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Weighted Power Counting AndChiral Dimensional RegularizationDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa, Italydamiano.anselmi@df.unipi.itAbstractWe de�ne a modi�ed dimensional-regularization technique that overcomes several di�cultiesof the ordinary technique, and is specially designed to work e�ciently in chiral and parity violatingquantum �eld theories, in arbitrary dimensions greater than 2. When the dimension of spacetimeis continued to complex values, spinors, vectors and tensors keep the components they have in thephysical dimension, therefore the γ matrices are the standard ones. Propagators are regularizedwith the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in thecase of chiral fermions. If the new terms are organized in a clever way, weighted power countingprovides an e�cient control on the renormalization of the theory, and allows us to show thatthe resulting chiral dimensional regularization is consistent to all orders. The new techniqueconsiderably simpli�es the proofs of properties that hold to all orders, and makes them suitableto be generalized to wider classes of models. Typical examples are the renormalizability of chiralgauge theories and the Adler-Bardeen theorem. The di�culty of explicit computations, on theother hand, may increase.
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1 IntroductionThe dimensional regularization [1, 2] is very convenient to make calculations in quantum �eldtheory and prove properties to all orders, such as renormalizability, when gauge anomalies aremanifestly absent. It has some annoying features in chiral, parity violating and sypersymmetrictheories, where the matrix γ5 and the tensor εµνρσ play important roles. There, manifest gaugeinvariance is lost, and calculations are involved. More importantly, the proofs of all-order proper-ties are quite demanding, because several common arguments do not work and some classi�cationsof counterterms are ambiguous.According to the standard de�nition of dimensional regularization for chiral theories in fourdimensions [1, 3], calling D = 4 − ε the continued, complex dimension of spacetime, the D-dimensional spacetime manifold R

D is broken into the product R4×R
−ε of the physical spacetimemanifold R

4 times an �evanescent� space, R−ε. The D-dimensional γ matrices are formal objectsthat satisfy the continued Dirac algebra {γµ, γν} = 2ηµν = 2diag(1,−1, · · · ,−1). Then, thematrix γ5 is formally de�ned as the product iγ0γ1γ2γ3 [1]. This approach, due to 't Hooft andVeltman, is consistent to all orders, gives the right one-loop anomalies and can be easily generalizedto arbitrary even dimensions. Although it is widely used, it has some undesirable features. Themost important one, in our viewpoint, is that it is responsible for various obstacles that obstructthe proofs of theorems to all orders in perturbation theory. Many alternative approaches havebeen proposed in the literature (see ref. [4] for a nonexhaustive list of recent contributions to thissubject), mainly focused on the de�nition of γ5. However, most of those proposals do not simplifythe proofs of all-order theorems.The true origin of the di�culties we are concerned with is not γ5 per se but the contin-ued Dirac algebra. In this paper we show that it is possible to avoid most inconveniences byworking with the usual d-dimensional γ matrices in arbitrary D dimensions, where d denotesthe dimension of physical spacetime. To achieve this and other goals, it is necessary to upgradethe whole dimensional regularization to a new technique, which we call chiral dimensional (CD)regularization.The �rst problem we must face is the regularization of chiral fermions. The naïveD-dimensionalcontinuation of their action is gauge invariant, but does not provide good propagators. In theCD regularization this problem is solved by adding evanescent kinetic terms of the Majoranatype. Since no evanescent γ matrices are allowed, the evanescent kinetic terms must be higherderivative, which means that they are multiplied by parameters of negative dimensions in unitsof mass. In general, those parameters may propagate into the physical sector of the theory, turnnonrenormalizable vertices on and cause all other sorts of troubles. To keep the evanescent sectorunder control and prove that the CD regularization is consistent to all orders, we arrange the reg-ularization technique so that it satis�es the requirements of weighted power counting [5]. Doing2
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so, we obtain an e�ective control over the locality of counterterms and the renormalization to allorders.The propagators of all �elds must be corrected similarly, to make their structure match thestructure of fermionic propagators. Since gauge invariance is not (and does not need to be)preserved away from d dimensions, we show that it is consistent to require that all �elds havestrictly d-dimensional components. We use this property to simplify the regularization techniqueas much as we can.Summarizing, in the CD regularization all �elds (scalars, spinors, vectors, tensors) have exactlythe same components inD dimensions, as they have in d dimensions, and the γ matrices, as well asthe εµ1···µd tensors, are just the usual d-dimensional ones. Evanescent terms are added, guided byweighted power counting, to make propagators fall o� with appropriate velocities in all directionsof integration.The CD regularization is particularly convenient to treat general gauge theories that cannotbe regularized preserving their gauge symmetries in a manifest way. Examples are chiral theoriesand parity violating theories, such as the standard model, Lorentz violating extensions of thestandard model [6, 7, 8], Chern-Simons theories in three dimensions, and so on. In the realm ofnonrenormalizable theories we mention the standard model coupled with quantum gravity, as wellas supergravity.The CD regularization keeps the good properties of the dimensional regularization, amongwhich the fact that local perturbative changes of �eld variables have Jacobian determinantsidentically equal to one, which simpli�es the Batalin-Vilkovisky master equation [9] and sev-eral derivations. At the same time, it overcomes known and less-known inconveniences of theusual dimensional regularization, such as problems due to the dimensional continuation of Fierzidentities and the propagation of evanescences through the Batalin-Vilkovisky antiparentheses [9].Ultimately, the new technique provides a powerful tool to make systematic proofs to all orderswith a relatively small e�ort in perturbative quantum �eld theory, in arbitrary dimensions d > 2.One situation where the problems of the common dimensional regularization can be appreci-ated is the proof of the Adler-Bardeen theorem [10, 11], which is a realm where the most advancedtechniques of perturbative quantum �eld theory must be used altogether. The original proof givenby Adler and Bardeen [10] works only in QED. Most generalizations to non-Abelian gauge theoriesuse arguments based on the renormalization group [12, 13, 14, 15]. However, those arguments havesome limitations, because they do not apply to conformal �eld theories, �nite theories or theorieswhere the �rst coe�cients of the beta functions vanish [15]. Algebraic/geometric derivations [16]based on the Wess-Zumino consistency conditions [17] and the quantization of the Wess-Zumino-Witten action also do not seem suitable to be generalized. Recently, a more powerful proof ofthe cancellation of gauge anomalies to all orders, when they vanish at one loop, was given in ref.[18], elaborating on arguments that �rst appeared in ref. [7]. That approach has the virtue of3
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identifying the subtraction scheme where the cancellation to all orders is manifest. Nevertheless,due to the di�culties of the dimensional regularization, it only covers particular classes of models,namely four dimensional, perturbatively unitary power counting renormalizable gauge theoriescoupled to matter, where it is possible to handle the inconveniences in ad hoc ways. It wouldbe important to extend those results to all perturbative quantum �eld theories, renormalizableor not. Going through the arguments of ref. [18], it is easy to spot several steps that do notgeneralize to wider classes of models in a straightforward way, and understand that the mainobstacle is indeed the dimensional regularization as we normally understand it. On the otherhand, when it comes to proving properties to all orders in perturbation theory, no known regu-larization technique is more powerful than the dimensional one, for a variety of reasons. Thus, tomove forward it is necessary to formulate a more versatile regularization technique that overcomesthe di�culties, but keeps the bene�ts of the ordinary dimensional one. The CD regularizationprovides a satisfactory answer to this problem.It is known that in parity violating theories algebraic manipulations and evaluations of Feyn-man diagrams are more demanding than in parity invariant theories. Using the CD regularizationthe di�culty of explicit computations may increase. Nevertheless, we do not worry about thisproblem here, because we think that a certain complexity is unavoidable and a reasonable priceto pay, if we want to simplify the proofs of all-order theorems. If we are interested in simplifyingcalculations, instead, we must deform the dimensional regularization in a di�erent way [19, 20],by making propagators have SO(1,D − 1)-scalar denominators. In an explicit example we showthat the e�ort to compute one-loop divergent parts and anomalies with the CD regularization iscomparable to the usual one.The paper is organized as follows. In section 2 we de�ne the chiral dimensional regularization.We study chiral fermions, scalar �elds, gauge �elds, gravity in the metric-tensor formalism, gravityin the vielbein formalism and Chern-Simons theories. In section 3 we use weighted power countingto study the locality of counterterms and renormalization, and prove that the CD regularizationis consistent to all orders. In section 4 we calculate the one-loop chiral anomaly with the CDtechnique. In section 5 we show how to use the new technique in several applications. In particular,we simplify the classi�cation of counterterms and contributions to potential anomalies and showhow to overcome a number of obstacles that a�ict the proofs of all-order theorems. We concentratein particular on the Adler-Bardeen theorem and the proofs of renormalizability of general gaugetheories to all orders, and show that the CD regularization makes the usual derivations suitableto be generalized to wider classes of models. Section 6 contains our conclusions.
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2 Chiral dimensional regularizationIn this section we formulate the new regularization technique, in arbitrary dimensions d > 2.As usual, we split the D-dimensional spacetime manifold R

D into the product R
d × R

−ε of theordinary d-dimensional spacetime R
d times a residual (−ε)-dimensional evanescent space, R−ε.The spacetime indices µ, ν, . . . of vectors and tensors are split into the bar indices µ̄, ν̄, . . ., whichtake the values of 0, 1, · · · , d − 1, and the formal hat indices µ̂, ν̂, . . ., which denote the R

−εcomponents. For example, the momenta pµ are split into the pairs pµ̄, pµ̂, also written as p̄µ, p̂µ,and the coordinates xµ are split into x̄µ, x̂µ. To evaluate a D-dimensional integral we must �rstintegrate over the hat components of the momenta or coordinates, using the common formulas ofthe dimensional regularization, and then integrate over the bar components. The formal �at-spacemetric ηµν is split into the usual d× d �at-space metric ηµ̄ν̄ =diag(1,−1, · · · ,−1) and the formalevanescent metric ηµ̂ν̂ = −δµ̂ν̂ (the o�-diagonal components ηµ̄ν̂ being equal to zero). When wecontract evanescent components we use the metric ηµ̂ν̂ , so for example p̂2 = pµ̂ηµ̂ν̂p
ν̂ .We assume that all of the �elds Φ(x) have strictly d-dimensional components, each of whichis a function of x̄ and x̂. The spinors ψα have 2[d/2] components, where [d/2] is the integral partof d/2. Vectors have the d components Aµ̄, with no evanescent component Aµ̂ being turned on.Symmetric tensors have d(d + 1)/2 components. In particular, the metric tensor gµν is made ofthe diagonal blocks gµ̄ν̄ and ηµ̂ν̂ , while the o�-diagonal components gµ̄ν̂ vanish. Antisymmetrictensors have d(d− 1)/2 components, and so on.As anticipated in the introduction, we take the γ matrices to be strictly d dimensional, andsatisfy the usual Dirac algebra {γµ̄, γν̄} = 2ηµ̄ν̄ . When we write γµ we mean δµν̄ γν̄ . If d = 2k iseven, we de�ne the d-dimensional generalization of γ5 as

γ̃ = −ik+1γ0γ1 · · · γ2k−1,which satis�es γ̃† = γ̃, γ̃2 = 1. Then we have the left and right projectors PL = (1 − γ̃)/2,
PR = (1+ γ̃)/2 in the usual fashion. The tensor εµ̄1···µ̄d and the charge-conjugation matrix C alsocoincide with the usual ones. Full SO(1,D − 1) invariance is lost in most expressions, replacedby SO(1, d − 1)× SO(−ε) invariance.These rules are not the end of the story, because once we apply them, we realize that the somodi�ed dimensional regularization does not equip the �elds with good propagators. For example,the free action

∫

dDx ψ̄Li /̄∂ψL (2.1)of the left-handed fermions ψL gives the propagator
PL

i

/̄p
PR, (2.2)5
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which does not fall o� in all directions of integration, because it does not depend on the evanescentcomponents p̂ of the momenta. At the same time, we cannot modify the action (2.1) in a localway so that the propagators of chiral fermions get denominators of the form p̄2 + ηp̂2, where ηis a positive constant, because the γ matrices do not have evanescent components, γµ̂. Thesedi�culties do not appear with bosonic �elds, in general (with the exception of Chern-Simonsgauge �elds in three dimensions). However, we cannot let di�erent �elds have propagators withdi�erent structures, because if we did we would not be able to use weighted power counting.The best we can do is equip all of the �elds with propagators that have denominators equalto products of polynomials

D(p̄, p̂,m, ς, η) = p̄2 −m2 − ς
(p̂2)2

M2
+ η

p̂2

M
+ i0, (2.3)where ς is a positive constant of order one and M is a mass scale. This property ensures thatpropagators behave appropriately; in particular they fall o� in all directions of integration, evenwhen m = η = 0 (which is the case of chiral fermions).However, formula (2.3) shows that propagators fall o� more rapidly in the evanescent directions

p̂ of the momenta than in the physical directions p̄. The right tool to manage di�erent behaviorsin di�erent directions of integration is the weighted power counting introduced in ref. [5]. Here werecall its fundamental properties, leaving other details to section 4. Basically, the structure (2.3)suggests that in the ultraviolet limit p̄ and p̂2 should be regarded as equally important. Ordinarypower counting, which is based on the dimensions in units of mass, instead states that p̄ and p̂are equally important in the ultraviolet limit. Thus, we must replace the dimensions in units ofmass with suitable �weights�, de�ned in such a way that p̄ and p̂2 are equally weighted.We conventionally take p̄ to have weight 1, so the evanescent components p̂ of the momentahave weight 1/2. The action is obviously weightless, as well as the scale M appearing in formula(2.3). Writing the dominant kinetic terms (i.e. the kinetic terms with the largest number ofderivatives ∂̄) of the �eld Φ as
1

2

∫

Φ∂̄NΦΦ, or ∫

Φ̄∂̄NΦΦ, (2.4)depending on the case, the weight of Φ is equal to (d −NΦ)/2 and coincides with its dimensionin units of mass.To ensure that propagators are well behaved in all the directions of integration, we proceedas follows. Consider a polynomial Q(p̄, p̂) that is also a SO(1, d− 1)× SO(−ε) scalar. De�ne its�weighted degree� as its ordinary degree once Q is rewritten as a polynomial Q̃(p̄, p̂2) of p̄ and p̂2.We require that propagators be rational functions of the momenta of the form
P ′
2w−NΦ

(p̄, p̂)

P2w(p̄, p̂)
, (2.5)6
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where P ′

2w−NΦ
and P2w are SO(1, d−1)×SO(−ε)-scalar polynomials of weighted degrees 2w−NΦand 2w, respectively, such that the monomials (p̄2)w and (p̂2)2w belonging to the denominators

P2w(p̄, p̂) are both multiplied by nonvanishing coe�cients. In the next subsections we show thatit is possible to arrange the regularized action so that all of the �elds ful�ll these requirements.The total action is the one that contains all of the monomials compatible with weighted powercounting and the nonanomalous symmetries of the theory, multiplied by the maximum numberof independent coe�cients.Demanding that the action and the scale M be weightless, we can assign weights to all of theother parameters. The theories that contain only parameters of non-negative weights (and are suchthat propagators fall o� with the correct behaviors in the ultraviolet limit) are renormalizable byweighted power counting. The theories that contain some parameters of strictly negative weightsare nonrenormalizable. In that case, the propagators (2.5) must contain only parameters of non-negative weights.Weighted power counting gives us an e�cient control on the renormalization of the CD-regularized theory, including the evanescent sector. It also ensures that the scale M does notpropagate into the physical sector. Precisely, M is an arbitrary, renormalization-group invariantparameter that belongs to the evanescent sector from the beginning to the end. In particular,there is no need to take the limit M → ∞ at any stage.To summarize, to obtain a regularization that e�ectively works, we must modify the evanescentsector of the action according to the observations just made. We begin by showing how this isdone in the case of chiral fermions.2.1 Chiral fermionsThe action of the (left-handed) chiral fermions ψL coupled to gauge �elds in even d dimensions is
Scψ =

∫

ψ̄Liγ
µ̄Dµ̄ψL,where Dµ̄ = ∂µ̄+gT

aAaµ̄ is the covariant derivative and T a are anti-Hermitian matrices associatedwith some representation of the gauge group G. The propagators (2.2) of this action do not fall o�in all directions of integration, because they are independent of the evanescent components p̂ ofthe momenta. To overcome this di�culty, we complete the action Scψ by adding higher-derivativeevanescent kinetic terms of the Majorana type.For example, in four dimensions, using the standard basis of γ matrices (see below) the classicalaction reads
Scψ =

∫

ψ†
Li(∂µ̄ + gT aAaµ̄)σ̄

µ̄ψL, (2.6)where σ̄µ̄ = (1,−~σ), ~σ being the Pauli matrices. We regularize it by adding the evanescent7
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correction

Sevψ =
i

2M

∫

(ςψψ
α
Lεαβ ∂̂

2ψβL + ς∗ψψ
∗α
L εαβ ∂̂

2ψ∗β
L ), (2.7)where ε12 = 1. Right-handed chiral fermions can be treated similarly. Throughout this paper, theconstants ςI are dimensionless and of order one, and multiply the dominant evanescent quadraticterms. We need a di�erent constant ςI for every �eld, because �elds renormalize independentlyof one another, even in the evanescent sector.De�ning Ψ = (ψL, ψ

∗
L), the free propagator of the action Scψ + Sevψ reads

〈Ψ(p)ΨT (−p)〉0 =
i

p̄2 −
|ςψ|2

M2 (p̂2)2 + i0

(

iε
ς∗
ψ

M p̂
2 pµ̄σ

µ̄

pµ̄(σ
µ̄)T iε

ςψ
M p̂

2

)

, (2.8)where ε is the matrix with entries εαβ , σµ̄ = (1, ~σ) and the superscript T denotes the transpose.As promised, the regularized propagators have denominators of the form (2.3), therefore theyproperly fall o� in all directions of integration. Note that without the regularizing terms (2.7),or, equivalently, at ςψ = 0, the propagators of (2.8) would be p̂-independent, and fermionic loopswould integrate to zero in dimensional regularization.Now we generalize the construction to arbitrary spacetime dimensions d > 2. First we need tochoose a basis of γ matrices. We start from the usual basis of Pauli matrices σi, i = 1, 2, 3 and take
γ0 = σ1, γ1 = iσ2 in two dimensions. Then we proceed by induction. Let γµ̄, µ̄ = 0, 1, . . . 2k − 1,denote the γ matrices in d = 2k dimensions, where k = 1, 2, . . .. De�ne γµ̄, γ2k as the γ matricesin 2k + 1 dimensions, where

γ2k = −ikγ0γ1 · · · γ2k−1,and
Γ0 = 1⊗ σ1, Γ1 = iγ0 ⊗ σ2, Γj+1 = γj ⊗ σ2 for j = 1, . . . , 2k,as the γ matrices in 2k + 2 dimensions.In this basis, γµ̄ is always symmetric if µ̄ is even, and always antisymmetric if µ̄ is odd. Thecharge-conjugation matrix

C = ik(k+1)/2γ0γ2 · · · γ2k−2in even dimensions d = 2k is proportional to the product of the γ matrices with even indices, andsatis�es
C
† = −C, C

2 = −1, C
T = (−1)k(k−1)/2

C, Cγµ̄C = (−1)k(γµ̄)T , Cγ̃ = (−1)k γ̃C.We generalize the evanescent terms (2.7) to even dimensions by choosing
Sevψ =

i

2M

∫

(

ςψψ
T
L C̃∂̂

2ψL − ς∗ψψ̄LC̃∂̂
2ψ̄TL

)

, (2.9)8
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where C̃ is a suitable matrix that we now identify. It must be antisymmetric, otherwise (2.9)vanishes, and invertible, to give well-behaved propagators. We take a C̃ that commutes with γ̃,because a C̃ that anticommutes with γ̃ gives again zero. We also choose C̃ such that γ0C̃†

=

C̃γ0, so that the expression Sevψ given in (2.9) is Hermitian. Finally, to simplify a number ofmanipulations, we demand that the square of C̃ be proportional to the identity. Precisely, wechoose C̃
2
= −1.If d = 4 mod 8 chiral fermions admit Majorana masses, because [C, γ̃] = 0 and C is antisym-metric. There we can take C̃ = C, which ensures that (2.9) is Lorentz invariant in the physicalportion of spacetime (therefore global Lorentz symmetry is manifestly nonanomalous). Instead,in even dimensions d 6= 4 mod 8, chiral fermions cannot have Majorana masses, either because thecharge-conjugation matrix C anticommutes with γ̃, or because it is symmetric, or both. In even

d > 2, d 6= 4 mod 8, we choose C̃ = −iγ0γ2, which indeed satis�es C̃T = −C̃, [C̃, γ̃] = 0, C̃†
= −C̃,

{C̃, γ0} = 0 and C̃
2
= −1. In this case the regularization explicitly breaks Lorentz symmetry inthe evanescent sector.In d = 2 no matrix C̃ exists, which is why we cannot make our regularization work there, ingeneral. However, so far we have just considered single Weyl �avors. With more �avors there aremore options and, depending on the case, it may be possible to build a matrix C̃ that satis�es ourrequirements even in d = 2. With more Weyl �avors Lorentz symmetric evanescent kinetic termsof the Majorana type may also exist in even dimensions d 6= 4 mod 8.Besides Lorentz symmetry in d 6= 4 mod 8, the Majorana terms (2.9) may also break otherglobal symmetries, such as those associated with the gauge groups G. However, in most casessuch symmetries are nonanomalous, therefore they can be recovered by adding suitable localcounterterms.De�ning Ψ = (ψL, ψ̄

T
L), the propagator of the action Scψ+Sevψ, with Sevψ given by (2.9), canbe worked out with a small e�ort and reads

〈Ψ(p)Ψ̄(−p)〉0 =
i

D2
p + 4p̃2|hp̂|2

(

Dp 2h∗p̂C̃/̃p

2hp̂C̃/̃p Dp

)(

/̄p −h∗p̂C̃

−hp̂C̃ /̄pT

)

, (2.10)where
Dp = p̄2 − |hp̂|

2, hp̂ ≡ iςψ
p̂2

M
,and the vector p̃µ is de�ned as follows. In even dimensions d 6= 4 mod 8 p̃µ̄ is obtained from pµ̄by suppressing p0, p2 and podd, which gives p̃µ̄ = (0, 0, 0, 0, p4 , 0, p6, 0, p8, · · · ). In d = 4 mod 8,instead, we take p̃µ̄ = 0. Finally, in all cases p̃µ̂ = 0. It is easy to prove the identities

/̃p = /̃p
T , [/̃p, C̃] = 0.Using these relations it is straightforward to verify that (2.10) is indeed the propagator of theaction Scψ + Sevψ for arbitrary d > 2. 9
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Formula (2.9) shows that the propagators are well-behaved in all directions of integrations, ac-cording to the requirements formulated in the previous subsection. Moreover, their denominatorsare regular everywhere. This fact can be proved, for example, by checking that the denominatorsbecome positive de�nite when we turn to Euclidean space.In odd dimensions or with Dirac fermions ψ we can just use Dirac-type evanescent kineticterms and write

Scψ + Sevψ =

∫

ψ̄
(

iγµ̄Dµ̄ −m
)

ψ −
ςψ
M

∫

(∂µ̂ψ̄)(∂
µ̂ψ),where now ςψ is real. The propagator is

i
(

/̄p+m+
ςψ
M p̂

2
)

p̄2 −
(

m+
ςψ
M p̂

2
)2 .Ultimately, the modi�ed regularization we consider in this paper can always be used in dimensions

> 2, and sometimes also in d = 2.2.2 ScalarsFor de�niteness, consider the theory
Scϕ =

∫

(Dµ̄ϕ)
†(Dµ̄ϕ)− V (ϕ†ϕ) + SY , (2.11)where V is a potential and SY denotes the Yukawa couplings and any other types of perturbativecorrections. The propagator of (2.11) is i/(p̄2 −m2), therefore it does not behave correctly. Weadd the quadratic evanescent terms

Sevϕ = −
ςϕ
M2

∫

(∂̂2ϕ)†(∂̂2ϕ) +
ηϕ
M

∫

(∂µ̂ϕ)
†(∂µ̂ϕ). (2.12)The propagator of the total action Scϕ + Sevϕ is then

i

D(p̄, p̂,m, ςϕ, ηϕ)and therefore has the right type of denominator. In some cases evanescent vertices of the form
∫

(∂̂2ϕ)†ϕ2,

∫

(∂̂2ϕ)†ϕ3, (2.13)etc., in d = 3, 4 might be allowed and should be added to the action. If no parameters of negativeweights are around, no other evanescent terms compatible with weighted power counting and theglobal symmetries of the theory can be constructed. Then Scϕ+Sevϕ plus the terms of type (2.13)is the total regularized action. 10
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2.3 Gauge �eldsNow we switch to gauge �elds. For de�niteness, we take non-Abelian Yang-Mills theory witha simple gauge group G, coupled to left-handed fermions ψL. The gauge-invariant action is
Sc = ScA + Scψ, with

ScA = −
1

4

∫

F aµ̄ν̄F
µ̄ν̄a, F aµ̄ν̄ = ∂µ̄A

a
ν̄ − ∂ν̄A

a
µ̄ + gfabcAbµ̄A

c
ν̄ .To keep track of gauge invariance during the renormalization algorithm, it is convenient touse the Batalin-Vilkovisky formalism [9]. A set of �elds Φα = {Aaµ̄, C

a, C̄a, Ba, ψL, ψ̄L} is de-�ned, to collect the classical �elds φ = {Aaµ̄, ψL, ψ̄L}, the ghosts C, the antighosts C̄ and theLagrange multipliers B for the gauge �xing. An external source Kα with opposite statistics isassociated with each Φα, and coupled to the Φα symmetry transformations Rα(Φ). We have
Kα = {K µ̄a,Ka

C ,K
a
C̄
,Ka

B ,Kψ , K̄ψ}. If X and Y are functionals of Φ and K their antiparenthesesare de�ned as
(X,Y ) ≡

∫
(

δrX

δΦα
δlY

δKα
−
δrX

δKα

δlY

δΦα

)

, (2.14)where the integral is over spacetime points associated with repeated indices. The master equation
(S, S) = 0 must be solved for S = S(Φ,K) in D = d with the �boundary condition� S = Sc at
C = C̄ = B = Kα = 0. The solution

Sc + SK (2.15)is the action we start with to quantize the theory, where
SK(Φ,K) =−

∫

Rα(Φ)Kα = −

∫

(Dµ̄C
a)K µ̄a +

g

2

∫

fabcCbCcKa
C −

∫

BaKa
C̄

+g

∫

(

ψ̄LT
aCaKψ + K̄ψT

aCaψL
)

,encodes the symmetry transformations Rα(Φ) of the �elds, Dµ̄C
a = ∂µ̄C

a+ gfabcAbµ̄C
c being thecovariant derivative of the ghosts. We can easily check that (Sc, Sc) = (Sc, SK) = (SK , SK) = 0in arbitrary D dimensions.We gauge �x the theory with the gauge fermion

Ψ(Φ) =

∫

C̄a
(

∂µ̄Aaµ̄ +
ξ

2
Ba

)

,which means that we add
(SK ,Ψ) =

∫

Ba

(

∂µ̄Aaµ̄ +
ξ

2
Ba

)

−

∫

C̄a∂µ̄Dµ̄C
ato the action (2.15), and obtain the gauge-�xed action

Sd(Φ,K) = Sc + (SK ,Ψ) + SK , (2.16)11
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which still satis�es (Sd , Sd ) = 0 exactly in arbitrary D dimensions.As in the cases of fermions and scalars, the action Sd is not well regularized, since its propa-gators depend only on the d-dimensional components of the momenta. Thus, we add evanescentcorrections Sev, guided by weighted power counting. We have learned from the treatment offermions that the weights of the �elds and the physical components of the momenta coincide withtheir dimensions in units of mass, and two derivatives ∂̂ count as one derivative ∂̄. Denotingweights with square brackets, we have

[Aaµ̄] = [C̄a] = [Ca] =
d

2
− 1, [Ba] =

d

2
, [∂̄] = 1, [∂̂] =

1

2
.Then we take

SevA =
ςA

2M2

∫

Aaµ̄(∂̂
2)2Aµ̄a +

ηA
2M

∫

Aaµ̄(∂̂
2)Aµ̄a, (2.17)

SevC =−
ςC
M2

∫

C̄a(∂̂2)2Ca −
ηC
M

∫

C̄a(∂̂2)Ca, (2.18)for gauge �elds and ghosts, respectively. Note that no evanescent terms can be constructed with
Ba.The �nal step is to include all of the other terms allowed by weighted power counting and ghostnumber conservation. We can distinguish nonevanescent additional terms ∆Sc and evanescentadditional terms ∆Sev. The total classical action

Sc = ScA + Scψ +∆Scmust be such that the gauge-�xed action Sd de�ned by formula (2.16) still satis�es (Sd, Sd) = 0exactly in arbitrary D dimensions. For example, if the theory is nonrenormalizable (like thestandard model coupled to quantum gravity, or a low-energy e�ective �eld theory) ∆Sc collectsin�nitely many corrections of higher dimensions (such as two scalar-two fermion vertices, Pauliterms, four-fermion vertices, etc.). Recall that in d > 4 all gauge theories are nonrenormalizable.The total evanescent action reads
Sev = SevA + Sevψ + SevC +∆Sev.For example, in d = 3 we have ∆Sev = ∆SevA, where

∆SevA =
1

M

∫

εµ̄ν̄ρ̄
(

ς ′AA
a
µ̄(∂̂

2)∂ν̄A
a
ρ̄ + ζAgf

abcAaµ̄A
b
ν̄ ∂̂

2Acρ̄

)

,

ς ′A and ζA being constants.Finally, the gauge-�xed regularized action of chiral gauge theories reads
S(Φ,K) = Sc + (SK ,Ψ) + SK + Sev = Sd + Sev. (2.19)12
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Since (Sd , Sd ) = 0, the action (2.19) satis�es the deformed master equation

(S, S) = O(ε). (2.20)To prove that the CD regularization is consistent, we need to focus on the propagators, whichcontain only parameters of non-negative weights. Thus, even when the theory is nonrenormaliz-able, it is enough to study the subsector where the parameters of negative weights are switchedo�. In this subsector no new terms are allowed besides those listed so far. In particular, noevanescent terms depending on the sources K can be constructed. Moreover, ∆Sev = 0 in d > 3.Collecting all pieces together (and switching o� the parameters of negative dimensions), we�nd
S(Φ,K) =−

1

4

∫

F aµ̄ν̄F
µ̄ν̄a +

∫

Ba

(

∂µ̄Aaµ̄ +
ξ

2
Ba

)

+
1

2

∫

Aaµ̄
∂̂2

M

(

ςA
∂̂2

M
+ ηA

)

Aµ̄a

+

∫

ψ̄Liγ
µ̄Dµ̄ψL +

i

2M

∫

(

ςψψ
T
L C̃∂̂

2ψL − ς∗ψψ̄LC̃∂̂
2ψ̄TL

)

−

∫

C̄a

(

∂µ̄Dµ̄ +
ςC(∂̂

2)2

M2
+ ηC

∂̂2

M

)

Ca +∆SevA + SK . (2.21)Observe that the ghosts still decouple in the Abelian case. The ghost propagators are
〈Ca(p)C̄b(−p)〉0 =

iδab

D(p̄, p̂, 0, ςC , ηC)
. (2.22)Ignoring ∆SevA for a moment, the propagators of the multiplet made of Aaµ̄ and Ba are

〈Aaµ̄(p)A
b
ν̄(−p)〉0 =

−iδab

D(p̄, p̂, 0, ςA, ηA)

(

ηµ̄ν̄ +
(ξ − 1)pµ̄pν̄

D(p̄, p̂, 0, ξςA, ξηA)

)

,

〈Aaµ̄(p)B
b(−p)〉0 =

−pµ̄δ
ab

D(p̄, p̂, 0, ξςA, ξηA)
, 〈Ba(p)Bb(−p)〉0 = iδab

p̂2

M

ςA
M p̂

2 − ηA

D(p̄, p̂, 0, ξςA, ξηA)
.All of them have correct denominators and correct structures to ensure the locality of countert-erms, according to weighted power counting. Note that we must keep ξ 6= 0, which means thatthe Landau gauge is not available in the CD regularization.When we switch ∆SevA on, in d = 3, the propagators remain regular. Indeed, towards theend of subsection 2.5 we prove a theorem stating that if the propagators of some action S areregular, they remain regular when S is extended by adding new terms compatible with weightedpower counting, multiplied by independent parameters.2.4 GravityNow we move to quantum gravity. We recall that xµ̄ are the coordinates of the physical portionof spacetime, and xµ̂ are those of the evanescent portion. The metric tensor depends on both,13
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like every other �eld, but its nontrivial components are just the usual d-dimensional ones gµ̄ν̄ .Precisely, in the evanescent sector we take the �at-space metric gµ̂ν̂ = ηµ̂ν̂ , while the o�-diagonalcomponents gµ̄ν̂ identically vanish, so we have

gµν(x̄, x̂) =

(

gµ̄ν̄(x̄, x̂) 0

0 ηµ̂ν̂

)

. (2.23)General changes of coordinates a�ect only xµ̄ , and leave xµ̂ unmodi�ed:
xµ̄′ = ξµ̄(x̄, x̂), xµ̂′ = xµ̂. (2.24)Under these transformations gµ̄ν̄ and ∂µ̄ transform as usual, and dDx

√

|g| is invariant, where gis the determinant of gµ̄ν̄ . Actually, gµ̂ν̂ , gµ̄ν̂ and ∂̂ also change, so gµν does not keep the form(2.23). However, this is not a problem, since we do not require that the evanescent sector of thetheory be invariant under the general coordinate transformations (2.24).We start from the ordinary d-dimensional Hilbert action
ScG = SH = −

1

2κ2

∫

dDx
√

|g(x̄, x̂)|R(x̄, x̂), (2.25)the constant κ having the dimension of an energy to the power (2 − D)/2. In D dimensionscovariant derivatives, as well as the Christo�el symbols, the Riemann and Ricci tensors and theRicci scalar are de�ned by exactly the same formulas that hold in d dimensions, therefore theytransform as usual:
Γµ̄ν̄ρ̄=

1

2
gµ̄σ̄(∂ν̄gρ̄σ̄ + ∂ρ̄gν̄σ̄ − ∂σ̄gν̄ρ̄), Rµ̄ν̄ρ̄σ̄ = ∂ρ̄Γ

µ̄
ν̄σ̄ − ∂σ̄Γ

µ̄
ν̄ρ̄ + Γµ̄ᾱρ̄Γ

ᾱ
ν̄σ̄ − Γµ̄ᾱσ̄Γ

ᾱ
ν̄ρ̄,

Rµ̄ν̄ =Rρ̄µ̄ρ̄ν̄ , R = gµ̄ν̄Rµ̄ν̄ .Basically, the evanescent components xµ̂ of the coordinates are treated as external parameters.Clearly, (2.25) is invariant under (2.24) in arbitrary D dimensions.Now we introduce the ghosts of di�eomorphisms C µ̄, as well as the antighosts C̄µ̄ and theLagrange multipliers Bµ̄, and an external source K for every �eld. All of them depend on x̄, x̂.The in�nitesimal gauge transformations are collected into the functional
SK =

∫

(gµ̄ρ̄∂ν̄C
ρ̄ + gν̄ρ̄∂µ̄C

ρ̄ + C ρ̄∂ρ̄gµ̄ν̄)K
µ̄ν̄ +

∫

C ρ̄(∂ρ̄C
µ̄)KC

µ̄ −

∫

Bµ̄K
µ̄
C̄
. (2.26)As before, it is easy to check that (ScG, ScG) = (ScG, SK) = (SK , SK) = 0 in D dimensions.For several applications it is important to preserve invariance under rigid di�eomorphisms,which are the coordinate transformations

xµ̄′ =M µ̄
ν̄ x

ν̄ , xµ̂′ = xµ̂, (2.27)14
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where M µ̄

ν̄ is an arbitrary invertible constant matrix. The action ScG is obviously invariant underrigid di�eomorphisms, but also SK is, if we declare that the sources K are, according to the case,scalar densities, vector densities or tensor densities of weight 1. That means, in practice, thatthey carry a hidden √|g|.To ensure invariance under rigid di�eomorphisms, it is su�cient to express all �elds andderivatives ∂̄ using lower spacetime indices, contract those indices with the inverse metric tensor
gµ̄ν̄ everywhere, and �nally multiply by an appropriate power of √|g|, to obtain scalar densitiesof weight 1. Derivatives ∂̂, instead, must be contracted with ηµ̂ν̂ , to ensure SO(−ε) invariance.Preserving invariance under rigid di�eomorphisms is convenient for some applications (see section5), because, among other things, it constrains the forms of counterterms and allows us to workwithout introducing �second metrics�. By that we mean any additional metrics (including the�at-space metric ηµ̄ν̄) that are often used for gauge-�xing and regularization purposes.We want to show that the CD regularization is fully compatible with invariance under rigiddi�eomorphisms. First, it is possible to choose gauge-�xing conditions that preserve this globalsymmetry. For example, we can take the gauge fermion

Ψ = −

∫

√

|g|C̄µ̄

[

1

2κ
(∂ν̄g

µ̄ν̄ + λgµ̄ν̄gρ̄σ̄∂ν̄g
ρ̄σ̄) +

ξ

2
gµ̄ν̄Bν̄

]

, (2.28)where λ and ξ are gauge-�xing parameters. As usual, the action is gauge �xed by adding (SK ,Ψ):
Sd = ScG + (SK ,Ψ) + SK . (2.29)We clearly have (Sd, Sd) = 0 in D dimensions.At this point we observe that the action (2.29) is not equipped with well-regularized propa-gators, so we must add evanescent terms consistent with weighted power counting. From (2.29)we derive the weight assignments

[gµ̄ν̄ ] = [C µ̄] = 0, [C̄µ̄] =
d

2
− 1, [Bµ̄] =

d

2
, [K µ̄ν̄ ] = [KC

µ̄ ] = d− 1, [K µ̄
C̄
] =

d

2
.We have used [Φα] + [Kα] = d− 1 for every α. We also want to arrange the regularizing terms sothat the full gauge-�xed CD-regularized action is invariant under rigid di�eomorphisms.We start adding the evanescent quadratic terms

SevG =
1

8κ2M2

∫

√

|g|
(

ςG(∂̂
2gµ̄ν̄)(∂̂

2gµ̄ν̄) + ς ′G(gᾱβ̄ ∂̂
2gᾱβ̄)2

)

+
ςCG

2κM2

∫

√

|g|C̄µ̄(∂̂
2)2C µ̄, (2.30)which are the key ones to make propagators well behaved. Other evanescent terms can be includedin SevG, such as: (i) quadratic terms similar to those of (2.30), but with just two ∂̂'s instead offour, contracted in various ways, and (ii) terms that contribute only to vertices when the metrictensor is expanded around �at space, for example

1

κ4M2

∫

√

|g|(∂α̂gµ̄ν̄)(∂
α̂gν̄ρ̄)(∂β̂gρ̄σ̄)(∂

β̂gσ̄µ̄).15
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The total gauge-�xed action is then

S(Φ,K) = ScG + (SK ,Ψ) + SK + SevG = Sd + SevG, (2.31)and is clearly such that (S, S) = O(ε). Indeed, the nonevanescent part Sd satis�es the masterequation exactly, while the evanescent part violates the master equation, since the derivatives ∂̂are noncovariant.Now we show that the propagators of (2.31) are indeed well behaved. We expand around �atspacetime by writing
gµ̄ν̄ = ηµ̄ν̄ + 2κφµ̄ν̄ , C µ̄ = κC̃ µ̄, (2.32)and work out the expansion to the quadratic order. From ScG we obtain

1

2

∫

(

(∂ᾱφ
µ̄ν̄)(∂ᾱφµ̄ν̄)− (∂ᾱφ)(∂

ᾱφ)− 2(∂µ̄φ
µ̄ν̄)(∂ρ̄φρ̄ν̄)− 2φ(∂µ̄∂ν̄φ

µ̄ν̄)
)

, (2.33)where φ = φµ̄µ̄ and indices are raised and lowered with the �at metric ηµ̄ν̄ . The gauge �xing
(SK ,Ψ) contributes with

∫

Bµ̄

(

∂ν̄φ
µ̄ν̄ + λ∂µ̄φ−

ξ

2
Bµ̄

)

+
1

2

∫

C̄µ̄

(

∂ν̄∂
ν̄C̃ µ̄ + (1 + 2λ)∂µ̄∂ν̄C̃

ν̄
)

.Finally, the quadratic part of the evanescent sector SevG is
−

1

2M2

∫

(

ςGφµ̄ν̄(∂̂
2)2φµ̄ν̄ − ς ′Gφ(∂̂

2)2φ
)

+
ςCG
2M2

∫

C̄µ̄(∂̂
2)2C̃ µ̄plus similar terms obtained making the substitutions (∂̂2)2/M2 → ∂̂2/M and ς → η.The propagators of the multiplet φµ̄ν̄ , Bρ̄ are very involved. We have worked them out withthe help of a computer program. We do not give the result here, but just report that they havethe right structure to make the CD regularization work, as long as ξ 6= 0, λ 6= −1, ςG 6= dς ′G and

d > 2. The denominators are polynomials P2w(p̄, p̂) of even weights 2w such that both monomials
(p̄2)w and (p̂2)2w are multiplied by nonvanishing coe�cients. Moreover, the propagators fall o�with the correct velocities in all directions of integration.The ghost propagator is

〈C̃ µ̄(p)C̄ν̄(−p)〉0 = −
2i

D(p̄, p̂, 0, ςCG , ηCG)



δµ̄ν̄ −
(1 + 2λ)pµ̄pν̄

2(1 + λ)D
(

p̄, p̂, 0,
ςCG

2(1+λ) ,
ηCG

2(1+λ)

)



and also has the right structure.When the cosmological constant Λ is turned on, we must treat it nonperturbatively, as if it werethe squared mass of a bosonic particle. For the purposes of renormalization, since countertermsare polynomial in Λ we can still expand around �at space, although �at space is no longer anextreme of the classical action. 16
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2.5 Gravity in the vielbein formalismWhen gravity is coupled to matter, the actions of chiral fermions, scalars and gauge �elds must becovariantized, possibly adding nonminimal terms. The covariantization of nonevanescent terms,such as ScA, proceeds as in d dimensions, while the covariantization of the evanescent corrections,such as SevA, is made only with respect to rigid di�eomorphisms. For example, (2.17) and (2.18)become

SevA =
ςA

2M2

∫

√

|g|gµ̄ν̄Aaµ̄(∂̂
2)2Aaν̄ +

ηA
2M

∫

√

|g|gµ̄ν̄Aaµ̄(∂̂
2)Aaν̄ ,

SevC =−
ςC
M2

∫

√

|g|C̄a(∂̂2)2Ca −
ηC
M

∫

√

|g|C̄a(∂̂2)Ca,respectively.When fermions are present, we must switch to the vielbein formalism. Then it is necessary todistinguish spacetime indices µ, ν, . . . from Lorentz indices a, b, . . ., and split both into bar indicesand hat indices. The vielbein has physical components eāµ̄ and evanescent components eâµ̄ = eāµ̂ = 0and eâµ̂ = δâµ̂. The spin connection ωāb̄µ̄ and the Riemann and Ricci curvature tensors Rāb̄µ̄ν̄ , Rāµ̄in D dimensions are de�ned by the same formulas that hold in d dimensions, the evanescentcomponents xµ̂ of the coordinates being treated as external parameters.The starting classical action of gravity coupled to (left-handed) chiral fermions is
S′
cG = ScG +

∫

eψ̄Lie
µ̄
āγ

āDµ̄ψL, (2.34)where e is the determinant of the vielbein and Dµ̄ is the gravitational covariant derivative. Thefunctional (2.26) is replaced by
S′
K =

∫

(eāρ̄∂µ̄C
ρ̄ + C ρ̄∂ρ̄e

ā
µ̄ + C āb̄eµ̄b̄)K

µ̄
ā +

∫

C ρ̄(∂ρ̄C
µ̄)KC

µ̄

+

∫

(C āc̄ηc̄d̄C
d̄b̄ + C ρ̄∂ρ̄C

āb̄)KC
āb̄ −

∫

Bµ̄K
µ̄
C̄
−

∫

Bāb̄K
āb̄
C̄ (2.35)

+

∫

C ρ̄(∂ρ̄ψ̄L)Kψ −
i

4

∫

ψ̄Lσ
āb̄Cāb̄Kψ +

∫

Kψ̄C
ρ̄(∂ρ̄ψL)−

i

4

∫

Kψ̄σ
āb̄Cāb̄ψL,where σāb̄ = i[γā, γ b̄]/2 and C āb̄ are the ghosts of local Lorentz symmetry. Obviously, the identities

(S′
cG, S

′
cG) = (S′

cG, S
′
K) = (S′

K , S
′
K) = 0 hold in D dimensions.The gauge fermion must be corrected to include gauge-�xing conditions for local Lorentzsymmetry. The common symmetric condition eaµ = ebνηbµη

νa cannot be used, since it violatesinvariance under rigid di�eomorphisms. It is better to start from the less common gauge-�xingcondition ∂µ̄ωāb̄µ̄ = 0, write it in a form that is compatible with rigid di�eomorphisms, and theninclude every term allowed by weighted power counting, ghost number conservation and invarianceunder rigid di�eomorphisms. 17
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The gauge-�xing sector and the evanescent sector must also include parity violating termsconstructed with the tensor εa1···ad . Those terms are speci�c of every d and in general introducea large number of new parameters. To prove that the propagators of gravity in the vielbeinformalism are well de�ned in arbitrary d, we proceed in two steps. We �rst ignore the parityviolating terms belonging to the gravitational sector and prove that the propagators are wellbehaved in that particular case. Later, we prove that they remain well behaved when the parityviolating terms are turned on.From (2.34), (2.35) and the gauge-�xing condition, we �nd the weight assignments of �eldsand sources, which are
[eāµ̄] = [C µ̄] = 0, [C āb̄] = [ωāb̄µ̄ ] = 1, [C̄µ̄] = [Bāb̄] =

d

2
− 1, [C̄āb̄] =

d

2
− 2,

[Bµ̄] =
d

2
, [K µ̄

ā ] = [KC
µ̄ ] = d− 1, [KC

āb̄] = d− 2, [K µ̄
C̄
] =

d

2
, [K āb̄

C̄ ] =
d

2
+ 1.The parity invariant sector of the new gauge fermion is equal to

Ψ′ =Ψ+
1

κ

∫

C̄āb̄∂µ̄

(

egµ̄ν̄eρ̄ā∂ν̄e
b̄
ρ̄ + λ1ee

µ̄āgρ̄ν̄∂ρ̄e
b̄
ν̄ + λ2ee

µ̄āeν̄b̄eρ̄c̄∂ρ̄e
c̄
ν̄

)

+λ3

∫

eC̄µ̄(e
ν̄ā∂ν̄e

µ̄
ā − eµ̄ā∂ν̄e

ν̄
ā) +

∫

eeµ̄āeν̄b̄
(

λ4Bν̄∂µ̄C̄āb̄ + λ5C̄µ̄∂ν̄Bāb̄
)

+
1

2

∫

C̄āb̄

[

eξ1B
āb̄ + ξ2∂µ̄

(

egµ̄ν̄∂ν̄B
āb̄
)

+ ξ3∂µ̄

(

eeµ̄āeν̄c̄∂ν̄B
b̄c̄
)]

, (2.36)where Ψ is the same as in formula (2.28), plus terms that contribute only to vertices in theexpansion (2.38).The nonevanescent sector of the total gauge-�xed action is then
S′
d(Φ,K) = S′

cG + (S′
K ,Ψ

′) + S′
K ,and satis�es (S′

d, S
′
d) = 0 in D dimensions.The evanescent sector (2.30) is turned into

S′evG=SevG +
i

2M

∫

e
(

ςψψ
T
L C̃∂̂

2ψL − ς∗ψψ̄LC̃∂̂
2ψ̄TL

)

+
ς1

4κ2M2

∫

e(∂̂2eµ̄ā)
(

∂̂2eµ̄ā − eāν̄e
µ̄
b̄
∂̂2eν̄b̄

)

+
ς2
κM2

∫

e(∂̂2Bāb̄)eµ̄ā(∂̂
2eµ̄b̄) +

ς3
2M2

∫

e(∂̂2Bāb̄)(∂̂2Bāb̄)

−
1

κM2

∫

eC̄āb̄(∂̂
2)2
(

ς4C
āb̄ + ς5e

µ̄āeb̄ρ̄∂µ̄C
ρ̄
)

. (2.37)Again, we can also add evanescent quadratic terms with just two ∂̂'s instead of four, and onepower of M in the denominator instead of two, contracted in various ways, plus evanescent termsthat contribute only to vertices in the expansion (2.38).18
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Finally, the total gauge-�xed action is

S′(Φ,K) = S′
cG + (S′

K ,Ψ
′) + S′

K + S′evG = S′
d(Φ,K) + S′evG,and satis�es (S′, S′) = O(ε).To study the propagators, we expand around �at space by writing

eāµ̄ = (eκφ)b̄µ̄ (e
κχ)āb̄ , eâµ̄ = eāµ̂ = 0, eâµ̂ = δâµ̂, C µ̄ = κC̃ µ̄, C āb̄ = κC̃ āb̄, (2.38)where φ and χ are matrices with entries φb̄µ̄ and χā

b̄
, such that φµ̄ā ≡ φb̄µ̄ηb̄ā is symmetric and

χµ̄ā ≡ χb̄µ̄ηb̄ā is antisymmetric. Then we concentrate on the terms that are quadratic in the �elds.We write the quadratic part of the gauge-�xed regularized gravitational action in compact formas
1

2

∫

φiQ̃
ijφj,where φi = {φµ̄ā, Bµ̄, χµ̄ā, B

āb̄} is a multiplet collecting the �uctuations φµ̄ā and χµ̄ā of the vielbeinaround �at space, as well as the Lagrange multipliers Bµ̄ and Bāb̄. Switching to momentum space,
Q̃ij turns into a matrix Qij whose entries depend polynomially on the momentum p and the variousparameters it contains.The gravitational propagators Pij = i(Q−1)ij are much more involved than in the metric-tensor formalism. To simplify the proof that they are indeed well behaved, we �rst establish auseful property. Let λ denote a subset of the parameters contained in Q. If the decomposition

Qij = Qij0 +Rijλ ,where Q0 = Q|λ=0, is such that (P0)ij = i(Q−1
0 )ij are well behaved, then Pij = i(Q−1)ij are alsowell behaved.To prove this fact, we de�ne the parameters λ so that Rijλ is a linear combination of termsmultiplied by λ. Since (Q−1

0 )ij exists, the eigenvalues of Q0 are nonvanishing for generic values of
p and the parameters contained in Q0. Then, within a certain nonvanishing radius of convergencefor the parameters λ, the eigenvalues of Q−1

0 Rλ have absolute values smaller than one, thereforethe eigenvalues of Q0 +Rλ are also nonvanishing, the inverse of Q0 +Rλ exists and the series
1

Q0 +Rλ
= P0

∞
∑

n=0

(−1)n(RλP0)
n (2.39)is convergent. Write

1

Q0
=

N0

detQ0
,where N0 is a polynomial matrix de�ned by this same equation. Within the convergence radius,we also have

1

Q0 +Rλ
=

Nλ

det(Q0 +Rλ)
, (2.40)19
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where Nλ is a polynomial matrix and N0 = N |λ=0. Formula (2.40) tells us that in the domainof convergence the entries of (Q + Rλ)

−1 are rational functions of p and the parameters. Butthen formula (2.40) also holds outside the domain of convergence, for generic values of p and theparameters, because the algebraic operations that give
(Q0 +Rλ)Nλ

det(Q0 +Rλ)
= 1are exactly the same. Thus formula (2.40) gives the propagators whenever p and the parametershave nonexceptional values.Now we study the ultraviolet behaviors of (2.40). We can focus on the denominator det(Q0 +

Rλ). When p̄ and/or p̂ tend to in�nity the corrections due to Rλ cannot ruin the ultravioletbehavior due to det(Q0). To see this, let (p̄2)w and (p̂2)2w denote the dominant monomials of
det(Q0) for p̄ → ∞ and p̂ → ∞, respectively. They are multiplied by nonvanishing coe�cients,because, by assumption, the denominators of (Q0)

−1 have dominant terms multiplied by non-vanishing coe�cients. Since propagators contain only parameters of non-negative weights, thecorrections brought by Rλ can at most change the coe�cients of the dominant terms (p̄2)w and
(p̂2)2w inside det(Q), but not their powers, which are still w and 2w. In other words, the dom-inant terms of the denominators continue to have nonvanishing coe�cients for generic values ofthe parameters, so the propagators are well behaved.Thanks to this result we do not need to work out the most general propagators Q−1. Itis su�cient to identify a particular case Q0 such that the inverse Q−1

0 is well behaved. It isconvenient to choose λ1 = λ2 = λ3 = λ4 = λ5 = ξ3 = 0, in (2.36), ς5 = −ς4 in (2.37), andturn o� the coe�cients of all parity violating terms. Then, the multiplet φi splits into the twosubmultiplets {φµ̄ā, Bν̄} and {χµ̄ā, B
b̄c̄}, in the sense that the matrix Q0 becomes block-diagonalin those submultiplets. The ghost action also diagonalizes in the pairs C̄µ̄-C ν̄ and C̄āb̄-C ′ c̄d̄, where

C ′ āb̄ = C āb̄ −
1

2

(

eµ̄āeb̄ν̄ − eµ̄b̄eāν̄

)

∂µ̄C
ν̄ .It is easy to check that the propagators of the Lorentz ghosts are well behaved. Moreover, thepropagators of the submultiplet {φµ̄ā, Bν̄} and those of the ghosts of di�eomorphisms are alsowell behaved, because they coincide with the ones of the previous subsection. It remains to studythe propagators of the submultiplet {χµ̄ā, B b̄c̄}. This can be done immediately, since the relevantquadratic part is just

−
ς1
2

∫

χāb̄
(∂̂2)2

M2
χāb̄ +

∫

Bāb̄

(

∂̄2χāb̄ + ς2
(∂̂2)2

M2
χāb̄

)

+
1

2

∫

Bāb̄

(

ξ2∂̄
2Bāb̄ + ς3

(∂̂2)2

M2
Bāb̄

)

,plus terms that are subdominant in the ultraviolet limit.20
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Having shown that the propagators are well behaved in the particular case we have identi�ed,the missing parameters can be turned on using the property proved above, so we conclude thatthe most general propagators are also well behaved.The parity violating terms can be included with the same procedure. We do not list all of themhere, because they are too many. We just mention that they can appear in the gauge fermion,such as

1

κ

∫

C̄āb̄ε
āb̄c̄d̄∂µ̄

(

egµ̄ν̄ων̄c̄d̄
)

,

∫

C̄āb̄ε
āb̄c̄d̄∂µ̄ (e∂µ̄Bc̄d̄) ,and in the evanescent sector, such as

1

κ2M2

∫

e(∂̂2eµ̄ā)ε
āb̄c̄d̄eµ̄

b̄
eν̄c̄ (∂̂

2eν̄d̄),
1

M2

∫

e(∂̂2Bāb̄)ε
āb̄c̄d̄(∂̂2Bc̄d̄),

1

M2

∫

e(∂̂2C̄āb̄)ε
āb̄c̄d̄(∂̂2Cc̄d̄).2.6 Chern-Simons theoriesParity violating theories in odd dimensions d may contain Chern-Simons terms, which are builtwith the tensor εµ1···µd . The dimensional regularization of such theories raises issues that are insome respects similar to those raised by the matrix γ5 in four dimensions. We start from threedimensional Chern-Simons Yang-Mills theories, where

ScA=
1

2

∫

εµ̄ν̄ρ̄Aaµ̄

(

∂ν̄A
a
ρ̄ +

g

3
fabcAbν̄A

c
ρ̄

)

,

SK =−

∫

(Dµ̄C
a)K µ̄a +

g

2

∫

fabcCbCcKa
C −

∫

BaKa
C̄ .We choose the gauge fermion

Ψ(Φ) =

∫

C̄a
(

∂µ̄Aaµ̄ +
h(i∂̄)

2
Ba

)

,where h(i∂̄) is an unspeci�ed derivative operator. The weight assignments are
[A] = [C] = [B] = 1, [C̄] = 0, [g] = 0, [KA] = [KC ] = 1, [KC̄ ] = 2, [h] = 1.However, [h] = 1 implies that h is not a polynomial, so we are forced to set h = 0.The evanescent terms we can add compatibly with weighted power counting are

Sev = −
ςA
2M

∫

Aaµ̄(∂̂
2)Aµ̄a + SevC −

ςB
2M

∫

Ba∂̂2Ba, (2.41)where SevC is still given by (2.18). Note the last term, which is crucial to make the propagatorswell behaved even if h = 0. The ghost propagators coincide with (2.22), while the A and Bpropagators are
〈Aaµ̄(p)A

b
ν̄(−p)〉0 =

δab

D(p̄, p̂, 0, ς2A, 0)

[

εµ̄ρ̄ν̄p
ρ̄ − i

p̂2

M

(

ςAηµ̄ν̄ +
(ςB − ςA)pµ̄pν̄

D(p̄, p̂, 0, ςAςB, 0)

)]

,

〈Aaµ̄(p)B
b(−p)〉0 =−

pµ̄δ
ab

D(p̄, p̂, 0, ςAςB , 0)
, 〈Ba(p)Bb(−p)〉0 = −iςA

p̂2

M

δab

D(p̄, p̂, 0, ςAςB , 0)
.21
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We see that all of them fall o� with the appropriate weights in the ultraviolet limit, in all directionsof integration, as long as ςA and ςB do not vanish.There is no di�culty in studying Chern-Simons�Maxwell theory along the same lines, that isto say include the term F aµ̄ν̄F

aµ̄ν̄ in ScA. Since the Maxwell term prevails over the Chern-Simonsone in the ultraviolet limit, this model works like the Yang-Mills theories studied in subsection2.3, as if the Chern-Simons term were absent.The coupling to matter is straightforward. Instead, the coupling to gravity must be discussedin detail, because when parity is violated the gravitational Chern-Simons term
SGCS =

1

2α2

∫

εµ̄ν̄ρ̄Γᾱµ̄β̄

(

∂ν̄Γ
β̄
ρ̄ᾱ +

2

3
Γβ̄ν̄γ̄Γ

γ̄
ρ̄ᾱ

)must be added to the Hilbert action SH of (2.25).Due to the large number of terms involved, it is convenient to block-diagonalize the propaga-tors. We expand around �at space by writing α = κm1/2 and
eāµ̄ = eκφ(eαφ̃)b̄µ̄ (e

κχ)āb̄ , eâµ̄ = eāµ̂ = 0, eâµ̂ = δâµ̂, C µ̄ = αC̃ µ̄, C āb̄ = κC̃ āb̄,where φ̃ and χ are matrices with entries φ̃b̄µ̄ and χā
b̄
, such that φ̃µ̄ā ≡ φ̃b̄µ̄ηb̄ā is symmetric andtraceless and χµ̄ā = χb̄µ̄ηb̄ā is antisymmetric. Moreover, m is a parameter of dimension 1 thatmust be treated nonperturbatively (in this sense, it behaves like an ordinary mass). Since SGCS isconformally invariant, it does not depend on the conformal factor eκφ. Moreover, both SGCS and

SH obviously do not depend on χµ̄ā, since they do not contain the vielbein, but just the metrictensor. Precisely, we have
SGCS(φ̃, α) =

1

α2
S′
GCS(αφ̃), SH(φ, φ̃, κ,m) =

1

κ2
S′H(κφ, αφ̃),which are perturbative expansions in powers of α and κ, respectively.To avoid unnecessary complications, we search for a special case where it is simpler to provethat the propagators are well de�ned. Using the trick explained in the previous subsection weknow that when we turn on the other parameters the propagators remain well de�ned.Since the Chern-Simons term is higher derivative, we need a higher-derivative gauge �xingfor φ̃µ̄ā to obtain well-behaved propagators. It is convenient to make the new gauge fermionindependent of the conformal factor to the lowest order around �at space, using

1

2α

(

∂ν̄g
µ̄ν̄ −

1

3
gµ̄ν̄gρ̄σ̄∂ν̄g

ρ̄σ̄

)

= −gµ̄ν̄∂ρ̄φ̃
ρ̄
ν̄ . (2.42)Moreover, it is not necessary to include Bµ̄-dependent terms. In the sector χµ̄ā-B b̄c̄ we can takethe gauge fermion Ψ′−Ψ of formula (2.36) with λ1 = λ2 = λ3 = λ4 = λ5 = ξ3 = 0. We thus have

Ψ′ =
1

2α

∫

eC̄µ̄g
ᾱβ̄ ∂̄ᾱ∂̄β̄

(

∂ν̄g
µ̄ν̄ −

1

3
gµ̄ν̄gρ̄σ̄∂ν̄g

ρ̄σ̄

)

−
1

κ

∫

e(∂µ̄C̄āb̄)g
µ̄ν̄eρ̄ā∂ν̄e

b̄
ρ̄ −

ξ2
2

∫

e(∂µ̄C̄āb̄)g
µ̄ν̄∂ν̄B

āb̄,22
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plus subdominant terms. The weight assignments read

[φ̃µ̄ā] = 0, [φ] = [χµ̄ā] =
1

2
, [C µ̄] = 0, [C āb̄] = 1, [C̄µ̄] = −1,

[C̄ āb̄] =−
1

2
, [Bµ̄] = 0, [Bāb̄] =

1

2
, [κ] = −

1

2
, [α] = 0.Summing

SH + SGCS + (S′
K ,Ψ

′) + S′
Kand expanding around �at space, we �nd a quadratic part of the form

∫

φ∂̄2φ+ φ̃∂̄3φ̃+m1/2φ̃∂̄2φ+mφ̃∂̄2φ̃+B∂̄3φ̃+B′∂̄2χ+B′∂̄2B′ + C̄∂̄4C̃ + C̄ ′∂̄2C̃ ′,where B, C̄, C̃ stand for Bµ̄, C̄µ̄, C̃ µ̄ and B′, C̄ ′, C̃ ′ stand for Bāb̄, C̄āb̄, C̃ āb̄.The kinetic terms diagonalize in the blocks {φ̃µ̄ā, Bν̄}, {χµ̄ā, B b̄c̄} and {φ} at m = 0. Thus, itis convenient to switch m o�, prove that the propagators are well de�ned in that case, and thenuse the trick of the previous subsection to conclude that they remain well behaved when m isturned on again.The evanescent kinetic terms can be arranged to preserve the diagonal structure just outlined.In particular, we can separate the conformal factor φ from φ̃µ̄ā using the formulas
1

6κ
gµ̄ν̄ ∂̂gµ̄ν̄ = ∂̂φ,

1

2α

(

∂̂gµ̄ν̄ −
1

3
gµ̄ν̄g

ᾱβ̄ ∂̂gᾱβ̄

)

= ∂̂φ̃µ̄ν̄ . (2.43)At m = 0 the conformal factor φ behaves as an ordinary scalar �eld, so its regularized propagatoris straightforward, the evanescent kinetic terms being
Sevφ = −

ςφ
2κ2M2

∫

√

|g|(gµ̄ν̄ ∂̂gµ̄ν̄)∂̂
2(gᾱβ̄ ∂̂gᾱβ̄).The block {φ̃µ̄ā, Bν̄} can be regularized by means of the evanescent terms

Sevφ̃=−
1

2M

∫

√

|g|(∂̂τ̂ φ̃µ̄ν̄)g
µ̄ρ̄

(

ς̄φ̃g
ᾱβ̄ ∂̄ᾱ∂̄β̄ + ςφ̃

(∂̂2)2

M2

)

gν̄σ̄(∂̂ τ̂ φ̃ρ̄σ̄)

−ς

∫

√

|g|Bµ̄
(∂̂2)2

M2
gµ̄ν̄ ∂̄ρ̄φ̃

ρ̄
ν̄ −

1

2

∫

√

|g|gµ̄ν̄Bµ̄
∂̂2

M

(

ς ′Bg
ᾱβ̄ ∂̄ᾱ∂̄β̄ + ςB

(∂̂2)2

M2

)

Bν̄ ,where ∂ρ̄φ̃ρ̄ν̄ and ∂̂φ̃µ̄ν̄ are shortcuts for the expressions of formulas (2.42) and (2.43). The propa-gators of this block are too involved to be reported here, but we have checked that they are wellbehaved by means of a computer program.The propagators of the block {χµ̄ā, B
b̄c̄} and those of the Lorentz ghosts coincide with theones studied in the previous subsection, the evanescent terms being the last three lines of formula(2.37). Note that we can set ς5 = 0 at m = 0. 23
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Finally, to make the propagators of 〈C µ̄(p)C̄ν̄(−p)〉0 well behaved it is su�cient to add theevanescent kinetic terms

−
ςC
2α

∫

√

|g|C̄µ̄
(∂̂2)2

M2

(

2gᾱβ̄ ∂̄ᾱ∂̄β̄ + ςC
(∂̂2)2

M2

)

C µ̄Since the propagators are well behaved in the particular case just examined, we know thatthey are also well behaved when we turn on the missing terms, therefore we conclude that theyare well behaved in the most general case.3 Weighted power counting, locality of counterterms and renor-malizationBecause propagators have the form (2.5), the locality of counterterms and renormalization arecontrolled by weighted power counting [5], instead of ordinary power counting. Weighted powercounting was introduced for Lorentz violating theories, where quadratic terms contain the usualnumbers of time derivatives (two for bosons, one for fermions, in unitary theories), but are allowedto contain higher-space derivatives. So far, we have only considered theories that are Lorentzsymmetric in the physical spacetime R
d, but our treatment can be easily generalized to includemodels where Lorentz symmetry is explicitly violated in R

d. What is important for our discussionis that Lorentz symmetry is certainly violated in the continued spacetime R
D = R

d × R
−ε, sothe results of refs. [5, 7] apply to our case. For comparison with those references, it may beuseful to take into account that the scale M appearing here plays the role of the �scale of Lorentzviolation� ΛL appearing there. In this section we explain how weighted counting works withinthe CD regularization.The denominators of (2.5) have dominant powers (p̄2)w and (p̂2)2w for p̄ → ∞ and p̂ → ∞,respectively. This tells us that p̄2 and (p̂2)2 are equally important in the ultraviolet limit. Weightsof �elds, momenta and parameters have to be assigned so that and p̄2 and (p̂2)2 have the sameweights, and the action S and the scale M are weightless. For convenience, we take the energy tohave weight equal to 1, which coincides with its dimension in units of mass. Then p̄ and p̂ haveweights 1 and 1/2, respectively, and the polynomials (2.3) have weight equal to 2. The weightsof �elds and parameters then follow from the requirement that M and the action be weightless.Note that for the purposes of renormalization what are important are the values of the weights(and dimensions) at ε = 0, so we de�ne them as such.Denoting weights with square brackets, we �nd

[∂̄] = 1, [∂̂] =
1

2
, [x̂] = −1, [x̂] = −

1

2
, [M ] = 0,

[Φ] =
d−NΦ

2
, [gAµ̄] = 1, [gµ̄ν̄ ] = 0,24
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where NΦ are the numbers of derivatives ∂̄ contained in the dominant quadratic terms (2.4) ofthe �elds Φ. In the ultraviolet limit the propagator of each �eld Φ must have the form (2.5) andfall o� with weight NΦ, at least, in all directions of integration.The weights of �elds, sources and derivatives ∂̄ coincide with their dimensions in units of mass.The weights of ∂̂, x̂ and M are di�erent from their dimensions in units of mass. However, thecombinations M−1/2∂̂ and M1/2x̂ have weights equal to their dimensions. Local actions are sumsof spacetime integrals of monomials constructed with the �elds, the sources, and their derivatives
∂̄ and ∂̂. If n2 denotes the number of derivatives ∂̂, we write the coe�cient in front of eachmonomial as λ/Mn2/2, to factorize an appropriate power ofM . Symbolically, the monomial reads

λ

∫

dDx∂̄n1

(

M−1/2∂̂
)n

2

Φn3Kn4 . (3.1)Using this convention, which we have tacitly adopted in the previous section and maintain through-out the paper, all parameters λ have weights equal to their dimensions in units of mass.At this point, we need to recall a few facts about the dimensional regularization. Divergencesare poles in ε, but the terms that disappear whenD → d, called �evanescences� can be of two types:formal evanescences or analytic evanescences. Analytically evanescent terms, brie�y denoted as�aev�, are those that factorize at least one ε, such as εFµ̄ν̄F µ̄ν̄ , εψ̄Li /DψL, etc. Formally evanescentterms, brie�y denoted as �fev�, are those that formally disappear when D → d, but do not factorizepowers of ε. An example is ψTL ∂̂2ψL. Because the �elds have no evanescent components, in theCD regularization there are fewer formal evanescences than usual. They are built with the tensor
ηµ̂ν̂ and the extra components of the coordinates x̂, momenta p̂ and derivatives ∂̂. The poles in
ε can multiply either nonevanescent terms or formally evanescent terms. In the latter case wespeak of divergent evanescences, also denoted as �divev�. An example is ψTL ∂̂2ψL/ε.When we di�erentiate propagators with respect to any components of momenta, their ultra-violet behaviors improve by an amount equal to the weight of the derivatives. In particular,each derivative ∂/∂p̄ lowers the weight of the ultraviolet behavior by one unit, in all directions ofintegration, and each derivative ∂/∂p̂ lowers the weight by 1/2. For example,

∂

∂pµ̄
1

D(p̄, p̂, ς)
= −

2pµ̄

D(p̄, p̂, ς)2
,

∂

∂pµ̂
1

D(p̄, p̂, ς)
=

4ςp̂2pµ̂

M2D(p̄, p̂, ς)2
. (3.2)When we di�erentiate a diagram G a su�cient number of times with respect to any components

k̄, k̂ of its external momenta k, we obtain an overall convergent integral.It is convenient to subtract away divergent evanescences like any other divergences. Indeed,it is simple to show that this prescription ensures the locality of all types of divergences and isconsistent to all orders. Consider a diagram G, subtract its subdivergences according this rule, andcall Gsub the subtracted diagram. When Gsub is di�erentiated with respect to any components
k̄, k̂ of its external momenta, a completely convergent integral is obtained. Thus, both the25
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nonevanescent and formally evanescent divergences of Gsub are local, and can be subtracted away.Iterating this procedure, both types of divergences are local to arbitrarily high orders.In the end, locality ensures that the divergences of Gsub are polynomials in k̄ and k̂. The weight
ω(G) of each such polynomial is equal to the weight of G minus the weights of the parameters
λ that multiply the vertices belonging to G. Since the weight of the loop integration measure
dDp = ddp̄d−εp̂ is equal to d (at ε = 0), the overall degree of divergence ω(G) coincides with thedimension of the integral associated with it.All counterterms have the structure (3.1) with λ replaced by a product of λ's. The generatingfunctional Γ of one-particle irreducible correlation functions is nonlocal and can be expressedusing only the quantities Φ, K, x̄, M1/2x̂, ∂̄, M−1/2∂̂ and λ, which have weights equal to theirdimensions. Symbolically, we write

Γ = Γ(Φ,K, x̄,M1/2x̂, ∂̄,M−1/2∂̂, λ). (3.3)This result shows that the scale M is always attached to the formally evanescent quantities x̂ and
∂̂. The Γ functional keeps the structure (3.3) throughout the renormalization algorithm.When divergences are removed, it is possible to take the limit ε → 0. This is done by �rstletting ε tend to 0 inside correlation functions, without a�ecting the formally evanescent quantities
M1/2x̂ and M−1/2∂̂, and then dropping the formally evanescent quantities. The combination ofthe two operations gives the physical correlation functions. Formula (3.3) shows that the scale
M drops out of physical correlation functions. Thanks to weighted power counting, M does notpropagate into the physical sector of the theory, and there is no need to take the limit M → ∞.The settings of the previous section show that all the requirements of weighted power counting,in particular those concerning the correct behaviors of propagators, can be satis�ed in perturba-tively unitary quantum �elds theories, where bosons have NΦ = 2 and fermions have NΦ = 1.The CD regularization can be generalized to nonunitary theories, in particular higher-derivativetheories, where NΦ can exceed those values. For example, we may consider higher-derivativegravity [21] or even nonlocal theories [22] coupled with chiral fermions. We do not give detailshere, because the generalization is straightforward.The parameters of positive, vanishing and negative weights are superrenormalizable, strictlyrenormalizable and nonrenormalizable by weighted power counting, respectively. The action ofweighted power counting renormalizable theories contains all the terms, and only those, that arecompatible with the nonanomalous symmetries and are multiplied by parameters λ of non-negativeweights.If we ignore symmetries for the moment, all monomials must be multiplied by independentparameters. Then, from the strict point of view of weighted power counting, the countertermshave the same forms as the terms of the classical action, and can be subtracted away by rede�ningparameters and making �eld rede�nitions. 26
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When gauge and global symmetries are present, on the other hand, the coe�cients of variousmonomials are related to one another, therefore it is necessary to verify which symmetries arenonanomalous and drop those that are anomalous. In general gauge theories, the nonevanescentsector Sd of the action S must be exactly gauge invariant, therefore it includes the usual termsand satis�es the master equation (Sd, Sd) = 0. Instead, the total CD-regularized action S =

Sd + Sev satis�es the deformed master equation
(S, S) = O(ε), (3.4)where the right-hand side collects both analytically and formally evanescent terms.Assuming that gauge symmetries are nonanomalous, namely that there exists a subtractionscheme where anomalies cancel to all orders in perturbation theory, we still have the problem ofparametric completeness. A classical action is parametrically complete if it can be renormalizedby means of canonical transformations and parameter rede�nitions. One way to ensure that thisis true is to start from the most general solution of (3.4). When the theory is renormalizable, thatsolution contains a �nite number of independent terms, therefore it is possible to work it out bymeans of a direct analysis. When the theory is not renormalizable, it contains an in�nite numberof independent terms, and the issue is more involved. Moreover, in principle counterterms maydeform the gauge symmetry in observable ways and a�ect the classi�cation of invariants.In nonrenormalizable theories that are manifestly free of gauge anomalies the problem ofparametric completeness can be solved in various ways. If the gauge symmetries satisfy certainlinearity assumptions (satis�ed among others by Yang-Mills gauge symmetries, general covarianceand local Lorentz symmetry), it is convenient to use the background �eld method [23]. Cohomo-logical classi�cations of invariants [24] may also solve the problem, if the result is of a suitableform. More generally, the classical action can be algorithmically extended by brute force tillit becomes parametrically complete [25]. The CD regularization may be useful to prove theseand related results in more economic ways, and generalize them to (possibly nonrenormalizable)theories that are not manifestly free of gauge anomalies (see section 5 for more details).Obviously, the action (2.31) of quantum gravity is not parametrically complete. The classicalaction ScG must be extended to include all the nonevanescent counterterms generated by renor-malization, which are in�nitely many, multiplied by new independent parameters. A convenientform of the extended nonevanescent action Scext is the one given in ref. [26], where invariants areorganized in an economic way by means of �eld rede�nitions. In particular, Scext does not need tocontain higher-derivative quadratic corrections, since counterterms of that type can be subtractedaway by means of canonical transformations. This property ensures that a perturbatively unitarytheory is not driven by renormalization into a higher-derivative, perturbatively nonunitary theory[27].The total extended action Sext = Scext+ Sevext must also include an extended version Sevext27
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of the evanescent sector Sev, which collects evanescent terms of higher weights compatible withinvariance under rigid di�eomorphisms and the other global nonanomalous symmetries. Theeasiest way to classify the in�nitely many terms contained in Sext is to organize the κ dependenceso that

Sext(Φ,K, κ, λ) = 1

κ2
S′ext(κΦ, κK, λ), (3.5)where λ denotes any other parameters. Then radiative corrections have the structure (see forexample [18])

Γext(Φ,K, κ, λ) = ∞
∑

L=0

κ2L−2Γ′extL(κΦ, κK, λ)where L labels the L-loop contributions.The extensions just advocated do not a�ect the theory we perturb around (which is provided by
ScG+ SevG in the case of pure quantum gravity). Indeed, the additional parameters ςext containedin Scext + Sevext have negative weights, therefore they are treated perturbatively. In this respect,observe that the set of ςexts includes the coe�cients of quadratic terms of high weights, such as

ςnG
2κ2M2

∫

√

|g|(∂̂2gµ̄ν̄)(g
ᾱβ̄ ∂̄ᾱ∂̄β̄)

n(∂̂2gµ̄ν̄), (3.6)which in principle modify the propagators. However, since terms like this are just introducedfor regularization purposes, and do not a�ect the physical poles, it is convenient to treat thequadratic contributions coming from the extension Scext + Sevext as �two-leg vertices� and dropall parameters of negative weights from propagators, as we did in the previous section.At the practical level, a nonrenormalizable theory must be truncated. The truncation mustcontain �nitely many terms and must correspond to some perturbative expansion. Commonly,the truncated action ST of quantum gravity contains the terms that have dimensions smallerthan some T in units of mass. The perturbative expansion is then an expansion in powers of theenergy divided by some reference mass scale, typically the Planck mass. In the CD regularizationit is su�cient to truncate to the terms that have weights smaller than T . The truncated action
ST must solve the master equation (2.20) up to corrections that fall outside the truncation.To build ST , we can list all monomials that have weights smaller than T , multiply them byindependent parameters, and �nally relate the parameters to one another by imposing (2.20), aswell as invariance under rigid di�eomorphisms and the other global nonanomalous symmetries.4 One-loop chiral anomaliesIn this section we use the CD-regularization technique to calculate the known one-loop anomaliesof chiral gauge theories in four dimensions. We recall that the anomaly functional A is de�ned as28
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the antiparenthesis (Γ,Γ), which is also equal to the average 〈(S, S)〉. This identity can be provedmaking the change of variables Φα → Φα + θ(S,Φα) in the functional integral

Z(J,K) =

∫

[dΦ] exp

(

iS(Φ,K) + i

∫

ΦαJα

)

,where θ is a constant anticommuting parameter, and using the fact that the Jacobian determinantis equal to one in the (ordinary, as well as chiral) dimensional regularization (for details, see forexample [23]). Moreover, A satis�es the Wess-Zumino consistency conditions [17], which areexpressed by the identity (Γ,A) = 0 using the Batalin-Vilkovisky formalism.We begin with chiral QED. The action is (2.21) with C = −iγ0γ2, T a → i and ∆SevA = 0.We have
(S, S) = 2(SK , SevA + Sevψ + SevC)

=
2g

M

∫

C(ςψψ
α
Lεαβ ∂̂

2ψβL − ς∗ψψ
∗α
L εαβ ∂̂

2ψ∗β
L ) + a

=2

∫

C(∂µ̄J
µ̄) + 2ig

∫

C

(

ψ∗
L

δlS̄

δψ∗
L

−
δrS̄

δψL
ψL

)

+ a,where J µ̄ = gψ†
Lσ̄

µ̄ψL is the gauge current, S̄(Φ) = S(Φ, 0) and
a = 2

∫

Aµ̄
∂̂2

M

(

ςA
∂̂2

M
+ ηA

)

∂µ̄C − 2

∫

B
∂̂2

M

(

ςC
∂̂2

M
+ ηC

)

Ccollects evanescent contributions that are independent of the fermions. Since the ghosts decouple,the average 〈a〉 does not give nonevanescent one-loop contributions to A, so we can concentrateon the rest.Switching to momentum space, the one-loop anomaly then reads
A

(1) = 〈(S, S)〉1loop =
2g

M

∫

dDp

(2π)D
p̂2C(−k)tr [〈Ψ(p)ΨT (−p+ k)〉

(

ςψε 0

0 −ς∗ψε

)]

,where Ψ = (ψL, ψ
∗
L). Here and below the integrals on momenta k in A(1) are understood. Thesemomenta can be taken to be strictly four dimensional.Now we expand in powers of the gauge �eld. By locality, power counting and ghost numberconservation, the nonevanescent contribution of the linear term is proportional to
∫

(∂̄2C)(∂µ̄Aµ̄) = (SK , χ
′), χ′ =

1

2

∫

(∂µ̄Aν̄)(∂
µ̄Aν̄),therefore it is trivial. For the moment, we neglect the trivial contributions and focus on the termsthat are quadratic in the gauge �eld. Calculating the trace and rotating the integrals to Euclideanspace we �nd

A
(1) = −8g3εµ̄ν̄ρ̄σ̄

∫

C(−k1 − k2)A
ν̄(k1)A

σ̄(k2)
(

kµ̄1 k
ρ̄
2 Ī + 2kµ̄1 Ī

ρ̄ − 2kρ̄2 Ī
µ̄
)

,29
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where ε0123 = 1 and Ī, Ī µ̄ are the �nite parts of

I =
|ςψ|

2

M2

∫

Eucl

dDp

(2π)D
(p̂2)2

D(p̄, k1, k2)
, I µ̄ =

|ςψ|
2

M2

∫

Eucl

dDp

(2π)D
(p̂2)2p̄µ̄

D(p̄, k1, k2)
,respectively, and

D(p̄, k1, k2) = D̃(p̄)D̃(p̄− k1)D̃(p̄+ k2), D̃(q̄) = q̄2 + |ςψ|
2 (p̂

2)2

M2
.Since Ī µ̄ is proportional to kµ̄1 − kµ̄2 it is su�cient to calculate ∂Ī µ̄/∂kµ̄1 . The desired �nite partscan be worked out by inserting infrared cuto�s δ and setting k1 = k2 = 0. The integral over p̂ isdone �rst, using the standard rules of the dimensional regularization, and factorizes an ε = 4−D.Finally, the integral over p̄ is just

∫

δ
dp̄ p̄−1−ε/2 =

2

ε
+ �nite.We �nd

Ī = −
1

32π2
, Ī µ̄ = −

1

96π2
(kµ̄1 − kµ̄2 ),whence

A
(1) =

g3

48π2

∫

Cεµ̄ν̄ρ̄σ̄Fµ̄ν̄Fρ̄σ̄, 〈∂µJ
µ〉 =

g3

96π2
εµ̄ν̄ρ̄σ̄Fµ̄ν̄Fρ̄σ̄ − ig

(

ψ∗
L

δlS̄

δψ∗
L

−
δrS̄

δψL
ψL

)

.These formulas are written at ε = 0. Check [13] and the appendix of ref. [18] for comparison withcalculations done using the common dimensional-regularization technique.In gauge theories with generic gauge group G, we insert the matrices T a and the structureconstants fabc where appropriate, and reintroduce the trivial contributions that we have neglectedso far. In the end, we obtain the Bardeen formula
A

(1) = −
ig3

12π2

∫

dDx εµ̄ν̄ρ̄σ̄Tr
[

∂µ̄C
(

Aν̄∂ρ̄Aσ̄ +
g

2
Aν̄Aρ̄Aσ̄

)]

+ (SK , χ), (4.1)where C = CaT a, Aµ̄ = Aaµ̄T
a and χ is a local functional.The example of this section shows that some one-loop explicit calculations of divergent partsand anomalies with the CD regularization exhibit more or less the same di�culties as with theordinary dimensional technique. The numerator algebra is considerably simpli�ed, because the γmatrices are just the ones of d dimensions, but denominators are not fully SO(1,D − 1) invari-ant. Actually, their structure is the typical one of higher-derivative theories. However, becausehigher derivatives only belong to the evanescent sector, the computational e�ort does not increasedramatically.At the same time, in section 2 we have shown that propagators are rather involved, due tothe evanescent sector, especially when gravity is present, so in general we expect that calculations30
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with the CD regularization are more di�cult than usual. What is important for the purposes ofthis paper is that the CD regularization is consistent, its main virtue being that it simpli�es theproofs of all-order theorems, not that it makes explicit calculations easier.5 ApplicationsIn this section we outline several applications to exhibit the advantages of the new technique. Wefocus on the bene�ts the CD regularization brings to the proofs of all-order properties, in particularthe renormalization algorithm for general chiral gauge theories, and the Adler-Bardeen theorem.We begin showing that it removes certain dangerous ambiguities that appear using the commondimensional regularization. Then we prove that the CD technique simpli�es the extraction ofdivergent parts out of antiparentheses of functionals, which is a key step in all renormalizationalgorithms. Third, we show that it simpli�es the classi�cation of counterterms in the presence ofgravity, eliminating arbitrary dimensionless functions that otherwise would appear in the gauge-�xing and regularization sectors. Finally, we show that it considerably simpli�es the proof ofthe manifest Adler-Bardeen theorem for the cancellation of gauge anomalies in perturbativelyunitary gauge theories coupled to matter. By the �manifest� Adler-Bardeen theorem we mean thealgorithm that not only proves the cancellation of gauge anomalies to all orders, when they vanishat one loop, but also identi�es the subtraction scheme where the cancellation occurs automaticallyfrom two loops onwards [18]. Moreover, the simpli�ed proof obtained using the CD regularizationis suitable to be generalized to larger classes of theories, while the previous proof is not. We alsocompare some features of the CD regularization with Siegel's dimensional continuation [28, 29],to further emphasize the consistency of our technique to all orders.We stress that, at the same time, the CD technique does preserve the good properties of thedimensional regularization. One of them is that local perturbative changes of �eld variables haveJacobian determinants identically equal to one, which follows from the fact that the integrals ofpolynomials P (p) of the momenta in dDp vanish. Thanks to this, the Batalin-Vilkovisky masterequation, as well as its deformed version (3.4), are simpler than their general versions [9], andseveral key arguments proceed more smoothly.5.1 Removal of ambiguitiesIn the usual dimensional regularization the γ matrices are formal objects that satisfy the dimen-sionally continued Dirac algebra {γµ, γν} = 2ηµν . The completely antisymmetric products γρ1···ρkof γρ1 , · · · , γρk are nonvanishing for arbitrary k, and evanescent for k > d. The fermion bilin-ears ψ̄1γ

ρ1···ρkψ2 are all inequivalent and can be used to build in�nitely many higher-dimensional31
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objects with the same dimensions in units of mass, such as

(ψ̄1γ
ρ1···ρkψ2)(ψ̄3γρ1···ρkψ4). (5.1)These properties complicate the procedure of renormalization and the proofs of all-order the-orems. For example, the Fierz identities in continued spacetime read [18]

ψ2ψ̄3 = −
1

f(D)

∞
∑

k=0

(−1)k(k−1)/2

k!
γρ1···ρk(ψ̄3γρ1···ρkψ2), (5.2)where f(D) = tr[1], therefore we can �nd relations such as

(ψ̄1γ
µ̂ψ2)(ψ̄3γµ̂ψ4) =

ε

f(D)
(ψ̄1ψ4)(ψ̄3ψ2)−

2

f(D)
(ψ̄1γ

ρ̂ψ4)(ψ̄3γρ̂ψ2)−
ε

f(D)
(ψ̄1γ

ρψ4)(ψ̄3γρψ2)+· · ·(5.3)that have the form �fev = aev + fev� and show that the distinction between formally evanescentterms and analytically evanescent terms is ambiguous, starting from monomials of dimension
2(d − 1) constructed with the �elds, the sources and their derivatives.In section 3 we have stressed that the theorem of locality of counterterms demands thatwe renormalize divergent evanescences away, together with ordinary divergences. Clearly, thisstatement makes sense only if we can de�ne divergent evanescences unambiguously. In the usualframework this is problematic, since if we multiply, for example, both sides of formula (5.3) by
1/ε we get a relation of the type �divev = �nite + divev�.In unitary, four-dimensional power counting renormalizable theories the problem just men-tioned is harmless, because it does not concern counterterms and local contributions to anomalies[18]. On the other hand, in more general situations, such as nonrenormalizable theories, or the-ories that are renormalizable by power counting, but contain higher-derivative kinetic terms, itposes serious di�culties. A possible way out is to de�ne a basis of evanescent and nonevanescentmonomials constructed with the �elds, the sources and their derivatives, and then express everycounterterm using that basis. This is not an easy task, since the Fierz identities (5.2) relatemonomials that may appear to be independent of one another at �rst sight.The chiral dimensional regularization technique avoids all such troubles from the start, becausethe γ matrices and the Fierz identities are just the usual d-dimensional ones, therefore the fermionbilinears are just those we are accustomed to. In particular, they are nonevanescent and �nitelymany. This is a huge simpli�cation with respect to the ordinary technique.5.2 Divergent parts of antiparenthesesThe CD regularization eludes other inconveniences, thanks to the fact that the �elds have strictly
d-dimensional components. In particular, the proofs of renormalizability to all orders and the32
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manifest Adler-Bardeen theorem [18] require to extract divergent parts out of antiparentheses like
A = (Γ,Γ) or (Γ,A). It is helpful to know whether we can freely take this operation across the signof the antiparenthesis or not. We must establish, for example, that the divergent part of (S,Γ(1))is equal to (S,Γ

(1)div), where Γ(1) it the one-loop contribution to Γ and Γ
(1)div is the divergent part of

Γ(1). To achieve this and similar goals, we must be sure that the antiparentheses themselves donot generate poles in ε, or factors of ε, and do not convert formal evanescences into analytic ones.It is easy to prove, in full generality, that the antiparentheses do not generate poles in ε. Wedo not repeat the derivation here, because it is identical to the one of ref. [18]. On the otherhand, using the common dimensional regularization the antiparentheses can generate factors of εand convert formal evanescences into analytic ones. Using the CD regularization this can neverhappen.More precisely, the formally evanescent quantities that appear using the CD regularizationare just ηµ̂ν̂ and the evanescent components of momenta and coordinates. The only way theseobjects have to generate factors of ε is by means of the contraction ηµ̂ν̂ηµ̂ν̂ = −ε. However,the contractions of Lorentz indices brought by the functional derivatives δ/δΦα and δ/δKα dueto the antiparentheses can never generate ηµ̂ν̂ηµ̂ν̂ , because �elds and sources have no evanescentcomponents. For the same reason, the antiparentheses cannot convert formal evanescences intoanalytic ones. Then, we can freely cross the sign of antiparentheses when we extract divergentparts. We can write down useful symbolic identities that summarize these properties, such as
(fev,fev) = fev, (fev,nonev) = fev and (fev,div) = divev, where �nonev� denotes convergentnonevanescent quantities, and �div� denotes poles in ε.Instead, using the common dimensional regularization the metric tensor gµν and its source
Kµν , for example, have traceful evanescent components gµ̂ν̂ andK µ̂ν̂ , therefore the antiparenthesescan generate factors of ε and convert formal evanescences into analytic ones. Moreover, four-fermion terms can generate both factors of ε and the ambiguities mentioned above. These problemsare harmless only in unitary power counting renormalizable theories, where gravity is absentand four-fermion terms do not appear in counterterms and local contributions to anomalies [18].However, in more general theories the CD regularization is de�nitely more convenient than theusual dimensional regularization.5.3 Classi�cation of counterterms in the presence of gravityThe third application we mention concerns the classi�cation of counterterms and contributionsto anomalies in chiral theories coupled to gravity. In several situations, using the ordinary di-mensional regularization, we may be forced to introduce an independent metric hµν besides themetric tensor gµν and the background metric ḡµν around which we expand gµν perturbatively.Field translations leave the functional integral invariant, therefore correlation functions are inde-33
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pendent of ḡµν . Instead, they may depend on some hµν , which we therefore call a �second metric�.A second metric can enter the classical action through the gauge �xing or the regularization itself.Most gauge-�xing functions commonly used (e.g. ηρν∂ρgµν) do introduce a second metric, whichis typically the �at-space metric ηµν .When two independent metrics gµν and hµν are present, arbitrary dimensionless functions canbe built, for example functions of gµνhµν , gµνhνρgρσhσµ, and similar contractions. The classi�ca-tion of counterterms and contributions to anomalies is then plagued with unnecessary complica-tions. The gauge-invariant sector is insensitive to this problem, because general covariance forbidsthe arbitrary functions just mentioned. In the gauge-�xing sector, as well as in the regularizationsector, instead, we can forbid these functions using invariance under rigid di�eomorphisms, if thetheory contains a unique metric.Let us see an explicit example. We know that the naïve continuation of the action (2.6)to D dimensions is not well regularized. One way to deal with this problem, using the ordinarydimensional regularization, is to introduce right-handed partners ψR that decouple in the physicallimit [18]. The regularized action reads

∫

ψ̄Li /DψL +

∫

ψ̄Ri/∂ψL +

∫

ψ̄Li/∂ψR +

∫

ψ̄Ri/∂ψR. (5.4)The propagator of ψ = ψL + ψR is i//p, which is of course �ne. Now, we must guarantee thatthe right-handed partners ψR decouple from the S matrix. This is true in �at space, because byformula (5.4) ψR does not appear in any vertices, therefore no one-particle irreducible diagramswith ψR external legs can be constructed. If we couple the theory to quantum gravity, we mustcovariantize the �rst term of (5.4), but keep the last three terms of (5.4) in �at space, otherwisethe right-handed partners ψR do not decouple from the S matrix. In this way, we do introducethe �at-space metric ηµν as a second independent metric, besides the metric tensor gµν .Similarly, the most common gauge-�xing conditions for di�eomorphisms, such as ηµρ∂ρgµν = 0introduce a second metric, which is either the �at-space one or a background metric. That isenough to create the problem we are concerned with.As we know, a nonrenormalizable theory must be truncated so that the truncated action
ST contains at most a �nite number of terms. When the theory contains two metrics, we canconstruct in�nitely many terms with the same dimensions in units of mass, in the gauge-�xingand regularization sectors. Then the truncation is unable to really reduce the arbitrariness to a�nite number of parameters, which makes the classi�cation of counterterms much less practical.No such problems appear using the CD regularization, because it does not introduce decouplingpartners of chiral fermions, nor second metrics, and we have proved that it is fully compatiblewith invariance under rigid di�eomorphisms.As an example, consider higher-derivative quantum gravity [21] in four dimensions, with or34
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without chiral fermions. The theory is power counting renormalizable and its action reads

ScG = −
1

2κ2

∫

√

|g|(2Λ +R− aRµνR
µν − bR2) +

∫

eψ̄Le
µ
aγ

aiDµψL.If fermions are regularized according to (5.4), or the gauge �xing is not invariant under rigid dif-feomorphisms, the classi�cation of counterterms must deal with arbitrary functions that appearin the gauge-�xing sector. In ref. [21] this di�culty was dodged by advocating a generalization ofthe Kluberg-Stern�Zuber conjecture [30]. Because of this, the proof that higher-derivative gravityis indeed renormalizable was incomplete. It was �rst completed in ref. [23] with a di�erent ap-proach, using the background �eld method in the absence of chiral matter. When chiral matter ispresent, it is much easier to use the CD regularization and invariance under rigid di�eomorphisms,because then it is su�cient to determine the coe�cients of a few Lagrangian terms. We see, again,that the CD regularization is more convenient than the ordinary dimensional regularization.5.4 Proof of the manifest Adler-Bardeen theoremIn ref. [18] the Adler-Bardeen theorem was reconsidered, and proved in the most general four-dimensional, unitary, power counting renormalizable theory, without using renormalization-grouparguments. Thanks to this, the subtraction scheme where gauge anomalies manifestly cancelto all orders, if they vanish at one loop, was identi�ed. To achieve that goal, the dimensionalregularization was merged with a suitable higher-derivative gauge invariant regularization, andthe combined technique was called dimensional/higher-derivative (DHD) regularization.The DHD regularization inherits the di�culties of the ordinary dimensional regularization.The ambiguities due to the continued Fierz identities, and the generation of factors ε by theantiparentheses make it di�cult to generalize the proof of [18] to wider classes of quantum �eldtheories. To overcome this problem, we must �rst upgrade the DHD regularization by replacingthe usual dimensional regularization with the CD regularization. We call the new combinedtechnique chiral-dimensional/higher-derivative (CDHD) regularization.The CDHD regularization has two cuto�s, ε for the CD regularization and Λ for the higher-derivative regularization. The cuto�s are removed with a procedure similar to the DHD limitde�ned in ref. [18]: (i) we �rst subtract the poles in ε, which have nonevanescent or formallyevanescent residues; (ii) then we subtract the Λ divergences, which from the D-dimensionalviewpoint are, again, either nonevanescent or formally evanescent; (iii) then we take the analyticlimit ε → 0, followed by the limit Λ → ∞, without a�ecting formally evanescent quantities;(iv) �nally, we drop all formally evanescent quantities. We do not give more details about thecombination of the two techniques, because everything else works exactly as in ref. [18].The higher-derivative sector is arranged so that at �xed Λ the regularized theory is superrenor-malizable, and has just a few one-loop, matter-independent and source-independent divergences35
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and potential anomalies. Thus, at �xed Λ the manifest Adler-Bardeen theorem is a consequence ofsimple power counting arguments. At a second stage it is proved that the theorem survives whenthe Λ-divergences are renormalized away and Λ is taken to in�nity. The basic reason why thishappens is that the higher-derivative sector of the regularization is manifestly gauge invariant.Using the CD regularization instead of the ordinary dimensional one, the complications men-tioned in the previous subsections are properly dodged and the upgraded version of the proofgiven in ref. [18] proceeds much more smoothly. However, the greatest advantage of the CDHDregularization is that the upgraded proof of the manifest Adler-Bardeen theorem is ready to begeneralized to a much larger class of theories. For the moment we content ourselves with thisremark, because for reasons of space we have to postpone the investigation of this possibility toa future publication.5.5 Comparison with Siegel's dimensional continuationYears ago, Siegel proposed a regularization technique for supersymmetric theories [28] suggestedby dimensional reduction, where the dimension d of spacetime is analytically continued to thecomplex value D, but all �elds keep their physical components, and the γ matrices are theusual d-dimensional ones. Siegel's technique, called dimensional continuation, was soon realizedto be inconsistent by Siegel himself [29]. Here we point out the di�erences between the CDregularization and Siegel's dimensional continuation, to emphasize once again how our approachworks and why it is consistent to all orders. It should also be said that our technique does nottreat supersymmetry in any special way.If the γ matrices are the usual d-dimensional ones, /p cannot depend on all components of themomentum p, therefore its reciprocal is not a good propagator. Siegel's initial idea was that ifwe imagine that D is smaller than d, /p actually does not lose any contribution, because, so tospeak, �there are more γ matrices than p components�. However, dimensional regularization isbased on the analytic continuation of integrals to the complex plane, where no ordering is wellde�ned. Insisting that D must be smaller than d forces us to work on the real axis, but then theanalytic continuation itself is not well de�ned. In four dimensions the inconsistency of Siegel'stechnique can appear from four loops onwards [29]. At low orders computations are safe. There,the dimensional continuation is commonly used together with super�elds [31].It is convenient to recapitulate here how the CD regularization avoids these problems, andsolves new ones that appear along the way. First, D = d − ε and ε are complex numbers, asthey should be, so 1//p is not a good propagator. To overcome this problem, we have correctedthe action by adding suitable evanescent kinetic terms. Chiral fermions force those corrections tobe higher derivative, which brings a parameter of negative dimension (that is to say 1/M) intothe game, even when the theory is power counting renormalizable. This is dangerous, because an36



14A2Renorm
evanescent nonrenormalizable term is su�cient to turn the theory into a nonrenormalizable one,unless there is some mechanism that prevents this from happening.For example, take the ϕ4-theory in four dimensions, and add an evanescent ϕ6-vertex. Theaction is

S =

∫ [

1

2
(∂µϕ)(∂

µϕ)−
m2

2
ϕ2 −

λ

4!
ϕ4 −

ελ′

6!M2
ϕ6

]

. (5.5)Next, consider the one-loop diagram G made with one ϕ4-vertex and one ϕ6-vertex, and havingsix external legs. The factor ε contained in the ϕ6-vertex simpli�es the pole 1/ε of the diagram,and the result is equal to a nonevanescent constant. The diagram G is thus equivalent to a localnonevanescent �one-loop� vertex with six legs. Using it as a subdiagram, we can easily constructdivergent two-loop diagrams with six external legs. To renormalize those we must make thecoe�cient of ϕ6 in (5.5) nonevanescent. In the end, M propagates into the physical sector andthe theory becomes nonrenormalizable.This cannot happen using the CD regularization, because weighted power counting forbids it.For instance, the four-dimensional regularized theory
S =

1

2

∫
[

(∂µ̄ϕ)(∂
µ̄ϕ)−

ςϕ
M2

(∂̂2ϕ)2 +
ηϕ
M

(∂µ̂ϕ)(∂
µ̂ϕ)−m2ϕ2 −

λ

12
ϕ4

] (5.6)cannot generate nonevanescent counterterms of dimensions greater than four. Indeed, those coun-terterms would have weights greater than four, so they are excluded by weighted power counting.By the arguments of section 3, formula (3.3), weighted power counting forbids the propagationof M into the physical sector also in nonrenormalizable theories. For these reasons, despite a fewcoincidental similarities, the regularization technique formulated in this paper is rather di�erentfrom Siegel's one. It does not su�er from the weaknesses of that technique, and ultimately is fullyconsistent.6 ConclusionsWe have formulated a modi�ed dimensional-regularization technique that avoids several inconve-niences of the usual dimensional technique. Fields have exactly the same components as in thephysical limit, and the γ matrices are just the usual ones. Only coordinates and momenta arecontinued to complex D dimensions. Invariance under rigid di�eomorphisms can be manifestlypreserved, and no extra �elds are introduced for regularization purposes, in particular no secondmetrics and no partners of chiral fermions that decouple in the physical limit. We have called thenew technique chiral dimensional regularization.The propagators are cured by means of evanescent kinetic terms. In the case of chiral fermionssuch terms are higher derivative and of the Majorana type. Weighted power counting gives uscontrol over the locality of counterterms and renormalization in the presence of such corrections.37
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