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Ward Identities And Gauge IndependenceIn General Chiral Gauge TheoriesDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa, Italydamiano.anselmi@df.unipi.itAbstractUsing the Batalin-Vilkovisky formalism, we study the Ward identities and the equations ofgauge dependence in potentially anomalous general gauge theories, renormalizable or not. A cru-cial new term, absent in manifestly nonanomalous theories, is responsible for interesting e�ects.We prove that gauge invariance always implies gauge independence, which in turn ensures per-turbative unitarity. Precisely, we consider potentially anomalous theories that are actually free ofgauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonicaltransformation on the tree-level action, it is always possible to re-renormalize the divergencesand re-�ne-tune the �nite local counterterms, so that the renormalized Γ functional of the trans-formed theory is also free of gauge anomalies, and is related to the renormalized Γ functional ofthe starting theory by a canonical transformation. An unexpected consequence of our results isthat the beta functions of the couplings may depend on the gauge-�xing parameters, althoughthe physical quantities remain gauge independent. We discuss nontrivial checks of high-ordercalculations based on gauge independence and determine how powerful they are.

1



15A1Renorm
1 IntroductionThe Ward-Takahashi [1, 2] and Slavnov-Taylor [3, 4] identities are relations among the correlationfunctions of quantum �eld theory, and follow from gauge and global symmetries. They are usuallystudied in theories that are manifestly nonanomalous, that is to say admit a manifestly gaugeinvariant regularization technique, for example QED and nonchiral Yang-Mills theories. Chiralgauge theories, such as the standard model, are potentially anomalous, because they do not admita manifestly gauge invariant regularization technique. The Adler-Bardeen (AB) theorem [5, 6, 7]is the main tool that can establish whether a potentially anomalous theory is in the end trulyanomalous or nonanomalous. It ensures that, if the gauge anomalies are trivial at one loop, theycan be cancelled to all orders.The potentially anomalous theories that are actually free of gauge anomalies thanks to theAdler-Bardeen theorem will be called AB nonanomalous. In this paper, we study the Wardidentities of the AB nonanomalous general gauge theories, including the nonrenormalizable ones,and clarify the relation between gauge invariance and gauge independence. Our investigationupgrades the ones available in the literature in several respects.Gauge invariance and gauge independence are two di�erent concepts, to the extent that afunctional can be gauge invariant and gauge dependent at the same time. For example, the renor-malized action of non-Abelian Yang-Mills theory contains a term propotional to ZA ∫

F aµνF
aµν ,where F aµν is the �eld strength and ZA is the wave function renormalization constant of the gauge�eld. This expression is gauge invariant, but not gauge independent, because ZA may depend onthe gauge-�xing parameters.Yet, the two concepts are related to each other, and crucial to prove perturbative unitarity.Gauge invariance is necessary, because its violation makes unphysical degrees of freedom, suchas the longitudinal photons, propagate. On the other hand, gauge independence is important,because it allows us to switch back and forth between gauges that exhibit perturbative unitarity,but do not have good power-counting behaviors (such as the Coulomb gauge), and gauges thathave good power-counting behaviors, but do not exhibit unitarity (such as the Lorenz gauge).The Lorenz gauges are very convenient to make calculations and prove theorems to all orders.They make renormalizability manifest, when the theory is power-counting renormalizable. Whenthe theory is nonrenormalizable, they make the locality of counterterms manifest. However, theLorenz gauges hide unitarity, because they introduce unphysical, propagating degrees of freedom,such as the longitudinal components of the gauge �elds and the Fadeev-Popov ghosts. This iswhere gauge independence plays a key role, because it ensures that every physical quantity can beequivalently de�ned by using the Coulomb gauge, where the propagators have no unphysical polesand perturbative unitarity is manifest. The equivalence of the two gauges allows us to loosely saythat �the unphysical degrees of freedom of the Lorenz gauges compensate one another and drop2
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out of the physical quantities�.Thus, in quantum �eld theory we need both gauge invariance and gauge independence. If atheory is AB nonanomalous, it is by de�nition gauge invariant. It is not obvious that the Adler-Bardeen theorem also ensures that the physical quantities are ultimately gauge independent.Is it so, or do we need extra assumptions to ensure that the physics does not depend on thegauge �xing? Among other things, in this paper we answer this question by proving that gaugeinvariance always implies gauge independence.In our approach, the Ward identities of AB nonanomalous general gauge theories are correctedby a term that is absent in manifestly nonanomalous theories. The correction is evanescent atthe bare level, but can generate �nite corrections at the renormalized level, by simplifying somedivergences. One of the main consequences is that the beta functions of the couplings can dependon the parameters introduced by means of the gauge �xing. However, the physical quantities areprotected, and remain gauge independent.We study how the renormalized Γ functional ΓR depends on the parameters introduced bythe canonical transformations of �elds and sources. Canonical transformations encode �eld re-de�nitions and changes of the gauge �xing, both of which are expected to have no e�ect on thephysical quantities. When we speak of �gauge dependence� we refer to the dependence on alltypes of parameters introduced by a canonical transformation, including those associated with�eld rede�nitions.We work out how a canonical transformation on the (bare) action S a�ects the renormalized
Γ functional ΓR. After the transformation, the theory must be renormalized anew. We show thatin this process of re-renormalization, it is always possible to rede�ne the subtraction scheme, by�ne-tuning the �nite local counterterms, so that the transformed theory is also AB nonanomalous.Moreover, the gauge dependence of the transformed ΓR is encoded into a canonical transformation,up to evanescent corrections.This result allows us to prove that the physical quantities are gauge independent. However,quantities that are useful for intermediate purposes, such as the beta functions of the couplings,are normally gauge dependent. Their gauge dependence can be absorbed inside �nite rede�nitionsof the couplings.In manifestly nonanomalous theories we are, to a large extent, free to use a preferred subtrac-tion scheme, such as the minimal one, both before and after the canonical transformation. Thephysical quantities and the beta functions of the couplings are una�ected by the transformation(see for example [8]). In AB nonanomalous theories, instead, we can use a preferred subtractionscheme neither before, nor after the transformation. Before the transformation, we need to choosea speci�c class of subtraction schemes to take advantage of the Adler-Bardeen theorem and cancelthe gauge anomalies to all orders. After the transformation, we need to choose (another) speci�cclass of subtraction schemes, to enforce the cancellation of gauge anomalies again. In this process,3
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some gauge-�xing parameters move out of the gauge-�xing sector into another unphysical sector,the one encoded by the choice of the subtraction scheme. The result is that the beta functionsare gauge dependent, in general. Nevertheless, we can make their gauge dependences disappear,if we specify the new subtraction scheme even further.Both gauge invariance and gauge independence can be used to make powerful checks of high-order calculations. As said, a consequence of our investigation is that in AB nonanomaloustheories, including the standard model, the beta functions of the couplings are not completelygauge independent. We show that, in spite of this, su�ciently powerful checks of high-ordercalculations are still available. The reason is that the gauge dependence cannot be arbitrary,because it cannot a�ect the physical quantities.To keep track of gauge invariance through renormalization, we use the Batalin-Vilkovisky(BV) formalism [9]. The gauge invariant regularization techniques commonly used for manifestlynonanomalous theories are also convenient to treat AB nonanomalous theories, because they min-imize the number of terms that are potentially anomalous. In this paper we use the dimensionalregularization [10], or any regularization technique that underlies the dimensional one, such as thechiral dimensional (CD) regularization of ref. [11] and the (chiral)dimensional/higher-derivativeregularization of refs. [6, 7, 11, 12], obtained by merging the (chiral) dimensional one with thecovariant higher-derivative regularization of ref. [13]. We recall that the CD regularization isparticularly convenient for studying nonrenormalizable theories, to avoid certain ambiguities thatshow up when we extract the divergent parts of the BV antiparentheses (X,Y ) of two functionals
X and Y , as well as other nuisances that the ordinary dimensional regularization is responsiblefor.We also take the chance to revisit some known issues under our perspective.Before presenting our results in more detail, we comment on the existing literature on relatedsubjects, and explain the upgrades we make. Most studies of gauge dependence have been focusedon renormalizable theories [14], or nonrenormalizable, but nonchiral, theories [15, 16], where theproblem is much simpler (see appendix E). We want to develop an approach that also appliesto nonrenormalizable chiral theories, to include the standard model coupled to quantum gravity.In our opinion, it is not necessary to wait for the ultimate theory of quantum gravity to provegeneral statements about it. The other investigations of gauge dependence we are aware of use theso-called algebraic approach to renormalization [17]. The main feature of the algebraic approachis that it does not make use of an explicit regularization technique. Instead, it relies on tools suchas the �quantum action principle�[18].We think that it is important to develop more standard approaches to the problem of gauge de-pendence, like the one of the present paper, which uses the dimensional regularization or modi�edversions of it. For example, anomalies have taught us that working without an explicit regulariza-tion may not be completely safe. Another advantage of using an explicit regularization is that we4
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can identify convenient subtraction schemes, where simpli�cations occur and several propertiesare easier to deal with, to all orders in the perturbative expansion. Examples are those providedby refs. [6, 7], where it was shown that in suitable subtraction schemes the gauge anomaliesautomatically vanish from two loops onwards, if they cancel out at one loop. By construction, itis not possible to identify special subtraction schemes in regularization-independent approaches.Now we state the main results of our investigation. We study canonical transformations thatare continuously connected with the identity. Their generating functionals have the form

F (Φ,K ′, θ) =

∫

ΦαK ′
α + O(θ), (1.1)where θ denotes the �gauge parameters�, which are associated with both changes of �eld variablesand changes of the gauge �xing. In the �rst part of our analysis, we prove the main theorem,which states that if the theory is AB nonanomalous at θ = 0, after making the canonical trans-formation (1.1) it is always possible to re-renormalize the divergences and re-�ne-tune the �nitelocal counterterms, continuously in θ, so that the equations(ABT) (ΓRθ,ΓRθ) = O(ε), (1.2)(GDE) ∂ΓRθ

∂θ
− (ΓRθ, 〈Q̃Rθ〉) = O(ε) (1.3)hold for arbitrary θ, where ΓRθ is the renormalized Γ functional of the transformed theory and Q̃Rθis a suitable renormalized local functional. The right-hand sides of both equations are (genericallynonlocal) functionals that vanish when the continued spacetime dimension D = d−ε tends to thephysical spacetime dimension d. We denote such functionals by O(ε) and call them �evanescent�.Equation (1.2) ensures that the theory is AB nonanomalous for arbitrary values of the gaugeparameters. Thus, it encodes gauge invariance. Formula (1.3) is the equation of gauge dependence,and follows from the generalized Ward identities. The equations (GDE) can be integrated to showthat the entire gauge dependence of ΓRθ can be absorbed inside a (convergent, but genericallynonlocal) canonical transformation, up to O(ε). The results encoded in formulas (ABT) and(GDE) are so general that they do not require any particular assumption (see section 3).We also derive the equations of gauge dependence at the level of the renormalized action andshow that RG invariance is preserved by the canonical transformation.A simple, but important application of the theorem is to power-counting renormalizable chiralgauge theories gauge-�xed by means of a nonrenormalizable gauge �xing. We show that the theoryremains renormalizable in a nonmanifest form, because the parameters of negative dimensionsintroduced by the gauge �xing do not propagate into the physical sector. Another application ofthe theorem is a crucial step in the proof of the Adler-Bardeen theorem for nonrenormalizabletheories [7]. 5
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In some situations, we can prove formula (ABT) for arbitrary values of a certain gauge pa-rameter θ within a given class of subtraction schemes. Then, it is not necessary to re-renormalizethe divergences and the re-�ne-tune the �nite local counterterms. Under the assumption that thetheory satis�es a certain cohomological property, which is a generalized version of the well-knownKluberg-Stern�Zuber conjecture [19], we can derive an more speci�c version of equations (GDE),which reads (GDE2) ∂ΓRθ

∂θ
− (ΓRθ, 〈HRθ〉)−

∑

i

ρi
∂ΓRθ
∂λi

= O(ε), (1.4)where λi are the independent parameters of the classical action, ρi are constants that depend on
λi and the other parameters of the theory and HRθ is a renormalized local functional.We can write (1.4) in the form (1.3) by suitably �evolving the parameters λ in the θ direction�.Such rede�nitions encode how the beta functions of the couplings depend on θ.So far, the Adler-Bardeen theorem has been proved in a variety of cases. The originalproof given by Adler and Bardeen [5] was designed to work in QED. Most generalizations torenormalizable non-Abelian gauge theories used arguments based on the renormalization group[20, 21, 22, 23], which work well unless the �rst coe�cients of the beta functions satisfy pecu-liar conditions [23] (for example, they should not vanish). Then there exist algebraic/geometricderivations [24] based on the Wess-Zumino consistency conditions [25] and the quantization ofthe Wess-Zumino-Witten action. Another method to prove the Adler-Bardeen theorem in renor-malizable theories is obtained by extending the coupling constants to spacetime-dependent �elds[26]. A proof that covers all power-counting renormalizable gauge theories was given in ref. [6]. Itwas obtained by elaborating on a previous proof [12] given for quantum �eld theories that violateLorentz symmetry at high energies (in particular, Lorentz violating extensions of the standardmodel) and are renormalizable by weighted power counting [27]. Recently, the proof of [6] wasfurther extended in ref. [7], to include a large class of nonrenormalizable theories, such as thestandard model coupled to quantum gravity. We emphasize that a byproduct of our investigationis that the standard model, coupled to quantum gravity or not, is perturbatively unitary, and soare most of its extensions.The paper is organized as follows. In section 2 we compare the Ward identities of chiraland nonchiral gauge theories, and illustrate the crucial new term that appears when the theoryis potentially anomalous. In section 3 we prove the main theorem of this paper, by derivingand integrating the equations of gauge dependence in AB nonanomalous theories. We show thatevery canonical transformation on the classical action is mapped into a canonical transformationon the renormalized Γ functional, provided that the �nite local counterterms are appropriatelyre-�ne-tuned. We also integrate the equations of gauge dependence. In section 4 we derive theequations of gauge dependence of the renormalized action. In section 5 we prove that the canonicaltransformation preserves RG invariance and discuss two applications of the main theorem. In6
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section 6 we study the gauge dependence of the beta functions in detail. In section 7 we explainhow to switch o� the ghosts, the antighosts, the Lagrange multipliers for the gauge �xing, andthe sources for the symmetry transformations, and get to the physical quantities, collected intoa �physical� Γ functional Γph. We derive the (nonlocal) gauge symmetry of Γph, and prove thatit closes o� shell. Finally, we prove that Γph is gauge independent, up to �eld rede�nitions, andperturbatively unitary. In section 8 we investigate the checks of high-order calculations providedby gauge independence and estimate how powerful they are. Section 9 contains our conclusions.In the appendices we prove some properties used in the paper, recall earlier results and collectsome reference formulas for the standard model coupled to quantum gravity. Moreover, we revisitthe gauge dependence of manifestly nonanomalous theories in the light of the new results.2 Generalized Ward identitiesIn this section we �x some notation, recall the main properties of the Batalin-Vilkovisky formalismfor general gauge theories [9] and derive the generalized Ward identities.Let D = d − ε denote the continued, complex dimension of spacetime, and d the physicalspacetime dimension. TheD-dimensional spacetime manifold R

D is split into the product Rd×R
−εof the ordinary d-dimensional spacetime R

d times a residual (−ε)-dimensional evanescent space,
R
−ε. The spacetime indices µ, ν, . . . of vectors and tensors are split into the bar indices µ̄, ν̄, . . .,which take the values of 0, 1, · · · , d − 1, and the formal hat indices µ̂, ν̂, . . ., which denote the

R
−ε components. For example, the momenta pµ are split into the pairs pµ̄, pµ̂, also written as

p̄µ, p̂µ, and the coordinates xµ are split into x̄µ, x̂µ. The formal �at-space metric ηµν is splitinto the usual d× d �at-space metric ηµ̄ν̄ =diag(1,−1, · · · ,−1) and the formal evanescent metric
ηµ̂ν̂ = −δµ̂ν̂ . The o�-diagonal components ηµ̄ν̂ vanish. The evanescent components are contractedamong themselves by means of the metric ηµ̂ν̂ , so for example p̂2 = pµ̂ηµ̂ν̂p

ν̂ . Full SO(1,D − 1)invariance is lost in most expressions, replaced by SO(1, d − 1)× SO(−ε) invariance.We recall that in the CD regularization the �elds Φ have strictly d-dimensional components.The metric tensor gµν is block-diagonal: the diagonal blocks are gµ̄ν̄(x) and ηµ̂ν̂ , while gµ̄ν̂ = 0.Moreover, the γ matrices are strictly d dimensional, and satisfy the usual Dirac algebra {γā, γ b̄} =

2ηāb̄, where the indices ā, b̄, . . . refer to the Lorentz group. If d = 2k is even, the d-dimensionalgeneralization of γ5 is de�ned as
γ̃ = −ik+1γ0γ1 · · · γ2k−1,and satis�es γ̃† = γ̃, γ̃2 = 1. The left and right projectors PL = (1 − γ̃)/2, PR = (1 + γ̃)/2 arede�ned as usual. The tensor εā1···ād and the charge-conjugation matrix C also coincide with theusual ones. 7



15A1Renorm
The set of �elds Φα = {φi, C, C̄, B} contains the classical �elds φ, the Fadeev-Popov ghosts

C, the antighosts C̄ and the Lagrange multipliers B for the gauge �xing. An external source Kαwith opposite statistics is associated with each Φα, and coupled to the Φα transformations Rα(Φ).If X and Y are functionals of Φ and K, their antiparentheses are de�ned as
(X,Y ) ≡

∫
(

δrX

δΦα
δlY

δKα
−
δrX

δKα

δlY

δΦα

)

, (2.1)where the integral is over spacetime points associated with repeated indices and the subscripts land r in δl and δr denote the left and right functional derivatives, respectively.The action S should solve the master equation (S, S) = 0 in D dimensions, with the �boundarycondition� S(Φ,K) = Sc(φ) at C = C̄ = B = K = 0, where Sc(φ) is the classical action.If the gauge algebra closes o� shell, there exists a choice of �eld/source variables such thatthe non-gauge-�xed solution S̄d(Φ,K) of the master equation has the form
S̄d(Φ,K) = Sc(φ) + SK , SK(Φ,K) = −

∫

Rα(Φ)Kα. (2.2)In this case, (S̄d, S̄d) = 0 splits into the two identities
∫

Ri(φ)
δlSc(φ)

δφi
= 0,

∫

Rβ(Φ)
δlR

α(Φ)

δΦβ
= 0,which express the gauge invariance of the classical action and the closure of the algebra, respec-tively. The gauge-�xed solution Sd(Φ,K) of the master equation reads

Sd(Φ,K) = Sc(φ) + (SK ,Ψ) + SK = S̄d + (SK ,Ψ), (2.3)where Ψ(Φ) is the gauge fermion, that is to say a local functional of ghost number −1 that encodesthe gauge �xing. Reference formulas for Sc, SK and Ψ in the case of the standard model coupledto quantum gravity can be found in appendix D. Typically, Ψ has the form
Ψ(Φ) =

∫

C̄

(

G(φ, ξ) +
1

2
P (φ, ξ′, ∂)B

)

, (2.4)where G(φ, ξ) is the gauge-�xing function, P is an operator that may contain derivatives actingon B, and ξ, ξ′ are gauge-�xing parameters. For example, G(φ) = ∂µAµ for the Lorenz gauge inYang-Mills theories. Clearly, Sd also solves the master equation (Sd, Sd) = 0 in D dimensions.If the gauge algebra does not close o� shell, S̄d(Φ,K) is not linear in K and Sd is obtainedfrom S̄d by applying the canonical transformation generated by
F (Φ,K ′) =

∫

ΦαK ′
α +Ψ(Φ). (2.5)In manifestly nonanomalous theories we can solve (S, S) = 0 inD dimensions at the regularizedlevel. Typically, the solution coincides with (2.3). In potentially anomalous theories, instead, we8



15A1Renorm
cannot achieve this goal. There, the functional Sd(Φ,K) does solve (Sd, Sd) = 0 in D dimensions,but is not well regularized. The most common reason is the presence of chiral fermions. We candeform Sd into a well-regularized action

S(Φ,K) = Sd + Sev (2.6)by adding an evanescent part Sev that collects suitable regularizing terms [11]. The deformedaction S does not solve (S, S) = 0 in D dimensions. Instead, it solves the deformed masterequation
(S, S) = O(ε), (2.7)where the right-hand side denotes terms that vanish for D → d.Given a generic action S(Φ,K), the generating functionals Z and W of the (connected) cor-relation functions are de�ned by the formulas

Z(J,K) =

∫

[dΦ] exp

(

iS(Φ,K) + i

∫

ΦαJα

)

= exp iW (J,K), (2.8)and the generating functional Γ(Φ,K) = W (J,K) −
∫

ΦαJα of the one-particle irreducible dia-grams is the Legendre transform of W (J,K) with respect to J . The anomaly functional is de�nedas
A = (Γ,Γ) = 〈(S, S)〉 (2.9)and collects the set of one-particle irreducible correlation functions that contain one insertion of

(S, S), where 〈· · · 〉 denotes the average de�ned by S at arbitrary J . The last equality of (2.9)can be proved by making the change of variables
Φα → Φα +$(S,Φα) = Φα −$

δrS

δKα
, (2.10)in the functional integral (2.8), where $ is a constant anticommuting parameter. For the detailedproof, see for example the appendices of refs. [6, 8]. See also appendix A.Let us explain the meaning of formula (2.9). The functional (S, S) represents the symmetryviolation, so it is basically the integral of the divergence of the gauge current Jµ multiplied bythe ghosts:

(S, S) ∼ 2

∫

dDxC(x)∂µJ
µ(x),where the sign �∼� means that the right-hand side is written up to terms proportional to the �eldequations and other terms that we can neglect in the present discussion. As said, formula (2.9)collects the one-particle irreducible diagrams that contain one insertion of (S, S) and arbitraryexternal Φ and K legs. The key diagram of this type in four dimensions is the one-loop triangle9
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diagram that is responsible for the well-known ABJ anomaly [28], which arises by considering one
(S, S) insertion and two external gauge �eld legs. Amputating those legs, we get

1

2
〈(S, S)Jµ(x)Jν(y)〉 ≈

∫

dDzC(z) 〈∂ρJ
ρ(z)Jµ(x)Jν(y)〉 . (2.11)The sign �≈� comes from the leg amputation and the fact that we have taken the ghosts out ofthe average, because this is the only way to get nontrivial contributions to anomalies at one loop.See ref. [11] for the calculation of the one-loop triangle anomaly in chiral Yang-Mills theories withformula (2.9) and the CD regularization technique.The Adler-Bardeen theorem is the statement that if the gauge anomalies are trivial at oneloop, there exists a class of subtraction schemes where they vanish to all orders, that is to say

AR = (ΓR,ΓR) = 〈(SR, SR)〉 = O(ε), (2.12)
SR and ΓR being the renormalized action and the renormalized Γ functional, respectively. Theright-hand side of (2.12) vanishes for D → d, which ensures that the renormalized Γ functionalis gauge invariant in the physical limit. The AB nonanomalous theories are those that admitsubtraction schemes where (2.12) holds.While the AB identity (2.12) ensures gauge invariance, it does not say much about gauge in-dependence, which is a di�erent statement, namely the property that a certain class of correlationfunctions (that we call �physical�) do not depend on the gauge �xing.One way to study the gauge independence is through Ward identities. We begin by recall-ing how those identities work in manifestly nonanomalous theories, where the master equation
(S, S) = 0 is satis�ed exactly at the regularized level. Let Υ(Φ) denote a K-independent, but oth-erwise completely arbitrary, product of elementary and local composite �elds at distinct points.By making the change of �eld variables (2.10) in the functional integral

∫

[dΦ]ΥeiS,we �nd
∫

[dΦ] (S,Υ) eiS = 0. (2.13)We omit details of the derivation, because the proof of this formula is a particular case of the moregeneral proof given below. We just stress that it is crucial to use the master equation (S, S) = 0,which implies that S is invariant under the �eld rede�nition (2.10).Equation (2.13) is the usual Ward identity. For example, if we take Υ = C̄(x)∂µAµ(y) and
Υ = C̄(x)ψ̄(y)ψ(z) in QED, we can derive the well-known formula ZeZ1/2

A = 1 that relates therenormalization constants Ze and ZA of the electric charge and the gauge �eld [29].In this paper, the average 〈· · · 〉 denotes the sum of connected diagrams. For example, if X and
Y are local functionals, we have 〈XY 〉 = 〈XY 〉nc−〈X〉〈Y 〉, where 〈XY 〉nc includes disconnected10
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diagrams. The subscript 0 in 〈· · · 〉0 means that the correlation functions are evaluated at J = 0.An equivalent form of the identity (2.13) is

〈(S,Υ)〉0 = 0. (2.14)If we repeat the argument leading to (2.13) without assuming (S, S) = 0, we get the generalizedWard identity that we consider in this paper, which reads
〈(S,Υ)〉0 +

i

2
〈(S, S)Υ〉0 = 0. (2.15)The extra term on the left-hand side of this formula is going to appear in many other contextsand is responsible for the new e�ects anticipated in the introduction.To prove (2.15), express Υ as the product ∏
i
Xi of K-independent elementary and local com-posite �elds Xi. Then, consider the functional integral

∫

[dΦ]eiS+
∑

i
Xiσi , (2.16)where σi are arbitrary constants. Under the �eld rede�nition (2.10), the action S and the func-tionals Xi transform as follows:

S → S −$

∫

δrS

δKα

δlS

δΦα
= S +

$

2
(S, S), Xi → Xi −$

∫

δrS

δKα

δlXi

δΦα
= Xi +$(S,Xi).In the last step we have used the assumption that Xi depends only on the �elds Φ. When wemake the change of variables (2.10) inside (2.16) and divide by (2.16), we get

∫

[dΦ]
(

∑

j $(S,Xj)σj +
i
2$(S, S)

)

eiS+
∑

i
Xiσi

∫

[dΦ]eiS+
∑

k
Xkσk

= 0.The left-hand side of this formula is a sum of connected diagrams. Di�erentiating it once to theright with respect to each σ1, . . . , σn and setting σi = 0 at the end, we project onto the diagramsthat have one external σi leg for each i. So doing, we get precisely formula (2.15).When the local functionals Xi of the product Υ =
∏

i
Xi depend on both Φ and K, and thesources J are not set to zero, the generalized Ward identities can be worked out from formula(2.9), by deforming the action S into S +

∑

iXiσi, where σi are constants, and taking the �rstorder in all σis.In particular, if Υ is equal to a local functional X, it is easy to show that when the action Sis deformed into S +Xσ, where σ is a constant, the Γ functional deforms into Γ+ 〈X〉σ+O(σ2),while the average 〈Y 〉 of a local functional Y deforms into 〈Y 〉+ i〈Y X〉Γσ+O(σ2), where 〈∏
i
Ai〉Γdenotes the set of one-particle irreducible diagrams that contain one Ai insertion for each i, Ai11
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being local functionals (details are given in appendix A). Expanding (Γ,Γ) = 〈(S, S)〉 in powersof σ and taking the �rst order of the expansion, we obtain the identity [8]

〈(S,X)〉 +
i

2
〈(S, S)X〉Γ = (Γ, 〈X〉). (2.17)Both sides of (2.17) are viewed as functionals of Φ and K (rather than functionals of J and K).Note that, in particular, 〈X〉 = 〈X〉Γ.Repeating the derivation for Υ = XY , where X and Y are both local functionals, we get theidentity

〈(S,XY )〉Γ +
i

2
〈(S, S)XY 〉Γ = (Γ, 〈XY 〉Γ)− i(−1)εX (〈X〉, 〈Y 〉) + i(−1)εX 〈(X,Y )〉 , (2.18)where εX denotes the statistics of the functional X (which is 0 if X is bosonic, 1 if it is fermionic).When Υ is the product of more local functionals, we can proceed similarly.An important application of the generalized Ward identities is the derivation of the equationsof gauge dependence, which tell us how the generating functional Γ depends on the gauge param-eters. We �rst recall such equations in manifestly nonanomalous theories and then switch to ABnonanomalous theories.In manifestly nonanomalous theories (S, S) = 0 in D dimensions and Sev = 0, S = Sd. Thefunctional Γ satis�es the equation

∂Γ

∂ξ
=

〈

∂S

∂ξ

〉

= 〈(S,Ψξ)〉 = (Γ, 〈Ψξ〉), (2.19)where ξ is any gauge-�xing parameter and Ψξ = ∂Ψ/∂ξ is the ξ-derivative of the gauge fermion
Ψ. The �rst equality is obvious. The second equality follows from formula (2.3). Indeed, recallingthat the parameters ξ are contained only in Ψ, we have ∂S/∂ξ = (SK ,Ψξ) = (S,Ψξ). The thirdequality follows from formula (2.17).More generally, if θ denotes any gauge parameter, introduced by a canonical transformationgenerated by (1.1), we �nd

∂Γ

∂θ
=

〈

∂S

∂θ

〉

= 〈(S, Q̃θ)〉 = (Γ, 〈Q̃θ〉), (2.20)where Q̃θ is the derivative F (Φ,K ′, θ) with respect to θ, reexpressed as a functional of Φ and K.Equations (2.19) can be renormalized and integrated (see [8] and appendix C). The resultis that the ξ dependence can be absorbed into a canonical transformation on Γ. Therefore, thecontributions due to the right-hand side of (2.19), which are in general nonvanishing, do not a�ectthe physical quantities, for example the S-matrix elements. See subsection 7.3 for details.In AB nonanomalous theories the equations of gauge dependence are corrected by an extraterm, which corresponds to the extra term of (2.15). Formula (2.20) turns into [8]
∂Γ

∂θ
=

〈

∂S

∂θ

〉

= 〈(S, Q̃θ)〉 = (Γ, 〈Q̃θ〉)−
i

2
〈(S, S)Q̃θ〉Γ. (2.21)12
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Assuming that the primes denote the θ-independent quantities, the second equality of (2.21)follows from formula (A.6) recalled in appendix A, since ∂S′/∂θ = 0. The last equality of (2.21)follows from formula (2.17).The identities (2.15), (2.17), (2.18) and (2.21) are so general that they also hold in trulyanomalous theories. However, their most interesting applications are to AB nonanomalous theo-ries, which are the main focus of this paper.In the next sections we are going to renormalize the equations (2.21) and integrate theirrenormalized versions. The nontrivial part of this task is to work out the e�ects of the lastterm of formula (2.21). The result is that the θ dependence can be absorbed into a canonicaltransformation on the renormalized Γ functional ΓR, provided that the �nite local countertermsare appropriately �ne-tuned.We stress again that gauge invariance, which is expressed by formula (2.12), does not implygauge independence in an obvious way. However, in this paper we prove that ultimately it does.Gauge independence allows us to prove the perturbative unitarity of the theory (see subsection7.4).Before concluding this section, we make some remarks to emphasize the role played by theevanescent terms O(ε) in our discussion. With respect to the limit D → d we can distinguishdivergent, nonevanescent and evanescent terms. A contribution is called �nonevanescent� if ithas a regular limit for D → d and coincides with the value of that limit. In the (ordinary,as well as chiral) dimensional regularization the evanescences can be of two types: formal oranalytic. Analytically evanescent terms are those that factorize at least one ε, such as εFµ̄ν̄F µ̄ν̄ ,
εψ̄Lie

µ̄
āγ

āDµ̄ψL, etc., where ψL is a left-handed fermion. Formally evanescent terms are those thatformally disappear when D → d, although they do not factorize powers of ε, such as ψTL ∂̂2ψL. Thedivergences are poles in ε, and can multiply either nonevanescent terms or formally evanescentterms. In the latter case they are called divergent evanescences. An example is ψTL ∂̂2ψL/ε. It isconvenient to subtract away the divergent evanescences like any other divergences.In most derivations it is necessary to extract the divergent parts of functionals and antiparen-theses of functionals. We have to take some precautions to ensure that this operation can safelycross the antiparentheses, so that for example (S,X)div = (S,Xdiv). The �rst thing to do isde�ne the classical action (2.6) so that it does not contain analytically evanescent terms, but onlynonevanescent and formally evanescent terms, multiplied by ε-independent coe�cients. In thisway, S does not contain dangerous ε factors that could simplify the divergences of X inside (S,X).For the same reason, it is convenient to use the chiral dimensional regularization of [11], instead ofthe ordinary dimensional regularization. In particular, we must use the CD regularization whenthe theory in not power-counting renormalizable. So doing, we avoid a number of ambiguitiesthat would complicate our operations. For details on this subject, see refs. [6, 11].13
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3 The theorem of gauge dependenceConsider a general gauge theory with action S(Φ,K, ω), where ω denotes its parameters. Let SRdenote the renormalized action and ΓR the renormalized Γ functional. Assume that the theory isAB nonanomalous, i.e.

(ΓR,ΓR) = O(ε). (3.1)For the purposes of this section, we do not need to make other assumptions. The gauge algebramay be irreducible or reducible, and close o� shell or on shell. The theory may be renormalizable ornonrenormalizable, perturbatively unitary or not. In particular, it may contain higher-derivative�elds. The action S does not need to satisfy special cohomological properties. We can also includelocal composite �elds OI(x), in renormalizable and nonrenormalizable theories, by coupling themto external sources LI(x) and appropriately extending the actions Sc, S̄d, Sd and S. In thearguments that follow, the dependence on such types of external sources is not made explicit.However, we understand that it may be there, whenever necessary.Consider a canonical transformation Φ,K → Φ′,K ′ with generating functional
F (Φ,K ′, θ) =

∫

ΦαK ′
α +Q(Φ,K ′, θ), (3.2)where Q = O(θ) is a local functional. Let Sθ denote the action obtained by applying (3.2) to S,

SRθ the renormalized version of Sθ and ΓRθ the renormalized Γ functional associated with SRθ.We assume, for simplicity, that Q does not contain analytically evanescent contributions.We work out how ΓR and the identity (3.1) change when we make the transformation (3.2) on
S. To reach Sθ from S, it is useful to embed the theory into a more general theory, by consideringthe extended action

Σ(Φ,K, ω, ~τ) ≡ S(Φ,K, ω) +
∑

i

~τiHi(Φ,K), (3.3)where τi are arbitrary parameters and {Hi} is a basis of local functionals of Φ and K. Speci�-cally, the Hi are integrals of local monomials constructed with the �elds, the sources and theirderivatives. They can be restricted by demanding that they be invariant under the nonanoma-lous symmetries of the theory. However, they are not restricted by gauge invariance, or powercounting. To simplify a number of formulas, we include duplicates of the terms that are alreadypresent in Σ, multiplied by new independent parameters ~τi. The di�erence Σ − S is made of
O(~)-terms and is also assumed to contain evanescent terms (including those that are alreadypresent in S). Basically, Σ − S parametrizes the arbitrariness of the subtraction scheme. Wedenote the Γ functional calculated with the action Σ by Ω(Φ,K, ω, ~τ).Now, we renormalize Σ. We denote its renormalized action by ΣR and the Γ functionalassociated with ΣR by ΩR. We can imagine, for a moment, that we replace each ~τi with anordinary parameter ρi of order zero in ~. In that case, the construction of ΣR is straightforward,14
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since every divergence can be subtracted by means of ρi rede�nitions. At a second stage, we raisethe order of the parameters ρi by restoring ~τi in their places. The consistency of this operationis justi�ed by the arguments that follow.We organize the renormalization of Σ so that ΣR coincides with SR when the parameters τiare equal to suitable �nite functions τ∗i (ω), which identify the subtraction scheme where formula(3.1) holds:

ΣR(Φ,K, ω, ~τ
∗) = SR(Φ,K, ω), ΩR(Φ,K, ω, ~τ

∗) = ΓR(Φ,K, ω). (3.4)At arbitrary τ , the action ΣR can be viewed as an extended renormalization of S, which includesthe most general subtraction scheme. We say that ΣR is the arbitrary renormalization of S. Whenwe set τi = τ∗i we specialize the subtraction scheme to the one used for SR, which, by assumption(3.1), preserves gauge invariance to all orders.Since it is consistent to set τi ≡ τ∗i , it is also consistent to set τi = τ∗i + ~
nν̃n+1i, n > 0,for arbitrary new parameters ν̃n+1i. By this we mean that the renormalization of each ν̃n+1iremains analytic in ~. We can better explain this fact by noting that the renormalizations of thedi�erences δi ≡ τi− τ

∗
i vanish at δj = 0, so they must be proportional to δj . Thus, if we replace δiby ~

nν̃n+1i, n > 1, the renormalizations of ν̃n+1i remain analytic in ~. These remarks illustrate atrick that we use in the recursive proof given below. Precisely, at each step we raise the ~ order ofcertain residual parameters by one unit, till we make those parameters disappear, and show thatwe can do this while preserving the analyticity in ~.The de�nition (3.3) understands that the di�erence Σ − S starts from O(~). Indeed, we donot want to modify the classical action, but just parametrize the arbitrariness of the subtractionscheme. The reason why we move to the more general theory Σ is that if we want to cancel theanomalies after the canonical transformation, we generically need to re-�ne-tune all sorts of �nite,local terms, including the gauge noninvariant ones.As said, Sθ(Φ,K, ω, θ) denotes the action obtained by applying (3.2) to S(Φ,K, ω). Let
Σθ(Φ,K, ω, ~τ, θ) denote the action obtained by applying (3.2) to Σ. We obviously have Σθ =

Sθ + O(~). We denote the renormalized version of Σθ by ΣRθ(Φ,K, ω, ~τ, θ). Since ΣRθ =

Σθ+O(~) = Sθ+O(~), ΣRθ can be viewed as the arbitrary renormalization of Sθ. Note that Σθ isnot gauge invariant, so its renormalization is not subject to particular restrictions, aside from thecontinuity condition ΣRθ(Φ,K, ω, ~τ, θ) = ΣR(Φ,K, ω, ~τ) + O(θ). We denote the Γ functionalassociated with ΣRθ by ΩRθ.Finally, consider the local functional Q(Φ,K ′) de�ned by the canonical transformation (3.2),and de�ne Qθ(Φ,K ′) = ∂Q(Φ,K ′)/∂θ and Q̃θ(Φ,K) = Qθ(Φ,K
′(Φ,K)). Let Q̃Rθ denote therenormalized version of Q̃θ(Φ,K) at generic τ .We prove that 15
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Theorem 1 there exist �nite functions τ∗′j (ω, θ) = O(θ), such that, de�ning τ̃∗j (ω, θ) = τ∗j (ω) +

τ ′∗j (ω, θ), the action
SRθ(Φ,K, ω, θ) ≡ ΣRθ(Φ,K, ω, ~τ̃

∗
j (ω, θ), θ) (3.5)gives a Γ functional ΓRθ that satis�es the identities

(ΓRθ,ΓRθ) =O(ε), (3.6)
∂ΓRθ
∂θ

− (ΓRθ, 〈Q̃Rθ〉) =O(ε), (3.7)for arbitrary θ, where Q̃Rθ denotes the functional Q̃Rθ calculated at ~τi = ~τ̃∗i .Note that formula (3.5) ensures that SRθ also satis�es the continuity condition SRθ(Φ,K, ω, θ) =
SR(Φ,K, ω) + O(θ). In fact, all the operations we make preserve the continuity in θ.For clarity, it is useful to summarize the de�nitions given so far in a table:

SR
Γ

−→ ΓR

↑~τ∗ ↑~τ∗

S
~τ
−→ Σ

R
−→ ΣR

Γ
−→ ΩR

↓θ ↓θ ↓θ ↓θ

Sθ
~τ
−→ Σθ

R
−→ ΣRθ

Γ
−→ ΩRθ

↓~τ̃
∗

↓~τ̃
∗

SRθ
Γ

−→ ΓRθ3.1 The equations of gauge dependenceIf we apply the identity (A.5) of appendix A to the renormalized action ΣRθ and the renormalized
Γ functional ΩRθ, with X = Q̃Rθ, we obtain

∂ΩRθ
∂θ

− (ΩRθ, 〈Q̃Rθ〉) =

〈

∂ΣRθ
∂θ

− (ΣRθ, Q̃Rθ)−
i

2
(ΣRθ,ΣRθ)Q̃Rθ

〉

Γ

. (3.8)It is convenient to organize this formula in the form
∂ΩRθ
∂θ

= (ΩRθ, 〈Q̃Rθ〉) + 〈YRθ〉Γ , (3.9)where
YRθ ≡ −

i

2
(ΣRθ,ΣRθ)Q̃Rθ +

∂ΣRθ
∂θ

− (ΣRθ, Q̃Rθ). (3.10)If the right-hand side of formula (3.9) contained no 〈YRθ〉Γ (which happens, for example, inmanifestly nonanomalous theories) or we knew that 〈YRθ〉Γ is for some reason equal to O(ε), thesolution of our problem would be straightforward. Formula (3.9) would turn into a much simpler16
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equation, which is integrated in ref. [8] and in appendix C. The result would be that the entire
θ dependence of ΩRθ can be absorbed into a convergent canonical transformation acting on ΩR,up to O(ε). Moreover, there would be no reason to keep τ generic. More simply, we could justwork with τ = τ∗ from the start. Then, formula (3.9) would give (3.7). Integrating (3.7) withthe procedure of appendix C, we would �nd a convergent canonical transformation that turns ΓRinto ΓRθ, again up to O(ε). That canonical transformation would also turn formula (3.1) directlyinto (3.6), since the right-hand side would remain evanescent.Unfortunately, 〈YRθ〉Γ is there, because the theory we are considering is potentially anomalous,so we must study the e�ects of such an extra term. To achieve this goal, a few facts need to benoticed.(i) By construction, ΩRθ and 〈Q̃Rθ〉 are convergent.(ii) The local functional (ΣRθ,ΣRθ) is already renormalized. Indeed, formula (2.9) tells usthat 〈(ΣRθ,ΣRθ)〉 = (ΩRθ,ΩRθ), which is convergent. Since ΣRθ = Sθ + O(~), we can say that
(ΣRθ,ΣRθ) is the arbitrary renormalization of (Sθ, Sθ).(iii) By points (i) and (ii), all the subdiagrams of the diagrams that contribute to the av-erage 〈(ΣRθ,ΣRθ)Q̃Rθ〉Γ are already renormalized, except those that contain both insertions of
(ΣRθ,ΣRθ) and Q̃Rθ.(iv) The object YRθ is a bit peculiar, because at the tree level it is equal to

Yθ ≡ −
i

2
(Sθ, Sθ) Q̃θ. (3.11)The reason why the last two terms of (3.10) do not contribute at ~ = 0 is that

∂Sθ
∂θ

− (Sθ, Q̃θ) =
∂S

∂θ
= 0, (3.12)which follows from formula (A.6), if we understand that the primes denote the �elds and thesources before the transformation, i.e. write S = S(Φ′,K ′) and Sθ = Sθ(Φ,K). We see that Yθ isthe product of two local functionals. We call Yθ a local bifunctional. We extend the de�nition oflocal bifunctional to any expression of the form

B =
∑

i

AiBi + C (3.13)where Ai, Bi and C are local functionals. An evanescent local bifunctional is a local bifunctional(3.13) where C and Ai (or Bi) are evanescent.Now, (S, S) is an evanescent local functional, by formula (2.7), and Sθ is obtained from S bymeans of a �nite canonical transformation, which preserves the antiparentheses and maps O(ε)into O(ε). Thus, (Sθ, Sθ) is also evanescent, and YRθ is an evanescent local bifunctional. Actually,(v) YRθ is a renormalized evanescent local bifunctional, since formula (3.9) implies that 〈YRθ〉Γis convergent. 17
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The procedure to renormalize a local bifunctional is explained in appendix B. There, it is alsoshown how to renormalize an evanescent local bifunctional E in such a way that 〈ER〉Γ = O(ε).To describe what happens order by order in the perturbative expansion, consider for simplicityan evanescent local bifunctional of the form E = EB + F where E and F are evanescent localfunctionals. Let En and Bn denote the functionals E and B renormalized up to and including nloops, and inductively assume that En satis�es 〈En〉 = O(ε) +O(~n+1). Also assume that Fn is alocal functional such that 〈En〉Γ = O(ε) + O(~n+1), where En = EnBn + Fn. Then, the O(~n+1)contributions to 〈En〉Γ are the sum of a local divergent part, a local nonevanescent part and agenerically nonlocal evanescent part. If Bn+1 is the functional B renormalized up to and including

n+ 1 loops, there exist local functionals En+1 and Fn+1 such that 〈En+1〉 = O(ε) +O(~n+2) and
〈En+1〉Γ = O(ε) + O(~n+2), where En+1 = En+1Bn+1 + Fn+1. The subtraction can be iterated in
n to obtain 〈ER〉 = O(ε) and 〈ER〉Γ = O(ε), where ER = E∞ and ER = E∞.Although YRθ is renormalized, it does not satisfy 〈YRθ〉Γ = O(ε), as far as we know. However,we will obtain 〈YRθ〉Γ = O(ε) by identifying the functions τ∗′j (ω, θ) and setting τi = τ∗i + τ ′∗i .To prove (3.5), (3.6) and (3.7), we proceed by induction. Let νnj denote free parameters oforder ~n. The �rst inductive assumption is that(an) there exist �nite functions µnj(ω, νn+1k, θ) = O(θ)O(~), such that the action

Σn(Φ,K, ω, νn+1j , θ) ≡ ΣRθ(Φ,K, ω, ~τ
∗
j + µnj + νn+1j , θ) (3.14)gives a Γ functional Ωn that satis�es

(Ωn,Ωn) = 〈(Σn,Σn)〉n = O(ε) + O(~n+1), (3.15)where 〈· · · 〉n denotes the average calculated with the action Σn.Now, de�ne
Q̃n ≡ Q̃Rθ(Φ,K, ω, ~τ

∗
j + µnj + νn+1j, θ),

Yn≡−
i

2
(Σn,Σn)Q̃n +

∂Σn
∂θ

− (Σn, Q̃n). (3.16)Applying formula (A.5) to the action Σn and its Γ functional Ωn, with X = Q̃n, we obtain
∂Ωn
∂θ

= (Ωn, 〈Q̃n〉n) + 〈Yn〉nΓ , (3.17)where 〈· · · 〉nΓ denotes the one-particle irreducible diagrams of the average 〈· · · 〉n. The secondinductive assumption is that(bn)
〈Yn〉nΓ = O(ε) + O(~n+1). (3.18)Statement (a0) is true with µ0j = 0, because Σ0 = Sθ + O(~) and (Sθ, Sθ) is evanescent, so

〈(Σ0,Σ0)〉0 = O(ε)+O(~). Statement (b0) is also true, because Q̃0 = Q̃θ+O(~), so Y0 = Yθ+O(~).18
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3.2 Inductive proofAssume that (an) and (bn) hold. Then, the averages 〈(Σn,Σn)〉n and 〈Yn〉nΓ are evanescent up toand including n loops. The arguments of appendix B ensure that the (n + 1)-loop contributions
Y

(n+1)
n to 〈Yn〉nΓ, which are convergent by formula (3.17), are the sum of a local nonevanescentpart Y (n+1)

nnonev plus a generically nonlocal evanescent part. We have
〈Yn〉nΓ = O(ε) + Y (n+1)

nnonev + O(~n+2). (3.19)We can write an explicit expression for Y (n+1)
nnonev. Recall, from formula (3.3), that the derivatives

∂Σ/∂(~τj) form a basis for the local functionals of Φ and K. Obviously, so do the derivatives
∂Σθ/∂(~τj) ≡ Hjθ. Up to higher orders in ~, the derivatives ∂ΣRθ/∂(~τj) = Hjθ + O(~) are alsoa basis, as well as the derivatives ∂Σn/∂νn+1j . Thus, there exist �nite order-~n+1 functions σ(n)j ,which depend analytically on ω, νn+1k and θ, such that

Y (n+1)
nnonev =

∑

j

σ
(n)
j

∂Σn
∂νn+1j

+ O(~n+2). (3.20)Now, de�ne
Yn+1 = Yn −

∑

j

σ
(n)
j

∂Σn
∂νn+1j

. (3.21)Taking the average of both sides, and using (A.3), we get
〈Yn+1〉nΓ = 〈Yn〉nΓ −

∑

j

σ
(n)
j

∂Ωn
∂νn+1j

. (3.22)Using (3.19) and (3.20), we obtain
〈Yn+1〉nΓ = Y (n+1)

nnonev − Y (n+1)
nnonev + O(ε) + O(~n+2) = O(ε) + O(~n+2). (3.23)Using (3.22) inside (3.17), we also �nd

∂Ωn
∂θ

= (Ωn, 〈Q̃n〉n) +
∑

j

σ
(n)
j

∂Ωn
∂νn+1j

+ 〈Yn+1〉nΓ . (3.24)De�ne �nite functions νn+1j(ω, ν̄n+1k, θ) as the solutions of the evolution equations
∂νn+1j

∂θ
= −σ

(n)
j (ω, νn+1k, θ), (3.25)with the initial conditions νn+1j(ω, ν̄n+1k, 0) = ν̄n+1j . Clearly, νn+1j = ν̄n+1j + O(θ). Given afunctional X(Φ,K, ω, νn+1j , θ), de�ne

X̄(Φ,K, ω, ν̄n+1j , θ) = X(Φ,K, ω, νn+1j(ω, ν̄n+1k, θ), θ). (3.26)19
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Then,

∂X̄

∂θ
=
∂X

∂θ
−

∑

i

σ̄
(n)
j

∂X

∂νn+1j
, (3.27)where σ̄(n)j are the functions obtained by applying the rede�nitions νn+1j(ω, ν̄n+1k, θ) to σ(n)j .Choosing X = Ωn, we can turn equation (3.24) into

∂Ω̄n
∂θ

= (Ω̄n, 〈Q̃n〉n) + 〈Yn+1〉nΓ, (3.28)Applying the rede�nitions νn+1j(ω, ν̄n+1k, θ) to the functions µnj(ω, νn+1k, θ) of assumption(an), and including the contributions coming from νn+1j − ν̄n+1j , which are proportional to θ, wecan de�ne new O(θ)O(~) functions µ̄nj(ω, ν̄n+1k, θ) by the formula
µ̄nj(ω, ν̄n+1k, θ) ≡ µnj(ω, νn+1k(ω, ν̄n+1l, θ), θ) + νn+1j(ω, ν̄n+1k, θ)− ν̄n+1j .Then, using (3.26) and (3.14), we have

Σ̄n(Φ,K, ω, ν̄n+1j , θ) = ΣRθ(Φ,K, ω, ~τ
∗
j + µ̄nj + ν̄n+1j, θ).At this point, the independent parameters are ω, ν̄n+1j and θ. The formulas we have writtenso far hold for every value of ν̄n+1j , as long as it is O(~n+1). Now we want to raise the ~ order of

ν̄n+1j by one unit. The validity of this choice will be self-evident. By this we mean that it allowsus to iterate all the arguments of the proof without di�culties till the very end and preserve theanalyticity in ~.De�ne
ν̄n+1j = νn+2j, µn+1j(ω, νn+2k, θ) = µ̄nj(ω, ν̄n+1k, θ)|ν̄n+1k→νn+2k

. (3.29)So doing, we obtain the action Σn+1, given by formula (3.14) with the replacement n→ n+ 1:
Σn+1(Φ,K, ω, νn+2j , θ) = ΣRθ(Φ,K, ω, ~τ

∗
j + µn+1j + νn+2j , θ) = Σ̄n(Φ,K, ω, νn+2j , θ). (3.30)Recalling that ΣRθ = ΣR + O(θ) and µn+1j = O(θ)O(~), formula (3.30) tells us that, at θ = 0,

Σn+1|θ=0 = ΣR(Φ,K, ω, ~τ
∗
j + νn+2j) = ΣR(Φ,K, ω, ~τ

∗
j ) + O(~n+2) = SR(Φ,K, ω) + O(~n+2),where the last equality follows from the �rst equation of (3.4). Finally, the second equation of(3.4) and formula (3.1) give

(Ωn+1,Ωn+1)|θ=0 = (ΓR,ΓR) + O(~n+2) = O(ε) + O(~n+2). (3.31)This is a check that the new action Σn+1 is AB nonanomalous at θ = 0, up to O(ε) and O(~n+2).Now we show that Σn+1 satis�es the same property for every θ.20
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Using formula (3.28), we get

∂Ωn+1

∂θ
= (Ωn+1, 〈Q̃n+1〉n+1) + 〈Yn+1〉n+1Γ , (3.32)where the functionals Q̃n+1 and Yn+1 are obtained from Q̃n and Yn+1 by applying the rede�nitions

νn+1j(ω, ν̄n+1k, θ) and (3.29). Using (3.26), (3.27) and (3.21), it is easy to see that formulas (3.16)hold with n→ n+ 1.Moreover, formula (3.23) ensures that
〈Yn+1〉n+1Γ = O(ε) + O(~n+2),that is to say formulas (3.17) and (3.18) hold with n→ n+ 1.Taking the antiparentheses of (3.32) with Ωn+1 and using the Jacobi identity, we also �nd

∂

∂θ
(Ωn+1,Ωn+1) = ((Ωn+1,Ωn+1), 〈Q̃n+1〉n+1) + 2(Ωn+1, 〈Yn+1〉n+1Γ). (3.33)The last term of the right-hand side is O(ε) + O(~n+2). In appendix C we show how to integrateequation (3.33) and prove that the θ dependence of (Ωn+1,Ωn+1) is encoded into a canonicaltransformation, up to O(ε) and O(~n+2). By formula (3.31), the value of (Ωn+1,Ωn+1) at θ = 0 isalso of such orders. Moreover, the canonical transformation is convergent, because it is uniquelydetermined by 〈Q̃n+1〉n+1, which is convergent. Therefore, we �nd

(Ωn+1,Ωn+1) = O(ε) + O(~n+2)for arbitrary θ, which is formula (3.15) with n → n + 1. As promised, the action Σn+1 is ABnonanomalous for arbitrary θ, up to O(ε) and O(~n+2). We have thus proved statements (an+1)and (bn+1).Finally, formulas (3.6) and (3.7) follow by taking n to in�nity, with ν∞j = 0 and ~τ∗′j (ω, θ) =

µ∞j(ω, 0, θ). Indeed, because of (3.14), if we de�ne SRθ according to (3.5), we have Σ∞ = SRθ,so Ω∞ = ΓRθ. Then, formula (3.15) becomes (3.6) at n = ∞. By (3.18), formula (3.17) turnsinto (3.7) at n = ∞, with Q̃Rθ = Q̃∞.3.3 Integrating the equations of gauge dependenceEquation (3.7) can be integrated with the method of appendix C (see also [8]). There, it is shownthat we can consistently ignore the terms O(ε) appearing on the right-hand side, in the sense thatthe solution we �nd by ignoring those terms is correct up to O(ε). The basic reason is that theequations involve only convergent functionals. Alternatively, we can just remove the cuto� bytaking the physical limit ε→ 0 in (3.7) and then work in the physical dimension d. The result is21
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that every θ dependence of ΓRθ can be absorbed into a convergent canonical transformation, upto O(ε).More precisely, the theorem of appendix C ensures that there exists a canonical transformation
Φ,K → Φ′,K ′ such that the Γ functional Γ′

R de�ned by
Γ′
R(Φ

′,K ′, ω) = ΓRθ(Φ(Φ
′,K ′, ω, θ),K(Φ′,K ′, ω, θ), ω, θ) (3.34)is θ independent, up to O(ε). Setting θ = 0, we �nd Γ′

R = ΓR, since
Γ′
R(Φ

′,K ′, ω) = ΓRθ(Φ
′,K ′, ω, 0) = ΓR(Φ

′,K ′, ω).Finally, inverting the transformations, we get
ΓRθ(Φ,K, ω, θ) = ΓR(Φ

′(Φ,K, ω, θ),K ′(Φ,K, ω, θ), ω). (3.35)As promised, the dependence of ΓRθ on the gauge parameter θ can be fully absorbed inside acanonical transformation.We recall that the canonical transformations we are talking about, which are convergent,nonlocal and act on the renormalized Γ functional, originate from a local canonical transformationof the form (3.2) that acts on the tree-level action. The connection between the two is a procedureof re-renormalization and a re-�ne-tuning of the �nite local counterterms. We call such canonicaltransformations on ΓR special. Clearly, the composition of special canonical transformations is aspecial canonical transformation. If we repeat the argument of this subsection for any other gaugeparameter θ that satis�es (3.7), taking one at a time, we can prove that the entire dependence ofthe Γ functional on the gauge parameters can be absorbed into a special canonical transformation.In subsection 7.3 the equations of gauge dependence are used to prove that the physicalquantities are gauge independent.4 Gauge dependence of the renormalized actionIn this section we study the counterparts of equations (3.6) and (3.7) at the level of the renor-malized action. Using the identity (2.9), formula (3.6) gives (ΓRθ,ΓRθ) = 〈(SRθ, SRθ)〉 = O(ε),which implies that (SRθ, SRθ) is a �truly evanescent� local functional, i.e. a local functional suchthat its average is evanescent. We use the symbol E to denote such type of functionals. Thus, wehave the formula
(SRθ, SRθ) = E, (4.1)where 〈E〉 = O(ε). Equation (4.1) expresses the cancellation of the gauge anomalies to all ordersat the level of the renormalized action. 22
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Next, if we apply formulas (A.3) and (A.4) to (3.7), we obtain

〈

∂SRθ
∂θ

− (SRθ, Q̃Rθ)

〉

−
i

2
〈(SRθ, SRθ)Q̃Rθ〉Γ = O(ε). (4.2)By formula (4.1), (SRθ, SRθ) is a renormalized local functional such that its average is evanescent.In appendix B we prove that there exists an O(~) local functional FR, such that the local bifunc-tional YR ≡ −(i/2)(SRθ , SRθ)Q̃Rθ + FR is renormalized and the average 〈YR〉Γ is evanescent toall orders. We denote such FR by the symbolic expression (SRθ, SRθ; Q̃Rθ). Thus, formula (4.2)gives

〈

∂SRθ
∂θ

− (SRθ, Q̃Rθ)− (SRθ, SRθ; Q̃Rθ)

〉

= O(ε).In turn, this equation implies
∂SRθ
∂θ

= (SRθ, Q̃Rθ) + (SRθ, SRθ; Q̃Rθ) + E. (4.3)Formula (4.3) is the equation of gauge dependence for the renormalized action SRθ. Note that
(SRθ, SRθ; Q̃Rθ) encodes the re-�ne-tuning of the �nite local counterterms.Equation (4.3) can be integrated with the method explained in appendix C. Although the term
(SRθ, SRθ; Q̃Rθ) depends on SRθ, a recursive procedure allows us to treat it as a known functionalat every step.5 RG invariance and other applicationsIn this section we give a few applications of the theorem proved in section 3. The �rst application isthe proof that RG invariance is preserved by the canonical transformation. The second applicationis the proof that renormalizable chiral gauge theories gauge-�xed by means of a nonrenormalizablegauge �xing remain renormalizable, although in a nonmanifest way. The third application is astep of the proof of the Adler-Bardeen theorem in nonrenormalizable theories [7].RG invariance is expressed by the Callan-Symanzik equation (which is derived at the end ofthis section)

µ
∂ΓR
∂µ

+ β̂i
∂ΓR
∂ωi

− (ΓR, 〈UR〉) = O(ε), (5.1)where β̂i are the ωi beta functions (at ε 6= 0) and UR is a local functional. At the level of therenormalized action SR, the Callan-Symanzik equation reads
µ
∂SR
∂µ

+ β̂i
∂SR
∂ωi

− (SR, UR)− (SR, SR;UR) = E. (5.2)Let Γ̃R denote the renormalized Γ functional where the parameters ωi are written in terms oftheir running versions ω̃i(µ) and µ, where ω̃i are the solutions of µdω̃i/dµ = −β̂i(ω̃) with initial23
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conditions ωi. We have

Γ̃R(Φ,K, ω̃, µ) = ΓR(Φ,K, ω, µ).Let ŨR denote the functional 〈UR〉 reparametrized in a similar way. Then the Callan-Symanzikequation becomes
µ
∂̃Γ̃R

∂̃µ
− (Γ̃R, ŨR) = O(ε),where ∂̃ denotes the derivative at �xed λ̃. The new equation has the same form as (3.7), so it issolved by making a canonical transformation. From formula (3.34), we learn that there exists acanonical transformation that takes us to new �elds and sources Φ̃, K̃ and a reference value of µ,which we denote by µ̄ and leave implicit, such that

Γ̃R(Φ,K, ω̃, µ) = Γ̄R(Φ̃(Φ,K, ω̃, µ), K̃(Φ,K, ω̃, µ), ω̃),for a certain other functional Γ̄R.Now, if we make the canonical transformation (3.2) on the tree-level action, we get, by formula(3.35),
Γ̃Rθ(Φ,K, ω̃, µ, θ) = Γ̃R(Φ

′(Φ,K, ω̃, µ, θ),K ′(Φ,K, ω̃, µ, θ), ω̃, µ) =

= Γ̄R(Φ̃(Φ
′,K ′, ω̃, µ), K̃(Φ′,K ′, ω̃, µ), ω̃).Going back to the parameters ω, we also have

ΓRθ(Φ,K, ω, µ, θ) ≡ Γ̃Rθ(Φ,K, ω̃, µ, θ) = Γ̄R(Φ̄
′(Φ,K, ω, µ, θ), K̄ ′(Φ,K, ω, µ, θ), ω̃(ω, µ)).having de�ned Φ̃(Φ′,K ′, ω̃, µ) = Φ̄′(Φ,K, ω, µ, θ) and similarly for K̃. Di�erentiating with respectto lnµ, and recalling that our canonical transformations are special, we get

µ
∂ΓRθ
∂µ

+ β̂i
∂ΓRθ
∂ωi

− (ΓRθ, 〈URθ〉) = O(ε), (5.3)for some new local functional URθ. Formula (5.3) is the transformed RG equation. Note that thebeta functions do not depend on θ in this approach.Another application that we mention is to power-counting renormalizable chiral gauge theoriesgauge-�xed by means of a nonrenormalizable gauge �xing. If a renormalizable theory is nonchiral,it is rather straightforward to prove that it remains renormalizable when a nonrenormalizablegauge �xing is used. When the theory is chiral, on the other hand, the matter is more complicated.In principle, the simpli�cations between divergences and evanescences can make the parametersof negative dimensions, introduced by the gauge �xing, propagate into the physical sector andturn the theory into a truly nonrenormalizable one. The theorem of section 3, combined with RGinvariance, ensures that this cannot happen. 24
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Consider for example the standard model in �at space and gauge �x a non-Abelian gaugesymmetry by means of a gauge-�xing function such as

Ḡa(φ) = ∂µAaµ + κAbµA
a
νF

bµν .Since the constant κ has dimension −2 in units of mass, power counting alone is not su�cientto classify the counterterms in a convenient way at κ 6= 0. However, the change of gauge �xingthat turns Ga(φ) = ∂µAaµ into Ḡa(φ) is a canonical transformation, so we can apply the theoremof section 3. Formula (3.3) teaches us that in�nitely many terms Hi of arbitrary dimensions areswitched on, including the gauge noninvariant ones. Nevertheless, the theorem ensures that oncewe have done that, it is possible to express the coe�cients of all of those terms as functions of theother parameters of the theory, and �ne-tune those functions to enforce again the cancellation ofgauge anomalies to all orders. Moreover, the argument given above ensures that RG invarianceis preserved. We conclude that no new independent parameters are necessary to subtract thedivergences and cancel the gauge anomalies in a RG invariant way: the physical couplings arestill �nitely many. Thus, when a power counting renormalizable chiral gauge theory, such asthe standard model in �at space, is gauge-�xed by means of a nonrenormalizable gauge �xing,it remains a renormalizable theory, although its renormalizability is not manifest anymore. Asimilar conclusion holds when the theory is renormalizable by weighted power counting [27] orany other criterion.The third application we mention is the proof of the Adler-Bardeen theorem in nonrenormal-izable theories, recently obtained in ref. [7] by upgrading the arguments of [6]. It applies to thetheories whose gauge symmetries are general covariance, local Lorentz symmetry and Abelian andnon-Abelian Yang-Mills symmetries, and satisfy a variant of the Kluberg-Stern�Zuber conjecture.Quantum gravity coupled to the standard model satis�es all the assumptions and so is free ofgauge anomalies to all orders. In the approach of [7], the CD regularization is combined witha higher-derivative regularization. If the scale Λ associated with the higher-derivative terms iskept �xed, we obtain a super-renormalizable higher-derivative (HD) theory, which satis�es theAdler-Bardeen theorem by simple power-counting arguments. When the scale Λ is sent to in�nity,the Λ divergences are renormalized inductively. At each step, the theorem of section 3 allows usto resubtract the divergences in ε and re-�ne-tune the �nite local terms, in order to enforce thecancellation of gauge anomalies to all orders at Λ �xed. In the end, thanks to this, the cancel-lation of gauge anomalies survives the renormalization of both types of divergences. Moreover,the approach of ref. [7] identi�es a special subtraction scheme where the cancellation of gaugeanomalies is manifest from two loops onwards, within any given truncation. We stress that it isnot possible to achieve a similar goal by means of regularization-independent methods.The Callan-Symanzik equation (5.1) can be proved from the results of ref. [7] as follows,under the assumptions speci�ed there. At Λ �xed the HD theory is renormalized by rede�nitions25
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of parameters, while the trivially anomalous terms are canceled by adding a �nite local functional
−χ/2 to the action. The renormalized action coincides with its bare version apart from χ itself,which satis�es χ = µ−εχB, where χB is RG invariant. Then, the HD theory satis�es formulas(5.1) and (5.2) with UR = 0, the right-hand side of (5.2) being equal εχ/2. The average 〈χ〉is convergent in the HD theory (since its divergences, which would start from two loops, areexcluded by the arguments of [7]), so the product ε〈χ〉/2 is truly evanescent at Λ �xed. At asecond stage, the renormalization is completed by removing the Λ divergences. This is done bymeans of special canonical transformations and rede�nitions of parameters. In this section wehave proved that those operations preserve the Callan-Symanzik equation, although they cana�ect the beta functions and the functional UR. In the end, we obtain equations of the forms(5.1) and (5.2).6 Gauge dependence of the beta functionsOften, we can prove that a theory is AB nonanomalous in a family of gauges, parametrized bycertain gauge-�xing parameters ξ. In various common situations we can achieve this goal byapplying the results of ref. [6], where the Adler-Bardeen theorem was proved for arbitrary valuesof the gauge-�xing parameter ξ of the Lorenz gauge, in power counting renormalizable gaugetheories that have unitary free-�eld limits. More generally, if the theory is coupled to quantumgravity, we can apply the results of [7]. Then, when we study the dependence of the correlationfunctions on ξ, we can proceed more straightforwardly than in section 3, since we already knowthat (ΓR,ΓR) = O(ε) for arbitrary ξ. It is worth recalling that in section 3 we had to derive thisresult from just knowing that (ΓR,ΓR) was O(ε) for ξ equal to some initial value ξ∗.In this section we study the equations of gauge dependence in theories that are AB nonanoma-lous for arbitrary values of some gauge parameter θ and satisfy some additional assumptions.Those assumptions are not very restrictive, since they are ful�lled quite commonly. When θvaries, we do not need to readjust the subtraction scheme by �ne-tuning the �nite local countert-erms. Then, however, the beta functions of the couplings are in general gauge dependent. Theirgauge dependence can be removed by rede�ning the couplings themselves.We begin by listing the assumptions we need.(I) We assume that the gauge algebra is irreducible and closes o� shell. This assumption issatis�ed by the theories whose gauge symmetries are general covariance, local Lorentz symmetryand Abelian and non-Abelian Yang-Mills symmetries, such as the standard model coupled toquantum gravity. It allows us to make a number of simpli�cations. For example, we can choosethe �elds Φ and the sources K so that the gauge-�xed tree-level solution Sd of the D-dimensionalmaster equation (Sd, Sd) = 0 is linear in K and has the very simple structure (2.3).We have already remarked that in various cases, for example when the theory is chiral or parity26
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violating, the action Sd, embedded in D dimensions using the standard rules of the dimensionalregularization technique, is in general not well regularized, due to the key role played by the
d-dimensional analogue γ̃ of the matrix γ5, or the tensor εā1···ād . Using the chiral dimensionalregularization, a well-regularized classical action S(Φ,K) is obtained by adding a number ofevanescent corrections Sev to Sd [11], as shown in formula (2.6). We denote the parameterscontained in Sev by ηI . For convenience, we assume that Sev depends linearly on the parameters
η, and vanishes for η = 0.Let {Gi(φ)} denote a basis of local gauge invariant functionals of the classical �elds φ. Expandthe classical action as

Sc(φ) =
∑

i

λiGi(φ), (6.1)where λi are independent parameters. We call the constants λi �physical parameters�, since theycontain or are related to the gauge coupling constants, the masses, the Yukawa couplings, etc.In our notation some parameters λi may be actually redundant. Nevertheless, to simplify somederivations we prefer to keep an independent λi for every Gi. For example, it is often useful torestrict Sc by dropping the terms that are proportional to the Sc �eld equations, because thoseterms can be renormalized by means of canonical transformations, rather than λi rede�nitions.We do not implement this restriction right now, to make some arguments of the derivations thatfollow more transparent. We can always remove that class of redundant terms at the end bymeans of a convergent canonical transformation, by applying either the procedure of section 3,which is more general, or the one of this section, which holds under speci�c assumptions. Bothprocedures preserve the cancellation of gauge anomalies and the equations of gauge dependence.In total, we have physical parameters λ, gauge-�xing parameters ξ, contained in Ψ, andregularizing parameters η. The classical action is written as S(Φ,K, λ, ξ, η).The action Sc may contain accidental symmetries, which are the global symmetries unrelatedto the gauge transformations. Some accidental symmetries are dynamically lost, because theyare anomalous, others are nonanomalous. Let Gnas denote the group of nonanomalous accidentalsymmetries, or the identity group, depending on whether the gauge group contains U(1) factorsor not. By de�nition, the set {Gi(φ)} includes the invariants that explicitly break the anomalousaccidental symmetries, but excludes the invariants, denoted by Ǧi(φ), that explicitly break Gnas.Then the actions Sc and Sd do not contain the invariants Ǧi, so we de�ne extended actions Šcand Šd = Šc + (SK ,Ψ) + SK that do include them, multiplied by independent parameters λ̌i.Both choices of including and excluding the invariants Ǧi, are consistent, from the point of viewof renormalization.We say that the action Sd satis�es the Kluberg-Stern�Zuber assumption [19], if every nonevanes-
27
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cent local functional X of ghost number zero that solves the equation (Sd,X) = 0 has the form

X =
∑

i

aiGi + (Sd, Y ),where ai are constants depending on the parameters of the theory, and Y is a local functional ofghost number −1.We say that the action Sd is cohomologically complete if its extension Šd satis�es the extendedKluberg-Stern�Zuber assumption, that is to say every nonevanescent local functional X of ghostnumber zero that solves (Šd,X) = 0 has the form
X =

∑

i

aiGi +
∑

i

biǦi + (Šd, Y ), (6.2)where bi are other constants, and Y is a local functional.(II) We assume that the action Sd of (2.3) is cohomologically complete and the group Gnas iscompact.The Kluberg-Stern�Zuber assumption is satis�ed when the Yang-Mills gauge group is semisim-ple and the action Sd satis�es generic properties [30]. It is not satis�ed when the gauge grouphas U(1) factors and accidental symmetries are present. In particular, it is not satis�ed by thestandard model. However, it can be proved, using the Ward identities that hold in the Lorenzgauge, that the standard model is cohomologically complete [6]. So are the Lorentz violatingextensions of the standard model of refs. [12, 31], which are renormalizable by weighted powercounting [27]. Starting from the cohomological theorems proved in ref. [30], it can be proved thatthe standard model coupled to quantum gravity is also cohomologically complete [7], and so aremost of its extensions.The condition (Sd,X) = 0 is the one typically satis�ed by the counterterms. In this section weshow that the contributions of the extra term contained in the generalized Ward identity (2.15)satisfy the same condition. Thus, assumption (II) will give us control on the e�ects of the newterm.We can imagine that θ is one of the parameters ξ, or another parameter introduced by a �eldrede�nition. We keep it distinct from the other parameters λ, ξ, η contained in the action S andassume that S(Φ,K, λ, ξ, η) denotes the action at some speci�c value θ∗ of θ. With no loss ofgenerality, we take θ∗ = 0. By de�nition of gauge parameter, when we vary θ, we make a canonicaltransformation generated by a functional of the form (3.2) on the action S, and this operationgives the action Sθ. As before, let SRθ denote the renormalized action and ΓRθ the Γ functionalassociated with it.(III) We assume that the theory is AB nonanomalous for arbitrary values of some gaugeparameter θ. Precisely, we assume that there exists a class of subtraction schemes where the28
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renormalized Γ functional ΓRθ satis�es the identity

(ΓRθ,ΓRθ) = O(ε), (6.3)where θ takes values in some continuous range that includes θ = 0. From now on we understandthat we work in that class of subtraction schemes.Assumption (III) has been proved, for common families of gauge conditions, in the power-counting renormalizable gauge theories that have unitary free-�eld limits [6], in the Lorentz vi-olating extensions of the standard model that are renormalizable by weighted power counting[12, 31], in the standard model coupled to quantum gravity and a large class of other nonrenor-malizable theories [7].We prove that there exist �nite functions ρj of λ, ξ, η and θ, which start from O(~), and arenormalized local functional HRθ(Φ,K) = Q̃θ(Φ,K)+O(~), where Q̃θ(Φ,K) = Qθ(Φ,K
′(Φ,K))and Qθ = ∂Q/∂θ, such that ΓRθ satis�es the equation

∂ΓRθ
∂θ

=
∑

j

ρj
∂ΓRθ
∂λj

+ (ΓRθ, 〈HRθ〉) + O(ε). (6.4)The �rst term on the right-hand side of (6.4) can be absorbed by means of �nite rede�nitionsof the parameters λ (which correspond to the re-�ne-tuning of the previous section). The secondterm is the one that can be absorbed into a canonical transformation.In the rest of this section we derive the equations of gauge dependence (6.4) under the as-sumptions listed above, and integrate them. Before beginning the derivation, a few preliminaryremarks are in order. If we di�erentiate (6.3) with respect to any parameter ζ, we �nd
(

ΓRθ,
∂ΓRθ
∂ζ

)

= O(ε). (6.5)Now we take the antiparentheses of both sides of formula (3.7) or (6.4) with ΓRθ, and use (6.5)for ζ = θ and ζ = λj , the Jacobi identity satis�ed by the antiparentheses and formula (6.3) again.At the end, we �nd a consistent relation of the form O(ε) = O(ε). Thus, we can view formulas(3.7) and (6.4) as the solutions to the condition (6.5) for ζ = θ.To explain this issue more clearly, let us de�ne an operator δΓ that acts on a (genericallynonlocal) functional Y by taking its antiparentheses with ΓRθ: δΓY = (ΓRθ, Y ). Formula (6.3)ensures that δΓ is nilpotent up to O(ε), because the Jacobi identity gives
δ2ΓY = (ΓRθ, (ΓRθ, Y )) =

1

2
((ΓRθ,ΓRθ), Y ) = O(ε). (6.6)Therefore, it is meaningful to study the cohomology of δΓ. Consider the problem δΓY = 0, ofwhich the ε → 0 limit of (6.5) is an example. It is a nonlocal upgrade of the more standardcohomological problem (Sd,X) = 0, where X is local. Formula (6.5) tells us that ∂ΓRθ/∂θ is29
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closed, in the sense of the δΓ cohomology, up to O(ε). On the other hand, formula (6.4) ensuresthat there exist �nite linear combinations of ∂ΓRθ/∂ζ that are δΓ-exact, up to O(ε).However, nonlocal cohomological problems are di�cult to solve and must be treated withcare, because if we do not specify which nonlocalities are allowed and which are not, any closedfunctional can in principle be exact. In other words, we cannot derive (6.4) immediately from(6.5), which is why gauge dependence deserves a separate investigation.6.1 The equations of gauge dependenceWe apply formula (A.5) of appendix A to the renormalized action SRθ and the renormalized Γfunctional ΓRθ, with X = Q̃Rθ, where Q̃Rθ denotes the renormalized version of the functional
Q̃θ(Φ,K). We obtain

∂ΓRθ
∂θ

= (ΓRθ, 〈Q̃Rθ〉) + 〈URθ〉Γ , (6.7)where
URθ = −

i

2
(SRθ, SRθ)Q̃Rθ +

∂SRθ
∂θ

− (SRθ, Q̃Rθ). (6.8)Taking the antiparentheses of both sides of (6.7) with ΓRθ and using (6.5) and (6.6), we obtain
(ΓRθ, 〈URθ〉Γ) = O(ε). (6.9)Di�erently from (6.5), this nonlocal cohomological problem can be reduced to a local one, andsolved. The reason is that URθ is originated by an evanescent local bifunctional. We provethat there exist �nite functions ρj = O(~) of λ, ξ, η and θ, and a renormalized local functional

WRθ = O(~), such that
〈URθ〉Γ =

∑

j

ρj
∂ΓRθ
∂λj

+ (ΓRθ, 〈WRθ〉) + O(ε). (6.10)We proceed by induction. Assume that there exist �nite functions ρnj = O(~) of λ, ξ, η and
θ, and a renormalized local functional Wn = O(~), such that the partially subtracted functional

Un ≡ URθ −
∑

j

ρnj
∂SRθ
∂λj

− (SRθ,Wn)−
i

2
(SRθ, SRθ)Wn, (6.11)satis�es

〈Un〉Γ = O(ε) + O(~n+1). (6.12)This assumption is clearly satis�ed at the zeroth order, where ρ0j = 0 and W0 = 0, because byformula (3.12) we have URθ = Yθ + O(~), where Yθ is evanescent and given by (3.11).Using formulas (A.3) and (A.4), we obtain the average
〈Un〉Γ = 〈URθ〉Γ −

∑

j

ρnj
∂ΓRθ
∂λj

− (ΓRθ, 〈Wn〉), (6.13)30
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which is clearly convergent. Consider the (n + 1)-loop contributions U (n+1)

n to 〈Un〉Γ. They areconvergent, because so is the right-hand side of (6.13). Moreover, the inductive assumption (6.12)states that the average 〈Un〉Γ is evanescent up to and including n loops, while (6.3) ensures that
〈(SRθ , SRθ)〉 = (ΓRθ,ΓRθ) is evanescent to all orders. The arguments of appendix B ensure thatthe functional U (n+1)

n is the sum of a local nonevanescent part U (n+1)
nnonev plus a generically nonlocalevanescent part:

〈Un〉Γ = U (n+1)
nnonev + O(ε) + O(~n+2). (6.14)Thus, using (6.13) and (6.14), we have

〈URθ〉Γ =
∑

j

ρnj
∂ΓRθ
∂λj

+ (ΓRθ, 〈Wn〉) + U (n+1)
nnonev + O(ε) + O(~n+2). (6.15)Inserting this expression inside (6.9) and using (6.5), (6.6) and (6.3), we obtain

(ΓRθ, U
(n+1)
nnonev) = O(ε) + O(~n+2).Taking the (n+ 1)-loop nonevanescent contributions to this formula, we �nd
(Sdθ, U

(n+1)
nnonev) = 0, (6.16)where Sdθ is the action obtained by applying the canonical transformation (3.2) to Sd. In deriv-ing the result (6.16), it is important to recall that the tree-level action (2.6) and the canonicaltransformation (3.2) do not contain analytically evanescent terms. In turn, Sθ and Sdθ satisfy thesame property, and Sdθ is the full nonevanescent part of Sθ.Applying the inverse of the transformation (3.2) to equation (6.16) and letting Ũ (n+1)

nnonevdenotethe functional obtained from U
(n+1)
nnonev, we get

(Sd, Ũ
(n+1)
nnonev) = 0. (6.17)At this point, we apply assumption (II). Let us imagine that instead of working with theclassical action Sc we work with its extension Šc, which includes the invariants Ǧi that break thenonanomalous accidental symmetries belonging to the group Gnas. Similarly, we extend Sd to

Šd, Sev to Šev and S = Sd + Sev to Š. Every extended functional reduces to the nonextendedone when we set λ̌ = η̌ = 0, where λ̌ and η̌ are the extra parameters of Šc and Šev, respectively.If we repeat the operations that lead to (6.17), we obtain an extended, nonevanescent localfunctional Ǔ (n+1)
nnonev that satis�es (Šd, Ǔ

(n+1)
nnonev) = 0. By assumption (II), the action Šd satis�esthe extended Kluberg-Stern�Zuber assumption. Therefore, there exist �nite order-~n+1 constants

σ̌
(n+1)
i , τ̌ (n+1)

i , depending on the parameters, and a �nite nonevanescent local functional V̌ (n+1)
θof order ~n+1 such thať

U (n+1)
nnonev =

∑

i

σ̌
(n+1)
i Gi +

∑

i

τ̌
(n+1)
i Ǧi + (Šd, V̌

(n+1)
θ ).31



15A1Renorm
If we set λ̌ = η̌ = 0 in this equation, we obtain

Ũ (n+1)
nnonev =

∑

i

σ̄
(n+1)
i Gi +

∑

i

τ̄
(n+1)
i Ǧi + (Sd, V̄

(n+1)
θ ), (6.18)where σ̄(n+1)

i , τ̄ (n+1)
i and V̄ (n+1)

θ are equal to σ̌(n+1)
i , τ̌ (n+1)

i and V̌ (n+1)
θ at λ̌ = η̌ = 0. However,

Ũ
(n+1)
nnonev and Sd are invariant under Gnas, while the functionals Ǧi are not. If we average on

Gnas (which we can do, since Gnas is assumed to be compact), the Ǧi disappear or give linearcombinations of the invariants Gi, and V̄ (n+1)
θ turns into some Ṽ (n+1)

θ . We obtain1
Ũ (n+1)
nnonev =

∑

j

σ
(n+1)
j

∂Sd
∂λj

+ (Sd, Ṽ
(n+1)
θ ), (6.19)for some new constants σ(n+1)

j . We have used Gi = ∂Sd/∂λj . At this point, we apply the canonicaltransformation (3.2) again, and note that, by formula (A.6) the di�erence between the transformed
∂Sd/∂λj and ∂Sdθ/∂λj is equal to (Sdθ,Xθ) for some local functional Xθ. In the end, we get

U (n+1)
nnonev =

∑

j

σ
(n+1)
j

∂Sdθ
∂λj

+ (Sdθ, V
(n+1)
θ ) (6.20)for some new local functional V (n+1)

θ of order ~n+1. Now, de�ne
Un+1 =URθ −

∑

j

ρn+1j
∂SRθ
∂λj

− (SRθ,Wn+1)−
i

2
(SRθ, SRθ)Wn+1,

ρn+1j = ρnj + σ
(n+1)
j , Wn+1 =Wn + V

(n+1)
Rθ ,where V (n+1)

Rθ are the renormalized versions of the functionals V (n+1)
θ . Using (6.11), we also have

Un+1 = Un −
∑

j

σ
(n+1)
j

∂SRθ
∂λj

− (SRθ, V
(n+1)
Rθ )−

i

2
(SRθ, SRθ)V

(n+1)
Rθ . (6.21)Recall that S = Sd + Sev, which implies Sθ = Sdθ + O(ε) and SRθ = Sdθ + O(ε) + O(~). Takingthe average of both sides of (6.21), and using (A.3), (A.4), (6.20) and then (6.14), we �nd

〈Un+1〉Γ = 〈Un〉Γ − U (n+1)
nnonev + O(ε) + O(~n+2) = O(ε) + O(~n+2),which extends the inductive assumption (6.12) to the order n + 1. Formula (6.10) follows fromformula (6.15) for n = ∞, with ρj = ρ∞j and WRθ =W∞ = O(~).1If the terms proportional to the Sc �eld equations are dropped from Sc, the average on Gnas may generatethem back. In the case of general covariance, local Lorentz symmetry and Yang-Mills symmetries, the average of

Ǧi may also a�ect Ṽ (n+1)
θ

, besides the coe�cients σ(n+1)
i

, but the �nal result is still of the form (6.19).32
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Finally, using (6.10) inside (6.7), we get

∂ΓRθ
∂θ

=
∑

j

ρj
∂ΓRθ
∂λj

+ (ΓRθ, 〈Q̃Rθ +WRθ〉) + O(ε).This formula is equivalent to (6.4) with the identi�cation HRθ = Q̃Rθ +WRθ. Observe that HRθis another renormalized version of the functional Q̃θ(Φ,K), and just di�ers from Q̃Rθ by a choiceof subtraction scheme.6.2 Integrating the new equations and RG invarianceNow we integrate the equations (6.4). We can easily absorb away the �rst term on the right-handside by making �nite rede�nitions λ(λ′, θ) of the parameters λ. We choose functions λi(λ′, ξ, η, θ)that solve the evolution equations
∂λi
∂θ

= −ρi(λ, ξ, η, θ), (6.22)with the initial conditions λi(λ′, ξ, η, 0) = λ′i. Using formulas (6.4) and (3.27), we obtain
∂Γ̄Rθ
∂θ

= (Γ̄Rθ, 〈HRθ〉) + O(ε), (6.23)where Γ̄Rθ is related to ΓRθ according to the de�nition λ(λ′, ξ, η, θ) [see (3.26) and the argumentsgiven right after that formula].Observe that equation (6.23) is equivalent to formula (3.7) of section 3. This means therede�nitions λi(λ′, ξ, η, θ) perform the re-�ne-tuning of �nite local counterterms (automaticallyincorporated in the approach of section 3) that was missing so far in the approach of the presentsection. As in subsection 3.3, equation (6.23) can be integrated with the method of appendix C.We �nd that there exists a canonical transformation Φ,K → Φ′,K ′ such that the Γ functional
Γ′
R de�ned by
Γ′
R(Φ

′,K ′, λ′, ξ, η) = ΓRθ(Φ(Φ
′,K ′, λ′, ξ, η, θ),K(Φ′,K ′, λ′, ξ, η, θ), λ(λ′, ξ, η, θ), ξ, η, θ) (6.24)is θ independent, up to O(ε). Since θ = 0 gives Γ′

R = ΓR, we also have
Γ′
R(Φ

′,K ′, λ′, ξ, η) = ΓRθ(Φ
′,K ′, λ′, ξ, η, 0) = ΓR(Φ

′,K ′, λ′, ξ, η).Inverting the transformations, we obtain the formula
ΓRθ(Φ,K, λ, ξ, η, θ) = ΓR(Φ

′(Φ,K, λ, ξ, η, θ),K ′(Φ,K, λ, ξ, η, θ), λ′(λ, ξ, η, θ), ξ, η), (6.25)which shows that the dependence of ΓRθ on the gauge parameter θ can be fully absorbed insidea �nite rede�nition of the parameters λ and a canonical transformation.33



15A1Renorm
According to formulas (6.24) and (6.25), the beta functions β′λ′ of the parameters λ′ (in theframework where the �elds and the sources have primes) are θ independent. That means, however,that the beta functions βλ of the couplings λ do depend on θ. However, their θ dependence is notarbitrary, because it disappears by making the rede�nitions λ(λ′, ξ, η, θ).We can repeat the argument for any other gauge parameter θ for which formula (6.3) is knownto hold, taking one at a time. Since the composition of special canonical transformations and re-de�nitions of parameters is a special canonical transformation combined with a rede�nition ofparameters, we reach the conclusion that the entire dependence on the gauge parameters can beabsorbed into such operations, which do not a�ect the physical quantities (see subsection 7.3).We can also repeat the arguments of section 5 and prove that RG invariance is preserved.The di�erence is that now instead of (5.3) we get a transformed Callan-Symanzik equation thatcontains θ-dependent beta functions.7 Gauge independence and unitarityIn general gauge theories we need to introduce extra �elds, such as the Fedeev-Popov ghosts C,the antighosts C̄ and the Lagrange multipliers B, and choose gauge-�xing conditions to make thefunctional integral perturbatively well de�ned. In addition, to implement the renormalization ofdivergences to all orders, study the gauge dependence and prove the Adler-Bardeen theorem, it isalso convenient to introduce the sources K and use the Batalin-Vilkovisky formalism. The extra�elds and the sources must be switched o� at some point. In this section we explain how to de�nethe physical quantities and show that they are gauge independent, under the sole assumption thatthe theory is AB nonanomalous, as in section 3. We work with convergent functionals, so we canset ε = 0. We denote the ε→ 0 limits of ΓR and the other functionals involved in our argumentsby the same symbols used so far, since no confusion is expected to arise.First, we need to �un-gauge-�x� the theory, by switching o� C̄, B and their sources KC̄ , KB.This operation is regular inside the Γ functionals, once Feynman diagrams have been evaluated,but not inside the actions S and SR, in the sense that if we un-gauge-�x the action, Feynmandiagrams obviously become ill de�ned. For this reason, some gauge dependence survives the un-gauge-�xing procedure. Besides un-gauge-�xing, we must switch o� the sources K. The combinedswitch-o� procedure allows us to de�ne a physical Γ functional, identify its gauge symmetries,check that they close on-shell, and prove that no gauge dependence a�ects the physical quantities.Since the gauge �xing is introduced by means of a canonical transformation, such as (2.5),when we vary the gauge-�xing parameters θ = ξ we make a canonical transformation. Therefore,the equations (3.7) and (6.4) can be used to study the dependence of the physical quantities onthe parameters ξ. 34
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The information gathered so far is encoded in the key formulas

(ΓRθ,ΓRθ) = 0, (7.1)
∂ΓRθ
∂θ

−
∑

j

ρj
∂ΓRθ
∂λj

− (ΓRθ, 〈HRθ〉) = 0, (7.2)and is su�cient to achieve the goals of this section. We work on the ε → 0 limit of (6.4), ratherthan the one of (3.7), because everything we say starting from the former can be easily generalizedto the other case.7.1 Quantum gauge algebraFormula (7.1) gives
0 = −

∫

δrΓRθ
δKα

δlΓRθ
δΦα

= −

∫
〈

δrSRθ
δKα

〉

δlΓRθ
δΦα

=

∫

〈(SRθ,Φ
α)〉

δlΓRθ
δΦα

, (7.3)and tells us that ΓRθ is invariant under the in�nitesimal (nonlocal) transformations
Φα → Φα + δΦα, δΦα ≡ $ 〈(SRθ,Φ

α)〉 = −$
δrΓRθ
δKα

.Here and below$,$′, etc., denote constant anticommuting parameters. Write Φα = {φi, Ca, C̄a, Ba}and Kα = {Ki
φ,K

a
C ,K

a
C̄
,Ka

B}, to separate the classical �elds φi and their sources Ki
φ from theextra �elds and their sources.Observe that S is independent of KB and contains KC̄ only through the term −

∫

BaKa
C̄
. Thisis also true after the canonical transformation (3.2), if we assume, for simplicity, that the functional

Q(Φ,K ′) appearing in (3.2) is independent of KC̄ and KB . Then Sθ also satis�es (Sθ, C̄) = B and
(Sθ, B) = 0. Moreover, the sources KC̄ and KB cannot contribute to any nontrivial one-particleirreducible diagrams. Thus, after renormalization we still have (SRθ, C̄) = B and (SRθ, B) = 0,i.e. δC̄a = $Ba and δBa = 0.De�ne

Γ̂R(φ) ≡ ΓRθ(Φ,K)|C̄=B=K=0 , δ̂Φα = δΦα|C̄=B=K=0 .Observe that Γ̂R(φ) is independent of the ghosts C, because it has ghost number zero and aftersuppressing C̄ and K no �elds and/or sources of negative ghost numbers survive. For the samereason, δ̂φi, which has ghost number equal to one, is linear in C. Clearly, δ̂C̄ = δ̂B = 0. Thus,when C̄, B and K are switched o�, formula (7.3) turns into
0 =

∫

δ̂φi
δlΓ̂R(φ)

δφi
. (7.4)35
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The terms proportional to δlΓRθ/δC do not contribute to (7.4) because Γ̂R(φ) is C independent.The terms proportional to δlΓRθ/δC̄ and δlΓRθ/δB disappear, because they multiply δ̂C̄ and δ̂B,respectively.We call Γ̂R(φ) the �physical� Γ functional. The transformations δ̂φi encode the gauge sym-metry of Γ̂R. Indeed, recall that δ̂φi is linear in C and of course $. Replacing each ghost Cwith $′Λ, where Λ(x) is a function having statistics opposite to the one of C, and dropping theproducts $$′ after moving them to the left, we can de�ne a symmetry transformation δΛφi bythe formula

$$′δΛφ
i = δ̂φi

∣

∣

∣

C→$′Λand prove, using equation (7.4), that Γ̂R(φ) is invariant under this symmetry:
δΛΓ̂R(φ) =

∫

δΛφ
i δlΓ̂R(φ)

δφi
= 0.We call δΛφi the quantum gauge transformations. To the lowest order in ~ they coincide with thestarting gauge transformations, but at higher orders they are in general nonlocal functionals. Wecall the algebra of the transformations δΛ quantum gauge algebra.7.2 Closure of the quantum gauge algebraNow we study the closure of the quantum gauge algebra. If we di�erentiate (7.1) with respect to

K, we obtain
(ΓRθ, δΦ

α) = 0.Consider this equation in the case δΦα → δφi, then switch o� C̄ and B, and set K = 0 at theend. Recalling that δC̄ = $B and δB = 0, and observing that δφi does not depend on KC̄ and
KB , we obtain

∫

δ̂′φj
δl(δ̂φ

i)

δφj
+

∫

δ̂′Ca
δl(δ̂φ

i)

δCa
=

∫

δr(δφ
i$′)

δKj
φ

∣

∣

∣

∣

∣

C̄=B=K=0

δlΓ̂R(φ)

δφj
, (7.5)having multiplied to the left by $′ and having de�ned δ̂′Φα = δ̂Φα

∣

∣

∣

$→$′

. The right-hand sideof (7.5) is proportional to the φj �Γ �eld equations�, which means that closure is achieved onshell. The left-hand side of (7.5) can be handled as follows. Since δ̂φi and δ̂Ca are linearly andquadratically proportional to the ghosts, respectively, we can write them in the form
δ̂φi = $

∫

C āT iā(φ), δ̂Ca = −
1

2

∫

C b̄$C c̄T ab̄c̄(φ),where T iā and T ab̄c̄ are nonlocal functionals. Here the bar indices include the spacetime points wherethe corresponding �elds are located and the summation over repeated bar indices understands the36



15A1Renorm
integration over those spacetime points. Now, take formula (7.5) and replace Ca with $′′Λa +

$′′′Σa, Λa and Σa being functions of the coordinates. The left-hand side of (7.5) is turned into
$$′$′′$′′′ times

∫

δΛφ
j δl(δΣφ

i)

δφj
−

∫

δΣφ
j δl(δΛφ

i)

δφj
−

∫

ΛāΣb̄T c̄āb̄(φ)T
i
c̄(φ).Finally, the whole formula (7.5) is equivalent

[δΛ, δΣ]φ
i = δ[Λ,Σ]φ

i +

∫

vij(φ,Λ,Σ)
δlΓ̂R(φ)

δφj
, (7.6)where

[Λ,Σ]a =

∫

Λb̄Σc̄T ab̄c̄(φ)and vij(φ,Λ,Σ) are suitable functions. Formula (7.6) expresses the on shell closure of the quantumgauge algebra.The �eld transformations and the closure relations become clearer if we switch to a moreexplicit notation, where they read
δΛφ

i(x) =

∫

ddyΛa(y)T ia[φ](x, y), [Λ,Σ]a(x) =

∫

ddyddzΛb(y)Σc(z)T abc[φ](x, y, z),

T ia[φ] and T abc[φ] being (nonlocal) functionals that depend on two and three spacetime points,respectively.7.3 Gauge dependence of the physical Γ functionalThe last goal is to study the gauge dependence of Γ̂R(φ). Observe that the functional 〈HRθ〉that appears in formula (7.2) has ghost number equal to −1. Therefore, it must be proportionalto the antighosts C̄ and/or some sources K. This fact implies that the derivatives δl〈HRθ〉/δφ
iand δl〈HRθ〉/δC

a are zero at C̄ = K = 0. Moreover, 〈HRθ〉 does not depend on KC̄ and KB,if the functional Q(Φ,K ′) of (3.2) satis�es the same property, as we are assuming here. Setting
C̄ = B = K = 0 in (7.2) we obtain

∂Γ̂R(φ)

∂θ
=

∑

j

ρj
∂Γ̂R(φ)

∂λj
+

∫

ui(φ)
δlΓ̂R(φ)

δφi
, (7.7)where

ui(φ) =
δr〈HRθ〉

δKi
φ

∣

∣

∣

∣

∣

C̄=B=K=0

.Formula (7.7) is the equation of gauge dependence satis�ed by the physical functional Γ̂R(φ). Wecan integrate it with the procedure described in subsection 6.2. The �rst term on the right-hand37



15A1Renorm
side of (7.7) can be absorbed into rede�nitions of the parameters λ, while the second term canbe absorbed into a change of �eld variables. We can do this for each gauge parameter θ, takingone at a time. We obtain that there exists rede�nitions λ(λ′, θ) and a change of �eld variables
φ(φ′, λ′, θ) such that the transformed physical functional

Γ̂′
R(φ

′, λ′) = Γ̂R(φ(φ
′, λ′, θ), λ(λ′, θ), θ)is θ independent. Setting θ = 0 we get Γ̂′

R(φ
′, λ′) = Γ̂R(φ

′, λ′, 0), which in the end allows us towrite
Γ̂R(φ, λ, θ) = Γ̂R(φ

′(φ, λ, θ), λ′(λ, θ), 0).Since the entire gauge dependence is encoded into changes of �eld variables and rede�nitionsof parameters, it cannot a�ect the physical quantities contained in Γ̂R(φ).7.4 UnitarityIn this subsection we prove (perturbative) unitarity, to emphasize why gauge independence isso crucial. For de�niteness, we illustrate our arguments in Yang-Mills theories, but everythingwe say can be applied to quantum gravity, as well as any general gauge theory. We recall thatperturbative unitarity is the statement that the identity SS† = 1 holds diagrammatically, orderby order in the perturbative expansion [32]. A necessary condition is that the free-�eld theory weperturb around propagates only physical degrees of freedom. A necessary and su�cient conditionis that when the identity SS† = 1 is written as a cutting equation no unphysical degrees offreedom contribute to the cut propagators.There exists no gauge-�xing conditions where both unitarity and the locality of countertermsare manifest. If we want manifest unitarity, propagators must have only physical poles. Thishappens when we choose gauge-�xing functions of the Coulomb type, such as G(φ) = ∂iAi,where i, j, . . . are space indices, inside the gauge fermion Ψ(Φ) of (2.4). However, the locality ofcounterterms is not manifest in that gauge, since the Coulomb propagators contain denominatorswhose dominant terms (those that determine their ultraviolet behavior) do not depend on theenergy (or do not depend on it in the correct way). Then, when we di�erentiate a Feynmandiagram with respect to the energies of its external legs, the overall degree of divergence is notguaranteed to decrease, so we cannot prove the locality of counterterms in this way. Besideshaving a bad power-counting behavior at high energies, the propagators of the Coulomb gaugegenerate spurious divergences that are di�cult to handle.To have a good power-counting behavior we need to equip the propagators with extra poles,some of which are unphysical. This is achieved for example by choosing the Lorenz gauge-�xingfunction G(φ) = ∂µAµ in (2.4). The Fadeev-Popov ghosts then also have poles. The locality ofcounterterms is manifest, but unitarity is not. 38
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The extra poles must cancel somehow, but their mutual compensation is not evident. Thebest way to prove this compensation is to use the gauge independence of the physical amplitudes,which allows us to switch back and forth between gauge-�xing conditions of the Lorentz typeand gauge-�xing conditions of the Coulomb type. The former make the locality of countertermsmanifest and hide unitarity, while the latter make unitarity manifest and hide the locality ofcounterterms.For example, choose the gauge fermion

Ψ(Φ) =

∫

C̄a
(

ζ∂0A
a
0 − ∂iA

a
i +

ξ

2
Ba

)

, (7.8)which contains two gauge-�xing parameters, ξ and ζ. This functional interpolates between theLorenz gauge (ζ = 1) and the Coulomb gauge (ζ = 0). After integrating B out, the propagatorsof the gauge �elds are
〈A0(k)A0(−k)〉0 =−

iξ2

P (k)
(ξE2 − k̄2), 〈Ai(k)A0(−k)〉0 =

iξ2

P (k)
(ζ − ξ)Eki,

〈Ai(k)Aj(−k)〉0 =
i

E2 − k̄2

(

δij −
kikj

k̄2

)

+ i(ζ2E2 − ξ2k̄2)
ξkikj

k̄2P (k)
, (7.9)where k̄2 = kiki and

P (k) = ξ(ζE2 − ξk̄2)2 − k̄2(1− ξ)(ζ2E2 − ξ2k̄2),while the ghost propagator is
〈

C(k)C̄(−k)
〉

=
i

ζE2 − k̄2
. (7.10)We see that the propagators are well behaved, from the point of view of power counting, whenever

ζ 6= 0. They are not well behaved for ζ = 0, which is the Coulomb limit. The parameter ζ is asort of cuto� that regulates the spurious divergences of the Coulomb gauge. Moreover, at ζ = 0

P (k) is equal to ξ2(k̄2)2 and only the physical poles survive. Instead, unphysical poles are presentwhenever ζ 6= 0.In the previous sections we have proved that the physical quantities are gauge independent.In particular, they are independent of ξ and ζ. Thus, they are also unitary, and obey the localityof counterterms. We see that they are unitary by taking ζ = 0. We see that they obey the localityof counterterms by taking ζ 6= 0.In the case of the standard model in �at space, we can easily generalize the proof of theAdler-Bardeen theorem given in ref. [6] to the family of gauge fermions (7.8), because they are allrenormalizable. Then, the remarks of this subsection allow us to infer that the standard modelin �at space is perturbatively unitary. 39
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In ref. [7] a more general proof of the Adler-Bardeen theorem was given. It holds in a large classof nonrenormalizable theories, which includes the standard model coupled to quantum gravity.Combining the results of [7] with those of section 3, we can extend the validity of the Adler-Bardeentheorem to the most general local gauge fermions. In particular, using an analogue of (7.8), toswitch between the Lorenz and Coulomb gauges of di�eomorphisms and Yang-Mills symmetries,we infer that the standard model coupled to quantum gravity is unitary as a perturbative quantum�eld theory. So are its extensions, as long as they satisfy the assumptions we have made.We stress again that gauge independence is crucial to reach these conclusions, since the Adler-Bardeen theorem per se ensures gauge invariance, but not gauge independence.8 Checks of high-order calculations based on gauge independenceIn this section we discuss how to use the results of this paper to check high-order calculations,under the assumptions of section 6. We have proved thatProposition 1 The beta functions of the physical parameters λ may depend on the gauge param-eters ξ, but that dependence can always be reabsorbed into �nite λ rede�nitions.This proposition also reminds us that there exists a class of subtraction schemes where thebeta functions are gauge independent, in agreement with the general theorem proved in section3. If we are extremely lucky, the framework we choose to simplify high-order calculations mightbelong to that class. In ordinary situations, we may expect to be lucky only to the lowest orders,which may mean till three or four loops, or for special choices of the gauge �xing. However, wemay not be able to identify the right framework in advance. Therefore, contrary to the usual lore,in general we cannot make checks of high-order calculations based on the assumption that λ betafunctions are completely gauge independent.Nevertheless, the beta functions cannot be gauge dependent in an arbitrary way, preciselybecause their gauge dependence must disappear in a suitable class of subtraction schemes. Thanksto this, a criterion to make checks of high-order calculations, based on gauge independence, stillexists. It amounts to verify that every ξ dependence contained in the λ beta functions can becancelled by means of �nite λ rede�nitions. In this section we show that the correct criterion,although less powerful than expected, is nontrivial and powerful enough.For de�niteness, consider the standard model in �at space, and let λi collect the ϕ4 cou-pling, the squared gauge couplings, and the squared Yukawa couplings. The most general λ betafunctions have the form

βi =
∞
∑

n=2

~
n−1χi1···iniλi1 · · · λin , (8.1)40
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where χii1···in are constants and the powers of ~ are inserted to emphasize the order of the loopexpansion. The most general perturbative λ rede�nitions can be parametrized as

λ′i = λi +

∞
∑

n=2

~
n−1ϑii1···inλi1 · · ·λin , (8.2)where ϑii1···in are other constants. We have

β′i=

∞
∑

n=2

~
n−1χi1···iniλi1 · · ·λin +

∞
∑

n=2

n~n−1ϑii1···inλi1 · · ·λin−1

∞
∑

m=2

~
m−1χk1···kminλk1 · · · λkm

≡

∞
∑

n=2

~
n−1χ′

i1···iniλ
′
i1 · · ·λ

′
in . (8.3)Proposition 1 ensures that the gauge dependence contained in the beta functions βi can be ab-sorbed inside the rede�nitions (8.2), that is to say there exist constants ϑii1···in such that thecouplings λ′i have gauge independent beta functions β′i. Using this piece of information, we candetermine which nontrivial checks of high-order calculations are available.The one-loop coe�cients χi1i2i cannot be changed, because they are scheme independent(χ′

i1i2i
= χi1i2i). Therefore, they are also gauge independent. Comparing (8.1) and (8.3), we �ndthat the other coe�cients are related by the formula

χ′
i1···ini = χi1···ini + (n− 1)ϑij{i1···in−2

χin−1in}j − 2ϑj{i1···in−1
χin}ji + · · · , (8.4)where the dots stand for contributions involving ϑi1···ik with k < n. We can de�ne an iterativeprocedure to determine ϑi1···in by assuming that the constants ϑi1···ik with k < n are known, andrequiring that χ′

i1···ini
be gauge independent.Now, if the number of couplings λ is N , the tensors χi1···i`+1i have cN,` ≡ N

(

N+`
`+1

) independentcomponents [33], while the tensors ϑi1···i`j have cN,`−1 components, where ` is the number ofloops. For N = 1 (that is to say a single coupling λ) and ` > 2 it is always possible to absorb thegauge dependence into λ rede�nitions (as long as the one-loop coe�cient χ of the beta functiondoes not vanish), because c1,` = c1,`−1 = 1. For ` = 2 it is not possible, because the second andthird terms on the right-hand side of formula (8.4) cancel each other. Thus, two nontrivial checksare available for N = 1, due to the gauge independence of the one-loop and two-loop coe�cientsof the beta function.For N > 1 more nontrivial checks of high-order calculations based on gauge independenceare available, because cN,` > cN,`−1. Proposition 1 implies that the number of ξ-independentcomponents of the tensors χi1···i`+1i is obtained by modding out the rede�nitions (8.2). Generically,this operation leaves
cN,` − cN,`−1 = N

(

N + `− 1

`+ 1

)41
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independent checks at ` loops. This number is (` + N)/(N − 1) times less than the number wewould obtain if the beta functions were completely gauge independent. Indeed, in that case wewould have cN,` independent checks at ` loops, which is equal to the number of constants χi1···i`+1i.So far, the beta functions of the standard model have been calculated to three loops [34]and the results are fully independent of the gauge-�xing parameters. Presumably, the convenientgauge-�xing functions and the clever treatments of the matrix γ5 used in refs. [34] project ontothe class of subtraction schemes where the beta functions are already gauge independent, at leastto the lowest orders. However, we may expect that this coincidence will stop, sooner or later.When that happens, we must be aware of the facts pointed out in this section. Moreover, we stressthat in the proofs of properties to all orders, such as the proof of the Adler-Bardeen theorem innonrenormalizable theories [7], it is often more convenient to use subtraction schemes that areless practical from the calculational point of view, but more convenient from the theoretical side.There, it is also important to keep in mind that the beta functions do not need to be gaugeindependent.9 ConclusionsIn this paper we have derived generalized Ward identities for potentially anomalous theories, andused them to study the problem of gauge independence. The new equations contain an extraterm that is responsible for a number of interesting e�ects. We have renormalized the equationsof gauge dependence and integrated them. The result is that every gauge dependence can beabsorbed into a canonical transformation acting on the renormalized Γ functional, provided thatthe �nite local counterterms are appropriately �ne-tuned. RG invariance is preserved and, asexpected, the physical quantities are gauge independent. Nevertheless, the beta functions of thecouplings may in general depend on the gauge choice. Gauge independence is useful to switchback and forth between gauge conditions that exhibit perturbative unitarity and gauge conditionsthat exhibit a correct power-counting behavior and the locality of counterterms.In several cases, the Adler-Bardeen theorem ensures that the gauge anomalies cancel to allorders, when they are trivial at one loop. However, it is not su�cient, per se, to ensure that thephysical quantities are independent of the gauge �xing. In this paper we have proved that, in theend, gauge invariance does imply the gauge independence of the physical quantities. Precisely, wehave shown that it is possible to renormalize the theory and �ne-tune its �nite local countertermsso that the cancellation of gauge anomalies ensured by the Adler-Bardeen theorem is preservedfor arbitrary values of the gauge parameters.Said di�erently, assume that the gauge anomalies vanish for some speci�c choices of the gaugeparameters. Varying or turning on a gauge parameter is equivalent to making a canonical trans-formation. After the canonical transformation, it is always possible to re-renormalize the theory42
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and re-�ne-tune its �nite local counterterms to enforce the cancellation of gauge anomalies again.Moreover, the gauge dependence of the renormalized Γ functional is encoded into a convergentcanonical transformation. The theorem proved in section 3 is very general, to the extent that wedid not need to make particular assumptions about the gauge algebra or the properties of thetheory under renormalization. In particular, it holds for renormalizable and nonrenormalizable,chiral and nonchiral, theories and for arbitrary composite �elds. Once we know that the cancel-lation of gauge anomalies holds in the framework we prefer, we know that it holds in every otherframework.One application of the theorem is to power-counting renormalizable chiral gauge theoriesgauge-�xed by means of a nonrenormalizable gauge �xing. It allows us to show that the param-eters of negative dimensions introduced by the gauge �xing do not propagate into the physicalquantities. In other words, the theory remains renormalizable, although in a nonmanifest form.A second application is a crucial step in the proof of the Adler-Bardeen theorem for nonrenor-malizable theories elaborated in ref. [7].It is often possible to prove the cancellation of gauge anomalies in a family of gauges. In thatcase, if the assumptions listed in section 6 hold, we do not need a new �ne-tuning to enforce thecancellation of gauge anomalies after the variation of a gauge parameter. Then, the gauge depen-dence of the theory is encoded into a convergent canonical transformation on the renormalized
Γ functional, combined with a �nite rede�nition of the parameters. This fact makes it apparentthat in general the beta functions of the couplings may depend on the gauge �xing. We expectthat high-order calculations of the beta functions in the standard model will exhibit, sooner orlater, dependences of the type mentioned here.The gauge dependences of the beta functions can be eliminated by rede�ning the couplings inad hoc ways. Thanks to this fact, gauge independence can still be used to make nontrivial checksof the calculations.AppendicesA Useful formulasIn this appendix we collect a few identities that are used in the paper. First, we recall that

(Γ,Γ) = 〈(S, S)〉 , (A.1)where S is any action (renormalized or not), Γ denotes the Γ functional associated with S and
〈X〉 =

1

Z(J,K)

∫

[dΦ]X exp

(

iS(Φ,K) + i

∫

ΦαJα

) (A.2)43
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is the average de�ned by S, X being a local functional. Formula (A.1) can be proved by makingthe change of �eld variables (2.10) in the functional integral (2.8), and recalling that in any dimen-sional regularization the local perturbative changes of �eld variables have Jacobian determinantsidentically equal to one. For details on the derivation, see the appendices of refs. [6, 8].If ζ is any parameter, we also have the formulas

∂Γ

∂ζ
=

〈

∂S

∂ζ

〉

, (A.3)
(Γ, 〈X〉) = 〈(S,X)〉 +

i

2
〈(S, S)X〉Γ, (A.4)where X is an arbitrary local functional and 〈XY 〉Γ denotes the set of one-particle irreduciblediagrams that have one X insertion, one Y insertion, and arbitrary Φ and K external legs, Ybeing another local functional. Formula (A.3) follows from the de�nition of Γ as the Legendretransform of W . Formula (A.4) can be proved by making the change of �eld variables (2.10) inthe average (A.2), and expressing the �nal result in terms of Φ and K. For details on this method,see the appendix of ref. [8]2.A simpler method to derive formula (A.4) is to deform the action S into S + Xσ, where

σ is a constant, consider the deformed version of formula (A.1) and take the �rst order of itsexpansion in powers of σ. By (A.3), Γ is deformed into Γ + 〈X〉σ + O(σ2). Instead, the average
〈Y 〉 of a local functional Y is deformed into 〈Y 〉 + i〈Y X〉Γσ + O(σ2). Indeed, the factor eiSappearing in the integrands of Z(J,K) and Z(J,K)〈Y 〉 [check (2.8) and (A.2)] is deformed into
eiS(1+ iXσ+O(σ2)). Moreover, the deformed average, considered as a functional of Φ and K, isstill a collection of one-particle irreducible diagrams. Thus, the �rst correction to 〈Y 〉 is precisely
i〈Y X〉Γσ. Taking Y = (S, S), we obtain 〈(S, S)〉 → 〈(S, S)〉 + i〈(S, S)X〉Γσ + O(σ2), wherefrom(A.4) follows.If we subtract the equations (A.3) and (A.4) we also get

∂Γ

∂ζ
− (Γ, 〈X〉) =

〈

∂S

∂ζ
− (S,X) −

i

2
(S, S)X

〉

Γ

, (A.5)which is the starting point to derive the equations of gauge dependence.Another useful identity tells us that [16, 8], if Φ,K → Φ′,K ′ is a canonical transformationwith generating functional F (Φ,K ′), and Y (Φ,K) is a functional behaving as a scalar, i.e. suchthat Y ′(Φ′,K ′) = Y (Φ,K), then
∂Y ′

∂ζ
=
∂Y

∂ζ
− (Y, F̃ζ), (A.6)where F̃ζ(Φ,K) = Fζ(Φ,K

′(Φ,K)) and Fζ(Φ,K ′) = ∂F/∂ζ. The �eld and source variables thatare kept constant in the ζ derivative of a functional are the natural �eld and source variables ofthat functional (that is to say Φ′ and K ′ for Y ′, Φ and K for Y , Φ and K ′ for F ).2Note that we have switched from the Euclidean notation used in [8] to the Minkowskian notation used here.44
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B Renormalization of local bifunctionalsIn this appendix we show how to renormalize a generic local bifunctional, and then specialize toevanescent local bifunctionals. Given a theory with action S, assume that a local bifunctional Fhas the form AB, where A and B are local functionals. Couple A and B to external (constant)sources hA and hB , by deforming the action S into S̆ = S− ihAA− ihBB. Then, renormalize theextended action S̆. The renormalized version of S̆ has the form

S̆R = SR − ih̆AAR − ih̆BBR − ih̆B h̆ACR + O(h̆2A) + O(h̆2B),where AR and BR are the renormalized functionals A and B, respectively, h̆A, h̆B are the renor-malized sources, and CR is a local functional. Consider the Γ functional Γ̆R associated with S̆R.Di�erentiating it from the left-hand side with respect to h̆B and then h̆A, and later setting h̆A =

h̆B = 0, we �nd that the renormalized F is equal to FR = ARBR + CR.It is a known fact (see for example [21], chapter 13, or [6], section 6) that an evanescent localfunctional E can be renormalized so that its renormalized version ER satis�es 〈ER〉 = O(ε). Thisproperty extends to evanescent local bifunctionals in a straightforward way. However, we have topay attention to some details.By writing ∂̂µ = η̂µν∂ν and p̂µ = η̂µνpν everywhere inside E, we can express each vertex of Ein a factorized form Tk δ̂k, where δ̂k denotes the evanescent part, made of tensors ηµ̂ν̂ , possibly εfactors and other structures that stay outside of the diagrams, while Tk is a nonevanescent localfunctional and collects all the momenta. We then have E =
∑

k Tk δ̂k. Instead of consideringthe average 〈E〉, consider �rst the diagrams 〈Tk〉 that contain one insertion of Tk. Iterating in
n = 0, 1, . . . , let T(n+1)

kdiv denote the (n + 1)-loop divergent part of 〈Tnk〉, where
Tnk = Tk −

n
∑

p=1

T
(p)
kdivare the functionals Tk renormalized up to and including n loops. By the locality of counterterms,each T

(p)
kdiv is local. Then, the functional En =

∑

k Tnk δ̂k is renormalized up to and including nloops, and satis�es
〈En〉 =

∑

k

〈Tnk〉 δ̂k = O(ε) + O(~n+1), (B.1)because each 〈Tnk〉 is convergent up to O(~n+1). Finally, the functional ER ≡ E∞ satis�es
〈ER〉 = O(ε).In the procedure just outlined we have subtracted away all sorts of contributions T(p)

kdiv, orderby order. More generally, we do not need to subtract those that, once multiplied by δ̂k, giveevanescent results. Indeed, collecting those evanescent local parts inside a local functional ∆E,anything we have said so far for E can be repeated for ∆E. We reach the conclusion that
〈ER〉 = O(ε) even if we �forget� to subtract any evanescent local parts.45
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Once we have renormalized E so that 〈ER〉 is evanescent to all orders, we can apply the sameprocedure to the bifunctional Y = EB, where B is an arbitrary local functional. The outcome isthat we can �nd a O(~) local functional FR, such that the local bifunctional YR = ERBR +FR isrenormalized and the average 〈YR〉Γ is evanescent to all orders.More precisely, we can iterate the renormalization of Y as follows. Write Y = EB =

∑

k δ̂kUk,where Uk = TkB. Let Bn denote the functional B renormalized up to and including n loops.Inductively assume that the n-loop renormalized Uk have the form Unk = TnkBn + Cnk, where
Cnk are local functionals. De�ne Yn =

∑

k δ̂kUnk = EnBn + Fn, where Fn =
∑

k δ̂kCnk. Clearly,
〈Yn〉Γ = O(ε) + O(~n+1), because each 〈Unk〉Γ is convergent up to O(~n+1). By the locality ofcounterterms, the (n+ 1)-loop contributions U(n+1)

nk to 〈Unk〉Γ are made of a local divergent part
U

(n+1)
nkdiv , plus a generically nonlocal convergent part. Consequently, the (n+1)-loop contributionsto 〈Yn〉Γ are the sum of a local divergent part, a local nonevanescent part, plus a genericallynonlocal evanescent part. If we de�ne Un+1k = Tn+1kBn+1+Cn+1k, where Bn+1 is the functional

B renormalized up to and including n+1 loops, and Cn+1k = Cnk−U
(n+1)
nkdiv , we see that 〈Un+1k〉Γis convergent up to O(~n+2), and so 〈Yn+1〉Γ = O(ε) + O(~n+2), where Yn+1 =

∑

k δ̂kUn+1k =

En+1Bn+1 + Fn+1, and Fn+1 =
∑

k δ̂kCn+1k. The conclusion also holds if we �forget� to subtractany evanescent local parts of En+1 and/or Fn+1. The subtraction can be iterated in n so that inthe end 〈YR〉Γ is evanescent to all orders in ~, where YR = Y∞.C Integrating equation (3.33)In this appendix we integrate the equations (3.33) and (3.32). First, we recall how to integratethe simpler equation
∂X

∂θ
= (X,V ), (C.1)for the functional X(Φ,K, θ), given the functional V (Φ,K, θ). Expanding in powers of θ, write

V (Φ,K, θ) =
∞
∑

n=0

θnVn(Φ,K).We want to show that there exists a canonical transformation Φ,K → Φ′,K ′, with generatingfunctional
F(Φ,K ′, θ) =

∫

ΦαK ′
α +

∞
∑

n=1

θnFn(Φ,K
′), (C.2)such that

X ′(Φ′,K ′) ≡ X(Φ(Φ′,K ′, θ),K(Φ′,K ′, θ), θ)is independent of θ. 46
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We can derive conditions on the unknown functionals Fn by applying formula (A.6), whichrelates the functional V of (C.1) to the canonical transformation F. A su�cient condition to have

∂X ′/∂θ = 0 is V = F̃θ, where Fθ = ∂F/∂θ. In other words,
0 =

∞
∑

n=0

θn
[

Vn(Φ,K)− (n + 1)Fn+1(Φ,K
′)
]

, Kα = K ′
α +

∞
∑

n=1

θn
δFn(Φ,K

′)

δΦα
.The �rst equation can be solved for Fn+1 by working recursively in n. It is su�cient to express each

Vk(Φ,K) as a functional of Φ and K ′, by using the second equation, and then set the coe�cientof θn to zero. This proves that the desired canonical transformation (C.2) does exist. Clearly,
X ′(Φ′,K ′) coincides with X(Φ′,K ′, 0). Therefore, expressing everything by means of �elds andsources without primes, we get

X(Φ,K, θ) = X(Φ′(Φ,K, θ),K ′(Φ,K, θ), 0).Now, assume that a functional Y (Φ,K, θ) satis�es
∂Y

∂θ
= (Y, V ) +G, (C.3)where V (Φ,K, θ) and G(Φ,K, θ) are two other functionals. De�ne a new functional G̃ and a map

Lθ : Z → LθZ, where Z is a functional, as
G̃(Φ,K, θ) =

∫ θ

0
dθ̄G(Φ,K, θ̄), LθZ(Φ,K, θ) =

∫ θ

0
dθ̄ (Zθ̄, Vθ̄) ,where Zθ̄ = Z(Φ,K, θ̄) and Vθ̄ = V (Φ,K, θ̄). Observe that

∂

∂θ
LθZ = (Z, V ).Then, equation (C.3) turns into equation

∂Ỹ

∂θ
= (Ỹ, V ), for Ỹ = Y −

∞
∑

n=0

Lnθ G̃.Note that the terms Lnθ G̃ are at least O(θn+1). Using the result found above, the canonicaltransformation Φ,K → Φ′,K ′ given by formula (C.2) is such that the transformed functional
Ỹ ′(Φ′,K ′) ≡ Ỹ (Φ(Φ′,K ′, θ),K(Φ′,K ′, θ), θ)is θ independent. Finally, if G = O(un) for some expansion parameter u (which is ε or ~, whenwe apply this theorem in subsection 3.2) and V is regular in u, then the canonical transformation

Φ,K → Φ′,K ′ is also regular in u, which implies
Y (Φ(Φ′,K ′, θ),K(Φ′,K ′, θ), θ) = Ỹ ′(Φ′,K ′) + O(un).47
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Setting θ = 0, we get

Y (Φ′,K ′, 0) = Ỹ ′(Φ′,K ′) + O(un).Hence, expressing everything by means of �elds and sources without primes,
Y (Φ,K, θ) = Y (Φ′(Φ,K, θ),K ′(Φ,K, θ), 0) + O(un).In other words, the functional Y (Φ,K, θ) still evolves by means of a canonical transformation,but only up to O(un).In most applications, the functionals V and G of equation (C.3) may intrinsically depend on

Y . For example, this happens when Y is some renormalized action (or the Γ functional associatedwith it) and V , G are (the averages of) some renormalized local functionals, calculated withthat action. We can disentangle this di�culty by expanding each functional in powers of ~ andproceeding inductively in this expansion. Writing
Y =

∞
∑

n=0

~
nYn, V =

∞
∑

n=0

~
nVn, G =

∞
∑

n=0

~
nGn,we obtain the equations

∂Yn
∂θ

− (Yn, V0) =

n−1
∑

k=0

(Yk, Vn−k) +Gn, (C.4)which have the same form as (C.3). The contributions Vk and Gk to V and G with k 6 n do notdepend on Yn. For k = 0 this is obvious. For k > 0 it is su�cient to observe that the vertices
Yn of order ~

n of the renormalized action Y can only contribute to the one-particle irreduciblediagrams associated with V and G that have n+1 or more loops. Indeed, at least one additionalloop must be closed to connect a vertex Yn with the insertions provided by V or G. When Y isthe Γ functional and V , G are averages of local functionals, we can argue similarly.Now, assume that we have solved the equations (C.4) for n < n̄, and consider the equations(C.4) for n = n̄. The unknown is Yn̄, while Vk and Gk with k 6 n̄ are independent of it. Thus,equations (C.4) can be solved with the method explained above. We conclude that the procedurewe have given to solve the equations (C.3) is well de�ned.D Standard model coupled to quantum gravityIn this appendix we report some reference formulas for the standard model coupled to quantumgravity. The classical �elds φ contain the vielbein eāµ̄, the Yang-Mills gauge �elds Aaµ̄ and thematter �elds, where the indices a, b, . . . refer to the Yang-Mills gauge group (within which weinclude the Abelian subgroup) and ā, b̄, . . . refer to the Lorentz group. The classical action Sc(φ)48
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is equal to the sum ScSM +∆Sc, where

ScSM =

∫

√

|g|

[

−
1

2κ2
(R+ 2Λc)− 1

4
F aµ̄ν̄F

aµ̄ν̄ + Lm

]and ∆Sc collects the invariants generated by renormalization as counterterms, multiplied byindependent parameters. Here, R is the Ricci curvature, g is the determinant of the metrictensor, F aµ̄ν̄ is the Yang-Mills �eld strength, Lm is the matter Lagrangian coupled to gravity, Λcis the cosmological constant, and κ2 = 8πG, where G is Newton's constant.The functional SK of formula (2.2) reads
SK =

∫

(C ρ̄∂ρ̄A
a
µ̄ +Aaρ̄∂µ̄C

ρ̄ − ∂µ̄C
a − gfabcAbµ̄C

c)K µ̄a
A +

∫

(

C ρ̄∂ρ̄C
a +

g

2
fabcCbCc

)

Ka
C

+

∫

(C ρ̄∂ρ̄e
ā
µ̄ + eāρ̄∂µ̄C

ρ̄ + C āb̄eµ̄b̄)K
µ̄
ā +

∫

C ρ̄(∂ρ̄C
µ̄)KC

µ̄ +

∫

(C āc̄ηc̄d̄C
d̄b̄ + C ρ̄∂ρ̄C

āb̄)KC
āb̄

+

∫
(

C ρ̄∂ρ̄ψ̄L −
i

4
ψ̄Lσ

āb̄Cāb̄ + gψ̄LT
aCa

)

Kψ +

∫

Kψ̄

(

C ρ̄∂ρ̄ψL −
i

4
σāb̄Cāb̄ψL + gT aCaψL

)

+

∫

(

C ρ̄(∂ρ̄ϕ) + gTaCaϕ
)

Kϕ −

∫

BaKa
C̄ −

∫

Bµ̄K
µ̄
C̄
−

∫

Bāb̄K
āb̄
C̄ ,where ψL are left-handed fermions, ϕ are scalars, while T a and Ta are the anti-Hermitian matricesassociated with their representations. The triplets Ca-C̄a-Ba, C āb̄-C̄āb̄-Bāb̄ and C µ̄-C̄µ̄-Bµ̄ collectthe ghosts, the antighosts and the Lagrange multipliers of Yang-Mills symmetry, local Lorentzsymmetry and di�eomorphisms, respectively. It is easy to check that (SK , SK) = 0 in arbitrary

D dimensions.Finally, the gauge fermion of formula (2.4) reads
Ψ(Φ)=

∫

√

|g|C̄a
(

gµ̄ν̄∂µ̄A
a
ν̄ +

ξ

2
Ba

)

+

∫

eC̄āb̄

(

1

κ
eρ̄āgµ̄ν̄∂µ̄∂ν̄e

b̄
ρ̄ +

ξL
2
Bāb̄ +

ξ′L
2
gµ̄ν̄∂µ̄∂ν̄B

āb̄

)

−

∫

√

|g|C̄µ̄

(

1

κ
∂ν̄g

µ̄ν̄ +
ξG
κ
gµ̄ν̄gρ̄σ̄∂ν̄g

ρ̄σ̄ −
ξ′G
2
gµ̄ν̄Bν̄

)

,where ξ, ξL, ξ′L, ξG and ξ′G are gauge-�xing parameters.E Comparison with manifestly nonanomalous theoriesWe have mentioned that an unexpected consequence of our results is that in AB nonanomaloustheories the beta functions of the couplings can depend on the gauge-�xing parameters. It isinteresting to better understand why this does not happen in manifestly nonanomalous theories.We actually begin with nongauge theories, that is to say theories that have no gauge sym-metries. There the action S(Φ,K) does not even depend on the sources K and the canonicaltransformations are just arbitrary changes of �eld variables.49
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Denote the classical action by S(φ), the renormalized action by SR(φ) and the renormalized Γfunctional by ΓR(φ). We assume that SR and ΓR are de�ned by subtracting away the divergencesjust as they come, in the minimal subtraction scheme.Consider a local, perturbative change of �eld variables

ψi(φ, θ) = φi + O(θ) (E.1)for the classical action S. Let Sθ(φ, θ) denote the transformed classical action,
Sθ(φ, θ) = S(ψ(φ, θ)),which obviously satis�es
∂Sθ
∂θ

=

∫

∆φi
δlSθ
δφi

,where
∆φi =

∫

δψj

δθ

δlφ
i

δψj
. (E.2)Denote the renormalized Sθ by SRθ and the Γ functional associated with it by ΓRθ.We want to show that the change of �eld variables (E.1) on S is mapped onto a renormalizedchange of �eld variables on SR and a nonlocal, convergent change of �eld variables on ΓR. Thisproperty is encoded into the equations of gauge dependence, which now read

∂SRθ
∂θ

=

∫

∆Rφ
i δlSRθ
δφi

,
∂ΓRθ
∂θ

=

∫

〈

∆φiR
〉 δlΓRθ
δφi

, (E.3)where ∆Rφ
i is the renormalized version of the composite �eld (E.2). Equations (E.3) are justparticular cases of equation (C.1), and can be integrated with the method explained in appendixC. So doing, it is straightforward to prove that the θ dependences of both SRθ and ΓRθ are encodedinto pure changes of �eld variables, with no rede�nitions of parameters.We point out that the �rst equations of formula (E.3) are highly nonlinear in SRθ, because

∆Rφ
i, being a renormalized composite �eld, intrinsically depends on SRθ. Nevertheless, withthe inductive procedure explained in appendix C we can disentangle this dependence. Similarly,the equations satis�ed by ΓRθ contain the average 〈

∆Rφ
i
〉 on the right-hand side, which is alsodetermined by SRθ. The procedure to integrate the equations of ΓRθ is basically the same as theone for SRθ and is again given in appendix C.Formulas (E.3) can be proved by induction, using the minimal subtraction scheme. Let Sn =

Sθ + O(~)×poles and ∆nφ
i = ∆φi + O(~)×poles denote the action and the composite �eld (E.2)renormalized up to and including n loops. Assume that

Rn ≡
∂Sn
∂θ

−

∫

∆nφ
i δlSn
δφi

= O(~n+1). (E.4)50
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Clearly, this assumption is satis�ed for n = 0. Moreover, in the minimal subtraction scheme Rnis made of pure poles.Di�erentiating the Γ functional Γn, associated with Sn, with respect to θ, we get

∂Γn
∂θ

=

〈

∂Sn
∂θ

〉

n

=

∫

dDx

〈

∆nφ
i(x)

δlSn
δφi(x)

〉

n

+ 〈Rn〉n. (E.5)Now,
δlSn
δφi(x)

exp

(

iSn + i

∫

φjJj

)

= −Ji(x)− i
δl

δφi(x)
exp

(

iSn + i

∫

φjJj

)

.Using this formula inside (E.5) we can drop the last term by integrating by parts, because whenthe derivative δl/δφi(x) acts on ∆nφ
i(x) it gives zero in dimensional regularization. Finally, weobtain

∂Γn
∂θ

= −

∫

〈

∆nφ
i
〉

n
Ji + 〈Rn〉n =

∫

〈

∆nφ
i
〉

n

δlΓn
δφi

+ 〈Rn〉n. (E.6)Since Sn and ∆nφ
i are renormalized up to and including n loops, the (n+1)-loop divergent parts

Γ
(n+1)
ndiv and ∆

(n+1)
ndiv φi of Γn and 〈

∆nφ
i
〉

n
are local. Moreover, the O(~n+1) divergent part of 〈Rn〉ncoincides with the O(~n+1) part of Rn, because Rn starts from O(~n+1) and it is just made ofpoles. Thus, taking the O(~n+1) divergent parts of formula (E.6) we get

∂Γ
(n+1)
ndiv
∂θ

=

∫

∆
(n+1)
ndiv φi

δlSθ
δφi

+

∫

∆φi
δlΓ

(n+1)
ndiv
δφi

+
∂Sn
∂θ

−

∫

∆nφ
i δlSn
δφi

+ O(~n+2). (E.7)Subtracting the divergences just as they come, we de�ne
Sn+1 = Sn − Γ

(n+1)
ndiv , ∆n+1φ

i = ∆nφ
i −∆

(n+1)
ndiv φi.Clearly, the Γ functional Γn+1 associated with Sn+1 is renormalized up to and including n + 1loops. Using (E.7), we �nd

Rn+1 ≡
∂Sn+1

∂θ
−

∫

∆n+1φ
i δlSn+1

δφi
= O(~n+2).Thus, the inductive assumption (E.4) is promoted to the next order. The equations (E.3)follow by taking n = ∞ in (E.4) and (E.6).We see that in theories with no gauge symmetries a change of �eld variables on the classicalaction does not generate rede�nitions of parameters in the renormalized Γ functional: the pa-rameters θ introduced by the �eld rede�nition do not propagate into the beta functions of thecouplings. Moreover, we do not need to re-�ne-tune the �nite local counterterms.Another approach to these issues was given in refs. [35, 36], where the changes of �eldvariables were mapped from the classical action to the renormalized action and the (renormalized)generating functionals Z, W and Γ, as well as a more general type of Γ functional, called master51
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functional. That approach also shows that a change of �eld variables does not a�ect the betafunctions of the couplings, in the theories that have no gauge symmetries.Similar properties hold in manifestly nonanomalous gauge theories, where the equations

∂SRθ
∂θ

= (SRθ, Q̃Rθ),
∂ΓRθ
∂θ

= (ΓRθ, 〈Q̃Rθ〉) (E.8)hold and can be integrated [8]. Again, the conclusion is that a canonical transformation acting onthe classical action is converted into a renormalized canonical transformation acting on the renor-malized action, and a nonlocal, convergent canonical transformation acting on the renormalized
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