scalars
G'(k) in powers of £ without affecting the evanescent components of external momenta. The
analytic ltmit is the order zero of the analytic expansion, once the poles in € have been subtracted
away. The formal limit ¢ — 0 is the limit where the evanescent components of gauge fields,
external momenta and fermion bilinears are dropped. The limit ¢ — 0 is the analytic limit
followed by the formal limit.

For the reasons explained above, the analytic and formal limits may be ambiguous in the con-
vergent sector of the theory, but they are unambiguous in the divergent sector. More importantly,
the limit ¢ — 0 is always unambiguous. Since the tensors G*'#» are regular when any evanescent
components k of the external momenta k are set to zero, the formal limits of (2Z25) and (227
are well-defined.

When we use the expressions “O(g)” or “ev” we mean any quantity that vanishes in the limit

e — 0. Clearly, ev = aev + fev.

14
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2.5 Locality of counterterms

Now we comment on the locality of counterterms. The forms of the regularized propagators ensure
that a sufficient number of derivatives with respect to physical k and /or evanescent k components
of external momenta k kills the overall divergences of Feynman diagrams. If we subtract the
divergent evanescences, together with the ordinary divergences, up to some order n, then both
ordinary divergences and divergent evanescences of order n + 1 are polynomial in k and k. The
Sro-extension S, = Syg + Sey of formula ([2.I5]) allows us to subtract all of them in a way that is
efficient for the proof of the Adler-Bardeen theorem.

To complete the analysis it is useful to describe what happens if for some reason we do not
subtract some divergent evanescences. We use the abbreviations “loc” and “nl” to denote local
and nonlocal contributions, respectively. At one loop we miss counterterms of the form

hloc fev

—. (2.28)

Consequently, at two loops we also miss counterterms for subdivergences. Using the vertex (2.28))
inside one-loop diagrams we get contributions of the form

2 (locgnev n locgfev N nl) e (10(;2fev N nlgfev ol fev> ‘ (2.29)

The first three terms are generated when the formal evanescence enters the diagram, is converted
into a factor € and simplifies a pole in . Symbolically, we express this occurrence (which is the

basic mechanism that originates potential anomalies) as
fev None-loop — A (loc nev + loc fev + O(e) nl) . (2.30)

The last three terms of (2.29) describe what happens when the formal evanescence remains outside
the diagram.
The first term of (2:29) must be subtracted, so the missing counterterms at two loops are

loc fev loc fev onl fev

h? h ) 2.31
2 P 6 (2.31)

Even if the last term of this list is nonlocal, we still have no problem, since the residues of the

h2

poles in ¢ are formally evanescent. However, when we use the first and third terms of (2.37]) inside
one-loop diagrams, the formal evanescence can simplify another pole, by the mechanism (2.30]),

and give
30l nev gl fev

e2

3l fev

I +h +h + Rnl

plus local poles. We see that nonlocal, nonevanescent divergences appear at three loops. These
are only partially compensated by analogous contributions originated by the subtraction of the
first term of (2.29]). Those due to the first term of (2.31]), in particular, do not seem to disappear.

On the other hand, it is safe to subtract the divergent evanescences order by order, together

with nonevanescent divergences. In this paper we adopt this prescription.
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2.6 Properties of the antiparentheses

Now we study how divergences and evanescences propagate through the antiparentheses. Indeed,
in the proofs of renormalizability to all orders and the Adler-Bardeen theorem, it is necessary to
extract divergent parts of antiparentheses such as A = (I',T") or (I', A). This operation is not as
simple as it sounds, because we must be sure that the antiparentheses themselves do not generate
poles or factors of ¢, in order to be able to say that, for example, the divergent part of (.S,, F(l))

is equal to (Sr,Féli‘),), where '™ it the one-loop contribution to I' and I‘((iliz,

is the divergent part
of M Specifically, we prove that

(i) the antiparentheses (Xcony, Yeonv) 0f convergent functionals Xcony and Yeony are convergent;

(1) the antiparentheses (Xcony, Yov) of convergent functionals Xcony and evanescent function-
als Yoy are evanescent;

(1it) the antiparentheses (X,Y') do not generate either poles in € or factors of € if X, Y and
(X,Y) do not involve products of two or more fermion bilinears.

For the uses we have in mind it is convenient to rephrase property (iii) more explicitly as

(i7i") the antiparentheses (Xa,Ys) of functionals Xa and Yy with the properties specified by

their subscripts A and B, satisfy the identities

(Xfew Ynev/fev) =fev, (Xdivew Ynev/fev/divev) = divev, (XeW }/fev) =ev,
(Xnew Ydiv) ’div = (Xnew YdiV)7 (Xnew Ynev)‘nev = (Xnew Ynev)y (2-32)
(Xnew Ynevdiv) ’nevdiv = (Xnew Ynevdiv)a

as long as Xa, Y and (Xa,Ys) do not involve products of two or more fermion bilinears.
To prove these properties it is convenient to write the antiparentheses in momentum space.
We have

(2.33)

/de X 8Y _/ aPp 5X  §Y
00 (x) 0K () (2m)P 60 (p) 0 Ko (—p)

and a similar relation obtained by exchanging ® and K. Let us write formulas (2.27) for X, Y
and (X,Y) as

X = /Lifox, Y = /Lij{m (X)Y) = /Lij(X7Y)G§y-
Using (2.26) we find that the p integral of formula (Z33]) can be readily done and gives
Gy = (278 (P) Gy G,

where P is the total momentum of éfx plus the one of é{, We see that the scalar “cores” G°
of correlation functions just multiply each other in momentum space, which cannot generate new

poles in € or factors of ¢.
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It remains to study the relation between L;;xy) and L;x, Ljy. The antiparentheses can
produce index contractions by means the paired functional derivatives 6/8A,-0/6K* and 6/d1)-
d/0Ky,. Clearly, no such operations can generate poles in €. This observation is sufficient to prove
statements (i) and (7).

As far as statement (7i7) is concerned, we must assume that the functionals X, Y and (X,Y)
do not involve products of two or more fermion bilinears. Therefore, they are free of ambiguities
of type ([2I4]). The contraction of Lorentz indices brought by §/0A, and /K" gives a tensor
n* with mixed indices (namely one index from X and one index from Y). The contraction of

spinorial indices brought by /v and §/0K,; gives structures such as

Pyt PRy T ey,

where the p indices come from X and the o indices come from Y. Anticommuting the v’s we
can rearrange the indices so that p; < pa < .-+ < pg and 01 < 09 < -+ < 0;. Reordering the
indices we may get minus signs from further anticommutations or from squares of v matrices with

identical indices. In the end, we get a formula like

Q)[_)l’yplmpk’yolmolqﬁ2 _ ZZl:T,Z_)l’}/plmﬁmmpkolm&nmo—l7,/)2 anmon’

where the breves denote missing indices that go into the tensors n*¥. Again, we get only tensors
n* with mixed indices. We recall that all Lorentz indices, possibly after projection onto bar or
hat components, are contracted with gauge fields, fermion bilinears, momenta and possibly €0,
and that, by assumption, no products of two or more fermion bilinears are involved. Then it is
obvious that the contractions originated by the antiparentheses cannot produce € factors. Using
these properties it is easy to check that identities (2.32) hold, so statement (7i7) is also proved.

Statement (i4i) also says that the antiparentheses cannot convert formal e evanescences into
analytic ones. It applies, for example, to local functionals X and Y that are equal to the integrals
of functions of dimensions nx,ny < 5, such that nx + ny < 8, because then X, Y and (X,Y)
cannot contain products of two or more fermion bilinears. In the paper we will apply statement
(737) to the divergent contributions to I' and the first nonvanishing contributions to the anomaly
functional A of (3.10).

3 DHD regularization

The dimensional regularization alone does not provide the subtraction scheme where the can-
cellation of gauge anomalies is manifest to all orders. To find the right scheme, we modify

the regularization technique by adding higher-derivative terms that preserve gauge invariance in
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D = 4. We take the non-gauge-fixed regularized classical action

S = 5o+ 5 -1 [ 7 (52 ) F”“”+Z/¢LUD<A2> vt Swn (1)

where
Sun=3 [#9 (Z) - > [t (%) vt 52)

The higher-derivative structures of (8.I) and (B.2) are chosen to simplify the arguments of our
derivations.
We gauge fix S.p using modified gauge-fixing functions of the form
/
gy =Q(D)o"Ay, QM) =1+ szs, (3-3)

and a modified gauge fermion
~a; a; 1 a; é'/ 8
-3 [en(svrgn@Br). RO =g+

where N\ and £ are other (dimensionless) gauge-fixing parameters.

Finally, we add
Shev = Scev /Z Rzlev Kﬂai +Q (D) &uéai) )

which differs from Se, only because the combinations K#% + 9*C% are replaced by KH% +
Q () rCes.

The regularized gauge-fixed action reads
SA(®, K) = Sea + Shey + (Sk, ¥a) + Sk, (3.4)

where Sk is the same as before, and satisfies
(Sa,S2) =29 / C (@ hrs (OP)BRIAPT 6] + GL T N5 (0P)0k) + OO(E),  (3.5)

where hy;(9%) = (srgA® + 875(0%)3)/A®. The reason why it is useful to separate the terms
proportional to the parameters 1 will become clear later.

It is straightforward to derive the propagators and check that the ones of gauge fields,
(A, (k) Ay (—k))o, and the ones of ghosts, (C(k)C(—k))o, fall off as 1/(k?)° for large momenta
k, while the propagators (A(k)B(—k))o fall off as k/(k?)°, and (B(k)B(—k)) as 1/(k?)®. For
example, in the “Feynman gauge” & = N =& =1 at n = 0 we have

(Au(k) Ay (=k))o = == (C(k)C(—k))o =

e (3.6)

kQ(—k*)
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The fermion propagators, on the other hand, fall off as p/(p?)*.
For a while we need to work at finite A, where the action Sy is super-renormalizable. To make
its super-renormalizability manifest, it is convenient to parametrize it so that the A denominators

cancel out. Let us first ignore the terms Spey. We define tilde fields and tilde parameters as

Aa _ AZ i w[

w Fa = F) g = A8g7 52 = AlGCia (37)

and 7; = r;. The covariant derivatives remain A independent. To cancel the A denominators of
~a — ~ ~
the gauge-fixing sector we define C = C%/A%, B* = B2/A® and C% = C%/A®. Finally, we define

the tilde sources
~ ~ ~ ~ ~ ~171 _
(KM K¢ K&, K K K ,y) = (AWK APKE ASKE A K, NP K, AP K,

so the tilde map is a canonical transformation combined with a redefinition of parameters.

As far as Spey is concerned, using (2.I7) and the linearity in n we can write it as
Shev = St (A, AT Z / R (54,50, m) (957 +3Q (M) o'C"),  (38)

where Q (0) = A0 + \'O8.

In the tilde parametrization the full action reads
Sa (B, K) = Sa(0(®), K(K)) = —= Z / B (G (D7)F) oo

+f Jsém A 4 (DY) 0 + / rad (A° + (6°)7) O

~|—/1~Z;Z$ (stsA° + 675(0%)?) o +/52w’f (57A° + 614(0%)) o

+Z / B"Q (D) oM A + = Z / B P, (D) B% — / ¢"Q (o) o# D,

- / R (®,5) Ko + Sner (39)

where P; (0) = & 4 £'0%, & = &A1,
The DHD-regularized generating functional Z, reads

Za(J,K) = /[dq)] exp <ZSA((I),K) +z/<I>°‘Ja> = exp W (J, K),
and the generating functional T'x(®,K) = Wa(J, K) — [ ®*J, of one-particle irreducible dia-

grams is the Legendre transform of Wy (J, K) with respect to J. Since no one-particle irreducible
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diagrams with external legs g, ¥r can be constructed, the action Sp and the I" functional I"y
depend on g, g in exactly the same way. The DHD-regularized anomaly functional is

Apr = (La,Ta) = ((Sa, SA)) s, - (3.10)

When we switch to the tilde parametrization we write Zy, Wa, I'a and Ap. See appendix B for
the proof of the last equality of (B.10]).

The tilde action Sy is polynomial in A, has properly normalized propagators and contains only
parameters of nonnegative dimensions in units of mass. However, the tilde fields have negative
dimensions, which in principle may jeopardize the (super)renormalizability we want to prove.

Precisely, we have
A =[C]=[C]=-7  [B]=-6, [Y]=—3 [9] =38,

while [K9] = [K&] = [K%] =10, [Kp] = 9 and [Ky] = 9/2. The problem is solved as follows.
Since Sy has the form ([2I2)), the § structure of Sy is the tilde version of (ZI2). The tilde version

of formula (2ZI3]) ensures that the counterterms have the § structure

> P EVFL (59, GK), (3.11)
L>1
where the L-loop local functionals F7, depend polynomially on the other dimensionful parameters
of the theory. Then we see that the theory is indeed superrenormalizable, because the dimensions

of all products §® and GK are strictly positive.

3.1 The DHD limit

The basic idea behind the DHD regularization is to “first send € to zero, then A to infinity”.
However, we must formulate the rules of such limits more precisely, since certain caveats demand
attention. We distinguish the higher-derivative theory from the final theory. The higher-derivative
theory is the one defined by the classical action Sy (or Sy, if we use the tilde parametrization),
where the scale A is kept fixed and treated like any other parameter, instead of a cutoff. It is
super-renormalizable and regularized by the dimensional technique. Its divergences, which are
poles in €, are subtracted in the next section using the minimal subtraction scheme. The final
theory is obtained by taking the limit A — oo on the renormalized higher-derivative theory, after
subtracting the A divergences that emerge in that limit.

Having already expanded in €, we may wonder what types of divergences appear in the final
theory. We have products A* In* A of powers and logarithms of A, but we also have terms that
are evanescent in € and divergent in A. To understand what to do with these, we distinguish two

types of them, according to whether the € evanescence is analytic or formal.
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(1) First, consider analytic evanescences in ¢ multiplied by products A* In* A, such as eA%2In A.
Since we first send € to zero, these quantities are not true divergences and must be neglected. In
any case, they cannot be subtracted away, because the theorem of locality of counterterms does

not apply to them. Consider for example the integral

aPp A4 AtEm? [cos (%‘E m2 sin ( ) — %]
e e e sy o

where for the purposes of our present discussion the mass m can also play the role of an external

momentum. Expanding the right-hand side in powers of € we find that the O(¢") terms, which

are equal to

3272 A ),

have a A-divergent part that is polynomial in m, as expected, while the O(e!) terms have a

2
! <7rA2—2m lnA—> —I—O(m
m?

A-divergent part that contains expressions such as

which are not polynomial in m.

(41) Next, consider formal evanescences times AF In*" A, such as (InA)9, Ay0" A”. These can
(actually, must, for the reasons explained in subsection 2.5) be subtracted away (as long as their
coefficients are calculated at ¢ = 0), because the form of regularized propagators ensures that
counterterms are polynomial in both physical and evanescent components of external momenta
and fields.

(#ii) Formally evanescent expressions multiplied by products A* In*" A and factors of € are just
like case (i) and should not be subtracted away.

(1v) For completeness, we point out a forth type of e-evanescent A divergences, that is to say
nonlocal contributions of type (éi), which can appear as artifacts of inconvenient manipulations.
Precisely, because of the ambiguities encoded in formula (2.14]) some quantities of type (i) can be
converted into nonlocal divergences of type (ii). These conversions should just be avoided. To
this purpose, it is sufficient to note that the structure (2.20) of diagrams and the expansion of
the integrals G#*"F» only generate e-evanescent A divergences of types (i), (i4) and (i7i). In the
event that “aev — fev conversions” of type (2.14)) are accidentally applied, nonlocal divergences
of type (ii) can just be ignored, because they cannot mix with the local terms belonging to the
power-counting renormalizable sector and they are resummable into contributions of type (7).

To summarize, the A divergences are equal to A* In*" A times local monomials of the fields,
the sources and their derivatives. From the point of view of the dimensional regularization, those
monomials may be nonevanescent or formally evanescent, and their coefficients must be evaluated

in the analytic limit € — 0.
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We can thus define the procedure with which we renormalize the final theory and define the
physical quantities. We call it the DHD limit. We still organize the contributions to I' and A
in the form (220). Referring to (225) and (2.27)), the DHD limit is made of the analytic limit
e — 0, followed by the limit A — oo, followed by the formal limit ¢ — 0. We also have the DHD
expansion, that is to say the analytic expansion around € = 0 followed by the expansion around
A = 0.

The three steps that define the DHD limit are unambiguous in the divergent sector, which does
not contain products of more than one fermion bilinears. Instead, the first and third steps are
ambiguous in the convergent sector. What is important is that the DHD limit is also unambiguous
in the convergent sector.

It is useful to recapitulate the DHD limit in symbolic form. We first expand around € = 0 at

A fixed, and find poles, finite terms and evanescent terms:

g, 6e0, £, de.

)

1 5 0 . .

€ g’

The symbols appearing in this list have the following meanings: 1/e denotes any kinds of di-
vergences in ¢, b is any formally evanescent quantity, €® is any quantity that is convergent and
nonevanescent in the analytic limit ¢ — 0, and ¢ denotes any analytic evanescence. After the

expansion, we subtract the poles and remain with
el 6e°, g, Oe. (3.12)

The terms proportional to € vanish in the DHD limit. The terms 6% also vanish in that limit,
but for some time we treat them together with the €° terms. Next, we study the A dependence.

Expanding the coefficients of every surviving terms (8.12]) around A = oo, we find

[e=]

0 20 040 2 0,0 2 E
e’ A, de A, e’ A, de A, A A
e, beA, eAl, 5eA”, %, %, (3.13)

where A denotes any kind of A-divergent expression (such as A¥ In*’ A, with k, k' > 0 and k+ k' >
0), while AY is any A-convergent, non-A-evanescent expression, and 1/A is any A-evanescent

expression. Then we subtract the A divergences of the DHD limit, namely the terms of types e’A
and 6e0A. After that we remain with

0 £ 0 g
0A0 < 0AO g 56 S 0 A 0 g 56
A oe” A — — A el A deA — —. (3.14
e'A7, e A7, T A e, eA e’ A (314)
At this point we are ready to take the DHD limit, which drops all contributions of this list but
the e9A° terms.
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4 Renormalization of the higher-derivative theory

In this section and the next two we study the higher-derivative regularized theory S, keeping A
fixed and (mostly) using the tilde parametrization. We first work out the renormalization of the
theory, then study its one-loop anomalies and finally prove the anomaly cancellation to all orders.

The counterterms (3.11]) are local and largely constrained. We know that i) they are inde-
pendent of B, f(@, K B, 1/33 and 1~Z r and 7) do not depend on antighosts 5% and sources K%
separately, but only through the combinations Krai 4 Q(D)a@%. Indeed, we have arranged
Shev to preserve these properties. Actually, we have chosen the higher-derivative structure of Sy
to simplify the counterterms even more: #ii) they cannot depend on the sources K and matter
fields zﬂ, because each product f]f( , §1/~) has dimension greater than 4; iv) they cannot contain
antighosts, because of points (i7) and (i4i); v) they cannot contain ghosts, because all objects
with negative ghost numbers are excluded by points (iii) and (iv); vi) they can only be one-loop,
because each loop carries an extra factor 2, which has dimension 16. In the end, there can only

be one-loop divergences of the form
0*(gA)?,  0@AP,  (gA) (4.1)

(where derivatives can act on any objects to their right), and those obtained from these expressions
by suppressing some GA’s or derivatives.
The anomaly functional (3.I0]), if nonvanishing and nontrivial (in a sense specified below), is

the anomaly of the higher-derivative theory. In the tilde parametrization we have

An = (Ta,Ta) = ((5a,50)) g, - (4.2)

(

~(1
The one-loop contribution A A) is

A =250 00 = (Sa g, | (43)
one-loop

where ff\l) is the one-loop contribution to T'y. Using 232) and ([34) we see that (Sx,Sz) =

fev. The right-hand side of (3] collects one-loop Feynman diagrams containing insertions of

formally evanescent vertices. The formal evanescences can: (a) remain attached to external legs

and momenta, or (b) be turned into one or more factors €. In case (a) they give local divergent

evanescences plus nonlocal evanescences. In case (b) the factors e can simplify a local divergent

part and give local nonevanescent contributions, in addition to (generically nonlocal) evanescences.
Therefore, we can write

A = Aflper + Adives + Al (44)

~(1 . ~(1 . .
where AE\r)lev is local, convergent and nonevanescent, As\givev is local and divergent-evanescent

~(1)" . .
and A, is evanescent and possibly nonlocal.
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Now we take the divergent part of equation (4.3]). Decompose ff\l) as the sum of its divergent

(1) (1)

part T Adiv and its convergent part r Aeonv- Recalling that the antiparentheses of convergent

functionals are convergent, we obtain that (S A,f‘gzonv) is convergent. Properties (2.32)) apply to
(Sa, f‘%&iv), so we have the identity
& A 1 ~(1)
(SA’FE\()iiV) = §‘AAdivev' (45)

Now, formula (1) tells us that fg\l(;iv is just a functional of GA. Therefore, its antiparenthesis

with S A is only sensitive to S 'k and the K-dependent contributions to S Aev, Which we denote by

~ ~(1 .
SaKkev. Moreover, we can further decompose F( ) as the sum of a nonevanescent divergent part
AK ; p Adiv gent p

fg\lr)lev qiv and a divergent evanescence fgxlc)ﬁvev. So doing, we find
& 5 (1 =(1 L~
(Sk + Sarcers T evdiv + Dhaiven) = 3/ Adivey- (4.6)

At this point, taking the nonevanescent divergent part of this equation, we obtain

(S, TV ) =0,

Anevdiv
which just states that fg\lr)lev div 18 gauge invariant. Going back to the nontilde parametrization, we
have fg\lr)lev div(gfi) = nglr)lev giv(gA). By power counting, stlr)lev giv can only be a linear combination

of the invariants Fjji F'*# and can be subtracted by redefining the parameters (;. The rest,
Fg\l&ivev, can be subtracted by redefining the parameters 1 of Se,. The renormalized action Sy is
obtained by making the replacements

fi f

G — G+ ngQ, n—n+t ?927 (4.7)

in Sy, where f;, f’ are calculable numerical coefficients. Since Sy is linear in ¢ and 7, we have

SA = S) — Fg\l(;iv. (4.8)
Moreover, using (4.35]) and (fg\lgiv,fg\lgiv) = 0 we find

5 & & & (1)
(Sa,58) = (Sa,S8) — Apdivev- (4.9)
The generating functional ['s defined by Sy is convergent to all orders, because formula
(B.1I) ensures that no divergences can appear beyond one loop. Finally, ['a and the anomaly
Ay = (f‘A,f‘A) are obtained by making the replacements (4.7)) inside ') and Ay = (fA,f‘A),
respectively. Clearly, Ay is convergent, because [y is convergent, and because the antiparentheses

of convergent functionals are convergent.
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5 One-loop anomalies

In this section we study the one-loop anomalies, and relate those of the final theory, which are
trivial by assumption, to those of the higher-derivative theory, which turn out to be trivial as a
consequence.

We begin with the one-loop contributions ./Alg\l) and flg\l) to Ax and Ajy. First, we observe that

A~

Ax = (58 50))g, = ((Sa:5a))g, oy = {(Sa,5n))g, + O(R%).

Adiv

n(1)

Indeed, the correction I'y J; . to the action provides O(h) vertices. If we use those vertices in one-
particle irreducible diagrams together with vertices of (S'A, SA), we must close at least one loop,
which gives O(h?) contributions. Using (#3)), we have

- . ~(1 ~ ~(1
An = (50,505, — Aaver + OF2) = Ap — Al ey + O,

thus (4.4) gives
A(1) ~(1) 7(1)
‘AA = ‘AAnev + ‘AAev (5'1)

. ~(1
As a check, recall that Ap is convergent, so the divergent evanescences Af\()hvev must disappear

from A(Al)
(1)

We know that flAnev is the integral of a local function of dimension 5 and ghost number 1.

Recalling that a factor g is attached to every external leg, we have
O D,. ~/a fO =5 ~7
Apney = | 47z gC*A (g9, K), (5.2)

where A" are local functions of ghost number zero and dimension 4. However, flﬁf}lev cannot
depend on the sources K and the matter fields 1;, because the products K and §1/~1 have dimensions
greater than 4.

Working out (S A, S4) in detail, it is easy to check that it does not depend on B% and depends
on K% and " only through the combinations K#% + Q(O )8“0 Therefore, the same must
be true of Ag), which means that Agl)lev cannot depend on either C or B. Then the functions A

cannot even contain ghosts. Summarizing, we can write
(1) D, ~~a g% ~A
‘AAnev - d”z gC A (g ) (53)

Recall that the antiparentheses satisfy the identity (X, (X, X)) = 0 for any functional X.
Taking X = I's, we obtain
(Ta, Ap) =0, (5.4)
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which are the Wess-Zumino consistency conditions [9], written using the Batalin-Vilkovisky for-

malism. In particular, at one loop we have

A(l))

(S, Ap) = =W, (S, S)). (5.5)

In section 2 we have proved that the antiparenthesis of an evanescent functional with a convergent

functional is evanescent. Thus,

(fff), (Sa,54)) = ev = 0O(e).

5 A1 = ~(1 :
For the same reason, (SA,Ag\gv) and (SAKeV?AE\I)IeV) are evanescent. Using these facts, together

with (5.1) and (5.3]), formula (5.5]) gives
5~ ~(1 5~ 5 ~ ~(1 5 ~(1
ev = (Sas Aney + Alte) = (Sn, Altner) + 0¥ = (S + Sarcers Aner) + v = (S, Aney) + €.

At this point, we take the nonevanescent part of both sides and note that relations ([2.32]) apply

to (SKV'[[E\:[BLEV

these antiparentheses. We find

), because, thanks to (5.3), no products of more fermion bilinears are involved in

& ()
(SK7‘AAnev) =0. (5.6)
Now, jlg\lr)lev is the (potential) one-loop anomaly of the higher-derivative regularized theory

Sy, defined keeping A fixed. The final theory is instead obtained taking the DHD limit. We must
1)

Fhev of the final theory. Indeed, we are assuming

relate ftffl)lev to the potential one-loop anomaly A
that A

Fney 18 trivial (the final theory cannot have gauge anomalies at one loop), but we have no

(1)

information of this type as regards Ay, .

We know how A(Alflev depends on §. The other dimensionful parameters of Sy (such as ¢; and

é), as well as the powers of A multiplying various terms (such as ziizfpzﬁi), have dimensions
greater than 4. They cannot contribute to ftgliev, because the local functions A are polynomial
in them and have dimension 4. Thus, jtﬁfnev can only depend on §C, GA, 7, N, &, ni; and ;.
Using (5.3)), switching to nontilde variables, and recalling that QA = gA, gé = gC', we obtain that
Alel)lev is A independent. Now we show that actually Alel)lev coincides with the one-loop anomaly
AL, of the final theory.

To prove this fact, we need to take A to infinity and study the DHD limit at one loop. A more
comprehensive study of the DHD limit will be carried out later. The terms that are divergent
in this limit are denoted by “Ddiv”, to distinguish them from the divergences considered so far,
which strictly speaking were “cdiv”. Recall that, according to the definition of DHD limit, the

A-divergent parts cannot contain analytic € evanescences, but can contain formal € evanescences.
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Consider Ay = (I'y,I'4) and take the one-loop DHD-divergent part of this equation. Using
(5I) and recalling that AL s A independent, we get

Anev
1

1 P N
5 AL = (SA,F&))‘D = (ST

VI Ddiv div

Ddiv

= (SA - Sr,f‘g\l]))div) + (Sr,f‘g\l]))div) = (Sr,f‘g\l]))div)’ (5-7)

Ddiv Ddiv

where f‘%]))div is the one-loop DHD-divergent part of I'a. In the last step we have dropped the

contribution involving (Sy — S,«,f‘%]))div), since this quantity vanishes in the limit A — oco. The
reason is that, by formulas (2.I5]) and (3.4]), the difference Sy — S, is made of O(1/A%) terms, and
the powerlike A divergences contained in fgxl]))div cannot exceed A%. Actually, this is one of the
reasons why we have chosen the particular higher-derivative structure of the theory Sx. Moreover,
to make the last step of (5.7)) we have applied ([2.32)) to (Srva\ll))div)- Because of the analysis of
section 3, the A divergences of fg\l]))div can be of two types, with respect to the limit ¢ — O:
nonevanescent or formally evanescent. Thanks to (2.32), the antiparentheses with S, also give
nonevanescent or formally evanescent contributions, wherefrom the last equality of (5.7]) follows.

Subtracting the A divergences fg\ll))div from S A, we can define the one-loop renormalized action

S fren Of the final theory, which reads

3 S (1) 2
For the moment we do not need to specify the O(h?) terms of this subtraction (but later we will
have to be precise about them). The anomaly of the final theory is

Af = ((Sfreny Sfren»gfreny

and its one-loop nonevanescent part is the quantity A(lr)lev

close to the subscript “f” denotes the contributions that do not vanish in the DHD limit. We

have

we want, where the subscript “nev”

5 a0 e ; A (1
Ap=((5r— FE\]))diw Sa = FE\])Z)div»gA_fw(l) +O(h?) = Ax — 2(S, FE\]):)div) +0(R?)

ADdiv
= (Sas S0) + Aftpey + Aoy = 2S5 T hai,) = 2058 = Sy Ty, ) + O(R2). (5.8)

In these manipulations we have used the formula

Ax = ((Sa,50))5, = ((Sa,80))g, oy +O(R?),

ADdiv

which holds because at one loop the vertices of fgl]))div, which are already O(h), cannot contribute

to one-particle irreducible diagrams containing one insertion of (Sy, Sy).
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At one loop, using (5.7)), we obtain

‘AS}) = ‘A(l) + ‘As\lezv B ‘Ag\lgv Ddiv - 2(51\ -5, f‘5\1]))div)' (59)

Anev

We are ready to take the DHD limit. Recall that (Sy — ST’f‘E\ll))div) tends to zero for A —
00, while AL does not change. On the other hand, As\lgv and its A-divergent part do not

Anev
separately tend to zero, because they can contain (local) terms that are formally ¢ evanescent
(1)

and A divergent. However, those terms are precisely A, . v’ Therefore, they disappear in the
1v
difference Ag\lgv — Ag\lgv iy’ Finally, using (5.3]), we get
v
1 1
‘A(fr)lev = Ay = / dPz gC*A(gA), (5.10)

as we wanted.
Let us write the most general structure of the functions A®(gA). We know that they have
dimension 4 and are sums of terms of the form g?9% AP. Power counting gives k 4 p < 4, hence

we have

AaNg282A2 +g3aA3 +g4A4,

plus the terms obtained from these by suppressing some gA’s or some derivatives. Now it remains
to collect all pieces of information found so far and solve (5.6). We call condition (5.6 a [little
cohomological problem, because it involves a structure (5.3) that contains a finite number of
terms, in our case just a few, and its solution can be worked out directly. We recall the solution
without proof, because the proof is well-known and not necessary for the other derivations of
this paper. The solution can be split into the sum of trivial and nontrivial contributions. Trivial
contributions are those of the form (Sk,x), where x = x(gA) is a local functional of the gauge
fields A, equal to the integral of a local function of dimension 4 and ghost number 0, and having

a g structure corresponding to the one-loop sector of formula (2.13]). In the tilde parametrization,
(1)

we write x as X(§A). The only nontrivial contributions to A ey

are proportional to the famous
Bardeen formula [15]. In appendix A, the coefficient of the Bardeen term is calculated using our

regularization technique. In the end, we have

3
1 1 g vpo 9
‘A;I’zev = ‘Ag\r)lev = 127’(’2 /dD$ €M P Tr [8,LLC (AllapAcr + §AVA,0A0):| + (SK, X), (511)

where C'= C*T", A, = A}T, the Bardeen term being the integral on the right-hand side.
One-loop gauge anomalies vanish when the trace appearing in (5.11]) vanishes. Typically, the
cancellation is possible when the gauge group is a product group and the theory contains various

types of fermionic fields in suitable representations, as in the standard model.
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Now we go back to the higher-derivative theory (the DHD limit being completed in section 7),
precisely to the classical action Sx of formula {@8)). The trivial contributions (Sg, x) to anomalies

can be canceled out by redefining the action as

S0(®, K) = 53(@,K) — 5x(g4), (512)

because then
‘A;\ = ((gjh S;\»S';\ = <(‘§A7 SA)>§A - (SA7X) + O(hQ) = ‘AA - (SK + SAKeva) + O(hz)

In the last step we used the fact that x is K independent. Thus, at one loop we have

~1(1 ~1(1
‘AA( : = ‘Ag\lr)lev + ‘Ag\lgv - (SK’ X) +ev, ‘AA(n)ev = ‘Ag\lr)Lev B (SK’ X)’

(1 ~1(1
which means that when the Bardeen term vanishes A/A(n)ev =0, A;\( ) = ev.

Finally, observe that the new I' functional f?\ is still convergent to all orders. The reason is

that it is convergent at one loop and the action

N 1
Sy =8, -1 — 5X (5.13)

has the ¢ structure (2.13). Then, using tilde variables, the counterterms must have the form
(BI1), which however forbids divergent contributions from two loops onwards. The anomaly
N ~ N
functional A, = (I'),I")) is also convergent to all orders and has the g structure ([2.13]).
The next step is to prove the anomaly cancellation to all orders in the higher-derivative theory.

After that, we will have to complete the DHD limit by renormalizing the A divergences.

6 Manifest Adler-Bardeen theorem in the higher-derivative the-

ory

In this section we prove that gauge anomalies manifestly cancel to all orders in the higher-
derivative theory Sx. We assume that the final theory has no one-loop anomalies, which, according
to the previous section, implies that the higher-derivative theory shares the same property, namely
"Ag\lr)Lev = (Sk, X), jl;\(i)ev = 0. Then, the one-loop contribution jllA(l) to the anomaly functional

A/ . .
A, is evanescent, so we can write

Al = 0(e) + 0(12). (6.1)

Here the “O(e)” includes the tree-level contribution (Sa,Sx).
Now we move on to higher orders. We have to study the diagrams with two or more loops,

and one insertion of
TR AN ~(1) ~(1) & ~
€= (SA7 SA) = (SA7 SA) - ‘AAnev - ‘AAdivev - (SAKev7X)7 (62)

29



14A1 Renorm

calculated with the action (5.13]). We have switched back to the tilde parametrization, used (4.5l),
and replaced (Sa, X) by (Sk +Sarev, X) and (Sg, X) by flﬁ\lr)lev. Both € and fl;\ have the structure
BII) and (S, Sa) is formally evanescent. To fix the notation, let us start from formula (220),
applied to the ¢-loop diagrams containing one (SA,S'A) insertion. We write them as sums of
contributions of the form

=0 = . ~ By AYITI
9%) - /(I> H(ky) - @ (kn)KB1 (Kpt1) - Kp, (kn—l-r)Tﬁ?f}"ufar--antél)m . (K1, s kntr),
(6.3)

where the tensors 795 5" are constant and evanescent, and the integrations over momenta

Apg - ppor--an
are understood. We recall that G%)“ VP (ky - -+ knir) are the integrals coming from Feynman
diagrams, once all tensors 7,,, €up0, 0pp, the v matrices, the structure constants fo¢ and the
) G%)m"'up

“nontrivial” if they are not killed by the structures TJE[Z).

Let us first reconsider the case £ = 1. It is useful to describe the right-hand side of (6.2)
(L)p1 - pap

matrices T® are moved outside into the structures Tj(f . We call the divergent parts of

from the point of view of the integrals G . The divergent parts of G&ll)‘“m”p can be of
three types: (a) divergences that are turned into nonevanescent contributions by T(l), which are

Sl)lev; (b) divergences that remain divergent when Tﬁl) is applied to them, which

~(1 . .
are subtracted by Ag\givev; (c) divergences that are turned into evanescences by 7

subtracted by A
, which can
be subtracted by further, one-loop, local evanescent terms ]NL,(;,) with the g structure (B.I1]). We
write € = €1 + €9, where

&= (SAv SA) - ~5\1r)1ev - ~5\1t)iivev - I:((ei)’ €y = Ee(:%z) - (SAKeva 5()
The subtractions included in €; cancel all nontrivial divergences of GS)“ Yl Instead, (€)
collects the diagrams with one €5 insertion. They can also be expressed in the form (6.3]) and
studied along the same lines. From now on we understand that the expressions (6.3]) refer to the
diagrams with one (5‘ A, S A) insertion or one &, insertion.
Each contribution S(AD is then equipped with counterterms Sggounter, so that the difference

T F, 2% 2% Pr Dy
58 = S = [ 871 0) - 8 ) i ) - R s T GRS (),

involves fully convergent subtracted integrals Gggﬁé;“ ?. Now, the evanescences provided by Tﬁl)

cannot simplify any divergences, so the final result f[lA(l) is evanescent, in agreement with (G.1]).
At higher loops it is useful to make a similar analysis. We begin with ¢ = 2. The integrals

fo)“ VHP are automatically equipped with the counterterms that subtract their nontrivial subdi-

vergences: first, the action S '\ 1s equipped with its own counterterms and, second, the subtractions

contained in &; provide counterterms for the integrals Gill)“ L7He associated with (Sa, Sa). Instead,
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the two-loop contributions of €5 do not have subdivergences, because €2 is one-loop. When we in-

clude counterterms for subdivergences, we can identify subtracted integrals Gf)’“m“ P — Gﬁgﬁ&{g”
that have local divergent parts Gf&‘;vlmu ? (by the theorem of locality of counterterms) and possi-

b}zzilonlocal finite parts Gf%iite“ ?. When Tf) acts on Gf,)i‘;jm“ P it gives local contributions to

A, which can be nonevanescent (due to simplified divergences), evanescent or still divergent.
However, local contributions must have the structure ([B.I1]), which implies that they are zero. In-
deed, using the tilde parametrization, they are polynomial in the dimensionful parameters of S
and carry an overall factor g2, which has dimension 16. We conclude that the overall divergences
fo,)i’iem“ P are trivial, because they are killed by Tf(f). When Tf) acts on fo)iﬁt';”p it just gives
(possibly nonlocal) evanescent contributions to fl/A(Q). Finally, we have

AP = o). (6.4)

Therefore, formula (6.1I)) is promoted to the next order, and we can write jl;\ = 0(e) + O(R3),
where now “O(e)” includes the evanescent contributions appearing on the right-hand side of (6.4)).

At this point we can proceed by induction. Assume that for some ¢ > 2,

Ay = 0(e) + O(r), (6.5)

and that the overall divergent parts G;L(;i’ilm”p of the subtracted integrals G%)mm“ P G;Ls)litblc'l'if”

~ ~1(0+1
are trivial for 2 < L < £. Denote the contributions of order A to Al with A/A( * ). A diagram-
. L . A1(0+1) .
matic analysis similar to the one carried out above shows that AIA( is the sum of a local part
(641 : A1 (041
A;\(loc) = ZTXH)G%I;), plus a possibly nonlocal evanescent part .A;\(ev - ZTXH)G%;&)&.

A1 (0+1 . . .
However, AA(IOC) must have the structure ([B.I1I), which means that it vanishes. In the end,

~1(+1 ~1(+1
G%:lrii)“ VM are also trivial, and A;\( o ;\(ej ), Thus, if the inductive assumptions hold for
some ¢, they must also hold with ¢ — ¢ + 1 and therefore for £ = co. We conclude that the

anomaly is evanescent to all orders:
Ay = (T3, T)) = 0(e). (6.6)

This result proves that if the final theory is anomaly-free at one loop, the higher-derivative
theory Sj is anomaly-free to all orders. It is important to stress that the DHD-regularization
framework provides the subtraction scheme where this property is manifest: after the subtraction
of (Sk,x) at one loop, no analogous subtractions are necessary at higher orders.

This is not the final result we want, though. To get there we still need to take A to infinity
and complete the DHD limit.
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7 Manifest Adler-Bardeen theorem in the final theory

We are finally ready to study anomaly cancellation to all orders in the final theory. In this section
we study the A dependence and complete the DHD limit, according to the rules of subsection 3.1.
The subtraction of A divergences proceeds relatively smoothly, and preserves the master equation
to all orders up to terms that vanish in the DHD limit.

Call S,, and T, the action and the I" functional DHD-renormalized up to (and including) n
loops, where Sy = S}\ = Sx — x/2 is the action (5I3). The action S, must satisfy two inductive
assumptions to all orders in A:

(I) I'), has a regular limit for ¢ — 0 at fixed A, and

(IT) the local functional

(Sn,Sn) =&n (7.1)

is “truly e-evanescent at fixed A”, that is to say a local functional such that (€,,) tends to zero
when € — 0 at fixed A.

More precisely, I';, is a sum of terms ([B.I4) up to n loops (because it is DHD-convergent to
that order) and a sum of terms (B:12) from n+1 loops onwards. Instead, (€,) = (I',, ') contains
the terms (B.14) except e’A” and /A up to n loops, and the terms ([B.12) except € from n + 1
loops onwards. Thanks to (6.6]) we know that the inductive hypotheses are true for n = 0.

The theorem of locality of counterterms ensures that the (n + 1)-loop divergent part I‘%Tvl )
of I, is a local functional. Since I';, has a regular limit for ¢ — 0 at fixed A, FSETVI ) contains only

divergences in A, not in . Precisely, we can write

F(n+1) o F(”-H) + I,(n—i—l)

ndiv 7~ ndivnev ndivfev’

where F%Jirvlr)lev and I‘%J{Vlf)ev collect the terms A and 0e°A of the list BI3), respectively.

Now we study the (n + 1)-loop divergent part of (I'y,I',). We take the (n + 1)-loop DHD-

divergent non-c-evanescent part of

(T, Tn) = (S, Sn)) = (En), (7.2)

which means the terms of types e?A of the list (3.I3). Recall that Sy is equal to the action S, of
([ZI5) plus O(1/A5) terms, so (Sx — S, ng;lrvl)) is convergent for A — co. Moreover, S; is equal to
Sgf, which by formula (23) is non-e-evanescent, plus | zﬁézéﬁwé plus e-evanescent terms. Noting
that the divergent part of (£,) is just made of terms de’A, we obtain

(Syr, THD =0, (7.3)

ndivnev

Deriving (Z3) from (Z2) we have expanded I';, = > 77 KT in powers of i and dropped all
contributions (R(Ik), anﬂ_k)) with 0 < k < n+ 1, because they are convergent in the DHD limit.
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Note that Fgc), 0 < k <n+ 1, may contain terms eA. Now, the powers of A can get simplified
inside (F%k),F%nH_k)). However, I',, is convergent for ¢ — 0 and the antiparentheses cannot
generate poles, so the resulting contributions remain negligible in the DHD limit. We must just
pay attention not to manipulate the terms €A in inconvenient ways (see subsection 3.1 for details).

Since the theory is power-counting renormalizable, (Z.3]) is another little cohomological prob-
lem, therefore it can be solved directly. Moreover, it is a purely four-dimensional problem, since

all e-evanescent terms have been dropped. Its solution is well-known and states that r(n)

ndivney COm

be reabsorbed by redefining the parameters of Sgr and making a canonical transformation inside
Sgt. Using the nonrenormalization of the B- and Ks-dependent terms, and power counting, the

canonical transformation is generated by a functional

Fn((I)aK,):/Z TlL{fZAaZK/,ual +Zi/0220a2 ra; +Zn1;7,/2éai ra; + Z 1/ZBa1K/az)
7

I 1)2% 1/2
+/ (¢1€Zn/ﬂ Kzll;] ,IZnéﬂ/}L) (7.4)
and the parameter redefinitions read
7"; = Zm’f’z‘, 5; = EiZnAia (75)

where Z, 4i, Znci, Znrg and Zy; are e-independent A-divergent renormalization constants. The r;
redefinitions encode the renormalizations of gauge couplings. Instead, the &; redefinitions follow
from the nonrenormalization of the terms quadratic in B. In the parametrization we are using
there are no redefinitions of g and (.

Making the canonical transformation (Z.4) and the redefinitions (Z.3]) on Syt we get

Syt — Spr — TUHD L o(nn+2),

ndivnev

However, the classical action we have been using is not Sgf, and not even S, = Sg¢+SLR + Sev, but

Sn, whose classical limit is Sy, therefore we must inquire what happens by making the operations

(C4) and (735]) on Sy.

Let us begin from S,.. Since Spr is nonrenormalized, we must also make the redefinitions
r -1/2
S1J = CIKZnKJ (76)

When we apply (C4) and (Z3) to Sey we generate new formally e-evanescent, A-divergent terms

of order A"*!, which change Pw(ld—:—vlf)ev into some new rn(gltﬁgv, plus O(A"*2). The divergences
F;(gitgv are not constrained by gauge invariance, but just locality and power counting. They can

be subtracted redefining the parameters n of Sey, since Sey was added precisely for this purpose.
We denote the operations that subtract ngfvl ) with T,. They include the canonical transfor-
mation (7.4)), the redefinitions (T.5]) and (7.6]), and the n redefinitions that subtract /"D Note

ndivfev
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that T,, = 1 + O(A"*!). We have

T,S, = S, — "D 4 o(r+2).

ndiv

It remains to check what happens when the operations 7, act on Sp. Observe that, since no
e divergences are around, the operations 7,, are independent of € and divergent in A. However,
the difference Sy — S, is of order 1/ AS and the operations T}, cannot contain powers of A greater
than 4. Thus, (7, — 1)(SA — S;) vanishes in the DHD limit. Call S,; the action obtained by
applying T, on S,,. We have

Spi1 =TpSn =5, + (T, — 1)Sy + O(F"*2) = S, + (T}, — 1)S, + (T), — 1)(Sa — S,) + O(A"2)
=S, — T (T, — 1)(Sy — S,) + O("F2). (7.7)

ndiv

This formula tells us that the operations 7;, do renormalize the divergences due to S, in the DHD
limit. Therefore, S, 11 is the (n + 1)-loop DHD-renormalized action, namely it gives a generating
functional I',4; that is convergent up to (and including) n + 1 loops in the DHD limit.

Moreover, since the canonical transformations generated by (.4]) act multiplicatively on fields
and sources, the operations 7T, act on the I' functional precisely as they act on the action. There-
fore, I'y,41 = T,,I',,. Since the operations T, are e-independent, we conclude that '),y is regular
when ¢ — 0 at fixed A, to all orders in A, which promotes the inductive assumption (I) to n + 1
loops.

Finally, the operations T, preserve the antiparentheses. Applying them to (Z.I]) we also obtain

(Sn—l-l, Sn—i—l) — Tnen
Now, taking the average of this equation we get

Tn<8n>n - Tn(rnyrn) - (Pn-i-lyrn-‘rl) - <(Sn+1asn+1)>n+1 - <Tn8n>n+1a

where (---)r means that the average is calculated with the action Si. If we take the limit of
T (En)n for e — 0 at fixed A we get zero, because by assumption (II) (€,), tends to zero for
e — 0 at fixed A. We conclude that the local functional &£,,,1 = T,&, is truly € evanescent at
fixed A. Therefore, assumption (II) is also promoted to n + 1 loops.

Since all inductive assumptions have been successfully promoted to n + 1 loops, the DHD-

renormalized action S = S satisfies

(Sr,Sr) = €r,

where (€ ) vanishes in the DHD limit, because it contains only the terms of ([3.14)) except €A% and
e%/A. Finally, the DHD-renormalized I' functional I'g = I is such that the anomaly functional

Ar = (U'r,I'r) = ((Sr, Sr))s,, = (Er) = O(¢)
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tends to zero in the DHD limit, which means that gauge anomalies cancel out to all orders.

The DHD framework defines a subtraction scheme where the cancellation takes place naturally
and manifestly. In any other framework, the right scheme must be identified step-by-step, from
two loops onwards, by fine-tuning local counterterms.

Some final comments are in order. Because of (A7) higher-order divergent terms of the form
APIn*A /e are generated along the way. They appear in Sk and in the partially renormalized
actions S,. Our renormalization procedure (which is just made of redefinitions of parameters,
fields and sources) makes them cancel opposite contributions coming from diagrams. Therefore,
they do not appear in the I' functionals I'p and I',,, which are indeed regular in the limit ¢ — 0
at A fixed.

In several steps of the proof we have used the fact that Sy = S, + O(1/A%). It is important
that the higher-derivative regularized classical action Sy does not contain terms with fewer inverse
powers of A. Consistently with this, renormalization does not require to turn them on. The
operations 7T, may contain powerlike divergences, which can generate terms with less than 6
inverse powers of A when they act on Sy — S,. Those terms are at least one loop and not

divergent, so they do not affect the structure of the classical action Sy.

8 Standard Model and more general theories

In this section we show how to extend the proof of the previous sections to the standard model
and the most general perturbatively unitary, power-counting renormalizable theories. We just
need to include photons V), scalar fields ¢ and right-handed fermions xg, which were dropped
so far for simplicity. Depending on the representations, we can also add Majorana masses to the
fermions ..

We begin from the fermions. The starting classical action (2.I)) is modified as follows:

&%&+/%w&+%,

where Sy, collects the mass terms, when allowed by the representations:

S = — / (Xrmrsvg + pmbxk) —/(¢EIMIJ¢i+¢£MjI¢EJ)—/(X.CRIMfJXﬁJFXﬁM}}X%])-
(8.1)

The functional Sk that collects the symmetry transformations is also extended:
Sk — Sk +g / (XRT“C K} + K[TCX%) -

Clearly, ¥ and (Sk,¥) are unmodified. To regularize the right-handed fermions we mirror what

we did for the left-handed ones. In the same way as we added partners ¢ g for ¥y that decouple

35



14A1 Renorm

in four dimensions, we add partners x for xyr that also decouple when D — 4. The correction

to SLR is
SLr — SLR + 57 / Xpudxh + <5 / XRdXT + /xiz@’xi-

Massive terms involving the regularizing partners wé and Xi can also be added. Differently from
(81D, they are not renormalized, so their coefficients must be independent of the ones appearing
in (8I). The evanescent corrections Se, of formula (2.I6]) are affected only in the sector Scey,

which is extended to include terms such as the integrals of
Xpdol,  didxg,  XpAVL,  OLAXE, (8.2)

multiplied by independent constants. Evanescent terms of the Majorana type may also be allowed.

Next, we add the higher-derivative regularizing terms

[ea (5] ()] ke f ()

to Sp, where x! = Xi + Xé- The gauge fermion Wj does not change, as well as Speyv — Scev-

Tilde fields and sources are defined as before and every argument of the proof can be extended
straightforwardly. Now, wave-function renormalization constants can mix right-handed fermions
with conjugates of left-handed ones. The contributions of right-handed fermions to the one-loop

anomalies A}llzev = ‘As\lr)lev

are given by a formula similar to (5.11), the only difference being that
the trace appearing in the Bardeen term on the right-hand side is calculated on the appropriate

representations T3 (C — CT%, Ay — AjTE) and is multiplied by a further minus sign. The
1)

fnev

there exists a local functional x(gA) such that A}lgev = (Sk, x)-

one-loop gauge anomalies A are trivial when the Bardeen terms cancel out in the total, and

Scalars can be added by making the replacements

A
Sc—>Sc+/(Du90)T(D”90) +m2/@so+ Z/(w*w)Q + Sy,

Sk =Sk — g / (¢tToc K, + KiT ),

where Sy denotes the Yukawa terms. As before, the renormalized action is linear in the sources
K, by ghost number conservation and power counting. The evanescent corrections S, include

new terms such as the integrals of
Ga)(09),  (Bap)'T(A), (8.3)

while Spey — Seev does not change. The higher-derivative regularizing terms are

[0 (%) )
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so the tilde fields and sources

~ ¥ % 4
SO:F’ K&p:AKgm

are such that [gp] = 5, [glip] = 14. With these choices, the matter fields and their sources still
cannot contribute to the one-loop counterterms fs\lgiv of the higher-derivative theory Sy, nor to
the nonevanescent one-loop gauge anomalies ftﬁ\lr{ev. Moreover, we still have Sy — S, = O(1/AS).
Therefore, all arguments used in the proof of the previous sections generalize straightforwardly.
Finally, we add photons. Assume that the group G contains N U(1) factors and denote their

gauge fields with V!, w =1,... N. Then make the replacements
1
Se—Se— 7 / CwWi, W Dyr! — Dy’ +iQ Vi,
Sk — Sk — / (8,C") KM —ag / c*> («"QKL - KITQnh),

I'is any matter field in the

where Wy, = 0,V — 0,V}!, Cuy is an invertible constant matrix, 7
irreducible representation R’ of G, and WIT,K}IrT stand for 7/, KI if 7! is a fermion. We define
extended G indices a, l;, ... to include both sets of indices w,v,... and a,b, ..., and write Az =
{Vi, A%}, The U(1) charges of matter fields are denoted by gqy. We also write T4 = {iQv, T},

where Q% acts on 7! by multiplying it by ¢%. The change of the gauge fermion ([2.4) is
U(P) — ¥(P) +/C“ (8“AZ + 5—;”3”) .

The sector Scey 0f Sey is also extended, to include V-dependent evanescent terms similar to those
already met in (2.19), (B2) and ([B3]). Instead, Spey — Scey remains the same, since the U(1)
ghosts decouple.

The action Sy is extended to include the higher-derivative regularizing terms

(2 >W

while the change of gauge fermion is
1
\I/A(q) —)‘I/A /Cu < auvu+ Puv (D)Bv> )

where

wo () = &uo + ng

Finally, Spey inherits the modifications made on See,. Tilde fields and sources are defined as be-
fore. The one-loop renormalization of the higher-derivative theory S is made of the replacements

(A1) plus similar replacements

C’U‘U%CU’U_‘_M 2
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for (yy, where fy, are calculable constants.

Let us describe the nontrivial contributions to the one-loop gauge anomalies Ag}gev. We
have terms of the Badreen type and terms proportional to C“W; W**.  Using differential
forms, the terms of the Bardeen type are linear combinations of By = [ Tr[dCrArdA] and
By = [Tr[dCrANANA], as in formula (BI), where now C = COT¢, A = ALT{dat, d = datd),
and TJ? are the matrices T restricted to the fermions. The coefficient of Bq is the same as in
formula (5.IT]), apart from the minus sign associated with right-handed fermions. The coefficient
of By is uniquely determined by the coefficient of By, but it differs from the one of formula (5.11))
any time U(1) gauge fields and/or ghosts are involved. The terms proportional to CW,,, W*" can
only appear in (unusual) situations where global U(1) gauge symmetries are potentially anoma-
lous. One-loop gauge anomalies are trivial when all these terms cancel out, and there exists a
local functional x(gA) such that .A;lgev = (Sk,X).

The correction to the canonical transformation (7.4]) reads

nuv nuv nuv nuv

Fp(®,K') = Fo(®,K') + /(v,le/2 K'™ 4 CUZVEKE + CUZ PK Y + B Z, WPK),
and the redefinitions (5] are accompanied by
qQILl = 7;1}1{2(]})7 gq/w = Z%{Ewngzé/ziv

so that the U(1) gauge-fixing sector (Sk, V), including the ghost action, as well as the U(1) sector
of Sk, are nonrenormalized.

With the rules of this section gauge anomalies manifestly cancel to all orders in the most
general perturbatively unitary, renormalizable gauge theory coupled to matter, as long as they
vanish at one loop. We stress again that the proof we have given also works when the theory
is conformal or finite, or the first coefficients of its beta functions vanish, where instead RG

techniques are powerless.

9 Conclusions

We have reconsidered the Adler-Bardeen theorem, focusing on the cancellation of gauge anomalies
to all orders, when they are trivial at one loop. The proof we have worked out is more powerful
than the ones appeared so far and makes us understand aspects that the previous derivations were
unable to clarify. Key ingredients of our approach are the Batalin-Vilkovisky formalism and a
regularization technique that combines the dimensional regularization with the higher-derivative
gauge invariant regularization. The most important result is the identification of the subtraction
scheme where gauge anomalies manifestly cancel to all orders. We have not used renormalization-

group arguments, so our results apply to the most general perturbatively unitary, renormalizable
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gauge theories coupled to matter, including conformal field theories, finite theories, and theories
where the first coefficients of the beta functions vanish.

In view of future generalizations to wider classes of quantum field theories, we have paid
attention to a considerable amount of details and delicate steps that emerge along with the proof.
We are convinced that the techniques developed here may help us identify the right tools to

upgrade the formulation of quantum field theory and simplify the proofs of all-order theorems.

Appendix A. Calculation of one-loop anomalies

In this appendix we illustrate our approach by calculating the one-loop coefficient of the Bardeen
anomaly in chiral gauge theories. That coefficient is scheme independent, so we can work at
A = o0, which means use the dimensionally regularized action S, of (215]). Actually, we can
equivalently use the action S, of (2.8]), because it is easy to check that the contributions due to
Sev do not contain fermion loops. Therefore, they cannot generate the tensor e#*f7.

For simplicity, we first work with chiral QED and then generalize the result to non-Abelian

theories. The action reads
1 _ _
STO((I)a K) = _Z /F,u,uF'uV + /7[)27#8/1¢ - /QLQ;[)L'V‘UA;ﬂﬁL + (SKa \I/) + SK’
SKZ—/(8MC)KM + 191, /(T/}LCKQ/, +K¢C”L/JL) — /BK@, (A.l)

where gy, is the charge and the gauge fermion is

\If:/C’<8“AM+gB>.

(Sro, Sro) = —2q1 / C (&LéT/)R + (3ﬂZER)7ﬂ¢L)

— &S 6.8
:2/C(8HJ“)+2qu/C<¢L5;—L— 5¢LT/)L>7

where J* = qpippy*py is the gauge current and S(®) = S(®,0).
We focus on the matter-independent contributions Ap to the anomaly A = ((Syo0,Sr0))s,q, SO

We have

we can take the ghosts outside the average. Switching to momentum space, we get

A =2y | &%G(—k) Wlp(Pr — PL) (o + kD)d(—p + k2))]

Here and below the integrals on momenta k in Ap are understood. We expand the fermion two-

point function in powers of the gauge field. The linear term gives a contribution that by power
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counting and ghost number conservation is proportional to

, 1

Jeo@a) =) v =3 [@aenan.

It can be subtracted away as explained in formula (5.12). Then we concentrate on the contribu-
tions A’ to Ap that are quadratic in the gauge field. We observe that one fermion propagator
is sandwiched between two Pr’s or two Pg’s, which projects its numerator onto the evanescent
sector, and the other two propagators are sandwiched between Pr and Pg, which projects their

numerators onto the physical sector. We get

, D C(— ~2 _
Ay = =24, [ oty ol PLEAUR AR

The photons and their momenta k1, ko can be taken to be strictly four dimensional. Turning to

Euclidean space and using

de ﬁzﬁﬂ 1
I“:/ = kY —k5) + O(e),
Bua (2m)P (p + k1)2p%(p — k)2 96772( 1 — k) +0(e)
we obtain ,
5=" 13% / C(=k)e"P k1 Ay (k) kop Ao (k2),
where €912 = 1. Converting to coordinate space and including the trivial contributions, we finally
get

482
After subtraction of the trivial terms the divergence of the current averages to

3
Ap = JL_ / Ce" P F, Fy + (Sk, X)-

3 _ _
M:q_LMVPJF F_ _ﬁ_‘sf‘s
<8,u<] > 9671'26 uvdpoc — 4L Q/)L 51/)[/ 51/}[/ ¢L .

Incidentally, the calculation shows that Ap receives no contributions proportional to [ CFH*F,,.
This term is in principle allowed by the cohomological constraint (5.6) in Abelian theories, but
actually does not show up. If it did, it would imply that the global symmetry associated with the
gauge symmetry is anomalous, which is of course not true.

The calculation just done also proves formula (5.11), after inserting matrices 7% and structure

constants f®° where appropriate.

Appendix B. Formula of the anomaly functional

In this appendix we recall the proof of the last equalities of formulas (ZII)) and (I0), which

express the anomaly functional A. We show that

(P,F) = <(Sv S)>7 (B.l)
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where S is a dimensionally regularized action, the average is defined by the functional integral
(2I0) and T is the Legendre transform of W, defined by the same integral.

Recall that, using the dimensional regularization technique, local perturbative field redefini-
tions have Jacobian determinants identically equal to one. Indeed, from the diagrammatic point
of view such Jacobians are equal to 1 plus integrals of polynomials of the momenta p in dPp,
which vanish. Now, if we make the change of field variables
0rS
0K,

in the functional integral (Z.10), where 6 is a constant anticommuting parameter, we obtain

5,5 6,5 58\

Using this identity, and recalling that the two terms of the antiparentheses ([2.2)) are equal when

Y 5 B 4 (S, B*) = D™ — 0

X and Y coincide and have bosonic statistics, we get

s == [ (550 = [ (52 )

The average of 6,,S/0K, is equal to §,W /6K, which is also §,I'/§ K, because the sources K are

inert in the Legendre transform that defines I'. Using J, = —§;I'/d®“, we arrive at
2 = [ 5=~ | dkasee — 2D

For other details, see for example the appendix of ref. [I6]. Note that the dimensional
regularization is crucial for the derivation. Clearly, formula (B.1]) also works if we use the DHD
regularization, because the dimensional one is embedded in it. We then obtain formula (3.10).

If a dimensionally regularized action S satisfies (S, S) = 0 in arbitrary D = 4 — ¢ dimensions,
then gauge anomalies are manifestly absent, as in QED and QCD, and formula (ZI1]) correctly
gives A = 0. When chiral fermions are present, as in the standard model, we have the ~s
problem. A dimensionally regularized action S cannot equip chiral fermions with well-behaved
propagators, and satisfy (S,S5) = 0 in D dimensions at the same time. The naive fermionic
propagators, given by the starting action (2.1]), do not depend on the evanescent components p of
momenta. Then, according to the rules of the dimensional regularization, fermion loops integrate
to zero, which means that the the starting action (2.I]) is not well regularized. The action must be
modified to equip fermions with well-behaved propagators, for example by adding the correction
Spr of formula (2.6). Once this is done, however, S satisfies (5, 5) = O(¢), as shown in formulas
(2.9) and ([3.5). The evanescent terms O(e), inserted in the diagrams belonging to the average
((S,9)) = (O(e)), can simplify poles 1/e and give finite, potentially anomalous contributions, as
shown in the calculation of the previous appendix.

It is worth to stress that our investigation only concerns gauge anomalies, so A = 0 does not

exclude the presence of other types of anomalies, such as the axial anomaly of QED.
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