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Preface

Most modern high-energy physics, including the standard model of particle
physics, is formulated by means of perturbative quantum field theory.

When the perturbative expansion is performed in a naive way, it gen-
erates “divergences”, that is to say quantities that appear to be “infinite”,
instead of being small. Typically, they are due to diverging improper in-
tegrals. The presence of divergences suggests that it should be possible to
define the perturbative expansion in a smarter way.

With the help of a cutoff, divergences become temporarily finite. Then
they can be classified and moved around. Clearly, if a divergence disappears
by changing the parametrization of the theory, it is not a true divergence,
but just a blunder due to an unfortunate choice of variables. If there exists a
reparametrization that makes all the divergences disappear, then the theory
is actually convergent.

Divergences can be relocated by performing all sorts of operations that
in normal circumstances leave the physics unchanged, such as changes of
field variables, as well as redefinitions of the parameters, in particular the
coupling constants. Renormalization is the reparametrization that moves
the divergences “to the right places”, assuming that such places do exist. In
simple theories, fields and couplings just get multiplied by constants, whence
the name re-normalization. In more complicated situations the redefinitions
can even be nonpolynomial. Once the theory is renormalized, the cutoff can
be safely removed, and the physical quantities become meaningful.

The reparametrization solves the problem of divergences, and allows us to
define the correct perturbative expansion. Under certain, rather general, as-
sumptions it is always possible to absorb the divergences into reparametriza-
tions. However, the price can be considerably high: the introduction of
infinitely many new independent parameters. If the divergences can be can-
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4 PREFACE

celled by keeping the number of independent parameters finite the theory
is called renormalizable. The renormalizable theories acquire a very special
status among all theories.

Renormalizability provides a way to select the theories. This selection is
actually welcome, since it gives us a reason to discard a huge set of theories
that otherwise would have to be a prior: included. Among other things, no
physical theory in more than four spacetime dimensions survives the selec-
tion, which makes renormalization a good candidate to explain why we live
in four dimensions. The set of renormalizable theories contains the standard
model in flat space. Therefore, it allows us to explain three interactions
of nature out of four. Unfortunately, there is no known way to formulate
quantum gravity so as to include it in the set of renormalizable theories.

Inserting a parameter (the cutoff) to remove it later is a mathematical
trick like many. In some sense, it is just a “technicality”, and most of renor-
malization appears to be a rather technical issue. However, technicalities like
this may have extremely important and unforeseen consequences, and con-
siderably affect the physical predictions of the theory. Examples are given by
the renormalization-group flow and the anomalies: scale invariant theories
can become scale dependent, coupling “constants” can become energy depen-
dent, strong interactions can become weak, eternal particles can decay. The
reason why the reparametrizations used to eliminate the divergences do not
leave the physics completely unchanged is precisely that they are divergent.

Ironically, the “divergences” are the best known quantities of quantum
field theory, to the extent that certain physical amplitudes can be calculated
exactly to all orders, because of the intimate relation they have with diver-
gences. At present, perturbative quantum field theory is the most successful
theoretical achievement of elementary particle physics. Some of its aspects
are so deep that most physicists need years and years to capture their true
meanings. In some sense, the conceptual gap between quantum field the-
ory and quantum mechanics can be compared to the one between quantum
mechanics and classical mechanics. Several physicists have been puzzled by
the indeterminacy principle, and have never accepted that it could be part
of the ultimate description of nature. Nowadays, some physicists still view
divergences as “pathologies” and think that “renormalization is a way to hide
what we do not understand under the carpet”. More probably, they do not
understand what they are talking about.
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5

Removing divergences is just a more sophisticated way to define improper
integrals. Following Riemann, we can insert a cutoff, calculate an integral for
finite values of the cutoff, and remove the cutoff at the end. If the procedure
works, the integral is called convergent. If the procedure does not work,
the integral is called divergent. Different prescriptions may lead to different
results. For example, it is well known that the Riemann and the Lebesgue
approaches are not equivalent.

Quantum field theory requires just one step more. There, we do not
have one integral at a time, but a whole theory, which is a huge collection of
integrals, related to one another. We insert a cutoff, and make calculations for
finite values of the cutoff. However, before removing it, we have the freedom
to make a variety operations that normally do not change the physics. If
the procedure is successful, the theory is actually convergent, otherwise it
is divergent. In the end, we discover that the operations we make affect
some physical predictions in crucial ways with respect to what we naively
expected at the beginning. However, there is no source of embarrassment
in that, because the Riemann and the Lebesgue approaches may also give
results that differ from what one naively expects.

Ultimately, renormalization is one of the concepts we understand better,
at present, in high-energy theoretical physics. We bet that all the future
developments of high-energy physics will emerge more or less directly from
it. At the same time, there is no doubt that quantum field theory is still
formulated in a rather primitive way. A complete reformulation is desirable.
One purpose of this book is to collect the present knowledge about renor-
malization and stimulate people to start from that point and make an effort
to upgrade the formulation of quantum field theory as much as it takes to
achieve substantial progress and trigger a renaissance of the topic.

We are aware that in the past decades several approaches alternative
to quantum field theory have been proposed, but we remain skeptical about
their claimed virtues. Although they are often presented as “beyond quantum
field theory”, we do not see any justification to the artificial enthusiasm that
has surrounded them for too long. For example, there is little doubt that,
conceptually speaking, string theory is a huge step backwards with respect
to quantum field theory. We can only wish good luck to those who still do
not see that all the alternatives to quantum field theory are doomed to sink
into anonymity.
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6 PREFACE

The book contains the basic notions of renormalization. The main goals
are to construct perturbative quantum field theory, study the consequences
of renormalization, and show that the perturbative formulation of a wide
class of quantum field theories, which includes the standard model coupled
to quantum gravity, is consistent to all orders. Most issues are treated using
modern techniques, privileging the most economical and powerful tools. On
the contrary, not much effort is devoted to explain how such a successful
theoretical framework has emerged historically. Some aspects of quantum
field theory are very involved, and those who study the matter for the first
time can greatly benefit from the rational, non historical approach of this
book.

Although self-consistent, this book is not meant to replace the existing
books on quantum field theory. Since its main focus is renormalization,
several basic notions of quantum field theory are just taken for granted.
Quantum field theory is formulated using the functional integral and the
dimensional regularization technique. Algebraic aspects are covered to the
extent that is necessary to treat renormalization. In particular, issues such
as the topological properties of anomalies, the geometric aspects of gauge
fields, and so on, are not discussed. A number of exercises, with solutions,
are distributed along the book to help the layman familiarize with the most
important tools of renormalization.
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Chapter 1

Functional integral

The functional integral is an integral over a space of functions. It is one of
the basic tools that can be used to formulate the perturbative expansion of
quantum field theory. It also provides an alternative formulation of quantum
mechanics, which is equivalent to the Schrodinger and the Heisenberg ones.

The functional integral is defined as a limit of an ordinary multiple inte-
gral, when the number of integrated variables tends to infinity. Imagine that
spacetime is discretized, with elementary cubic cells of size a, and put into a
box of finite size L = Na. The discretized pattern is called “lattice” and the
distance a between two vertices of the lattice is called “lattice space”. For
the moment, we work at finite values of @ and N, but at a second stage we
take the limits a — 0 and N — oco. At finite a and N, the set of spacetime
points x; is finite and the discretized version of a function f(x) is a finite set
of values f; = f(x;), with i =1,2,... N. The f; are the variables over which
we integrate.

Counsider the finite-dimensional ordinary integral

/de, (f), (1.1)

where c(a, N) is a normalization factor, which can depend on a and N, and
G(f;) is the discretized version of a generic functional G(f). When a tends
to zero and N tends to infinity, the number of integrated variables tends to
infinity. Assume that there exists a normalization factor c¢(a, N) such that
the limits @ — 0, N — oo exist. Then, the functional integral over the space

14B1 Renorm 7



8 CHAPTER 1. FUNCTIONAL INTEGRAL

of functions f(x) is defined as

J1a1 6t =l cfa.) /dez ().

N—)oo

The simplest integrals we need are Gaussian. The basic Gaussian multiple
integral reads

+oo IV 1 N (27T)N/2
dx; exp | —= e Mz | = , 1.2
/_oo 131 P 22;1 ) VdetM 12

where M is a positive-definite symmetric matrix. Formula (1.2) can be
proved by diagonalizing M with an orthogonal matrix A'. Write M =
NDNt, where D = diag(my,--- ,m,) and m; are the eigenvalues of M.
Perform the change of variables x = Ny and recall that the integration mea-
sure is invariant, since det N' = 1. Then, the integral becomes the product
of the one-dimensional Gaussian integrals

+oo 1 2
/ dy; exp <_§miyi2> =4/—,
— 00 my

whence (1.2) follows. We also have the formula

Z(a) :/ l_Id:EZ exp | —= Z riM;jx; + Z:ltlal

3,j=1

(2m)N72

= ex aMa, 1.3
WP;Z / (1:3)

which can be easily proved from (1.2) by means of the translation x = y +
M a.
We can define correlation functions

1 oo BN
)=
1 8”Z(a)

(1.4)

- ~ Z(a) Oay, - - - Oaj,
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For example, we find

1 0°Z(a) _
(wje) = Z(a) Oa;j0ay |,_ Mjk ’
(@jTpwmmn) = M My + M, M + MM (1.5)

Every correlation function that contains an odd number of insertion van-
ishes: (2, - - - T4y,.,) = 0 Vn. Instead, the correlation functions that contain
even numbers of insertions are determined by a simple recursion relation,
which reads

2n
(@i - Tig) = ) My (i, Ty - @i )- (1.6)
k=2

where the hat denotes a missing insertion. This formula is proved by noting

that
1 o 1, "
g V=2 | Zgtpt
() = e (59/M )
1 8211—1 1 1
- M), (atM~! }
2n—1(n—1)vaa- T Day, [( a);, (@M ~a)
82(n—1) . | -1
— aM " a
— 2 'Z ““ca aiy - Oag, -+ Oaiy, ( )
2n
k=2

In the third line the hat on da;, denotes a missing derivative. The recurrence
relation (1.6) gives

— -1 -1
(i) = SO Mpb o Mph o (1.7)
P

where the sum is over the inequivalent permutations P of {iy,---i2,}. By
this we mean that identical contributions are counted only once.

Our first goal is to define the N — oo limits of the multiple integrals
just met, and others of similar types, and use them to formulate quantum
mechanics and perturbative quantum field theory. We begin with quantum
mechanics.
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10 CHAPTER 1. FUNCTIONAL INTEGRAL

1.1 Path integral

Consider a non relativistic particle of mass m, potential V' (¢) and Lagrangian
. m.

L(g,d) = 54" = V(a)- (1.8)
Suppose that the particle is observed in the locations ¢, at time tj, and
gr at time tr and that it is not observed in the time interval t;, < t < ts.
Quantum mechanics teaches us that it is meaningless to tell “where” the
particle is while it is not observed, or even assume that it is somewhere.
More or less equivalently, we can imagine that it is anywhere, or everywhere.
In particular, it does not make sense to say that the particle moves from gj,
to gr along a particular trajectory ¢(t), such as the classical trajectory that

extremizes the action
te

S(qr, te; qins tin) = [ dt L(q(t),4(2)) (1.9)

tin
A possible way out is to imagine that it moves from g;, to ¢¢ along all possible
paths
qt), tmn<t<ty,  q(tin) =qn,  qltr) =qr

at the same time. Then, each path must contribute to physical quantities,
with a suitable (complex) weight. Clearly, if this idea is right we have to
“integrate” over the paths.

In some sense, we replace the principle of minimum action with a new
principle, which is able to account for the quantum effects. The semiclassical
approximation suggests that each path should be weighted by the factor

7
€xp <ES(Qf7 Lt Qinatin)> . (110)

Indeed, in the limit & — O the strongly oscillating exponent singles out the
trajectory of minimum action as the only one that survives.

These considerations, although inspiring, are still vague. We do not know
how to define the integral over the paths. As mentioned before, one possibility
is to discretize the problem and define the path integral as the limit of an
ordinary multiple integral, when the number of integrated variables tends to
infinity. Thus, let us discretize the time interval ¢, <t < ¢ by dividing it in
N subintervals
_ tf — tin

i1 <t <t t; =ti—1 +e¢, € N
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1.1 Path integral 11

i=1,...,N, with ¢ty = ti, and ¢t = tr. The path ¢(t) is then replaced by the
set of positions ¢; = q(t;) at times t;.

The trajectory of the ¢-th subinterval can be taken to be the one that
extremizes the action. However, in many cases simpler subtrajectories are
equally good approximations. For example, we can take the straight lines

_ i — qi—1
q(t) = %(t_ti—l)‘i‘%’—l- (1.11)
This choice produces a picture like
q
Gin »
qt
~
3 t
tin tf

In the limit ¢ — 0 the approximate path can tend to any function ¢(t),
including the ones that are not differentiable and not continuous. From the
physical point of view there is no reason why the unobservable trajectory
q(t) should be continuous and/or differentiable, so the path integral should
sum over all functions ¢(t).
In the ¢-th subinterval we have the constant velocity
4 —qi-1
—

so the action (1.9) can be approximated by

N N — gi1)?
Zg(%,ti;%—l,tz‘—l) = Z {M - 5V(Qi)} +0(%?), (112)

2
i=1 i=1 c

where the bar over S is there to remember that we have chosen the special
subtrajectories (1.11). Below we prove that |g; — ¢;_1| ~ O(¢'/?) and that
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12 CHAPTER 1. FUNCTIONAL INTEGRAL

the corrections O(£%/2) appearing in formula (1.12) can be neglected in the
limit € — 0.
Inspired by (1.10), we weigh each infinitesimal portion of the trajectory

by the factor
1 -
1 XP <%S(Qiati§%’—lati—l)> ;

where A is some normalization constant, to be determined. This means that
during a time subinterval the wave function (g, t) evolves into

vlat+e) = |

—00

—+00

dq’ exp <%5(q,t +¢; q/,t)> U(d, ). (1.13)

Consequently, during the finite interval ¢, < ¢ < ¢; the evolution of the wave
function (g, t) is given by the formula

“+oo
Ba.t) = / aq' K (q.t:¢, ) (d, 1), (1.14)

—00
where K(q,t;¢',t'), called kernel of the time evolution, has the path-integral
expression

K(q,t;q/,t = hm A~ /H dg; ehzl 1 5(aistidi-1,ti-1) (1.15)

E/[dq] exp <55(q)> :

and now to =t', ty =t, g0 = ¢, qv = q, e = (t —t')/N. The last line is the
common short-hand notation used to denote the functional integral.
Observe that, in particular, we must have

K(q,t:q',t) = 0(q¢ — 4'). (1.16)

Schrédinger equation

Now we prove that the time evolution encoded in the path-integral formulas
(1.13) and (1.15) is equivalent to the one predicted by quantum mechanics.
In particular, we show that the wave function (1.14), with the kernel defined
by (1.15), satisfies the Schrodinger equation. We discretize time as explained
above, and compare 1(q,t + ¢) and ¥(q¢’,t) by means of (1.13). We have

1 [toe imA2 e 3/2
vlgt+e) = [ AA B0y an, )

—00
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1.1 Path integral 13

after a translation ¢ = ¢ — A. Recall that

. m imA2
i\ gmine® 7 =08

This formula can be proved assuming that the mass has a small positive

imaginary part. Thus, the two sides of (1.17) match in the limit e — 0 if we

take
1 _ m
A\ 2mike’

Observe that this choice also ensures that (1.16) holds. We are still assuming

that |A| ~ /2, which allows us to neglect the A dependence contained inside
O(£%/?). This assumption is justified by the calculations that follow.
Expanding the integrand of (1.17) in powers of A, we obtain

m +o00 imA2 o A2 82
A e (1 —-A—+ —— A3
\ 2ihe /_oo e ( 90 " 2 og OB

SEV@ 0 ) v (L)

Defining the integrals
+o0 imA2
I, :/ dA A"e 2R,
—00

we find Isg 1 = 0 and

Iy, 2rih
Ty = —2ien22=2 o [2T00E
om m

N
Iy, =T <]€ + 1) <—2Zh€> .
2 m

We find Iy, /Iy ~ €*, which also proves |A| ~ £'/2, as claimed before. Finally,

which gives

rearranging (1.17), dividing by e and taking the limit ¢ — 0, we find the
Schrodinger equation
oY h? 0%y

The outcome is independent of the approximation we have used to expand

S(qi,ti; gi—1,ti—1). For example, we could have written V(g;—1) in (1.12),

14B1 Renorm



14 CHAPTER 1. FUNCTIONAL INTEGRAL

instead of V(¢;), or (V(¢;) + V(gi—1))/2. The difference is always made of
terms that are @(¢%2) in the integrand of (1.18), which are negligible in the
limit ¢ — 0.

Thus, we have proved that the path integral provides a formulation of
quantum mechanics that is equivalent to the Schrédinger and the Heisenberg
ones.

Free particle

We explicitly calculate the kernel in the case of the free particle. There,

m(gi — qi—1)?

S(gisti; qi-1,tio1) = 5z ;

so we have

N/2 2
d .t = 1 | | = = Qz qi— )
Kiree (q, t;q,t ) Z\}lm 5 ZhE / dg; e2h i) )%

Changing variables to ¢; = ¢; — ¢, we can rewrite the integral as

egihg(q q) /]hldq ez,w( Gt MG+2G1 (q— q))
i=1
where
2 -1 0 0
-1 2 -1 0
M=| 0 -1 --- -1 0 (1.19)
0 -1 2 -1

0 0o -1 2

isan (N — 1) x (N — 1) matrix. Now the integral is of the Gaussian form
(1.3) with
im(q —¢')
M———M = ——=(0,...0,1
e a 7= (0,...0,1)

and N — N — 1. Again, we assume that the mass has a small positive
imaginary part. We have

dtM =N, (M YHYy_in1=——. (1.20)
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1.2 Free field theory 15

The first formula can be proved recursively. Indeed, denoting the I x I matrix
M of (1.19) with My, we have

detMN_l :2detMN_2—detMN_3, detMl =2 detMg =3.

The second formula of (1.20) gives the last entry of the inverse matrix My" |,
and is just the determinant of the associated minor (which coincides with
Mpy_3), divided by the determinant of My_;.
Finally, using formula (1.3), with the appropriate substitutions, and re-
calling that eN =t — ¢/, we find
m im(g—q')?

oo =
Kfre&(q7t7Q7t)_ me%(t t)7

which is the known result.

1.2 Free field theory

Given a classical field theory, described by the action S(g), we want to define
the functional integral

Jiad e (356 (121)

At present, we can do this only perturbatively, by expanding around the
free-field limit.

From now on, we work in Euclidean space, where some complications are
avoided. For simplicity, we also set i = 1.

Free field theories are described by Gaussian functional integrals. We
start from the scalar field in four dimensions. Its action in Euclidean space
is

1

S(e) =5 /d%; ((Oup)? + m?p?). (1.22)

We want to define the generating functional

Z(J) =" = / [dy] exp (—S(cp)—i- / cpJ) (1.23)

where J are external sources, [ ¢J = [d'zp(z)J(z) and W is the logarithm
of Z. First, we discretize the Euclidean space. Each coordinate z* is replaced
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16 CHAPTER 1. FUNCTIONAL INTEGRAL

by an index i,, and the field ¢(x) becomes ©(i,y- The discretized form of

the action reads
1
Saser(P() =5 D LU M 6090 (1.24)
{ind{av}
for some matrix My; y¢;,} that we do not need to specify here. It suffices to
recall that M is the discretized version of the kinetic operator —O 4+ m?:

M{iu}{ju} = (_D + m2)‘discr : (125)

The discretized version of the functional integral reads

Z(Jgi,y) = / [T1de.0] exp | —Saiser(Pi,y) + > iy Tin)
{in} {in}

Using formula (1.3), we find

1 _1 1
W(JGi,y) = Z(Jg,)) = 5 > T My Tty — 5 ndet M+ C,
{in} v}
(1.26)

where C' is a constant that collects also the normalization factor c(a, L) of
formula (1.1).

To define the continuum limit, we basically need to define the inverse of
M and its determinant. However, note that the determinant, as well as the
constant C', appear only in Z and W, but not in the correlation functions
(1.4). Therefore, we actually just need to define M 1. This is not difficult,
because the inverse of —[J+m? is by definition the Green function Gg(z,y),
that is to say the solution of the equation

(=0 +m*)Gp(z,y) = 6W(z - y). (1.27)

Normalizing the functional integral conveniently and using (1.3) and
(1.26), we can write
1
2 ="V, W)= [das@Gate gy, (129)

We can define the J-dependent correlation functions

Jldele(ar) - - o(xn) exp (=S(p) + [ @J)
J1de] exp (=S(p) + [¢J)

I "2 (J)

T Z(0) 5T @) -0 (@)’

(p(x1) - () s =

(1.29)
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1.2 Free field theory 17

where the subscript J means that sources are non-vanishing. In particular,
formulas (1.5) give

1 2zW)
(p()ely)) = Z0) 93@0I W) |,
{p(@)e(y)p(2)p(w)) Gp(z,y)Gp(z,w) + Gp(z,2)Gp(y, w)
+Gp(z,w)Gp(y,z), (1.31)

= Gp(z,y), (1.30)

and so on. We see that, in practice, the free theory contains just one piece
of information, which is the Green function.

Formulas (1.6) and (1.7) can be generalized following the same steps. We
have

L —

(p(@1) - p(z2n)) ZGB (@1, zk){p(@2) - pak) - pla2n))  (1.32)

_ZGB (zpa),Tp@)  GB(TP@En-1):TP@n)), (1.33)

while the correlation functions that contain an odd number of insertions
vanish.

Equation (1.33) is known as Wick’s theorem. It says that ¢) the external
points x1 - - - x9, must be connected pairwise in all inequivalent ways, i) each
connection is a Green function and #i7) each inequivalent set of connections
is multiplied by the coefficient 1.

It is natural express Wick’s theorem graphically. A Green function is
drawn as a double line connecting a pair of points. Then formula (1.32)
reads

o

>
2 Top — k=9

Top

(1.34)

where the legs attached to the discs denote the insertions of the correlation
functions.
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18 CHAPTER 1. FUNCTIONAL INTEGRAL

The Euclidean Green functions can be computed by switching to momen-
tum space. We define the Fourier transform as

d4p DT ~
o) = [ e 50, (1.35)
Then we find
dip et (@=y) m

Gp(z,y) = (p(x)p(y)) = / (

Kl(m‘x - y’)7

(1.36)

2m)ip? +m?  Arllz — g

where K7 denotes the modified Bessel function of the second kind.

This result is proved as follows. We must assume that z and y do not
coincide, and use a trick to dump the oscillating behavior at infinity. Let us
start from the massless limit. To calculate the integral at m = 0, we multiply
the integrand by e~%IPl, where § > 0, and take the limit & — 0 at the end.
Switching to spherical coordinates, we first integrate over |p| and later over
the angles. The basic steps are

d4p eip-T—0lp| 1 “ dfsin26
Cp(,0)|,p=lim [ L& — [ CELE
B(@,0)l,,—0 6—1>I(I)1+/(27T)4 P2 S0k 47r3/0 (0 — ilx| cos 0)?

1 1) 1
=i 1— = . 1.
6—1>I(§l+ 4222 ( VoZ g;2> A2 g2 (1.37)

To calculate the integral at m # 0, we make it convergent in a different

way, at « # 0, that is to say by differentiating with respect to m. Then,
after switching to spherical coordinates, we first integrate over the angles,
and later over |p|. We find

4 mei DT
9 Gp(.0) = /(d 2

om 2m)4 (p? + m?2)?
< p2J1(plx|)dp m
= ="K
27r2|x|/ (p? + m?2)2 472 o(mlz]),

where Ji(x) is the Bessel function of the first kind. Integrating over m and
requiring (1.37) at m = 0, we obtain (1.36).

The correlations functions can be mathematically interpreted as distri-
butions. Then, the sources J should be viewed as test functions. Indeed, the
Green function Gpg(z,y), which appears to be singular at « = y, is actually
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1.3 Perturbative expansion 19

regular as a distribution. To see this, it is sufficient to observe that when
Gp(z,y) acts on a test function J(y), the behavior of the integral

4 Ni o JW)
| Gse I ~ g [a

around x ~ y shows no singularity. We have used the result (1.37), since the
behavior of (1.36) at = ~ y coincides with the behavior at m — oo.

1.3 Perturbative expansion

Interacting theories are defined by expanding perturbatively around their
free field limits. Although this sounds like a straightforward process, the
perturbative expansion of quantum field theory actually underlies a huge
conceptual advancement with respect to the notions we are accustomed to.
To clarify this point, it is worth to pay attention to what we do when we
normally approximate. We have, say, difficult differential equations, which
we want to solve. We know some classes of exact solutions, which typically
do not cover the cases of physical interest. We realize that some physical
situations are only slightly different from those described by the exact so-
lutions, so we work out other solutions by expanding perturbatively around
the exact ones. What is important for our present discussion, is that we are
talking about a well defined problem, described by difficult, but well defined,
equations. Then, we approximate. We approximate something that does
exist, something that exists before the approximation.

In quantum field theory, instead, we must really start from nothing, apart
from the free field limit. There are no equations, and no theory, before we
make approximations. Thus, when we say that we perturbatively expand
around the free field theory, we are actually lying: we are not expanding at all.
The truth is that we are perturbatively building the interactive theory, piece
by piece, out of the free field one. The enterprise we are going to undertake
is a creative one, not just a deductive process. Therefore, if something goes
wrong along the way, it will be no real surprise. To solve the problems that
emerge, we have to be more and more creative. In particular, we have to build
the mathematics that we need by ourselves. Moreover, every time we find a
difficulty, and guess a possible solution, we must start over, implement the
proposed solution from the very beginning, and rederive everything up to the
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point where we found the problem, check that the problem does disappear
as expected and ensure that no collateral difficulties emerge.

Another crucial point is that the perturbative expansion should be con-
sidered as a formal power series. In mathematics, a formal power series is a
power series that is just viewed as a list of addends, disregarding completely
whether the sum converges or not. Perturbative quantum field theory in-
vestigates the consistency of the perturbative expansion as a formal power
series. It studies the properties of the addends (e.g. their consistency with
gauge invariance, unitarity, causality, etc.) and the relations among them.
Proving that, for example, the Standard Model is consistent to all orders,
as a perturbative quantum field theory, which is one of the main objectives
of this book, is already a nontrivial task. The great advantage of working
with formal power series is that it allows us to freely exchange the sum with
derivative operations, as well as integral operations. Only at the very end we
will inquire whether the sum converges or not. Indeed, it is meaningless to
demand that a power series be convergent before having shown that it obeys
all the desirable physical and mathematical requirements as a formal powers
series. The renormalization group and the anomalies of quantum field theory
provide well-known cases where the power series is in the end convergent.

Having to build some of the mathematics anew is not surprising either.
If we take for granted that the mathematics we already have is good enough
to formulate the physical laws of so far unexplored research domains, we
may be making a too restrictive assumption. More reasonably, our mathe-
matics is a product of our interaction with the environment in which we are
placed as human beings. When we explore energy domains that are very far
from those we are accustomed to, the mathematics we have previously de-
veloped may be unsatisfactory. In the study of cosmologic and astrophysical
phenomena, for example, it has so far proved to be exhaustive. However,
in some cases, such as in the study of microscopic phenomena, it has al-
ready shown its limitations. In the case of quantum mechanics, we could
fill the gap by means of a “correspondence principle”. The idea was that,
although there was a huge difference between the classical and the quantum
phenomena, at least there was a sort of correspondence between the two.
Clearly, we cannot expect to go on forever relying on lucky correspondences,
to the extent that quantum field theory forces us to abandon that idea. For
example, the “classical” Lagrangian of quantum chromodynamics, which is
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the theory that describes what the strong interactions become at high en-
ergies, has no correspondence with classical phenomena. Exploring smaller
and smaller distances, the problem becomes harder and harder, and we may
be forced to give up every correspondence with what we know, and even
renounce common sense and intuition, to develop a completely new mathe-
matics by plunging into pure abstraction and technicalism. Quantum field
theory, renormalization, with all the problems we find along the way and the
partial solutions we work out, give us hints of what the new mathematics
will have to be.

That said, the only thing we can do in this moment is pretend there
is nothing to worry about, and make a step forward along the process of
“creative approximation”.

Consider a theory of interacting scalar fields with action S(y) = Sp(¢) +
S1(p), where Sp(y) is (1.22). For concreteness, we can take the ¢? theory in
four dimensions, which has

m2

1 A
S(p) = /d4a; <§(8M<,0)2 + 5+ Fp‘*) : (1.38)
Defining Z(J) as in (1.23) we can write

Z(J)Z/[dso] exp <—S(¢)+/J¢>

Z/[dsp] exp (—51(p)) exp <—50(<P) —l—/J(p)
:i % / [de] ST () exp (—So(w) + / J<,0>

n=0

=2 Y st @0, (139

n=0

where Zy(J) is given by (1.28). We use the subscript 0 to denotes quanti-
ties at A = 0. In particular, (---)o s are free-field correlation functions at
nonvanishing sources. We have

st = (31) [Tttt oo
=1

Now, by (1.29) every ¢-insertion can be expressed as a functional derivative
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with respect to J. Therefore,

. AN\" 1 54 Z(J
= (31) 7 /] Hd4 e 2D

Inserting this formula into (1.39), we get

2u) :é% <_%>131 (/ d%ian?wi)) ZolJ)

= exp <—%/d4 M‘z )> Zo(J).

More generally, we have

Z(J) =" = exp ( Sy (é)) Zo(J). (1.40)

The scalar field inside Sy is formally replaced by the functional derivative
d/6J, which acts on the free-field generating functional Zy(J).

Formula (1.40) expresses the generating functional of the interacting the-
ory as an infinite sum of terms, each of which involves just functional deriva-
tives of the generating functional of the free theory (which, as we know,
contains only the Green function) and integrals over coordinates. Some
functional derivatives are taken at the same point, which is called “vertex”.
Moreover, the Green functions connect pairs of points, as we see from the
Wick theorem (1.34). Formula (1.40) can be efficiently expressed diagram-
matically. Diagrams are made of vertices and lines, and are drawn following
a simple set of rules, which we now derive.

Feynman rules

The correlation functions can be defined from the expansion of the generating
functional Z(J) in powers of J:

O)Z%/ (Hd4$z> (o(x1) - (xn)) J(21) - - - T (T0).
n=0 i=1

For some practical purposes, it is also useful to define correlation functions
that have a different normalization. At J # 0 we define

C1 5" Z(J)
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while at J = 0 we write them as (p(z1) - p(zy))". In particular, we have

(et oo = 2 (1) ol = LA g

Since we have normalized Z;(0) to 1, we could omit this factor. However,

the formulas are more explicit if we keep it, which also emphasizes that Z(0)
is not equal to one.

Observe that Z(J) can be viewed as the generating functional Z’(J) of
the correlation functions (1.41):

20) =203 [ (H dx> () -+ plan)) (1) - T(an) = Z(7).
n=0 i=1

(1.43)
Consider a generic correlation function (1.41) in the ¢* theory. Writing

((p(g;l) . cp(ﬂ:n)>' — m /[dcp]cp(azl) . (p(xn)e—so(so)—ﬁ [ d*z ot (z)

[eS) (_)\)k A k .,
22(4!);%!/ ITd"; (so(éﬂl)"-sO(:vn)l:[lso (yj))o, (1.44)

we obtain a sum of contributions that are due to free-field correlation func-
tions with n 4+ 4k insertions. We call the points z1,--- ,z, “external” and
the points y1,- - -, yx “internal”. Each internal point carries four ¢ insertions.
We refer to it as a vertex with four legs.

The free-field correlation functions of (1.44) can be worked out by means
of Wick’s theorem. Let us consider the graphical version (1.34) of that
theorem. We see that each point is connected once to every other point.
Moreover, each contribution is multiplied by the coefficient one. Thus, the
interacting correlation function (1.44) is expressed as a sum of diagrams that
are constructed by applying the following rules:

1) the diagrams have n external points 1, - , 2, and an arbitrary number
k of internal points y1,- -+, yx; the latter are called vertices;

2) lines connect pairs of points; a line is called internal if it connects two
internal points, otherwise it is called external;

3) the line that connects two points z and w is associated with the Green
function Gp(z,w);

4) four legs are attached to each internal point, one leg to each external point;
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5) each diagram with k vertices is multiplied by the factor

% <j4—ﬁ>k (1.45)

6) the positions y of the vertices are integrated with measure d*y.
For example, consider the case n =2, k = 0,1. We have

A

(la)e(w2)) = Galor,zz) - 1 [ dlylplan)elaz) ! W+ O0?)

=Gp(r1,22) — 5/d4yGB(331,y)GB(y,y)GB(y,@)

A
—§GB($17$2)/d4yG2B(y,y) +O(N),

which graphically reads

|
|
rol>
|
ool>
=
=
=
[}

T To T T9 T Y X @

(1.46)
plus O(A2). Different contributions originated by the right-hand side of (1.34)
can give the same diagram, that is to say the same integral. For example,
the second diagram on the right-hand side of (1.46) appears 12 times, which
is why its coefficient is in the end 1/2. Instead, the third diagram appears 3
times, so its coefficient is 1/8.

We can collect the arrangements that give the same diagram into a single
contribution, provided that we multiply it by a suitable combinatorial factor.
Then, the perturbative expansion is organized as a sum over inequivalent
diagrams G, which are multiplied by (1.45) and an extra factor sg that
counts how many contributions of Wick’s theorem give the same G.

It is also convenient to move to momentum space, where some further

simplifications occur. For example, consider the last-but-one diagram of
(1.46). We find

/d4u Gp(z,u)Gp(u,u)Gp(u,y)

4 4 4 ip(z—u)+ig(u—y)
/d4 /dp dk g ¢ . (1.47)
L(2m)t (p2 +m?2)(k? +m?)(¢? + m?)
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The wu-integral can be evaluated immediately, and gives (27)*® (p — q).
Thus, (1.47) is the Fourier transform of

(2m) 260 (p — g)—— < / (d4k ! > ! (1.48)

p? +m? 2m)4 k2 +m? ) ¢+ m?

on p and ¢. This formula illustrates some properties that are actually valid
for all graphs. First, we learn that it is much more convenient to work in mo-
mentum space, rather than in coordinate space. Indeed, (1.48) looks much
simpler than the left-hand side of (1.47). Second, the theory is invariant
under translations, so the total momentum is conserved. As a consequence,
each correlation function is multiplied by a delta function like the one ap-
pearing in (1.48), which ensures that the momentum that enters the graph
equals the momentum that exits from it, or, equivalently, that the total mo-
mentum that enters the graph vanishes. We do not need to write this delta
function down every time, and from now on we will simply omit it. Third,
the factors 1/(p? + m?) and 1/(¢> + m?) are just the Green functions at-
tached to the external legs: they do not enter the surviving integral. Thus,
in momentum space we can “amputate”’ the diagram, which means omit the
Green functions attached to the external legs. Note that the factorization
(1.48) does not occur in coordinate space.

What remains is the “core” of our diagram, that is to say its truly non-
trivial part, which is, in the case at hand,

/ ﬂ # (1.49)
(2m)* k2 +m?

Unfortunately, the integral (1.49) is infinite, as are many integrals that we are
going to work with. However, this kind of problem, which is the main topic
of this book, does not concern us right now. What is important here is that
we have identified a few tricks that can help us save a lot of effort, by working
in momentum space and concentrating on what occurs inside the diagram,
since what happens outside is not new. From a certain point onwards, we
will not need to use double lines to denote Green functions anymore, apart
from the situations where it is really necessary: it will be understood that
internal lines carry Green functions, while external lines do not.

Focusing on the cores of diagrams, we can now formulate the Feynman
rules in momentum space, in arbitrary d dimensions, for the correlation func-
tions (1.41) of a scalar field theory with arbitrary interactions.
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The Fourier transform Gg(p) of the two-point function (p(z)p(y)) is
called propagator. We have

d
(pla)e) = [ eV Ga(p).

The propagator is graphically denoted with a line that connects two points.

We associate a vertex with each interaction term of the Lagrangian. A vertex
is graphically denoted with lines ending at the same point, also called legs.
Each leg is a field ¢. The value of the vertex is equal to minus the coefficient of
the associated Lagrangian term, summed over the permutations of identical
legs. In momentum space, the momentum p of the Fourier transform ¢(p) is
conventionally oriented towards the vertex.

For example, in the ¢* theory we have (in arbitrary dimensions)

— 1 — )

(1.50)

Consider a correlation function (1.41) at J = 0 with n = E external legs
and assume that we want to calculate its O(\*)-corrections. To achieve this
goal,

1) assign a momentum p to every external leg, imposing overall momentum
conservation;

2) draw all different diagrams G that have k vertices and E external legs;
3) assign a momentum ¢ to every internal leg, imposing momentum conser-
vation at every vertex.

Next, associate an integral Zg with each diagram G as follows:

a) write the propagator associated with every internal leg;

b) multiply by the value of every vertex;

¢) multiply by the combinatorial factor c¢g explained below;

d) integrate over the surviving independent internal momenta ¢, with the
measures d%q/(2m)%.

The combinatorial factor is given by the formula

Lle
cg = T 1 -
[L, nile;

Here, n; is the number of vertices of type 7 contained in G, and ci—1 is the

(1.51)

combinatorial factor that multiplies the vertex of type ¢. For example, ¢; =
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N, if the ith vertex has N identical legs, such as ¢ . Instead, ¢; = N1!Ny!,
if the vertex is @™ ™2 and so on. Finally, the numerator sg in the number
of contributions of Wick’s theorem that lead to the same diagram G.

The safest way to compute sg is by drawing the vertices of G on a piece
of paper, together with F points associated with the external legs. Then,
count how many ways to connect the external legs to the legs attached to
the vertices give the diagram G. The result of this counting is sg. It is
not advisable to avoid the counting and compute sg by means of shortcuts
(typically based on the symmetry properties of the diagram, which may be
very difficult to spot), although some textbooks suggest to do so.

Normally, sg is a huge number, to the extent that it almost simplifies
the factors appearing in the denominator of (1.51). This is one reason why
it is convenient to arrange the expansion in terms of diagrams. Nevertheless,
sometimes it can be better, for theoretical purposes, to forget about diagrams
and write the expansion as a sum over the sets of contributions coming from
Wick’s theorem, each of which has s = 1. So doing, it is much easier to have
control over the combinatorial factors. We will use this kind of expansion in
some proofs later on.

Diagrams can also be classified according to the number L of their “loops”.
The precise definition of L is the number of independent internal momenta gq,
those on which we must integrate. Thus, formula (1.46) contains a one-loop
diagram and a two-loop one. We will see later that the expansion in powers
of A coincides with the expansion in the number of loops. Graphically, loops
appear as closed internal lines. However, it is not always easy to count them
as such.

Basically, the combinatorial factors are due to identical legs. This is
the reason why, to simplify some formulas, it is common to divide each
Lagrangian term by the permutations of its identical legs. For example, in
the * theory we have multiplied the quadratic part of the Lagrangian by 1/2!
and the vertex by 1/4!. With a different normalization, the propagators and
the vertices get multiplied by extra coefficients. Apart from that, the rules
to construct graphs and the formula for the combinatorial factors remain the
same.

Finally, observe that the factors 1/(]];n;!) in ¢g are brought by the
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expansion of the exponential in power series, e.g.
A A S (=)™ (=)™ " "
o (5 o5 [2) = X mime (#) ([#)
n,m=0
and correspond to the permutations of identical vertices.

We illustrate the calculation of combinatorial factors with a couple of
examples. Consider the one-loop diagram of (1.46). It contains just one
vertex with ¢ = 4!. Moreover, we can easily verify that s = 4-3, since the left
external leg can be connected to the vertex in four ways, and then the right
external leg can be connected to the vertex in three ways. In this particular
case, the diagram in uniquely determined once the external legs are assigned.
Thus, ¢cg = (4 - 3)/4! = 1/2, which is indeed the factor that multiplies the
diagram in formula (1.46), together with the value of the vertex, which is
-

Next, consider the diagram

(1.52)

It is made of three identical vertices, so we have a factor 1/(4!)® and a factor
1/3!. The coefficient s is equal to 3(4!)3. To calculate it, let us first draw
three vertices with four legs each, and four external points. Then we connect
the points in all the ways that lead to the graph we want. We begin from
the up-left external leg, which can be arranged in 4 - 3 ways, where 3 is the
number of vertices we can choose, and 4 is the number of legs of each vertex.
Once that is done, the down-left external leg can be chosen in just 3 ways,
because its vertex is already determined. Next, the up-right external leg can
be arranged in 4 - 2 ways, after which the down-right external leg can be
connected in 4 ways. Then, consider an internal leg of the left vertex: it
can be attached to other internal legs in 6 ways. When this is done, the
remaining internal leg of the left vertex can be attached to 3 internal legs.
Finally, the remaining internal legs can be connected in 2 ways. In total

0 4-3-3-4.2.4-6-3-2  3(4)* 1

e 31(41)3 R A,
Because of (1.42), the information just given is also sufficient to determine
the correlation functions (1.29) at J = 0. In particular, Z(0) = (1)’ Zy(0)
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is a sum over diagrams with no external legs. There is a simple way to
characterize the correlation functions without primes. Indeed, they differ
from the correlation functions with primes just because they do not receive
contributions from the diagrams that contain subdiagrams with no external
legs. This statement will be proved at the end of the next section. Here we
just give a simple example: the two-point function without primes at O(X)
simply looses the last term of (1.46), so

(p(x1)p(x2)) = G(w1,22) — %/d4yGB(x17y)GB(yay)GB(yaxQ) +O(N).

1.4 Generating functionals, Schwinger-Dyson equa-
tions

The rules given in the previous section determine the correlation functions
with primes and the generating functional Z(J). It turns out that Z(J)
contains redundant information. For example, working with T (.J), instead,
of Z(J), it is possible to reduce a lot of effort. A third functional, which is the
Legendre transform of W (J) and is denoted with I'(®), allows us to further
simplify the calculations. In this section we study the generating functionals
and their properties. We start by deriving a functional equation for Z(.J),
called Schwinger-Dyson equation.

We begin by noting that the functional integral of a total functional
derivative is zero. We have

0= [dw]iexp =S(p)+ [ Jp
()

- [ G% ; J(a;)) exp (—S(cp) -/ Jgo) . s)

Using the perturbative expansion, it is sufficient to prove this formula for
the free field theory, but with an arbitrary set of ¢-insertions. Consider a
massive field. In the discretized version of the functional integral, where we
have a finite number of ordinary integrals, we obviously have the identity

+o0 0
0:/ [T1de,] 5 II ey | exp (—Saser(egiy) ¢
—oo gy ot | \(noycr

(1.54)
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for every {k,} and every set I of insertions ¢y, }, where Saiscr(¢gi,}) 18
the free discretized action (1.24). Indeed, one integral, the one over ik,
vanishes, because the exponential contains

m2 2
€xp —7@{1%} s

which sufficient to kill all contributions of the boundary ¢y, } — Zo0. Since
(1.54) holds for every lattice space a and size L, it also holds in the continuum
limit.

The result is actually much more general, to the extent that it also holds
when the mass vanishes and the free-field action is not positive definite in
the Euclidean framework (which is the case, among others, of gravity). In-
deed, we should not forget that, although we are temporarily working in the
Euclidean framework, the correct theory is the one in Minkowski spacetime.
There, the functional integral (1.21) contains an oscillating integrand, which
can be always damped at infinity by assuming that the field has a mass with
a small positive imaginary part +ie, which is later sent to zero. So doing,
we can prove that the identity (1.53) is always true in perturbative quantum
field theory. The reader who is familiar with the operatorial formulation of
quantum field theory will notice that this prescription is also the one that
defines the correlation functions as T-ordered products. In other words, the
functional integral automatically selects the T-ordered correlation functions.

Then, formula (1.53) gives

1020 = [14d]|(-0+mdpte) + 50| e (5000 + [ 76).

(1.55)
which can be graphically represented as

. @ = (-0 +m2)4@+%%
* (1.56)

Here the disc stands for Z(J) and the dot for J. A leg attached to the disc
is a functional derivative with respect to J, i.e. a @-insertion. Three legs
meeting at the same point x denote three functional derivatives with respect
to J(z). To write (1.55), we have exchanged the functional integral with the
derivatives contained in (. In general, we have the identity J,(¢(z)---) =
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(Oup(x)---), where the dots stand for any insertions at points different from
2. We can prove this identity as follows. Consider the generating functional
Z(J) (1.23) and (for definiteness) the two-point function

B L 82Z())
(p(@)p(y)s = Z(J) 1m.

If we write J(z) = Ji(z) — 9,J5(z) inside (1.23), where J; and J§ are
arbitrary, the functional derivative with respect to J}' originates an insertion
of 0,¢(y). To see this, we must use

/w(Jl — 0pJy) = /le +/J2“(@uso),

where the integration by parts can be justified by assuming that Jj' decreases
rapidly enough at infinity. Indeed, since the sources J are test functions, we
can choose them as smooth as we want and, if needed, with compact support.
Thus, we find

B2 82— 0,8
(p(z)0up(y))g =Z(J) 1m =Zz(J)"! 5J1($)5J£Lp(y§
— 2100250 ((aypn)),

Pod(x)od (y)

Multiplying both sides of (1.55) by Gp(y, z), integrating over x and re-
labeling y — x we obtain

A
Q- —Q-—
x T

(1.57)
where, as before, the double line stands for the Green function.
We can derive an alternative equation,
A
(=0 +m*){p(@))s = J(2) = (@)1, (1.58)

if we divide both sides of (1.55) by Z(J). Again, if we insert the Green
function in (1.58), we get

Wy = [ d Gate) )~ 5 [ dyGa@nPw)s.  159)
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Now, recalling that Z = exp(W), observe that

3
<(,03>J — e—W(J)(;S?eW(J) — W/// + 3wlwl/ + W,37 (160)

each apex denoting a J derivative. Then equation (1.59) can be graphically

Ok b0

represented as

D>~

(D —®

(1.61)

where now the disc denotes W. Again, the legs attached to the disc denote
functional derivatives with respect to J.

The third generating functional I'(®) is the Legendre transform of W.
Define the functional ®(J) as

()2 = = (e(@))J. (1.62)

From (1.28) we have

(), = / dly Gp(z,9) () + O(N).

We can perturbatively invert ®(J) and define the functional J(®)(x) such
that J(®(J)), = 1. We have

J(®@), = (-O0+m?)d(z) + O(N). (1.63)
Now, the functional I(®) is defined as
0(®) = -W(J(®)) + /d4x J (@), ®(x). (1.64)
We easily find

(@) % / Az ((0,8)° + m?®%) + O(N),
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so I" looks like a sort of “quantum action”. In the literature it is often called
effective action. Note, however, that in Minkowski spacetime I' is not even
real. The I functional collects the amplitudes that are necessary to calculate
the S matrix.

Let us work out the Schwinger-Dyson equation satisfied by I'. First,
observe that since I' is a Legendre transform we have

OT(®)
0P (x)

= J(®),. (1.65)

This relation can be easily verified by explicit differentiation. Second, using
the formula for the derivative of the inverse function, we also have

FPWs0()),  (0J(®)\T" [ PT(@) -1
6J(x)oJ(y)  &J(x) < 5P (y) ) - (5@(:1;)5(1)(3/)) : (1.66)

We write this formula symbolically as Wy, = 1/T';,, where the subscripts

denote derivatives with respect to the arguments (J for W, ® for I') at the
specified points. Third,

1 1 1
Wayz = — ——7T 1.67
e / Fxs Pyt qu s ( )

where the integral is over the repeated subscripts. Using (1.60)-(1.67), equa-
tion (1.58) becomes

or(e) 9 Al 5 / 1 1 1 3
50(z) (—=O4+m*)P(x) a0 <<I> (x) T T, qufsm—l— FMCI)(x) .
1.68)
Graphically, this formula reads
—() = -0+ m) o) - §(a)

A A

3, 5
(x) (1.69)

where the line with a cut denotes 1/T”.
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We know that the correlation functions (p---¢) can be expressed as
functional derivatives of Z(J) with respect to J, calculated at J = 0, and
divided by Z(0). Similarly, the functional derivatives of W with respect to
J, calculated at J = 0, and the functional derivatives of I' with respect to
®, calculated at ® = 0, define W and I" correlation functions, respectively.
Our purpose is to characterize the correlation functions of Z, W and I' more
precisely and find the relations among them.

The functional Z is the generator of all correlation functions. We prove
that W is the generating functional of the connected correlation functions.
That is to say, W contains precisely the contributions to Z originated by
connected diagrams. We then write

W) = Z:O% / (Hl d%z‘) (plan) -+ plaa))e (@) - I (@)

where the subscript . stands for “connected”.

Moreover, we prove that I' is the generating functional of the connected,
amputated (which means that the external legs carry no Green functions Gg)
one-particle irreducible (commonly abbreviated as 1PI) correlation functions,
which we simply call “irreducible”. Irreducible diagrams are those that do
not become disconnected by cutting one internal line. Precisely, we prove
that —I" exactly contains the (amputated) contributions to Z and W that
are due to irreducible diagrams, with only one exception: the free two-point
function, which has an extra minus sign. We then write

—I(@) = ;)% / (1_1 d) (pl1) -+ o) ipr® () - @),

To prove that the W and I' correlation functions are connected and irre-
ducible, respectively, it is sufficient to note that
i) W and I' are connected and irreducible, respectively, at the free-field level,
i1) the W equation (1.61) and the I" equation (1.69) are connected and irre-
ducible, respectively;
ii1) equations (1.61) and (1.69) can be solved algorithmically from the free-
field theory.

Property i) is obvious. We now prove that equations (1.61) and (1.69)
are connected and irreducible, respectively. Observe that equation (1.57),
instead, is neither of the two. Indeed, (1.57) contains the product J(z)Z(J),
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and generates disconnected contributions when we differentiate with respect
to J. Equation (1.61) contains no products of functionals, which means that
it is connected. On the other hand, it is clearly reducible. Finally, equation
(1.69) is connected and irreducible. Indeed, the first three terms of (1.69)
are the classical field equations. Being local, they are just vertices, rather
than diagrams, so they are irreducible. The other terms of (1.69) are clearly
irreducible.

Next, we prove that equations (1.57), (1.61) and (1.69) can be solved al-
gorithmically starting from the free-field theory. Observe that by repeatedly
differentiating those equations with respect to the sources, J or ®, and later
setting J or ® to zero, we obtain relations among the correlation functions
of Z, W and I'. Each differentiation amounts to add a leg to a disc and sum
appropriately. The right-hand sides of equations (1.57), (1.61) and (1.69) are
the sums of two sets of contributions, which we call U; and Us. The set U is
the one that does not carry a factor of A. It contains no disc, or a disc with
no leg. The set U is the one that carries a factor of A and contains discs with
at most three legs. An analogous decomposition holds for the differentiated
equations and is the crucial property to prove our construction. If we take
n functional derivatives, the left-hand sides become discs with n 4+ 1 legs,
which stand for the (n + 1)-point correlation functions. The right-hand sides
are, again, the sums of two types of contributions, U; and U,. The set U
contains no factor of A and discs with at most n legs. In the cases of W and
I" such a set vanishes after a sufficient number of functional derivatives. The
set U, contains a factor of A and discs with at most n + 3 legs.

Equations (1.57), (1.61) and (1.69) ensure that to determine the (n+ 1)-
point function to the order ¥, it is sufficient to know the m-point functions,
m < n, up to the order \¥ and the m/-point functions m’ < n + 3, up to
the order \*~!. Iterating the argument r times, we find that to determine
the (n + 1)-point function up to the order A\*, we need to know the m-point
functions, m < n—r+3h, to the orders \*~" with h = 0,1,...7+1. Taking
r = n+ 3k, we need to know the m-point functions, m < 3(h — k), up to the
order \N*=P: if H # K we have zero, if H = K we have Zy(0), which can be
normalized to 1. This proves that equations (1.57), (1.61) and (1.69) can be
solved algorithmically, as claimed.

We have considered, for simplicity, the ¢* theory, but the results clearly
extend to any polynomial theory in arbitrary spacetime dimensions.
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Clearly, disconnected diagrams are products of connected ones, so W (J)
and Z(J) contain the same amount of information. However, working with
W (J) instead of Z(J) saves us some effort. In the free-field limit, for example,
only the two-point function is connected, so W (.J) contains just one term [see
(1.28)], while Z(.J) contains infinitely many, because it is the exponential of
W(J).

The simplification due to I' is more clearly visible in momentum space,
rather than in coordinate space. Observe that a convolution becomes a prod-
uct after Fourier transform. The reducible diagrams are those that can be
split into two parts, connected by a single leg. In momentum space they
factorize, so they “disconnect”. Clearly, we loose no information if we con-
centrate on the “minimal” factors of such products. Working with I' we take
advantage of this simplification.

So far, we have proved that all the diagrams that contribute to W (respec-
tively, I') are connected (irreducible). We still have to prove the converse,
i.e. that all the connected (irreducible) diagrams do contribute to W (I).
To show this, we proceed as follows.

Let us begin with W. Write

Z(J) = 1+W(J)+%W2(J) +%W3(J)---. (1.70)

Since Z(J) contains all the diagrams, and W(J) contains only connected
diagrams, W (J) contains all the connected diagrams of Z(.J). Now, take the
connected part of equation (1.70), and note that the powers W"(J), n > 1,
can give only disconnected contributions. Using (1.43), we get

Z'N|, =2, =1+ W(J)|, =1+ W(J). (1.71)

C

Thus, the connected diagrams contained in Z'(J) = Z(J) and W (J)
coincide. Moreover, in these two functionals they appear with the same co-
efficients. This property ensures that the Feynman rules we have determined
for Z can be used also for W: we just have to discard the diagrams that are
disconnected.

Comparing the two sides of (1.70), we get, in the first few cases,
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Observe that W(0) is the sum of connected diagrams that have no ex-
ternal legs. Consider a correlation function (p(x1)---¢(zy,)) and write it
in terms of W derivatives [see (1.60) for an example|. It is easy to check
that W (0) never appears: only the derivatives W® with n > 0 are in-
volved. Thus, the correlation function (¢(z1)---¢(zy,)) can be expressed as
the sum of products of connected diagrams that have a nonvanishing num-
ber of external legs. This statement was left without proof at the end of
the previous section. Instead, the correlation function (p(z1)---¢(x,)) =
(p(x1) - - - ()W O=Wo(0) contains products of all the connected diagrams,
including those that have no external legs. The diagrams that appear in both
correlations functions are multiplied by the same coefficients.

It remains to study the correlation functions of —I". From (1.65) and
(1.69) we see that J(®) is a sum of irreducible diagrams. Consider (1.64)
and restrict it to the irreducible diagrams. We have

T(®) = @)y = W@~ [ T8 (172)

To manipulate this formula, it is convenient to write J = (=0 +m?)® + AJ
and expand in powers of AJ, where AJ = O(\) can be read from the right-
hand sides of (1.68) and (1.69). We find

0J 0J6J

Turning this expansion around, we can also write

W(J)—/J<I>=W((—D+m2)‘1>) /(AJ N5y / J&J&J

-:W((—D+m2)<1>)—/<1>(—D+m /AJ&MJAJ—I----

W(—O+m?)®) = W (J-AJ) =W (J)— /A,]éﬂ 1/A oW

Now we take the one-particle irreducible contributions of both sides of this
equation. Note that the last term, as well as the higher-order corrections
collected inside the dots, always give reducible diagrams, since AJ contains
vertices. Thus, we get

—T(®) = W((-O+ m?)®)|,p, — /(I)(—D +m?)d. (1.73)

Replacing J by (=0 + m?)® inside W(J) is equivalent to amputate the
external legs and attach a field ® to them. Formula (1.73) tells us that —
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contains the amputated irreducible diagrams of W, with exactly the same
coefficient they have in W, apart from the free two-point function, which
has an extra minus sign because of the last term of (1.73). Indeed, at the
free-field level we have
Iy = % /<I>(—D +m?)® = %/J(—D +m?)7LT = W,

so +I'" is the amputated W (instead of —I'). Finally, the Feynman rules
worked out for Z and W also work for —I' (apart from the free two-point
function), provided we discard the reducible diagrams.

It is easy to see that the results of this section do not depend on the
form of the vertex, nor on the free-field action around which we perturb,
nor on the type of the fields. For example, if we replace the interaction
~ [ o by ~ J ©% or by the sum of i ¢t and i 8, or even by interactions
that contain derivatives, such as ~ [ ©? (8u<p)2, etc., all the arguments given
above can be generalized with obvious modifications. The only assumption
that is crucial for the derivation is that the interactions be local, which
means that each vertex should be the integral of a monomial constructed
with the fields and their derivatives. In the end, we find that in every local
perturbative quantum field theory the generating functional Z contains all
the correlation functions, while W and I' contain only the connected and
one-particle irreducible correlation functions, respectively. Moreover, the
correlation functions appear in Z, W and I' with the same coefficients, apart
from the I' free-field two-point function.

Exercise 1 Integrating (1.69), calculate T'(®) at the tree level and at one
loop.

Solution. The first line of (1.69) can be integrated straightforwardly, and
gives S(®). The second line is made of two terms. The first of them can
generate only two-loop diagrams, so we can neglect it. The second term
gives diagrams that contain at least one loop. Thus, at the tree level the I'
functional coincides with the classical action: I'(®) = S(®).

To calculate the one-loop corrections it is sufficient to calculate 'y, at
the tree level, which is just

525(®)

Sey 0P (x)0P(y)

= (-O+m?+ %@Z(x))a(x —y),
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in the limit y — 2. Then we insert it into the last term of equation (1.69),
which becomes

A 1 A 1 1 6

ZP(r)— = ZP(x)— = ——— [ d'yInS,. 1.74

S0 = 5P — 5y [l (T
having used A\® = S”. Finally, the ' functional reads

1

F(@)ZS(@)—F%/d‘lx In Sy, = S(®) + 5tr [1 525(®)

e
plus two-loop corrections, plus unimportant constants. Although for clarity
we have used the ¢? theory to derive this result, it can be easily checked that
formula (1.75) holds for an arbitrary action S(®), because the specific form
of the action is actually not necessary for the derivation. [J

The classical action S(p) and the functional —W (J) satisfy an interesting
duality relation. Consider iJ as the “fields”, S;(iJ) = —W(—iJ) as their
classical action and ¢ as the sources coupled to iJ. Then, the W functional
is equal to —S(¢p) itself. Precisely,

/ (] exp (W(—z’J) + / z’Jcp) — exp (—S(0)). (1.76)

Indeed, using (1.23) the left-hand side can be written as

/[de(p’] exp <—S(<p') +i/<,0J— i/gp’J) .

Integrating over J we get the “functional § function”

5F (10 4/7 H5 ))7

whose meaning can be easily understood from the discretized version of the
functional integral. Finally, integrating over ¢’ we get the right-hand side of
(1.76).

From the perturbative point of view, it does not really matter whether J
is multiplied by ¢ or not. Thus, we can also write

Janex (W(J) -/ Jcﬂ) — exp(~5(9)).

The meaning of this identity is that if we take the diagrams that contribute
to the connected correlation functions, replace their vertices by minus the
connected diagrams themselves, and the propagators by minus their inverses,
the results we obtain are minus the vertices again.
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1.5 Advanced generating functionals

We can also define generating functionals for n-particle irreducible connected
Green functions, that is to say connected Green functions that become dis-
connected when n or fewer internal lines are cut into two. In this section we
explain how. Although the new functionals are rarely met in the literature,
they can help us gain a more complete picture of what we are doing. More-
over, some generalizations of these functionals are useful treat some topic of
the next chapters.

We first study the generating functional of two-particle irreducible Green
functions. We introduce a new source K (z,y) coupled to the bilinear ¢(x)p(y)
and define

Z(J,K) =/[d<p]exp (—S(w)+/J¢+%/¢K¢> = WK,

where [ K¢ = [dzp(z)K(z,y)p(y)dy. Then, define

B0) = g7 = (Pl Naw) = o = (@l (17D

at nonzero J and K. Observe that

oW 1 1 8PW 1 W oW
Ky 2 Y@y @) = o5y Y 3500 5J(y()‘ |
178

This is a functional differential equation for W (J, K). It shows that the K
dependence is not unrelated to the J dependence, so the advanced functional
W (J, K) does not contain new information, but just the information already
known, expressed in a different way.

Now, call T'a(®, N) the Legendre transform of W (J, K) with respect to
both J and K, that is to say

SW SW
Pg(@,N)_—W(J,K)+/5JJ /M{K

1
- W(J,K)+ / JO+ 5 /(NK +PK D),
where N K stands for N(z,y)K(z,y) and J and K are meant to be functions

of ® and N, obtained by inverting (1.77). That this transform is well defined
will become evident soon. Differentiating 'y we get

r r 1
0 2 =J(z /K z,y)®(y)dy, L —K(z,y). (1.79)

0d ON(z,y) 2
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To retrieve I'(®) from T'9(®, N) it is sufficient to set K = 0, because
then W(J, K) becomes precisely the functional W (J) encountered before.
Inverting (1.79) we obtain ¢ and N as functions of J and K. Once K is set
to zero, the relations ® = ®(J,0) and N = N(J,0) allow us to express J as a
function J(®) of ®, which coincides with the relation found in the previous
sections, but also N as a function N(®) of ®. Finally,

[(3) = Dy (®, N(D)).

At J = K = 0 we have that ® is the expectation value of the field and N is
the propagator.
The functional I'o(®, N) can also be seen as the Legendre transform

1
Da(®, N) = D(®,K) + 3 /K(N + 3d) (1.80)
of I'(®, K), which is the usual I' functional for the modified classical action
1
S(e k) = (o)~ 5 [ vk (1.81)

Exercise 2 Calculate T'o(®, N) for a free scalar field and rederive T'(®).

Solution. The source K (z,y) is like a non-local squared mass, so W (J, K)
can be obtained from the usual functional, replacing the mass m? with m? —
K. From (1.26) we get

1 1
W(J,K) = 5/J(—D +m? - K)7lJ - Strin [-O0+m? - K].

We immediately find
d=(-0+m?>-K)"'J, N=(-O+m?-K)}

thus
1 1 1
Ta(@,N) = 5 / [(0,@)* + m*®?] — SN + Str [(-O+m*)N —1].
Observe that objects such as In N and N~! and meaningful, since by (1.77)
N~ is just the scalar propagator. Setting K = 0 we find N = (—O+4 m?)™!
and the usual free-field I'-functional

Ty (®, (04 m2)~) = % / [(0,8) + m?®?] + %tr (0 4 m?) = T(®),
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which agrees with (1.75). In an interacting theory we obtain this expres-
sion plus corrections proportional to the couplings. As said before, all such
corrections are made of tree-level expressions plus two-particle irreducible
diagrams.

Exercise 3 Calculate T'o(®, N) at one loop for a generic theory S(p).

Solution. We start from formula (1.75), which gives the most general
one-loop I'-functional, and apply it to a classical theory with modified action
(1.81). We obtain the one-loop I'-functional

(®, K) = S(®) — %/(I)K(I) + %trln(S’/ ~K),

where S” stands for S;,. Now we further Legendre-transform with respect
to K. Differentiating we get

or 1 1 1 oW
— = —--00=—-—
0K 28" -K 2 0K’
which gives
1
N = T

Finally, using (1.80) the one-loop functional I'y is
1 1
[o(®,N) = S(®) — St In N + 5tr [NS"(®) —1]. (1.82)

0

Now we study the diagrammatics of I'y(®, N). Since every one-loop di-
agrams are two-particle reducible, unless they contain just one vertex (in
which case they are called “tadpoles”), it is useful to consider the difference
['5(®, N) between I'y(®, N) and its one-loop expression (1.82):

Do(®,N) =Ty(®,N) — S(P) + %tr InN — %tr [NS"(®)—1].  (1.83)

Now, the functional I'(®, K) is the set of one-particle irreducible diagrams
of the theory S(p, K), namely the set of one-particle irreducible diagrams of
S(¢) with inverse propagator shifted by —K. Separate the tree-level contri-
bution S(®, K) of I'(®, K) from the rest, by writing

N(®,K)=S5(®) — %/@ch +I(®, K). (1.84)
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The two-point function of T'(®, K) is

PT(D,K) FT(@,K) (WK 1
R R S A A ¥ _< 6J0.T > N (18)

=~
The last two equalities follow from (1.66) and the second of (1.77).
Take formula (1.80). Using (1.84) and (1.85) we have

To(®, N) = S(®) + F(@, K) + %tr NS"(®)— N

0PIP

O°T(P,K) 1]

Now we must re-express K as a function of ® and N on the left-hand side.
Formula (1.85) tells us that all propagators just become N. Then we just
have to replace the sources K that appear in the vertices. Observe that each
K is attached to two ¢ legs, so also two propagators N. Thus, we have to
consider the product NKN. Using (1.85) we see that

60(®, K)
5BID

The sources K on the right-hand side can be treated recursively. Then it is
easy to see that the diagrams of I'y(®, N), and also those of Iy(®, N), are
one-particle irreducible.

NKN — NS"(®)N - N — N N.

Working out the N derivative of T’y and using (1.85), we get

( )__162f(<1>,K)
2 6D6D

6Ty 6Ty 1 1,
SN 3N Tav 32°

Repeating the argument above, we find that the diagrams of 6I's /6N are also
one-particle irreducible. Then the diagrams of I are two-particle irreducible,
because taking an N derivative is equivalent to cutting one internal line.

The functional ', is defined by coupling sources K, (z1,...,x,) to arbi-
trary strings ¢(z1) - - @(x,) of ¢-insertions:

2(J.K) = /[dﬂ exp (—S(cp) + /J<p+§:2 % /Kn@?’%a> .

Then W(J,K) =InZ(J,K) as usual and

n

oW ow
b=7r=0)  Na=sr—r =B P (1.86)
—_—

n
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We have, in compact notation,

6W_i<JH>_
5K, nl\¥ -

n
1 -W 5 w
RO -
n: W/ —&,W k) - N,

Performing the Legendre transform with respect to all the sources, we obtain
the functional

W > [ W
Too(®,N) = —W(J,K) + WJJr;/mKn,

where J and the sources K, need to be expressed as functions of ® and Ni by
inverting (1.86). The functional I'(®) is retrieved by setting all the sources
K, to zero. The functional I'o(®, N) is obtained by setting all of them to
zero but Ko, and so on.

1.6 Massive vector fields

So far, we have just considered scalar fields. Massive vector fields can be
treated in a similar way, while fermions of spin 1/2 require that we extend
the definition of functional integral to anticommuting variables. Finally,
gauge fields need a separate treatment, since the definition of the functional
integral in the presence of gauge symmetries is not obvious, even in the
Gaussian limit.

In the case of massive vector fields, we start from the free Proca action
s (Lo M o
Sfree(W) = d*z ZWM/ + 7WH s (187)
where W, = 0,W,, — 0,W,,. The field equations
—OW,, + 9,0,W,, + m*W,, =0 (1.88)
ensure that the theory propagates only three degrees of freedom at the clas-
sical level, since the divergence of (1.88) gives m2a#Wu = 0. The propagator

Guv(z,y) = (Wyu(x)W,(y)) is the solution of the differential equation

(_D(suu + 8uau + m25uu)Gup(x7 y) = 5MP5(4) (x - y)
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and can be easily expressed by means of the Green function G of the scalar
field. Indeed, recalling (1.27), we find

9.0, Y A 1
G;u/(xyy) = ((5#1/ - #) GB(SE,y) = / (27T)4ep( y)zz—i-i?’n? (189)

At the quantum level the degrees of freedom can be counted by count-

ing the poles of the propagator in momentum space, after switching to the
Minkowskian framework. Basically, on the pole, which can be reached from
the Euclidean notation by writing p = (£im,0,0,0) in the rest frame, the
numerator is the matrix diag(0,1,1,1). The three positive eigenvalues are
the propagating degrees of freedom, while the eigenvalue zero corresponds to
the nonpropagating degree of freedom 0, W,,.

When we add interactions, the Feynman rules and the diagrammatics fol-
low straightforwardly, as well as the definitions of the generating functionals.

Massless vectors are the fields of gauge theories. It is clear that the mass-
less limit of (1.89) is singular. Thus, gauge fields need a separate discussion.
For the same reason, the ultraviolet limit of a theory that contains massive
vector fields is singular, because there the mass becomes negligible. An-
other way to see the problem of massive vector fields at high-energies is that
the propagator in momentum space behaves like ~ p,p,/ (m?2p?) for large,
p instead of ~ 1/p?. We will see that this behavior does not decrease fast
enough to have renormalizability. In general, an interacting quantum field
theory that contains massive vector fields is nonrenormalizable. The same
conclusion applies to the theories that contain massive fields of higher spins,
which we do not treat here.

1.7 Fermions

The functional integral provides a formulation of quantum mechanics that is
equivalent to the orthodox ones. Its main virtue is that it allows us to work
with functions, instead of operators. In practice, summing over all paths that
connect the initial point to the final one has the same effect as working with
objects that have nontrivial commutators. In some sense, the right-hand
sides of the commutators [§, p] = 4, [a,a'] = 1, where [A, B] = AB — BA, are
replaced by the functional integration.

We know that, to be consistency with the Fermi statistics, the second
quantization of fermions is done, in the operator approach, by assuming that
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there exist annihilation and creation operators ay and d} that satisfy the
anticommutation relation {df,d}} = 1, where {A,B} = AB + BA. We
expect that a functional integral over fermions can replace the right-hand
side of this anticommutator. We do not expect, however, that it can do more
than that, for example allow us to work with commuting objects, instead
of anticommuting ones. Indeed, the Pauli exclusion principle, which is the
origin of anticommutators, survives the classical limit & — 0. The right-hand
sides of commutators and anticommutators vanish when A tends to zero, but
the left-hand sides remain unchanged. Thus, to describe fermions we need to
work with anticommuting objects, and define a suitable integral over them.

Such objects are called Grassmann variables, and for the time being we
denote them with 6;, ;. They satisfy

{6:,0;} = {0:,0;} = {0;,0;} = 0.

We also need to define functions of such variables, then the “ordinary” in-
tegral over them and finally the functional integral. These concepts will
sound a bit formal, however we know that we must be prepared to upgrade
the mathematics and include notions that may not sound familiar at first.
Quantum mechanics already thought us a lot on this. In the derivations of
physical predictions we may need to work with quantities, such as the wave
function, which do not have a direct connection with reality. Ultimately, we
just need to retrieve ordinary real numbers at the very end, when we work
out cross sections or any other physical quantity. In the intermediate steps,
we are free to introduce any objects we want, not matter how awkward they
may look at first sight, as long as they are equipped with a set of consistent
axioms that allow us to manipulate them, and are such that the physical
quantities we get at the end are real.

Counsider a generic function of a single Grassmann variable . Making a
Taylor expansion around 6 = 0, we just have

F@ =a+0b, a=f0), b=f(0). (1.90)

Here a and b are constants. Every other term of the Taylor expansion disap-
pears, since 0% = (1/2){0,0} = 0.
Similarly, a function of two variables 6, 6 reads

g(0,0) = c+0d + e + 00,
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¢, d, e and f being other constants.

Ordinary commuting variables are normally called “c-numbers”; to dis-
tinguish them from the Grassmann variables. If the function f of formula
(1.90) is a c-number, then a is also a c-number, while b is an anticommut-
ing constant. If f is anticommuting, then a also is anticommuting, while
b is a c-number. We also say that c-numbers have bosonic statistics, while
anticommuting objects have fermionic statistics.

Now we define the integral of f(#) in df. We introduce differentials d#,
which are also anticommuting objects, and assume that the integral is linear
and translational invariant. By linearity

/d@f(@)z(/d01>a+</d90>b,

so it is sufficient to define the integrals of 1 and 8. Let us perform the change
of variables § = 0’ + &, where £ is constant and anticommuting. Then, by
translational invariance df = dé’, so

/deez/de’(9’+§):/d9’9’+(/d0’1>§:/d99+</d91>§.

We conclude that the integral of 1 in df must vanish. Then, the integral of
f must not be zero, otherwise our integral would identically vanish. Normal-
izing the integral of 6 to 1, we have the formal rules

/d01:0, /d90:1,

which define the Berezin integral.
In practice, the Berezin integral behaves like a derivative. For example,
under a rescaling 6’ = cf we have

1:/d9'9':c/d(c9)9:/d99,

whence, differently from usual,
1

This rule coincides with the one of the derivative with respect to 6.
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The basic Gaussian integral reads
/ d9d0 ¢~ — / a8 (1 — mb6) = m. (191)

The minus sign disappears when we anticommute 6 with dé.
With more variables it is easy to prove that

N
/ [1d6:6; 65,05, - 0i 05 = (—1)Veir iy iy (1.92)

i=1
Indeed, the result must be completely antisymmetric in ¢; - - - iy and j1 - - - jn.
Taking iy = jx = k and using (1.91) we correctly get (—1)V.
Then, defining the action

where M;; is some matrix, we get

T VINGIANE
/ [] 6:d6; e = N / [ d6:a6: s™8,9)
=1 ' i=1
1

My, --- M,

INJN

:ﬁeil"'iNejl”'jN = det M.

Every other contribution coming from the exponential integrates to zero,
because it cannot saturate the Grassmann variables § and #. We can easily
generalize this formula to

N N
Z(E,€)= / [T d6:d6; exp <_5(9, 0) + Y (&6 + %-))
=1

1=1

N
=exp ZEZM;Q det M, (1.93)

i,j=1

with the help of the translation § = 6/ + M1, 6 =6 + ML,
Finally, a generic change of variables 6 = 6(6’) produces the reciprocal of
the usual Jacobian determinant,

N A
; = - - 1.94
i];[lde (det 80,> Ede, (1.94)
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The derivative with respect to Grassmann variables can be placed at the
left of the differentials df, df, or at the right of them, so we define left-
and right-derivatives g; and 0,, which can at most differ by a minus sign.
Precisely, the differential of a function reads

Of o Of - af
20, dé; + 26, do; = do; 26,

of

df(8,0) = 50

+ db;

Of course, 9;/00 and 0;/00 are anticommuting objects, as well as 0, /00 and
0r/00. However, observe that

a0 2 0
90,00, 00, 90,

We can define averages

— - 1 (9[ al ar 87” -
O - 0; 0 -0, ) = — L2 A(RS )
( ' ! ! > Z(€7 g) aé-Zl 8€2n 8€]n a5.71 ( ) é‘:E:O
In particular,
(0:0;) = M;;",  (0:0;010;) = M M — MM (1.95)

We can also have integrals over both commuting variables x and anti-
commuting variables . Writing z = (z,0) and z = (z,0), we define the

superdeterminant as

1
(2m)
1
(2m)™

(sdetM) ™! = / dzdzexp(—z'Mz)

/dxdxd@d@ exp(—7'Axr — ' BO — 0Cx — 0DF),

where the normalization factor is chosen so that sdetl =1,

(a1)

and each block A, B, C' and D is a N x N matrix, where A, D contain
commuting entries and B, C contain anticommuting entries. To compute
the superdeterminant, we perform the translations 7* = z! + 6CA~! and
y = x + A~'B0 and observe that in the variables ( = (¥,0), ¢ = (y,0), we
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have 2 Mz = gt Ay + 0(D — CA™'B)#, so the integrals over commuting and
anticommuting variables factorize. At the end, we find

det A
M = . 1.
etM = 3D~ 0A-1B) (1.96)

A useful property, which we do not prove here, is
Insdet(exp M) = strM = trA — trD, (1.97)

where “str” denotes the so-called supertrace. Moreover, the infinitesimal
variation is

dsdet M = § exp(strin M) = (sdet M )str(M ~L6M). (1.98)

In this book we just need a special case of this formula, when M =14+ 0M
and dM is small. Then

sdet(1 +0M) ~ 1+ tr[0A] — tr[0 D] = 1 + str[oM].

This result can also be proved by expanding formula (1.96) to the first order
in 0M.
Finally, for a generic change of variables (Z, z) — (¢, () we have

- 0(z, 2)
dzdz = d{d( sdet—=—%.
9(¢,¢)
Again, we leave this formula without proof, but it is easy to derive the
infinitesimal version that we need later. For (2,2) = ({40, ¢+ 6¢) we have,
to the first order,

_ > (8¢, 6¢)
dzdz ~ d¢d¢ (1 +str——=—2% | . (1.99)
9(¢,¢)
The minus sign inside the supertrace is due to the exponent —1 of the Jaco-
bian determinant in (1.94).
The continuum limit is now straightforward. Consider for example free

Dirac fermions, which have the action

S, ¢) = /d4:n V(@ +m). (1.100)
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Here ¢ = y#0,, and «* are the v matrices in Euclidean space, which satisfy
{y*, 47} = 26" and (v*)! = 4*. The Green function Gr(z,y) = (¥(x)(y))
is the solution of the equation

(@, +m)Gp(z,y) = 6D (z —y).

We have

d4p —i]) +m

ip-(z—y)
i . (1101

GF(xvy) = (_@x +m)GB(,’1,’7y) = /

Define the generating functionals
2.6 = [laddvlexp (—sw,w) +few | ws) _ W],

where [&y and [ € stand for [d*z&(x)y(z) and [diz(z)E(x), respec-
tively. Using (1.93) we find

WE €)= / A2 (2)Cp(x,y)E(y) dYy

plus an irrelevant constant.

Wick’s theorem reads

(X1 X2n) = Z€P(XP(1)XP(2)> - (XP@En-1)XPER))>
P

where x; can either be 1 (x;) or 9 (z;), while ep is the signature of the
permutation P. Precisely, ep is equal to 1 or —1, depending on whether
{P(1),P(2),--- ,P(2n)} is obtained from {1,2,--- ,2n} by means of an even
or odd number of permutations of two nearby elements. The free correlation
functions with an odd number of insertions still vanish.

The perturbative expansion around the free theory is defined by following
the guideline of scalar fields. We can consider, for example, the four-fermion
model

Sitbo) = [ate (b@4mp - J@e?) o)
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The Feynman rules are

a B

o[>~

(5&66q/(5 _ 50((557;3)

« p 15} - (z’p—lkm)w -

(1.103)

where «, 8, etc. are spinor indices. Observe that:
1) the vertex and the Lagrangian term have opposite signs;
2) each incoming line of the vertex is a 1 and each outgoing line is a 1;
3) fermion lines are drawn with arrows pointing from the right to the left;
then their Lorentz indices are ordered from the left to the right;
4) if the Lagrangian term is ordered by putting each v to the left and each
1 to the right, the vertex is drawn by putting the 1) legs to the left, and the
1 legs to the right;
5) if we order the fields v (respectively, 1) from the left to the right, the legs
associated with them are ordered from the top to the bottom (resp., from
the bottom to the top);
6) the exchange of two identical fermion lines flips the overall sign;
7) the vertices must include all the permutations of identical lines.

Point 1) is due to the minus sign that appears in front of the action in
the exponential factor e™¥. Point 7) is why the factor 4 of A\/4 drops out.

Diagrams are constructed with the previous rules, plus the following one:
8) every fermion loop must be multiplied by a factor (—1).

Finally, in evaluating the diagram it must be remembered that, because
of 3),
9) fermion lines must be followed in the sense opposite to the arrow.

The minus sign in front of fermion loops is due to the Berezin integral.
Consider for example

/ T 46:00; (6V16)(6V26) exp (—@tMH) ,

where the V;’s are the matrices that appear in the vertices, possibly depending
on other fields. Using (1.95) we obtain

—tr[ViM YWVoM ™Y + (—te[Vi M 1)) (—tr[VaM 1)),
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The first contribution corresponds to a one-loop diagram that contains both
vertices, and is indeed multiplied by —1. The second contribution is instead
the product of two diagrams, each of which has one loop and contains a single
vertex.

The result is easily generalized to diagrams with an arbitrary number of
loops. The minus sign appears when we move the first 6 to the far right:

N
[10Vi6) — —tx[Vi(06)Va(06)V5(00) V40 - - - Viv (66)].
i=1

The simplest example of scalar-fermion theory is the (massless) Yukawa

model
1 - A
Se) = [ (F0u07 + 00 +apw +56t) (a0
with Feynman rules
------------- - EZ o p /3 (Zp)ad

) \://: o

(1.105)

The rules to construct the diagrams are the same as before.
The functional I' is defined as the Legendre transform

[(®,V0, ) :—W(J,§,§)+/J®+/§\IJ+/\TJ§,

where

oW o 4 = oW

6 e 6

All the arguments applied before to prove that W and I' are the generating

b =

functionals of the connected and one-particle irreducible diagrams, respec-
tively, can be repeated here with obvious modifications. Actually, we have
already remarked that the derivation can be extended to the most general
local perturbative quantum field theory. The Feynman rules for Z, W and
I" are the same, since the diagrams appear in each functional with the same
coefficients (apart from the free two-point function of I).
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Working on I' makes the study of renormalization much simpler. For this
reason, from now on we mostly concentrate on the irreducible diagrams.

The locality assumption, which is crucial for perturbative quantum field
theory, has intriguing aspects. It requires that the action S(g,,1, Vi)
be a local functional of the fields. It should be noted, however, that the
action S does not contain the true interactions, which are encoded in the
correlation functions. As we will see, the correlation functions are most of
the times nonlocal. So, why should we require that the classical action be
local? Even more, why should we require that there exist a classical action,
and the theory be built on it? Why not investigate all the conceivable T"
functionals directly?

An attempt like this has been made, a few decades ago, but did not lead
to substantial progress. The point is that if we do not have a sufficiently
constrained starting point, such as a local (and renormalizable, as we will
see) classical action, what we can say is so arbitrary that making predictions
becomes almost impossible. We have to remember that when we explore
the quantum world, we are not in the same situation as when we explore the
classical world. We can make only sporadic experiments, and just collect data
here and there. Instead, when we observe the world around us, the observed
object emits a practically infinite number of photons, which are collected by
our eyes, or instruments, in a finite amount of time, and each photon is like
an individual experiment. Because of this, we do not worry so much about
constraining the physical laws a priori, because the experimental observation
is so powerful that it constrains them for us a posteriori. On the other hand,
if we did not have a way to select classes of theories and interactions a priori
in quantum field theory, we would not be able to get anywhere.

All this is fine, but prompts a dilemma: why should nature arrange itself
so as to make us capable of investigating it? And isn’t it a really twisted
assumption to require that the observable interaction be built starting from
a local “classical” action that may have no direct connection with the exper-
imental observation of the classical world?

Well, such an involved principle is all that remains of the correspondence
principle. We call S the “classical action” not because it has something to do
with classical phenomena, but because it is the starting point of a process of
quantization. Since we cannot have a direct intuition of the quantum world,
the best we can hope is to be able to quant-ize a phantom of the classical
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world. If we did not even have this chance, we would probably have no way
to make progress in high-energy physics.

After properly formulating local, perturbative, renormalizable quantum
field theory, we will be ready to explore more general quantum field theories,
including the nonrenormalizable and the nonlocal ones. What we stress here
is that if we make a too long conceptual jump at the beginning, we risk to
plunge into the domain of absolute arbitrariness. We have to start from what
is working for sure, or has most chances to work, and depart from that little
by little.
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Chapter 2

Renormalization

We have seen that the perturbative expansion produces ill defined integrals,
such as (1.49). This is the first serious problem of the “creative approxima-
tion” we undertook in the previous chapter. Despite what may appear at first
sight, it is not so difficult to overcome this difficulty. It is useful to compare
this situation to the situation of a mathematician in front of an integral over
the real line,

“+o0o
/ dz f(x). (2.1)

—00

Written like this, this expression has no intrinsic meaning, and needs to be
defined. Riemann gives us a natural attempt to define it by means of the

improper integral
+A

lim dz f(x). (2.2)

A—oo J_ A
Precisely, a “cutoff” A is inserted, to replace the original integral (2.1) into
a definite one. After calculating the definite integral, the limit A — oo is
studied. If the limit exists, the integral is convergent. If the limit does not
exist, the integral is divergent.

In quantum field theory we do not have to define one integral, but a
theory, which contains an infinite number of integrals, one for each diagram.
Different diagrams may be related to one another by certain identities. Phys-
ical quantities involve, in general, sums, products and convolutions of inte-
grals. If a single integral does not converge, the reason may simply be that
we have isolated that integral from the rest of the theory in an inconvenient
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way. This happens, for example, when the “divergence” disappears by chang-
ing variables (fields, spacetime coordinates or momenta, couplings and any
other parameter of the theory), i.e. by performing all sorts of operations that
normally do not change the physics. When that is the case, the divergence
is not a problem, but just a blunder due to an unfortunate parametrization
of the theory.

Instead of taking the limit A — oo integral by integral, right after insert-
ing the cutoff, we postpone this operation till the physical quantities have
been fully worked out. In the meantime, we take the liberty to perform a
number of “almost innocuous” operations, which means move the A diver-
gences around, from one quantity to another, by performing changes of field
variables and reparametrizations. Before claiming that our theory is ill de-
fined, we want to take full advantage of the freedom we have. It is not correct
to view the single integral as an improper integral: it is correct to view the
whole theory as an “improper theory”.

Thus, we have to answer the following question: is there a rearrangement
based on reparametrizations and field redefinitions after which the theory
admits the A — oo limit?

The insertion of a cutoff is called regularization, the rearrangement of the
A divergences that allows us to achieve our goal is called renormalization. Of
course, we will have to prove that the physical results do not depend on the
way we regularize and renormalize our theory.

The cutoff is a useful tool to classify the divergences. In principle, it may
not be strictly necessary to introduce it, and in the literature there exist
several regularization-independent approaches that do not make explicit use
of a cutoff. On the other hand, working with a cutoff is very convenient,
because it helps us keep track of what we do when we move the divergences
around. The goal of the rearrangement is to identify the right places of the
divergences, so that, after moving those “infinities” to their right destinations,
the limit A — oo makes sense in all the physical quantities, but not necessarily
in the single integrals and the quantities that are physically meaningless. If
this program works, we obtain a consistent (perturbative) definition of the
local quantum field theory.

Definition 1 A theory is called convergent if, possibly after a reparametriza-
tion, all the physical quantities admit the limit A — oco. Otherwise it is called
divergent.
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The definition of convergent theory is not equivalent to the definition of
“renormalizable” theory. We will appreciate the difference later.

The cutoff (2.2) is the simplest and most intuitive way to smooth out the
singularities. It amounts to state that the domain of integration is bounded
to momenta that have a modulus smaller than A. Clearly, this trick makes
every integral convergent at finite A. For example, the two-point function
Gp(x,y) is divergent at coinciding points. At finite A we find

dp 1 1 A?
= = A2 —m’ln(1+—
Gule A)KA @m) 77+ m? 167r2[ " “< +m2>]

1 9 5, A2 9 m?

When A is sent to infinity, we have a quadratic divergence, which is the
term proportional to A2, plus a logarithmic divergence, which is the term
proportional to In A, plus finite contributions.

Divergences occur at large momenta, or, equivalently, at coinciding points.
They are basically due to the locality of our theories. If we were satisfied with
nonlocal, rather than pointlike, interactions, then we could easily construct
theories with no divergences. However, that is not our purpose, because, as
we have remarked at the end of the previous chapter, nonlocalities may open
that door to a huge arbitrariness. It is better to first deal with divergences
in local theories, then investigate nonlocal theories. Besides, we have already
said that the divergences of isolated integrals are not the true problem: it
would be a mistake to throw away theories just because they look divergent
at first sight.

Definition 2 Given a theory having Feynman rules F, a regularization is
any deformation Fa of the Feynman rules that gives sense to all the individual
integrals generated by the perturbative expansion, and is such that Fy gives
back F' when the deformation is switched off.

We stress that the regularization does not need to be physical, because
the cutoff must be eventually removed. Actually, the most common regu-
larization techniques are unphysical, in the sense that regularized theories
are not physically acceptable as quantum field theories per se, because they
violate some physical principle. The cutoff is an example of unphysical reg-
ularization, since it violates unitarity. Indeed, it excludes the contributions
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of high frequencies from the integrals, while unitarity says (loosely speaking)
that the set of particles that circulate in the loop must coincide with the set
of ingoing and outgoing particles.

On the other hand, the violation of locality does not sound like the viola-
tion of a physical principle, so a theory regularized in a nonlocal way might
well be physical in its own right. Yet, we stress again that the intrinsic ar-
bitrariness of nonlocal theories makes us postpone their investigation to the
very end. For the moment, the problems we find in local theories are rather
welcome, because they give us hope to select the set of theories that are
admitted a priori. If the selection is powerful enough we might be able to
make predictions that can be successfully compared with experiments.

It may be objected that inserting a cutoff ¢ la Riemann may not be the
smartest choice. The Lebesgue integral is known to be an excellent gener-
alization of the Riemann integral, and supersedes it in many way. So, the
natural question is: can we regularize quantum field theory a la Lebesgue?
Unfortunately, nobody has pursued this direction, so far. Nevertheless, there
exists a regularization technique that very well fits the needs of perturbative
quantum field theory. This is the dimensional regularization.

2.1 Dimensional regularization

The dimensional reqularization is a regularization technique based on the
continuation of the dimension of spacetime to complex values. We recall
that, as awkward as this concept may sound at first, we just need to provide
a consistent formal construction, and equip it with a set of axioms that
allow us to make manipulations and get back to real numbers in the physical
predictions.

Consider an integral Z, in four dimensions, in momentum space. Call
the integrated momentum p and the external momenta k. Assume that the
integrand is Lorentz invariant in Minkowski spacetime, and a rational func-
tion. To dodge a number of nuisances that are not important for the present
discussion, we still choose to work in the Euclidean framework. There, the
integrand is invariant under rotations, and can be expressed as a function f
of p? and the scalar products p - k:

4
Tu(k) = / %f(p?p@-

14B1 Renorm



2.1 Dimensional reqularization 61

An analytic integral Zp(k) in complex D dimensions can be associated with
T, as follows. Replace the four-dimensional integration measure d*p with
a formal D-dimensional measure d”p, and include a (27)” in the denom-

4

inator for convenience, instead of (2m)*. Replace p, and k, with formal

D-dimensional vectors inside the integrand. This gives

D
To(h) = [ gt ). 2.4

We want to define the analytic integral in D dimensions so that it coincides
with the ordinary integral Z;(k) when D takes integer values d and Zy(k) is
convergent. When Z,;(k) is not convergent, we want to use Zp(k) to classify
its divergence.

To achieve this goal, we start by writing the analytic integral Zp(k) in
spherical coordinates. The measure reads

/de:/ pP~ldp x
0

21 T T
X / d91 / d@g sin 92 R / deD—l sinD_2 0D—17
0 0 0

any time D is integer. When L is integer and greater than one, we also have

2 T ™ orxL/2
/ do, / dfysinfy - - - / dbr_q sin?~2 01 1= T
0 0 0

L(3)

which is the total solid angle in L dimensions.

Since the external momenta k are finitely many, because a Feynman dia-
gram has a finite number of external legs, the integrand of (2.4) depends on
finitely many angles p_r, -+ ,6p_1. The number D is still unspecified and
for the time being we can imagine that it is integer and sufficiently large, in
any case larger than L. Then we can write

2
X/ deD—L/ d92/ d@D_lpD_lf(p,el"'eL,D). (25)
0 0 0

1 [e.9]
ID(k):2D_17r(D+L)/2F(D—L)/0 dp x

The function f also includes the factors sin®~'6;, i =D —L,...D —1.
Now, the expression on the right-hand side of (2.5) is meaningful for
generic complex D. Assume that there is an open domain D in the complex
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plane where the integral Zp(k), written as in (2.5), is well-defined. Evaluate
Zp(k) in D. Then, analytically continue the function Zp(k) from D to the
rest of the complex plane. The value of this function at D = 4, if it exists,
is the physical value of the integral Z4(k). If it does not exist, the function
Zp(k) has poles around D = 4. Such poles classify its divergences.

For example,

de 1 1 00 pD—l
T = = dp——. 2.6
p(m) /(zﬂ)Dp2+m2 9D—1,D/2T (%)/0 P 2 (2.6)

The integral is well-defined in the strip 0 < Re D < 2. The analytic contin-
uation gives (see Appendix A, formula (A.5))

r (1 — %) mP—2 1 2m? 9 m?
(an) D72 = 1672 [— . +m (lnE -1 +7E> + (’)(6)] , (2.7)

where vg = 0.5772... is the Euler-Mascheroni constant. The right-hand side
of formula (2.7) is the expansion around four dimensions, having written
D =4 — ¢ and used formula (A.8).

Observe that the term m?Inm? coincides with the one of (2.3). The
logarithmic divergences of (2.3) and (2.7) coincide after identifying In A with
1/e. Indeed, for large momenta we have

dPp dp 1
~ + finite, / ———— ~ —1InA,
/|p|>5 (2m)P(p?)?  8m2e s<ipl<a (2m)4(p?)? 872

where 0 is an infrared cutoff. The other contributions to (2.3) and (2.7) differ
from each other. In particular, (2.7) contains no analogue of the quadratic
divergence A2. Differences and similarities will become clearer later.

What happens when the integral, expressed in the form (2.5) does not
admit a domain of convergence D7 Or when it admits more disconnected
domains of convergence?

First, observe that the Feynman rules of a local quantum field theory
can only give rational integrands. Then, if the domain of convergence D
exists, it is always unique (a strip X < ReD < Y), which ensures that
the analytic continuation is also unique, as well as the value of the integral
in D dimensions. The situation where an integral admits two disconnected
convergence domains cannot occur.

If an integral does not admit a convergence domain, assume that we can
decompose the integrand f into a finite sum of integrands f;, such that each of
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them admits its own domain of convergence D;. Then we define the integral
of f as the sum of the integrals of each f;. For example, the integrand f =1
does not admit a domain of convergence. However, writing

p2 m2

_p2+m2 fo=
2_1!)2+mz7

1=2 7"
p2_|_m2

= f1+ fo, f1=m7

we see that f; and fo admit the domains of convergence —2 < Re D < 0 and
0 < ReD < 2, respectively. We thus find

de DmDF (—2) de
/ (2m)D h= 2D+1—7TD/22 / om)D fa = m*Ip(m).

Summing the two contributions, we discover that the analytic integral of one

is actually zero. The same integral, treated with the cutoff method, behaves
like A*. We learn that the dimensional regularization kills every powerlike
divergence. It is sensitive only to the logarithmic divergences, which manifest
themselves as poles in 1/¢.

With exactly the same procedure we can calculate the analytic integral
of (p?)@, for every complex a: we find again 0. More generally, let f(p) be a
rational function of p. Let aqgr and ayy denote the exponents such that

) ~ @)™, f(p) ~ (P,

for p — 0 and p — oo, respectively. Decompose the integrand as

f(p) <pz + mz>n _ En: <n> (m2)n—k f(p)(p2)k .
p*+m poard k (p? + m?)"
The integral of the k-th term of the sum is convergent in the strip —2ag —
2k < Re D < 2n—2ayvy —2k, which is non-trivial if its width 2n—2ayv+2air
is strictly positive. Note that the width is k independent. Thus, if we choose
n sufficiently large, in particular larger than ayy — agr, all the terms of the
sum can be integrated.

Concluding, we can always decompose the analytic integral of a rational
function as a finite sum of integrals admitting nontrivial convergence do-
mains. The construction easily extends to multiple integrals. Since a local
quantum field theory can only generate rational integrands, our arguments
prove that the dimensional-regularization technique is able to define every
integral we need.
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It remains to prove that our definition is consistent. We do not provide
a complete proof here, but collect the basic arguments and mention the key
properties of the integral.

First, the analytic integral is linear, and invariant under translations and
rotations. In particular, the result does not depend on the center of the
polar coordinates used to write (2.5). Moreover, the usual formulas for the
multiple integration and the change of variables hold.

The rules of multiple integration deserve some comment. It is always safe
to split an analytic integral in D dimensions as the sequence of two analytic
integrals in D1 and Dy dimensions, with D = Dj + Do, which are defined as

[ = | o |

Sometimes, however, it is convenient to split the integral as an analytic in-

explained above:

tegral followed by an ordinary integral. For example,

/] (;i; - <C;rp>12/ Goe (28)

and so on. This kind of decomposition also works. However, the outside

integral is still to be meant in the analytic sense. Precisely, after evaluat-
ing the inside integral, we obtain the ordinary integral of a function f that
depends on D. That integral must be evaluated in a domain D where it
converges, and analytically continued to the rest of the complex plane, as
explained above. If a domain D does not exist, it must be written as a finite
linear combination of ordinary integrals that separately admit domains of
convergence D;. For example, if we use the second split of (2.8) on Zp(m),
we can represent it as a four-dimensional integral:

I (1+¢/2) / d*py 1

=T | G G

Neglecting the prefactor, which tends to 1 when ¢ tends to zero, this formula
can be viewed as an alternative regularization of the integral. It does not
change the integration per se and does not introduce a cutoff for the large
momenta. Instead, it replaces the propagator by

1
(p% + m2)1+e/2
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where ¢ is a complex number. The integrals have to be calculated in a com-
plex domain of e-values where they converge, and then analytically continued
to the rest of the complex plane. In the literature, this procedure is known
as analytic regularization. The good feature of the analytic regularization is
that it deals with ordinary integrals all the time, so its consistency is easier
to prove. We anticipate that, however, it breaks gauge invariance, while the
dimensional regularization manifestly preserves it. Using the analytic regu-
larization (or the cutoff one), gauge invariance has to be recovered by hand,
which is possible, but requires a lot of effort. The dimensional regularization
is a sort of rationalized analytic regularization, which knows how to rearrange
itself so as to preserve gauge invariance at no cost.

Finally, it is normally not safe to split an analytic integral as an ordinary
integral followed by an analytic integral, e.g.

[

because the ordinary integral might not converge. Check it on Zp(m).

2.1.1 Limits and other operations in D dimensions

Limits can be taken applying similar steps. Consider a function f(D,z). Its
limit f(D,xg) for x — x¢ is defined by applying the following two rules:

a) search for an open set D of the complex plane where the limit exists,
calculate it there, and analytically continue the result to the complex plane;

b) if f(D,z) admits no such D, search for a decomposition of f(D,z) into
a finite sum >, fi(D, x), such that each f;(D,z) admits a complex domain
D; where the limit exists, proceed as in point a) for each f;(D,x) and sum
the analytic continuations f;(D, ).

As an example, consider the integral

dPp A2
/ 2m)P (p* +m?)(p* + m? + A?) (2.9)

It can be evaluated by means of formula (A.2) of Appendix A, which allows

1 de A2
d .
/0 ”“’/ 2m)D (p® + m? + zA?)?

us to express it as
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Then formula (A.4) gives

re-%2) rt
2 2 2 2\D/2-2
T (1—2)mP-2 A2\ P
== 1 <1 + W) . (2.10)

If we take A to infinity in the integrand of (2.9) we get (2.7). Now, consider
the final result (2.10). It admits a regular limit only in the domain ReD < 2.
The analytic continuation of the limit in such a domain gives again (2.7).

To interchange derivatives and integrals, derivatives and limits, and per-
form all sorts of similar operations, we must follow the same guideline, namely
a) decompose the function f into a finite sum of functions f; each of which
admits a domain D; of the complex plane where the operation can be per-
formed ordinarily, once the integral is expressed in the form (2.5), b) ana-
lytically continue each result to the complex plane, and ¢) sum the analytic
continuations.

2.1.2 Functional integration measure

Now we prove an important property that is going to be useful in many
contexts. We say that a function of the fields and their derivatives, evaluated
at the same spacetime point, is ultralocal if it depends polynomially on the
derivatives of the fields. It does not need to be polynomial in the fields
themselves. We prove that

Theorem 1 In dimensional regularization, the functional integration mea-
sure is invariant under every ultralocal change of field variables.

Proof. Let ' denote the fields and ¢! — ¢ the change of field variables.
If the field redefinition is ultralocal, then there exists a finite number of local
functions Fl‘;l’“‘ such that

(x) " b
w ” ZF‘“ (@) Oy O 0P —y)  (211)
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and the Jacobian determinant can be written as

o () o[

N
= exp (Z Oy ..-8%5@)(0)/deFZ-’;l“'“"(cp(a:))>
n=0

Because of (2.11), the exponent is a finite sum of local functionals multi-
plied by 6(”)(0) or derivatives of §(°)(0). Such expressions vanish using the
dimensional regularization, because in momentum space they read

(D) -n de
8;“’1 8un5 (0) =1 /me pﬂn (212)

Recalling that the analytic integral is invariant under rotations, we obtain
zero when n is odd, but also zero when n is even. Indeed,
dPp dPp o
/me‘”l)uzk O (Gpurpiz =~ Opizge 1 oo +Perms-)/W(1’ )" =0.
(2.13)
O

The theorem we just proved is very general. It also holds when the
change of variables is not polynomial in the derivatives of the fields, but can
be treated as a perturbative series of ultralocal terms. Moreover, it holds
for all types of fields: scalars, fermions, vectors, tensors, as well as fields
of higher spins. To include fields of different statistics in the proof, it is
sufficient to replace the determinant by the superdeterminant and the trace
by the supertrace.

We say that a functional is perturbatively local if it can be perturba-
tively expanded as a series of terms that are polynomial in the fields and
their derivatives, evaluated at the same spacetime point. It is perturbatively
ultralocal if it can be perturbatively expanded in a series of terms that are ul-
tralocal. In some situations we may just use the terms “local” and “ultralocal”
in this extended sense.

2.1.3 Dimensional regularization for vectors and fermions

In the dimensional regularization the coordinates z*, the momenta p,, the
Kronecker tensor d,,, and so on, have to be viewed as purely formal objects.
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We need to give a consistent set of operations to manipulate such objects, so
that the four dimensional results are retrieved when D = 4. Similarly, vector
fields A, the gamma matrices 7, and spinors ¥ also have to be considered
as formal objects. In particular, the gamma “matrices” should not be viewed
as true matrices, although we keep calling them with their usual name.

We define the D-dimensional Dirac algebra as a set of formal objects v,
that are equipped with a formal trace operation and satisfy the following
axioms:

{’Y;u Y} = 20,01, ’Y;TL = T trh’m e "YMZnJrl] =0,
tr[AB] = tr[BA], tr[l] = f(D), f4) =4. (2.14)

In particular, the formal trace is cyclic and vanishes on an odd product of
gamma matrices. Using the formal Dirac algebra, that is to say the first
axiom of (2.14), we can reduce every trace to the trace of the identity, which
we call f(D). The function f(D) must be equal to 4 in four dimensions, but
is otherwise arbitrary.

Specifically, the axioms (2.14) imply

2n

1=2

where 7, means that the matrix ~,, is dropped. The proof is identical to
the one in four dimensions. In particular,

tr[’yu’y,,] = f(D)5MV=
tr[v.7Y070) = F(D) (0u0p0 — ppdue + 0usduyp) -

We also have the identities

YuYu = D1, YV VT = (2 - D)'Vp-

It seems that in D dimensions everything proceeds smoothly, with minor
modifications with respect to the usual formulas, but it is actually not true.
In four dimensions we can define also a matrix 5 that satisfies {v,,75} =
0. A matrix with such properties does not exist in complex D dimensions.
Another object that cannot be extended to D dimensions is the tensor €, 0,
because it would have a complex number of indices! For the moment we
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ignore these problems and limit ourselves to nonchiral theories, where 5 and
€uvpo do not appear in the Lagrangian and the Feynman diagrams. Later,
we will see that the problem is related to the appearance of an important
“anomaly”. Another fact that is worth mentioning is that in odd dimensions
it can be inconsistent to assume that the trace of an odd product of gamma
matrices vanishes. For example, in three dimensions the trace tr|o;o;oy],
where o; are the Pauli matrices, is not zero, but proportional to the tensor
€ijk- There exist modified versions of the dimensional regularization that
bypass these difficulties. We will introduce them when needed.

The dimensionally regularized versions of the models studied so far have
formally identical Feynman rules (1.50), (1.103) and (1.105). However, for
D # 4 the couplings are dimensionful even when they are dimensionless in
D = 4. 1t is convenient to redefine them in a dimensionless way, by isolating
suitable powers of an energy scale u. For example, the Lagrangians (1.38)
and (1.104) become

1 m? Ap®
5(0) = [ @ (5002 + e+ 2o (2.16)

and

1 - s
S(p, 1) = /dDw <§(5u90)2 + 9 <@ + gua/%) Y+ 4—M,904> ;o (217)
respectively. In the new parametrization, both g and A\ are dimensionless in
arbitrary D, and the Feynman rules are (1.50) and (1.105) with the replace-
ments g — gu/? and A — A\us.

2.2 Divergences and counterterms

Now that we know that each diagram is associated with a well regularized
integral, we can study the general properties of the diagrammatics.
Consider a diagram G with V vertices, F external legs and I internal legs.
Assign an independent momentum to each leg, internal and external. In total,
this gives I + E' momenta. Once we impose the momentum conservation at
each vertex, we remain with I + E —V independent momenta. Now, observe
that the external legs contain F — 1 independent momenta, because the Eth
momentum is determined by the global momentum conservation. Therefore,
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the diagram G contains [ + E —V — (E —1) =1 —V + 1 = L independent
internal momenta, and the integral associated with G is performed over them.
We call L the number of loops of the diagram. It satisfies topological formula

L-T+V =1, (2.18)

which holds for every diagram, in every theory. It is called topological,
because it coincides with Euler’s formula for simple polyhedra, namely

v—e+ f=2

where v is the number of vertices, e is the number of edges and f is the
number of faces of the polyhedron. The correspondence with (2.18) isv =V,
e =1and f = L+ 1. Indeed, dropping the external legs and adding the
“loop at infinity”, which is the (L + 1)-th face, a graph becomes a generalized
polyhedron, namely a polyhedron whose faces are not necessarily flat (which
still satisfies Euler’s formula).

Another very general fact is that the expansion in the number of loops
coincides with the expansion in powers of A. Although we have set A = 1
so far, we can easily restore the A dependence by writing the generating
functionals Z(J) and W (J) as

20) = [ael e (~3560)+ [ 5¢) e (W)

while I'(®) is defined as before. In the new Feynman rules a propagator gets
a factor i and a vertex gets gets a factor 1/h. Therefore, each diagram is
multiplied by a factor

having used (2.18). Diagrams contribute to Z in the usual way. If they are
connected they contribute to W/h, because Z = exp(W/h). If they are irre-
ducible they contribute to —I'/h. We thus see that the L-loop contributions
to W and I' are multiplied by h*.

Counsider the “gpév theory”, which is the d-dimensional scalar field theory
with interaction ¢, which has the action

_ d 1 2 m? 2 <PN
S(go)—/d $<§(8u90) +7<,0 +)\m .
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For the moment we do not need to continue the physical dimension to com-
plex values. Let [O] denote the dimension of an object O in units of mass.
Coordinates have dimension —1, while momenta have dimension 1. Since the
action is dimensionless, the Lagrangian must have dimension d. From the
kinetic term, or the mass term, we can read the dimension of . Then, we
can read the dimension of A from the vertex. We find

d

@l=-1,  Bl=1 l=5-1, [A]:N(l—g>+d. (2.19)

Consider again a diagram G with V vertices, E external legs and I in-
ternal legs. Since N legs are attached to each vertex, we have NV legs in
total. Of these, E exit the diagram and 21, connected in pairs, build the
internal legs, each of which is attached to two vertices. Therefore, we have
the identity

E+2I=NV. (2.20)

Calling the loop momenta p;, the integral associated with the Feynman dia-
gram has the form
L V-1

dpZ 1 1
(k,m) (221
/H 27Td21p+k) mzj[[l(Apj—i—k;)z—i—mQ ( )

where k and k' are linear combinations of external momenta, with coefficients

+1. Moreover, the Ap;s are nontrivial linear combinations of the integrated
momenta p with coefficients 1. We have used (2.18) to organize the inte-
grand in the way shown.

We need to check the convergence of the integral in all regions of inte-
gration. Since we are in the Euclidean framework, the integral is regular for
finite values of the momenta p. We just need to study its behavior when the
momenta tend to infinity in all possible ways. It is sufficient to consider the
following situations: 7) let the momenta of all internal legs tend to infinity
with the same velocity, or i) keep the momenta of some internal legs fixed.
A singularity that occurs in case 7) is called ultraviolet overall divergence. A
singularity that occurs in case i) is called ultraviolet subdivergence. Since
in this book we treat only ultraviolet divergences, we omit to specify it from
now on.

Overall divergences are studied by rescaling the integrated momenta p
with a factor A,

Di — Api, (2.22)
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and then sending A to infinity. Subdivergences are studied by performing
the rescaling (2.22) with the constraint that the momenta of some internal
legs are kept fixed. It can be shown that once the divergences due to the two
types of limits ¢) and i) are cured, the integral becomes convergent. In other
words, all other ways to send the momenta to infinity are then automatically
cured, because they amount to some combinations of the limits i) and 7).
For example, if some momenta p} are rescaled by a factor A, and the other
momenta p; by a factor A2, then sending A to infinity is like first rescaling
the p!'s at fixed pis, then rescaling the pis.

The subdivergences are the overall divergences of a suitable subdiagram
Gsup of G. Precisely, Ggyp is the irreducible part of the diagram obtained
by cutting the G internal legs whose momenta are kept fixed. Clearly, if
G is irreducible, as we are going to assume from now on, the subdiagrams
Gsup have fewer loops, because when we cut one or more GG internal lines
we necessarily break some loop. Moreover, since the perturbative expansion,
namely the expansion in powers of h, coincides with the loop expansion, the
divergences can be subtracted algorithmically. In other words, when we deal
with an L-loop diagram, we can assume to be already equipped with the set
of counterterms that take care of its subdiagrams Gyyp. For the moment, we
ignore the subdivergences and concentrate on the overall divergences.

Let us compute the dimension of Zg(k, m). The momentum integration
measure d% has dimension d, while the propagators have dimension —2.
Using (2.18) and (2.20), we have

Ta(km)] = Ld— 21 =V [N <g _ 1> _ d} B (g - 1> bd (223)

Make the rescaling (2.22) and consider the behavior of the integral when A
tends to infinity. Let w(Zg) denote the power of A in this limit. In our present
case, given the form of the integral (2.21), we have w(Z¢g) = [Zg]. However,
if some external momentum or a mass factorizes, we may have w(Zg) < [Zg].
In general, we have the inequality w(Zg) < [Zg]. We call w(Zg) the degree of
divergence of the diagram G. If w(Zs) < 0 and there are no subdivergences,
then the integral is ultraviolet convergent, because it is convergent in all the
regions of integration. Instead, if w(Zg) > 0, or w(Zg) < 0 but there are
subdivergences, the diagram is potentially ultraviolet divergent.

To begin with, consider a one-loop diagram. Since it has no subdiagrams,
there can be only an overall divergence, but no subdivergences. Differentiate
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the diagram one time with respect to an external momentum k or a mass m,
and observe that

01 2ptk)
Oky (p+ k) +m?  [(p+k)2+m2*
0 1 2m

Im(p+ KPP+ m? "~ [(p+ k) +m]

The differentiated diagram has a smaller degree of divergence:

() (5] -

where K is k, or m. Repeating the argument, we obtain

o Ty < Ot T, o
w 8k‘u1 ...ak#namr — 8k‘u1 '--8kun8m7“ = LG n-—r.

If n + r is sufficiently large, [Zg] — n — r becomes negative. Thus, if we

differentiate the integral a sufficient number of times with respect to its ex-
ternal momenta and/or the masses, the integral becomes overall convergent.
Said in equivalent words, the differentiation kills the overall divergent part.
When we integrate back the result, we discover that the divergent part must
be polynomial in the masses and the external momenta. This is the crucial
property of renormalization, and is called locality of the counterterms, be-
cause the Fourier transform of a polynomial of the momenta is a finite sum
of delta functions and derivatives of delta functions, which are distributions
localized at a single point.

Now we describe how to subtract the divergent part of a diagram. Call
the integrand f(p, k, m) and consider

dp = | orf(p,k,m
TG, (k,m) = / @) ( (p, k,m) Zn— R “niazzﬁ(?“akui> ;

- (2.24)
where @ is to be determined, and the subscript 0 in Jf means that after
taking the n derivatives with respect to k, k is set to zero. The sum in (2.24)
collects the “counterterms”. They remove the divergences from the integral.

In practice, we subtract the first w terms of the Taylor expansion of the
integrand around vanishing external momenta. The integrand of Zg, is still
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a rational function, and it is proportional to @ + 1 powers of the external

momenta. Thus, we can write

dp
T (ko) = k- by / Gyt s (0. )

for some other rational functions f,....;,,- Now,
wZay) < Lag) —0—1=[Ig] —@— 1.

If we choose @ = [Zg], we obtain w(Zg,) < 0, which means that Zg,, is
overall convergent.

For example, consider the one-loop correction to the four-point function
in the theory 3. We have the sum of the three diagrams

1 1 1
(2.25)
each of which has the form (A?/2)Z(k,m), where
d*p 1 1
I(k = 2.26
(k,m) /(27T)4p2+m2(p+k‘)2+m2’ (2.26)

with different combinations &k of the external momenta. The integral (2.26)
has w = 0 and a logarithmic divergence. The subtracted integral reads

dip 2, + k
ITn(k = -k o ®
r(k,m) / @) P+ m22((p - K2 T m?)’

which is clearly convergent.
We have successfully subtracted the one-loop integrals, but does our pro-
cedure make physical sense? Or did we just arbitrarily change the theory we
started with? Here enters the crucial property of counterterms, their locality.
Formula (2.24) shows that in momentum space the counterterms are poly-
nomial in the external momenta. For example, the counterterm for (2.26)
is
d*p 1

o

R(k,m) = Tn(k,m) — T(k,m) = — /
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which is k independent, i.e. just a (divergent) constant.

While a diagram is a nonlocal function of the external momenta, its
divergent part is local. Thanks to this property, it looks like a vertex, or
an inverse propagator. For this reason, it can be subtracted by adding ad
hoc local terms to the action. To do this, however, we have to use a specific
regularization, because the integral (2.27) is meaningless without a cutoff. If
we use a specific regularization, for example the dimensional one, then we
can consistently separate Z and R, and move the counterterms around at
will. We stress that the use of an explicit regularization is not necessary to
define perturbative quantum field theory. It is however very convenient to
keep track of what we are doing.

So, let us switch to the dimensional regularization. The integral of (2.26)
is promoted to D dimensions as

dPp 1 1
2m)P p2 +m?2 (p+ k)2 +m?2’

Ip(k,m) = / (2.28)

and each X\ gets multiplied by p®. Using Feynman parameters, namely for-
mula (A.2), we can rewrite the integral as

! aP 1
/0 dx/ 2m)P ((p + kx)? + m? + k22(1 — z))* (2:29)

Then, we can make a translation p — p — kx and use (A.4). We get

2, 2 )\2 261" 2_2 1 _
A;‘ Tp(k,m) = M2(47r()D/2 2)/ dz (K2(1 — z) +m2)"/* 7
0
)\2Iue )\2Iue 47TN2
= o2 + 59,2 (2 — g +In 3 (2.30)

[ 4m? k2
—2¢/1+ ?arcsmh m) + O(e).

The counterterm (2.27) becomes

_)‘2N2€/ de 1 __)\_2I‘(2_%) 8<£)€
o J enP @ +m22 - 2 4mpz M Uy
1
=-\2uf 2.31
An <167T2E+Cl>’ (231)
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where the constant c; is finite in the limit € — 0. We see that the divergent
part does not depend on the external momenta. Since the diagrams of (2.25)
are three, and all of them have the same divergent part, we have to modify
the action so as to subtract three times the divergent part of (2.31). This
result can be achieved by adding

4
AL = 3\%f < n c1> Ll (2.32)

1672e 4!

to the Lagrangian. Note that the power 1%® provided by the diagram, shown
in the first line of (2.30), has become u° in the counterterm (2.32), to match
to dimensions correctly. The other factor u® gets expanded in €. As a conse-
quence, p can enter logarithms in the right places to make their arguments
dimensionless, such as in the second line of (2.30).

Now we note that the constant ¢; appearing in (2.32) does not actually
need to be the one of (2.31), because what is important is to subtract the
divergent part. Thus, the ¢; of formula (2.32) can be arbitrary. Roughly
speaking, when we subtract infinity, we can as well subtract infinity plus
any finite constant. Later on we will see that the physical quantities do not
depend on this arbitrariness.

The correction (2.32) produces an extra vertex

_ 2,,e 1
X = 3 (167r25 +Cl>
(2.33)

that must be added to the Feynman rules. The vertex (2.33) carries an

additional (hidden) power of A, since it is of order A2. Diagrammatically, it
counts like a one-loop diagram, so it appears in the right place to subtract
the divergences of (2.25). The finite value of a single subtracted diagram of
(2.25) is thus

/ / k2 4
16 — ( 1 + arcsmh F'u c> , (2.34)
7r

where c is an arbitrary finite, k-independent constant. We may as well assume

that c is independent of p and m. The result admits a smooth massless limit

A2 e A7 p?
1 -2 2.35
3272 (n 2 > (2.35)
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which can also be easily computed from (2.28). Indeed, using (A.3) to do
the integral over x, the first line of (2.30) gives at m =0

)‘2N2€

Ip(k,0) =

MR- 5) (5 U] a2 (g

2(47)P/21(D — 2)

Note again that the factor in front of expression (2.35) is u instead of 2,
and that the argument of the logarithm contains appropriate factors of u
that make it dimensionless.

The modification (2.32), which subtracts the divergence away, does not
look so serious after all. In the end, it just amounts to redefining the coupling
constant in front of p*. We are certainly allowed to do that, since we have
not attached any physical meaning to A, so far. This is the idea of renormal-
wzation, and justifies its name. It is the removal of the divergences by means
of redefinitions of fields and parameters. Note that it would not be possible
to achieve this goal if the counterterms were not local, since the action is
local by assumption. At the same time, locality alone is not sufficient to
ensure that the divergences can be renormalized.

Consider for example the theory ¢§. We write the interacting Lagrangian
as 6

Lp= )\6N28%7
where )¢ is a coupling constant of dimension —2. At one loop we have

ALK i

The corresponding integral is again proportional to Zp(k, m). However, to

divergent diagrams such as

subtract this kind of divergence we need to modify the Lagrangian with a
counterterm of the form

8
AL = 35)\2p% < + c1> Ld (2.38)

1672e 8!’

where 35= 8!/(2!4!4!) is the number of nontrivial permutations of the exter-
nal legs. The modified action contains an interaction, ¢®, that is not present
in the action of the theory §. Therefore, (2.38 ) cannot be absorbed into
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a simple redefinition of the fields and the couplings, but demands a radical
modification of the theory, from ¢§ to ¢§ + ¢§. Moreover, that modifica-
tion is not even sufficient. Using two vertices ¢® we can easily construct
a one-loop diagram similar to (2.37), with 646 external legs. Again, it is
logarithmically divergent and its divergent part can be subtracted only at
the price of introducing a vertex ¢'2. We can go on like this indefinitely: we
discover that the renormalization of divergences is possible only at the price
of introducing infinitely many new vertices and new independent couplings.

Concluding, the locality of counterterms is necessary, but not sufficient,
to have control on the divergences. We need to check that all the countert-
erms have the form of the terms that are already contained in the initial La-
grangian. When that happens, the divergences can be removed by redefining
the fields and the couplings, the subtraction of divergences is a stable pro-
cedure and the final Lagrangian is a simple redefinition of the initial one.
Otherwise, we can attempt to stabilize the Lagrangian, by adding new ad
hoc local terms. Next, we must check that a finite number of such new terms
is sufficient to stabilize the subtraction of divergences to all orders. If that
does not happen, the final Lagrangian contains infinitely many independent
couplings and interactions.

The theories that contain finitely many vertices and are stable under
renormalization are called renormalizable. The theories that are not stable
under renormalization, because they end up containing infinitely many inde-
pendent terms, are called nonrenormalizable. As we will prove, the theory
¢} is renormalizable. We have already proved that the theory ¢§ cannot be
stabilized, so it is nonrenormalizable.

Nounrenormalizable theories are described by nonpolynomial Lagrangians,
which are the sums of local terms with arbitrarily high powers of the fields
and their derivatives. We have

2
Loomen = 3 (0 + g 1 30 S TTgmgn), (230

{m,n} i
where M is some energy scale and
d—2
1
is chosen to make the couplings Ay, ,} dimensionless. Nonrenormalizable
theories are problematic from the physical point of view. Their correlation
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functions depend on infinitely many parameters, which means, at the practi-
cal level, that infinitely many measurements are necessary to determine the
theory completely, and make predictions that are valid at arbitrarily high
energies.

On the other hand, in most cases nonrenormalizable theories can be used
to make predictions at low energies. If a monomial O in the fields and their
derivatives has dimension dp, then its insertion into a correlation function
behaves like E% at low energies, so the interacting Lagrangian behaves like

oo Z \ E X (m,n)
I {m,n} M :
{m.n}

We can have three typical cases.

1) If all the dimensionless couplings Ay, ,,3 are of comparable orders at en-
ergies ¥ < M, ounly a finite number of interactions is important. We then
say that almost all interactions become negligible at low energies. However,
the number of interactions that are important grows with the energy and
becomes infinite at £ ~ M.

2) A behavior like Agy, 1 ~ X (m,n)~X(mn) for large m,n, ensures that
almost all the couplings can be neglected in every energy range bounded
from above. The number of important couplings grows with the energy and
becomes infinite only at £ = oo.

3) A behavior like Ay, 53 ~ X (m,n)X(m") for large m, n, ensures that the
parameter Af,, 1 is negligible for energies

M

P ——.
< X(m,n)

There exists no energy range where almost all couplings can be neglected.
Intermediate types of behaviors can be traced back to these three cases.
The behaviors of the couplings A, ,,3 are a priori unknown, but comparison
with experiments can suggest whether we are in the situations 1), 2) or 3).
Even in the worst case, a nonrenormalizable theory may still have a non-
trivial predictive content. Indeed, even if the Lagrangian contains infinitely
many independent unknown parameters, there might still exist physical quan-
tities that just depend on a finite subset of them. The hard part is to work out
those physical quantities and make experiments that are suitable for them.
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Strictly speaking, the difference between renormalizable and nonrenormal-
izable theories is that the former are always predictive, in an obvious way,
while the latter can be predictive, but only in a rather nontrivial way.

It is worth to stress that the nonrenormalizable theories are much less
problematic from the mathematical point of view, where it does not really
matter whether the number of independent couplings is finite or infinite.
Indeed, most renormalization theorems we are going to prove hold both for
renormalizable and nonrenormalizable theories

¢} at one loop

Let us complete the one-loop renormalization of the o} theory. Formula
(2.23) gives
wa < 4— E7

so the potentially divergent diagrams are those with wg > 0, i.e. E < 4.
The renormalization of the four-point function has been discussed above.
Since the ¢} theory has a Zs symmetry ¢ — —¢, the correlation functions
that contain an odd number of insertions are identically zero. Moreover,
the diagrams with zero external legs need not be considered, since they can
always be subtracted by adding a constant to the Lagrangian. We remain
with the one-loop correction to the two-point function, which is the second
term on the right-hand side of (1.46) and gives the integral

Ape dPp 1 9 1
- = S 2.4
2 / 2m)P p?2 + m2 Am 1672 ) (240)

where the constant co is regular for € — 0. To subtract this divergence we

modify the action by adding

A'L = Am? ( - C2> (’i. (2.41)

16m2¢e 2

Again, we can take an arbitrary finite co here, different from the one appear-
ing in (2.40). Collecting (2.32) and (2.41), the full one-loop renormalized
action reads

1 A
Sl((p) = /dD‘T <§(8M()0)2 +m? <1 + T6n2e )\62>

¢
2
v (1022 e ) 2 (2.42)
H 1672 T '
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More generally, the renormalized action can be written as

Srp, A, m, ) = /dDw (f(%wf + M Zp2 “‘;p + At Zy ff :
(2.43)
where the coeflicients
_ 2 _ 2
Zo=1+0(A ) Zmz—1+167T2€—)\cz+(’)()\ )
3\
Zy=14 —— +3Xc; + O(\?), (2.44)

1672

which depend on A and ¢, are called “renormalization constants”. At one loop,
Sg coincides with S7. If we collect the field and parameter redefinitions into
the “bare” quantities

OB = Z&,/Qcp, m% =m>Z,,2, AB = A\ut 2y, (2.45)

then Sgr(p, A\, m, 1) can be rewritten in bare form

2 4
St (¢, Ap, mp) = /d% <%(0WB)2 + m2B“O—QB + ABZ—?> . (246)
We see that the bare action is exactly the classical action.

We have already observed that the constants ¢; and ¢y of formula (2.42)
are arbitrary. Any time we subtract a pole 1/¢, we can equivalently subtract
1/e plus a finite constant. This arbitrariness amounts to a finite redefinition
of the fields and the parameters, which has no physical significance.

A specific prescription to choose such arbitrary constants is called sub-
traction scheme. For example, subtracting the first terms of the Taylor ex-
pansion around vanishing external momenta is a scheme prescription. In
massless theories this prescription is not convenient, because it can originate
spurious infrared divergences. Then it is better, for example, to subtract the
first terms of the Taylor expansion around some nontrivial configurations of
the external momenta. We can even choose different configurations for dif-
ferent diagrams. A very popular scheme, called minimal subtraction scheme,
amounts to subtract just the poles in €, with no finite parts attached.

The constants ¢; and ¢y parametrize the scheme arbitrariness at one loop.
The residues of the poles 1 /e, on the other hand, are scheme independent. For
example, comparing (2.3) and (2.7), we have remarked that the coefficients
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of In A and 1/¢ coincide, as well as the term m? Inm?. Instead, the quadratic
divergences A2 end into the arbitrary constant cs.

A few tricks can allow us to compute the divergent parts quite easily,
taking advantage of their locality. Consider for example the integral Zp(k, m)
of formula (2.28). We know that its divergent part is a polynomial of degree
zero in k and m. Therefore, it just a constant, and can be calculated by
setting k and m to the values we like. We cannot put £ = m = 0, however,
because this affects the domain of integration in a nontrivial way: the rules
of the dimensional regularization do not allow us to exchange the integral
and the limits k — 0, m — 0 in this case. A better choice is to keep m # 0
and put k = 0: since the domain of integration is unaffected, the limit £ — 0
can be safely taken inside the integral. We could also keep k& # 0 and put
m = 0, but the first choice is more convenient. Then, (2.28) becomes a
standard integral (see Appendix A) and its divergent part can be worked out
immediately.

More generally, since the divergent part of a diagram is a polynomial of
the external momenta k£ and the masses m, if we differentiate the integral
with respect to k and m, we can reduce the degree of the polynomial to zero,
and then proceed as above. If we differentiate in all possible ways, we can
fully reconstruct the polynomial, i.e. the divergent part of the diagram.

Using these tricks,

Exercise 4 Compute the one-loop renormalization of the p3 theory.

Solution. The renormalized action reads

. (%o o m 2 e 3/2 ¢ 4, —
S(p)= [ d"x T(OMP) t 5 Zm2Zey” + AW 272, o Tmok Ap |,
where e =3 — D /2. At one loop the divergent diagrams are those with one,
two and three external legs. The tadpole is

r (1 — 2) mbP~2 AmAp e
_\,,E 2 __ e :
Mo 2(amype e
whence
A
Ay =— :
! 2(4m)3e
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The self-energy is equal to the first line of (2.30). The difference is that
now we have to expand it around D = 6 instead of D = 4. We obtain the
divergent part
A2 2 2
———= (kK +6
12 (47)3 (k" + 6m7).

which gives

o\ s+ O, (247)

A2 4
3 + O()\ ), Zm2 =1- 7126(471’)

Zp=1-—"
v 12e(4)

The divergent part of the correction to the vertex can be calculated at
vanishing external momenta. We have

dPp A3 r'3—D/2) A3 g
B )33 2\D/2-3 _ _ finit
/ 2m)D (p? + m2)?3 W ) De(arm)? e
so the vertex renormalization constant is
3\2
Zy=1——"— + 0. 2.48
A 8z=(4m)3 +OW) (2.48)

O

Most of the properties of the renormalization at one loop generalize to all
orders. Now we make some remarks about the renormalization at two loops,
which help us introduce the proofs of all-order statements.

¢} at two loops

We denote the vertices provided by the one-loop counterterms (2.32) and
(2.41) with a dot, as in (2.33). At two loops, we have diagrams that contain,
in general, both subdivergences and overall divergences. For example, con-
sider the following two-loop corrections to the four-point function, given by
the diagrams

=

DO —

DO —
DIl —

(2.49)
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plus two permutations of each. We begin by concentrating on the first three
diagrams, since the forth one is much simpler t o deal with. The subdiver-
gences of the diagrams (a), (b) and (c) are subtracted by

(€) (f) (2.50)

The subdivergences of each subdiagram of (a), (b) and (c) are given by one
third of (2.33). Moreover, (2.33) absorbs also a combinatorial factor 1/2,
which is the combinatorial factor of the diagrams (2.25). It is convenient to
define separate counterterms for the three diagrams (2.25), even if they are
equal in value. We do this by splitting the counterterm (2.33) into the sum of
three equal contributions, and using appropriate labels to remember which
diagram they cure. So doing, we obtain

XK= XXX .,

Observe that the rules to compute the combinatorial factors remain the
same after this splitting. If A is the value of a vertex with N external legs
and V is the number of times it appears in a diagram, its contribution is
AV /(NVV!). Now, if A is decomposed as a sum Y | a;, the multinomial
formula ensures that each “subvertex” contributes with the same rule. Indeed
we have

AY __( zlaZ 2.52

where the sum is taken over sets of non-negative n;s such that Z?:l n;=V.
Note that it is not necessary that each term a; of the sum be symmetrized
under the exchange of its external legs.

Now, consider diagram (a) and its counterterms:

SOOKHOXHOX
- - (2.53)
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This sum is free of subdivergences. Indeed, the two subdiagrams of (a) are
of the first type of the list that appears on the right-hand side of (2.51).
Moreover, recall that each subdiagram carries a combinatorial factor 1/2,
which explains why the counterterms in (2.53) are correctly multiplied by
1/2 instead of 1/4.

Next, consider diagram (b): the sum

DO
_|_
DO —
_|_
DO —

(2.54)

is also free of subdivergences. Observe that this time we use the second and
third vertices of (2.51), because they both correspond to the divergent sub-
diagram of (b). Again the combinatorial factors match, taking into account
the factor 1/2 absorbed by the divergent subdiagram. Diagram (c) is treated
symmetrically to (b).

In conclusion, the sums

@ s=(@+30) (25)

are all free of subdivergences. Therefore, so is the total t = 51 4+ so + 53 =
(@) + (b) + (c) + (e) + ().

Since s1, so and s3 are free of subdivergences, so are their derivatives
with respect to the external momenta and the masses. Now, a sufficient
number of such derivatives does kill the overall divergences of s1, so and s3
and produces fully convergent integrals. This proves that the divergent parts
of the subtracted integrals sq, so and s3 are polynomial in the masses and
the external momenta.

Let us explicitly check this fact in s1. For simplicity, we work at m = 0.
Diagram (a) is very easy to calculate, since it is basically the square of any
diagram of (2.25). We have

~\\3,,
(@)= I (21,007

Write
2

k
W Tp(k,0) = 2 +bIn = + ¢,
e p
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where a, b and c are finite for ¢ — 0. Their values can be read from the
calculations already made (in particular, a = 1/(872)), but for what we are
going to say we do not need to do that. Each counterterm of (2.53) equals
—aX?puf/(2¢), so

1 1 1 9 o[ —Af
—(e)==(f)= —— z .
30 =50 = 5o () Z(k.0)
Finally,
A3 € k2 2 k2
51 = — a (g—l—bln—z—{—c) —29<g—|—bln—2—|—c>
€ ! € \€ !

In the difference, the (nonlocal) subdivergences

2
2%b ln% (2.56)

do subtract away and the surviving (overall) divergences are purely local.
We find

3,,€ 2
s1 = —)\f (—2—2 + finite part) , (2.57)
as expected. This example, although very simple, is sufficient to illustrate the
most general facts. The subdivergences are in general nonlocal, because they
are “products” of a divergent part, originated by some subdiagram, times a
finite (thus nonlocal) part, due to the rest of the diagram. Subtracting some-
thing like (2.56) would really require to alter the original theory completely,
turning it into a nonlocal theory. Fortunately, the subdivergences are auto-
matically subtracted by the counterterms associated with the subdiagrams.

It remains to consider the diagram (d) of (2.49). Its subdivergence is

subtracted by

(9) (2.58)

where the dot denotes the counterterm of (2.41). The sum s4 = (d) + (g) is
clearly free of subdivergences.
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Consider now the two-loop corrections to the two-point function, which
are given by the diagrams

(h) (k) (2.59)
The counterterms that subtract the subdivergences are
1 Q1 O
2 2

é) (d) (2.60)

which vanish at vanishing masses, since they are tadpoles. Diagram (h) has
two types of diverging subdiagrams, corresponding to both types of contri-
butions (i) and (j). Instead, diagram (k) has a single type of subdiagram,
but it appears three times, since freezing any internal line gives the same
result. The total ' = (h) + (k) + (¢) + (j) can be arranged as s5 + sg, where

s5s = (h) + g(i) +(),  se=(k)+ g(i% (2.61)
are both free of subdivergences. Explicitly, the (h) subdivergence due to the
bottom loop is subtracted by (i)/3, while the (h) subdivergence due to the
top loop is subtracted by (j). This (i)/3 is obtained using the middle vertex
of (2.53). Similarly, the (k) subdivergences obtained freezing any internal
line (which gives a factor 3) are subtracted by 2(i)/3. These two (i)/3’s are
obtained using both the first and third vertices of (2.53).

Again, this proves that the overall divergences of the sums s; and sg are
polynomial in the masses and the external momenta.

Exercise 5 Calculate Z, at two loops in the massless ¢} theory.

Solution. The two-loop contribution to the self-energy is

)\2 2e dD dD 1
a / b <4 (2.62)

3! (2m)P (2m)P p2?(p + q + k)?’
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where k is the external momentum. We first integrate over p by means of
formula (2.36). We get

2
SRR UL SR R
31 (4m)PRr(D - 2) (2m)P ¢*[(q + k)?|2=P/2
Now we use the Feynman parameters again to calculate the integral over q.
We obtain )
A22T(3-D)[0(E -1
3! (4m)PT (22 — 3)
Extracting the divergent part, we finally obtain
A2 3
Zop=1— —— A7), 2.64
P 125(47’(’)4 +O( ) ( 6 )

Exercise 6 Calculate Zy at two loops in the massless ¢} theory.

Solution. The diagrams we have to study are those of formula (2.49),
plus the counterterms (2.50) and (2.58), plus two permutations of each. The
diagram (d) and its counterterm (g) vanish in at m = 0. Since Z) is indepen-
dent of the external momenta k, we can simplify the calculation by setting k
to zero and working with nonvanishing artificial masses ¢ (to avoid infrared
problems). Alternatively, we can keep the masses equal to zero and choose
convenient configurations of the external momenta. We adopt the second
option. The divergent contributions s3 and s$Iv of s3 and sy coincide, so
the total divergent part can be written as 3(s{I + 2s41V), where s8IV can be
read from (2.57) and the overall factor 3 takes the permutations into account.

Now we evaluate the diagram (b). Let k denote the total incoming mo-
mentum of the two external legs on the left-hand side. We can simplify the
calculation by setting the momentum &’ of the top-right external leg to zero.
Indeed, it is easy to see that the integral becomes fully convergent after one
derivative with respect to k', which means that the divergent part, although
nonlocal, cannot depend on k’. The same trick does not work for k, so we

cannot set k = 0. The subdiagram can be replaced with its exact expression
(2.36). We get

o= SETL B E N i

2(4m)PPPT(D - 2) (2m)P (p?)3~ P2 (p — k)*
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Now the calculation proceeds as usual. We get
) = Mp¥ [T(2 -1)]°r3 - D)
(4m)P(4 — D) (37 — 4)

)‘3/‘8 )‘3/‘8 5 k2 .
=— s — (dm)iz <§ —vg —1In 7(4@“2) + finite.

)"

On the other hand, it is easy to evaluate (e), which gives

2
3T (2-9) [T (5 - 1)]
2(47)2e(47)P/2T(D — 2)
3)‘3N€ 3)\3Iu€
= 2—vyp—In—— finite.
(m)'e? " ()t ( v <4m2> e
The total gives

() (kg)D/2—2

2

2 Nps (11 ,
S9 = (b) + g(e) = (47‘(‘)46 (g — §> + ﬁnlte.

Note that the nonlocal subdivergences cancel out, as it must be. Finally,
collecting the contributions of s; and so, we get

: : 3N3uf (3
div div
9sdivy = 228 (29,
3(31 + 32 ) (47‘(‘)45 <€ >

Using (2.64) we obtain

3\ 9)\2 17\2

(4m)%e i (4m)%e2  6(4m)te +OXY). (2.65)

Zy(\e) =1+

Exercise 7 Compute the two-loop renormalization of the massless gpg theory.

Solution. The renormalized action is
VA 6
s(0) = [ @ (@0t + 235 ).

where ¢ = 3—D. It can be easily checked that there is no one-loop divergence,
so we just have to consider the two-loop diagrams. Moreover, there is no two-
loop contribution to the wave-function renormalization constant. Instead,
the vertex gets a counterterm from the diagram

N
NI
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The combinatorial factor is 1/6. The divergent part does not depend on
permutations of external legs, which gives an extra factor of 10. We just
have to calculate (2.62), multiplied by 10p?¢. Using (2.63) and expanding
around D = 3 we get

SA

Geame O 200

7 A= 1+
Note that using the dimensional regularization no other counterterm can be
generated. For example, a counterterm of type ¢* is in principle allowed
by power counting, but it would have to be multiplied by a dimensionful
parameter, which is absent in the massless case. On the other hand, the
dimensional regularization kills the powerlike divergences, because it has a
sort of dimensionless cutoff.

Exercise 8 Compute the first contribution to the self-energy counterterm of

the massless ¢S theory.

Solution. The first correction to the self-energy is of order A% and has
four loops. It can be computed with the method used in exercise 5 to go from
(2.62) to (2.63). The difference is that now we have to iterate the integration
four times instead of two. The result is

A2 T(5—2D) [T (2 - 1)]°

2 (k2)2D_5 (2 67)
5D : :
5t (4m)?PT (3¢ - 5)
Extracting the divergent part, we obtain
4\?
Z,=1 ON). (2.68)

T Ihe(lon)t

2.3 Renormalization to all orders

In the renormalizable theories, which we classify in the next sections, formu-
las like (2.45) generalize to all orders. Now we describe what happens, and
later prove the theorems that justify our claims. Let ¢, A and m collectively
denote the fields, the couplings and the masses, respectively. Start from the
classical action, and interpret it as the bare action Sg(yp, A, mp) of the
quantum field theory, which depends on the bare fields and parameters, de-
noted by the subscript B. Then, there exist renormalization constants Z,,
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Zm and Zy, which depend on A and €, and renormalized quantities ¢, A and
m, defined by the map

on = 2%,  mb=mZn,  Ap=MFZy, (2.69)

such that all the renormalized generating functionals and the renormalized
correlation functions are convergent in the limit ¢ — 0. The renormalized
generating functionals coincide with the bare generating functionals written
in terms of the renormalized fields and parameters. The renormalized corre-
lation functions are equal to the bare correlation functions, written in terms
of the renormalized fields and parameters, apart from a multiplying factor,
which is specified below. In formula (2.69) p denotes the difference between
the continued and the physical dimensions of A, the physical dimension being
the one at € = 0.
Precisely, define the renormalized action Sg, such that

SB(¢B, AB, mB) = Sr(©, A, m, 11). (2.70)

Then, define the bare and renormalized generating functionals Z and W by
means of the formulas

Zg(JB, A, mp) :/[dch] e~ SB(¢BAnmp) [ ¢BIE — (Wi (JBABME)
= /[dw] e SREAMITS O — 7 (J, A m, ) = VR (2 71)

with
Jg =Z;'2.

Define also bare and renormalized correlation functions, possibly connected
and/or irreducible, as

GB(21,...; Tn, AB,mB) = (pB(21) - - - ¢B(TN))
223/2(90(3;1) () = Z$/2GR($17 vy Ty A, T, ).

Next, using

B () = 22 = (nla)s
=23 pta)s = 25250 — 23 aa),
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perform the Legendre transforms, and construct the bare and renormalized
generating functionals I'. We find

I'p(®p, A\, mp) = —Wg(Js(®B)) + /JB((I)B)(I)B
=-Wgr(J(®)) + / J(@)D =TR(P,\, m,p).
By definition, the map (2.69) must be such that
Ir(®, A, m,u) < oo,

in the limit € — 0, that is to say all the irreducible diagrams are convergent
once expressed in terms of the renormalized quantities. This fact also implies

Zr(J, A\ myp) < oo, Wgr(JL,A,m,pu) <oo, GR(Z1,...,Tp, A\, m, 1) < 00.

Observe that the renormalized action Sg(p, A\, m, i), instead, is not conver-
gent for ¢ — 0. Check for example, the one-loop renormalized action (2.42).
However, the classical action does not have a direct physical meaning. It is
just a tool that allows us to implement what remains of the correspondence
principle in quantum field theory. As promised, renormalization amounts to
a change of field variables, combined with a reparametrization, that is able to
move the divergences away from all the physical quantities. It does not care
if the nonphysical quantities, such as the classical action, remain or become
meaningless.

Note that the renormalized sides of (2.69), (2.70), etc., depend on one
quantity more than the bare sides, that is to say the dynamical scale p. The
nontrivial p dependence of the renormalized correlation functions is the root
of the renormalization-group flow, which will be studied later.

To prove the renormalizability to all orders, we need to prove two prop-
erties, to all orders, namely that the counterterms are local, and that they
have the form of the terms already contained in the bare action Sp. We
begin with the locality of the counterterms.

2.4 Locality of counterterms

Now we are ready to prove the theorem that ensures the locality of the
counterterms.
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Theorem 2 Once subdivergences are subtracted, the overall divergences of a
diagram are local and polynomial in the masses.

Proof. Let Vy denote a vertex of the starting Lagrangian and Vi, an L-
loop counterterm, L > 1. Let V, denote the set of Vs, L > 0. Moreover, let
G, denote an L-loop diagram constructed with the vertices of Vy, and Gy, the
set of such diagrams. Let C, denote an L-loop diagram constructed with at
least one counterterm Vi, 0 < N < L, and Cy, the set of such diagrams. Note
that a C', cannot be a V. A counterterm Vi, subtracts an overall divergence
of some diagram Gp. Instead, a diagram C7, subtracts some subdivergence
of a Gp,.

Proceeding inductively, assume that the theorem is true up to the nth
loop order included, which means that all V},,’s with m < n are local and
polynomial in the masses. Then, consider a diagram G, 1. It corresponds
to an integral over n 4+ 1 momenta p;, ¢ = 1,...,n + 1. The momenta of the
internal legs are linear combinations Ap; of the p; with coefficients +1. The
potentially diverging contributions to the integral can only come from the
integration regions where the momenta p; are sent to infinity. The overall
divergence correspond to sending the p;s to infinity with the same velocity.
The subdivergences also correspond to sending them to infinity with the same
velocity, but with the constraint that some Ap; are kept fixed. Once we cure
the behaviors in such integration regions, the integral is convergent, because
any other integration regions, such as the ones corresponding to sending some
Ap; to infinity with different velocities, are automatically covered.

From the diagrammatic point of view, keeping the momenta of some
internal lines fixed while all other integrated momenta are sent to infinity
amounts to cut those internal lines and single out a proper subdiagram.
Such a subdiagram is not necessarily connected, nor irreducible. We do not
need to worry about that, since the inductive assumption ensures that all
the diagrams of orders < mn are appropriately subtracted. Indeed, once the
irreducible ones are cured to some order, the connected and disconnected
diagrams are also cured to the same order.

Observe that the subdiagrams themselves have overall divergences and
subdivergences. Nevertheless, again, the inductive assumption ensures that
the necessary counterterms are right there. This is actually a nontrivial
fact, since we must convince ourselves that the diagrams Cr, which are built
with at least one counterterms, appear in the right place and with the right
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coefficient. Now we show that this property follows from Wick’s theorem.

The examples studied before suggest that there exists a direct match
among the coefficients of “terms and counterterms”, the G's and the C's. For-
mula (2.55) and (2.61) tell us that we need to multiply the subtractions C
by appropriate coefficients in order to match the Gs. This is the nontrivial
part of the game: to distribute every C' among various Gs, and check that
the total coefficient in front of C' is still equal to one. For example, the sub-
traction (e) had to be split as follows: one third for (a) and two thirds for
(b). In the end, everything worked perfectly, but what is not obvious is how
to promote those examples to a general proof to all orders. Fortunately, we
are making the problem harder than it actually is. It is sufficient to change
the viewpoint, to realize that all the coefficients match in a rather natural
way.

To see this, we rearrange the perturbative expansion not as a sum over
diagrams G, but as a sum over sets of Wick contractions that lead to the
diagrams. We anticipated that this trick was going to be useful for some the-
oretical proof (although it is definitely not convenient at the practical level).
Let us denote the Wick contractions with G. We know that each Wick
contraction has a simple combinatorial factor (the numerator s of (1.51) is
always equal to one for bosons, and +1 if fermions are present), while dia-
grams have complicated combinatorial factors. It is convenient to apply a
similar trick for counterterms. Rather than collecting the identical contri-
butions altogether into a single counterterm, it is convenient to “mark” each
counterterm, to keep track of the G it comes from. To make this operation
clearer, we can refer to (2.33) and its splitting (2.51). In (2.51) we marked
each contribution to keep track of the diagram it came from, rather than the
Wick contraction. We stress that here we want to do even more, that is to say
mark each contribution so as to remember the Wick contraction G it comes
from. Clearly, all such marked counterterms have s = £1. Moreover, after
the decomposition, the combinatorial factors follow again the usual rules, as
shown in (2.52).

Now, express the correlation function as a sum over the Gs. Each G
has subdivergences, which are just subsets of Wick contractions. Fach such
subset is certainly equipped with its own counterterm, and the coefficient is
certainly correct, because in this expansion all the factors s are equal to plus
or minus one.
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Therefore, the sum

t= Z Gn—l—l“‘ Z Cn—i—l — Z Gn+1 + Z Cn—i—l

gn+1 Cn+1 On+1 Cnt1

is free of subdivergences. Here the bars refer to the rearrangement of the
sums over sets of Wick contractions and the associated counterterms.

The argument just given teaches us that, in practice, we do not need
to worry about the combinatorial factors: they always turn out to be right,
simply because there exists a rearrangement where the combinatorial factors
of “terms and counterterms” naturally match. We emphasize that, ultimately,
this fact is due to Wick’s formula, stating that each G' appears once and only
once.

Once we know that t is free of subdivergences, we also know that a
sufficient number of derivatives with respect to the masses and the external
momenta kills the overall divergence and produces a fully convergent integral.
Thus, the divergent part of ¢ is polynomial in the external momenta and the
masses, which ensures that the V,, s are local and polynomial in the masses.
The inductive assumption is then promoted to the order n + 1 and so to all
orders. J

The one have just considered is the “collective version” of the theorem
about the locality of counterterms, which states that the sum of all the
(n + 1)-loop diagrams behaves correctly. A refined version of the theorem
holds diagram by diagram, which states that every time the subdivergences
of a diagram are subtracted away its overall divergence is polynomial in
the external momenta and the masses. Precisely, there exist convex linear
combinations

C.G

Cn+1 gn+1

that are separately free of subdivergences. The agﬁ are appropriate con-
stants that can be worked out with the method described below. The di-
vergent part of each G "1 is local and polynomial in the masses. Examples
of (2.72) are (2.55) and (2.61). The collective version of the theorem also
follows from its single-diagram version.

We illustrate the single-diagram version of the theorem by considering a
¢3¢ two-loop diagram together with the counterterms that subtract its sub-

14B1 Renorm



96 CHAPTER 2. RENORMALIZATION

divergences,

(2.73)

The dot denotes the one-loop vertex counterterm. Instead, the square de-
notes just one contribution to the two-loop vertex counterterm, the one that
subtracts the overall divergence of the subdiagram (sd) of the following pic-
ture:

<

(sa) © (2.74)

Note that (c¢) does not include the contributions associated with the permu-
tations of the (sd) external legs. As above, we mark each counterterm to
remember which Wick contraction it comes from. Then, we sum the Wick
contractions that give the same diagram. Thus, (c) is already equipped with
the appropriate coefficient to fit into the linear combination (2.72).

Consider (2.73). Let R(uy,...ux) denote the region where the momenta
u1,...ur are sent to infinity and the other ones are kept fixed. Observe
that the dot and the square “hide” certain momenta. Now, a counterterm
subtracts the overall divergence of a subdiagram, which means that it cor-
responds to the integration region where the hidden momenta are sent to
infinity. For example, the dot of the second diagram contributes to the re-
gions R(a,b,c) and R(a,b,c,d,e, f), but does not contribute to the region
R(a,b,d,e, g, h).

Now we study the subdivergences region by region. Region R(a,b,c):
the diagram is corrected by the first counterterm. The other counterterms
are not concerned. Region R(a,b,c,d,e, f): the diagram is corrected by
the first and third counterterms. Region R(a,b,c, f,g,h): the diagram is
corrected by the first, second and fifth counterterms. The regions R(f, g, h)
and R(d,e, f,g,h) are symmetric to the first two already considered. All
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other regions are trivial. We conclude that the sum (2.73) has only overall
divergences, which are local. The argument we have illustrated in the case
(2.73) generalizes to the most general diagram.

The locality of counterterms is a very general property. It does not de-
pend on the theory, i.e. the types of fields, the forms of the propagators and
the structures of the vertices, as long as a sufficient number of derivatives with
respect to the external momenta, or the masses, kills the overall divergences.
Any local, Lorentz invariant theory satisfies this property and produces local
counterterms. For example, if the vertices contain derivatives, then the inte-
grand of (2.21) are multiplied by certain polynomials of the momenta. Yet,
it is true that: (i) every derivative with respect to the external momenta or
the masses lowers the overall degree of divergence; and (i) sufficient numbers
of such derivatives kill the overall divergences. The subtraction of subdiver-
gences described above is a matter of mere diagrammatics. In particular, it
does not require to satisfy any conditions of renormalizability. Even more,
the locality of counterterms is so general that it holds in several types of
theories not considered so far, including Lorentz violating and nonlocal ones.

We mentioned before that a few tricks can simplify the calculation of the
divergent part of a diagram. Now we can upgrade one of those tricks. In
general, an L-loop diagram G corresponds to an integral of the form

o (k,m) /Hdpl (p, k,m) (2.75)

Q(p,k,m)’

instead of (2.21), where P and @ are polynomials of p, k and m. Nontrivial
numerators P appear when the vertices contain derivatives. We know that
the axioms satisfied by the analytic integral do not allow us to expand the
integrand in powers of k and m, and integrate term by term. Nevertheless,
it would be very convenient to do so, because it would allow us to efficiently
isolate the overall divergent parts from the rest. We can make these opera-
tions legitimate by introducing artificial masses 6 > 0 in the denominators of
propagators. Specifically, let Ig(kz,m) denote the subtracted integral, that
is to say the integral associated with the sum G¥ of formula (2.72). Write

TE(k,m) = lim T8 (k, m + )

Since Ig is equipped with the counterterms that subtract its own subdi-
vergences, the locality of counterterms ensures that Zg(k,m + ) only has
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overall divergences, and those depend polynomially on k, m and 4. Separate
ZE(k,m + §) into the sum of its divergent part I, (k,m + ) and its con-
vergent part ZE.  (k,m + ). Since ZL; (k,m + §) in a polynomial in &,
it admits a smooth limit ZZ; (k,m) for § — 0. Then, ZF  also admits
a smooth limit for § — 0, because the sum Igdiv + Igconv must tend to

ZE(k,m). Thus, we can write

Ig(k’ m) = Igdiv(kv m) + %i_rf(l)lgconv(k’ m + 5)

The second term on the right-hand side has no poles for ¢ — 0, so it is
convergent even after taking the limit § — 0. Finally, the divergent part of
the subtracted diagram Gf can be calculated as

Ty (k,m) = %E}%Igdiv(ka m +6). (2.76)

We stress again that it is not legitimate to expand the integrand of Zg(k, m)
in powers of both k£ and m and then integrate term by term. However,
these operations are legitimate on Zf(k,m + §), as long as § is nonzero.
Formula (2.76) tells us that when we set § back to zero, we recover the
full divergent part of Z(k,m). The upgraded trick is particularly useful
in massless theories, because the artificial mass allows us to compute the
divergent parts by expanding in powers of the external momenta.

Exercise 9 Prove that, in dimensional regularization, an odd-dimensional
local quantum field theory has no nontrivial L-loop divergences, if L s odd.

Solution. The integrals have the form (2.75). We insert artificial masses
0 in the denominators, then expand in powers of the true masses m and the
external momenta k. In the end, all the overall divergences are given by
expressions of the form

b AP puy P
/ e g 270

where the denominator is a polynomial in the squared momenta p? and Ap?.
If both d and L are odd, then n must be odd, otherwise the integral is either
convergent or powerlike divergent. We recall that powerlike divergences are
fake divergences in dimensional regularization. If n is odd, the integral (2.77)
is odd under the transformation p; — —p;, so its overall divergent part
vanishes.
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2.5 Power counting

The renormalizability of a theory can be established with a simple dimen-
sional analysis, called power counting.

Consider a d-dimensional theory of interacting bosonic fields ¢ and fermionic
fields 1. We assume that the bosonic fields have propagators Pg(k) that be-
have like ~ 1/k? for large momenta k. By this we mean that also behaviors
such as

Pp(k) ~ > %% (2.78)

n

are allowed. Similarly, we assume that the fermionic fields have propagators
Pr(k) that behave like ~ k,/k?, or more generally

Pp(k) ~ Z Wa (2.79)

n

for large momenta. Such behaviors tell us that the dimensions of the bosonic
and fermionic fields are (d — 2)/2 and (d — 1)/2, respectively.

More generally, consider fields x, of dimensions d/2 —a with propagators
that behave like . A

P, (k) ~ Z W
n
at large momenta, where a is integer or half-integer, and n is even or odd,
respectively. We are not making assumptions about the sign of @, nor the
statistics of x4-

Let m collectively denote the masses of the fields. Let n;5, n;r, n;, denote
the numbers of legs of the types B, F' and a of the ith vertex. Assume that
the vertex is a polynomial V;(k) in the momenta, and that its dimension is
units of mass is ¢;.

Consider a diagram G with Ep, Ep, E, external legs and Ip, Ir, I,
internal legs of the various types, v; vertices of the ith type and L loops. We
have, from (2.18)

L-Ig—Ip-Y Li+V=1 V=) v (2.80)

We denote the external momenta with k& and the loop momenta with p. The
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integral associated with G has the form

aLldp s Iy
IG(k,m)Z/( LdHPB] p.k,m) [[ Pr(p, k,m) x
=1

X H l_al Paja(p7 k7m) H 1_]: ‘/Yili (pvkvm)7 (281)

a jo=1 i ;=1

where the indices j, [, j, and [; of Pp;, Pr;, P,j, and Vj;, label the propagators
and the vertices. Now, rescale k and m to Ak and Am. It is convenient to
rescale also the loop momenta, which is just a change of variables in the
integral. Then Zg(k, m) rescales with a factor equal to its dimension in units
of mass, which is

[Zc] = Ld —2Ip —Ip =2 al,+ ) vid;. (2.82)

Since the overall divergences are local, once the subdivergences have been
subtracted away, we infer that they are a polynomial of degree wg < [Zg] in
the external momenta and the masses. Now, count the bosonic legs attached
to the vertices: they can exit the diagram or be connected to other bosonic
internal legs, so
Ep+2Ip = Z ViNiB.
7

Similarly, the countings of fermionic legs and the legs of the type xq, we
obtain

Erp+2Ip :Zvimp, E, + 21 :vam.
i i
Using (2.80)-(2.82) and wg < [Zg] we get

we < d(Ep,Ep,Ea) + Y _vi[6i — d(nig, nir, mia)] ,

where
d—2 d—1 d—2a
o T T Y 2

d(:l?,y, za) =d-—

Zg-
We see that if all the vertices satisfy

0 < d(nig,nir, Nig) (2.83)

14B1 Renorm



2.5 Power counting 101

then all the counterterms satisfy the same inequality, namely
wg < d(Ep,Ep, E,). (2.84)

In other words, if the classical Lagrangian includes all the vertices that satisfy
(2.83), then the divergent parts of all the diagrams can be subtracted by
renormalizing the couplings, the fields and the masses. The condition (2.83)
defines a theory that is renormalizable by power counting.

Instead, when the Lagrangian contains some vertex v that does not satisfy
(2.83), then the diagrams containing vs can have an arbitrarily large degree
of divergence. In general, in that case, it is necessary to add infinitely many
new vertices and couplings to the Lagrangian, if we want to subtract the
divergences by means of redefinitions of the fields and the parameters. This
kind of theory is called nonrenormalizable.

The theories with all the d;s equal to d(n;p,nir,ni,) are called strictly
renormalizable, those with all the §;s smaller than d(n;p,n;r, niq) super-re-
normalizable, and those with some ¢; greater than d(n;p, n;r, n;,) nonrenor-
malizable.

It is easy to check that the requirement (2.83) is equivalent to demand
that all the Lagrangian terms have coefficients of nonnegative dimensions in
units of mass. Indeed, the dimension of the coupling ); that multiplies the
ith vertex is

d—2 d—1 d—2a
\i] =d— 5 BT 5 niF_Za: 5 Nia—0;i = d(nip, Nir, Nia) —0; = 0.
Thus, a theory is renormalizable by power counting if it contains no
parameters of negative dimension (and the propagators are well behaved).
This conclusion can be derived more quickly as follows. At the level of the
Lagrangian, a counterterm, being local, must have the structure

(TT») 07w T e (2.85)

The coefficient is a certain product of couplings and masses. We do not need
to specify where the derivatives act in (2.85), since it is not important for our
discussion. Now, the dimension of (2.85) must be equal to d. If the theory
contains no parameters of negative dimensions, we must have
d—2 d—1 d—2a
D+ B + MiF + Z — i < d,

a
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which is equivalent to (2.83). On the other hand, if the theory contains a
parameter A_ of negative dimension, then an arbitrarily large power h of A_
can multiply the counterterm, and we just have an inequality of the form

p+n,~Bd22+mFd2 1+za:d722anm§d—h[)\_], (2.86)
which violates (2.83).

Now, it should be kept in mind that in general, in renormalization theory,
the following “no-miracle” principle applies:
all the counterterms that are not a priori forbidden are generated by renor-
malization.

A counterterm can be forbidden by power counting, gauge symmetries,
external symmetries. If it is not forbidden, there is practically no hope
that it will not be generated as the divergent part of a diagram with an
appropriate set of external legs. In other words, no miraculous cancellations
should be expected. Then, the inequality (2.86) implies that infinitely many
new types of counterterms will be effectively generated, so the theory is
nonrenormalizable.

It is important to stress that the propagators must have the right behavior
for large momenta. For example, the Proca vectors of formula (1.87) are
in general not renormalizable, when interactions are present. Indeed, the
propagator (1.89) contains a term ~ p,p,/(m?p?) that prevails over &, /p>
at large momenta. This forces us to treat the field as a x,-field with a = 0,
which means that its dimension, from the viewpoint of the power counting, is
equal to d/2. The fields of such a dimension can appear at most quadratically
in a local field theory, so they cannot have renormalizable self-interactions.
Thus, in general the Proca vectors cannot be included in a renormalizable
theory.

Gauge fields can instead be included consistently, although their prop-
agators are naively not well behaved. For this reason the gauge theories
deserve a special treatment, and we devote chapters of this book to prove
their renormalizability.

Particular (scalar) fields of dimension d/2 can be useful as auxiliary fields.
For example, in the massless gpﬁ theory we can introduce an auxiliary field o
of dimension 2 and replace the ¢*-vertex by

1
L= 502 + ipPace?, (2.87)
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where a@ = 1/A/12.The integral over ¢ can be performed exactly, by means

of a translation ¢’ = o + iu/2ap?, which brings £ to the form
1 A
P =2 A4

The field ¢’ decouples and can be dropped, so the modified theory is equiv-
alent to the o} theory. However, sometimes it can be useful to work out the
Feynman rules and the diagrams from (2.87). In that case, o has a prop-
agator equal to 1, so it is a x, field with a = 0. The renormalizability by
power counting still works. We just need to add an extra vertex ¢* to the
Lagrangian, because it is allowed by power counting. We multiply it by an
independent coupling X' and treat « as an independent coupling a swell. In
total, the renormalized Lagrangian £/ reads
T = &02 + z'/f/2aZaZ;/2Z<pacp2 I )\’,uEZf\Zf,(p4 _ 1012 + AuEZ)y 724
2 4! 2 4! @

where o/ = Z;/20—H',ue/zaZOlZ(p(p2 and A\Zy = N Z} +12a*Z,. The theory is
equivalent to the ordinary massless (o theory with the coupling A = \'+12a2.

The no-miracle principle also implies that a renormalizable theory must
contain all the Lagrangian terms that are not a priori forbidden. Indeed,
assume that for some reason we start with a Lagrangian with some missing
vertex ¥. A divergent contribution ¢ of the same form will be generated by
renormalization. To subtract it, it is necessary to go back to the classical
Lagrangian and add o, multiplied by a new coupling A. Once that is done, it
is possible to remove ¢ by making a redefinition of \. We see that, because of
renormalization, we are not free to choose the theory we like. Most classical
theories make no sense at the quantum level, either because they do not
contain enough vertices, the renormalizable ones, or because they contain
nonrenormalizable vertices. Renormalization either guides us towards the
right theory or blows up to (2.39). In this sense, it provides a way to select
the theories.

Sometimes, the parameters of zero dimension are called marginal, those
of positive dimensions relevant and those of negative dimensions irrelevant.
This terminology refers to the low-energy behavior of the theory. For ex-
ample, the parameters of negative dimensions multiply Lagrangian terms of
dimensions larger than d, which are indeed negligible in the low-energy limit.
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Instead, the parameters of positive dimensions multiply the terms that are
more “relevant” at low energies. This terminology will be rarely used in this
book.

2.6 Renormalizable theories

The list of the renormalizable theories depends on the spacetime dimension
d. We start from four dimensions, where

d(nB,nF) =4 — np — gnp

By locality, d(np,nr) must be non-negative, so np can be at most 4 and np
can be at most 2. We have the following possibilities

(nB,nr) (1,0) (2,0) (3,0)
d(nB, TIF) 3 2 1
Lagrangian terms © 0%, 00p, (00)? ¢, %0

(nB,nr) (4,0) (0,2) (1,2)
d(nB, TIF) 0 1 0
Lagrangian terms | ? P, Py P

The notation is symbolic, in the sense that we do not pay attention to
where derivatives act and how indices are contracted. The most complicated
bosonic interaction is ¢? and the most complicated scalar-fermion interaction
is the Yukawa vertex ¢un). No fermion self-interaction is allowed.

The most general four-dimensional Lorentz invariant Lagrangian of scalar
fields ¢, vectors A and fermions 1 has the form

1 m?
£1= 20,40~ 50,407 + T2 1 L0007 + T

)\ Ads
P+ M + A+ S0+ §¢4+§?A2<8A>

+g—?"AuAl,8,,A + THAL? + Yoo + Yadu bt + 22 0(9,A,)
//

93s 2 93 2 )\451) 2 42
+? AL + 20°0,A, +2 al Aucpaucp—k T4 AL

where & # 1, plus fermionic terms equal to the listed ones with ¢ — 5,
where 5 is the product of all the v matrices. At & # 1 the vector propagator
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behaves correctly at large momenta, even when the mass m 4 does not vanish.
However, we anticipate that at £ # 1 the theory is not unitary, that is to say
it propagates unphysical degrees of freedom. At { = 1, m4 # 0 the vector A,
is of the Proca type, which has a bad behavior for large momenta. Instead,
at £ = 1, my = 0, the propagator does not exist. This is the case of the
gauge theories, which will be treated in the next chapters. After a suitable
“gauge-fixing” the propagator becomes well behaved and the theory can be
proved to be renormalizable by power counting and unitary.

Simple examples of renormalizable theories in four dimensions are the ¢}
theory (2.46), which is renormalized by (2.45) in the form (2.43), and, more
generally, the Yukawa theory (2.17). Its bare action

1 - -
Sp(pB,¥B) = /dDﬂf <§(5u90B)2 + )\B(Z—I,B + Ypdyn + QB¢B¢B¢B> (2.88)
is renormalized by the map
os = 2%, As=NiEZn,  vs=2)%,  gs=guT?Z,,

which gives the renormalized action

]
+Zy b + gu*Z,2Y 2Z¢<,017)¢) . (2.89)

D Z‘P 2 5 2904
Sutoi)= [ au (@08 + M ZE%

We can use this example to illustrate what happens when we start from
a theory with some missing vertices. Assume that we “forget” the ¢* vertex
and start with the Lagrangian

L= S(@u0) + 000 + 9900, (2.90)

Then, consider the one-loop diagram

(2.91)

and its permutations, where the dashed lines refer to the scalars and the
continuous ones to the fermions. It is easy to check that the divergent part

14B1 Renorm



106 CHAPTER 2. RENORMALIZATION

of (2.91) is nonvanishing. Thus, the theory is (2.90) is not renormalizable as
it stands. The missing ¢* vertex must be added to the classical Lagrangian,
and (2.90) becomes (2.17). Then, the redefinition of the p* coupling can
remove the divergent part of diagram (2.91). Thus, the theory (2.90) makes
no sense at the quantum level, although it is a perfectly meaningful classical
theory. Only (2.17) makes sense.

In three spacetime dimensions, we have

3—2
ding,np) =3 — =ngp —np — @

B ) N,

sonp < 6 and nrp < 2. The most complicated bosonic interaction is 906 and,
again, no fermionic self-interaction is admitted. We have included a field x4,
because in three dimensions there exist interesting bosonic vector fields with
a = 1/2 and propagators ~ k,/k? (Chern-Simons vectors). Their kinetic
term reads

]
Los = §AuapAV€;Wp'

In this case, we have n;/, < 3, and there can be vertices A, A}, AJe,,, (With
vectors of several types). Two boson-two fermion interactions 2?1, Aiz];z/},
etc., are allowed. Apart from constraints coming from the statistics, the
Chern-Simouns fields behave like the fermions . Summarizing,

) [ @20) 40) 6,0 &1
d(nB,nF) 2 1 0 1
Lagrangian terms | (9p)?  9p* o8 0%y
o) | A1) (0,2 22 (03)
d(nB,nF) 0 1 0 0
Lagrangian terms | ¢*) 9oy  p*? 3

where ¢ can stand for scalar fields and ordinary vector fields, while 1 can
stand for fermions and Chern-Simons vectors. We have listed only the La-
grangian terms that have the largest powers of the fields and the largest
numbers of derivatives. The missing terms are obtained from the listed ones
by suppressing some powers of the fields and/or some derivatives.

In six dimensions

5
ding,np) =6 —2np — SF
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which implies ng < 3, np < 2. Moreover, for ng = 2, ng must vanish, so the
fermions are free. It is said that they “decouple”, and so can be ignored for our
present purposes. Hence, the only allowed interaction is ¢®. However, the
theory ¢ is not physically interesting, since the potential ¢® is not bounded
from below. Vectors decouple also, by Lorentz invariance. In five dimensions
the situation is the same as in six. In dimensions greater than six all the
fields are free.

We see that only in dimensions smaller than or equal to four there ex-
ist physically acceptable interacting renormalizable theories. Unfortunately,
gravity is not renormalizable in four dimensions. It is described by a spin-2
field, a symmetric tensor h,,, which has derivative interactions of the form

~ K"h"Ohdh,

which involve a coupling x, the Newton constant, of dimension —1 in units
of mass.

Newton’s constant is dimensionless in two dimensions, which suggests
that gravity is power counting renormalizable there. However, it can be
shown that general relativity in less than four dimensions contains no prop-
agating graviton. In less than three dimensions gauge vectors have no prop-
agating degree of freedom either. We discover that the renormalizable in-
teractions are very few, which means that renormalizability is an extremely
powerful criterion to select the theories. It is so restrictive that it almost
selects the right dimension of spacetime: we have learned that four is the
dimension with the largest variety of renormalizable theories. However, the
fact that gravity is not renormalizable by power counting in d > 2 suggests
that power counting renormalizability is not the final answer. A more pro-
found renormalization principle must exist.

The renormalizable theories are those where the subtraction algorithm
achieves its goal of removing all the divergences by redefining the fields and
a finite number of independent parameters. Sometimes those theories are
just called “renormalizable” in the literature. However, it should be kept in
mind that there exist theories that are renormalizable by criteria different
from power counting. Those theories will be studied the final chapters of this
book.

Exercise 10 Compute the one-loop renormalization of the massless scalar-
fermion theory (2.17).
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Solution. The nontrivial divergent diagrams are

The calculation can be simplified by means of the tricks explained in this

(2.92)

chapter. Note that the last diagram gives 6 identical contributions: a factor
2 comes from the orientation of the loop and a factor 3 comes from the
permutations of the external legs. We find

4g° g° 59°
Zo=1-——9 Zy=1-—-—9 Z. =1
° ange @z’ 07 T e
1
A2y =\ 22 2\ — 48g%).

There is no diagram of order g2\, so )\ZAZi7 does not contain such type of
contribution. Note that in general when the theory contains more couplings
it may be not convenient to define vertex renormalization constants, such as
Z in this case, because they may contain negative powers of the couplings.
Since AZ) is certainly polynomial, it is better to rewrite AZ) as A + Ay,
where Ay collects the counterterms and is also polynomial.

Exercise 11 Compute the one-loop renormalization of the four-fermion the-
ory (1.102) in two dimensions, where v is a multiplet made of N copies of
the basic spinor doublet.

Solution. This theory is, in some respects, similar to the ¢* theory in
four dimensions. The Feynman rules are (1.103) with A — Au®, where € =
2 — D. There is no wave-function renormalization at one loop. The mass
renormalization is given by a tadpole diagram, which turns out to be equal
to —A(2N — 1)mpuc/2 times (2.6), where 2N — 1 comes from evaluating the
fermion loop. Expanding the left-hand side of (2.7) around two dimensions,
we get

(2N — 1)\

Iy =1 — ~— 2,
m e
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The vertex renormalization is given by the diagrams

O

where the combinatorial factors and the signs due to the fermion exchanges
are written explicitly. Observe that the first diagram is not multiplied by
(—1), since it does not contain a closed fermion loop. Instead, the third
diagram has a plus sign, since the factor (—1) due to the closed fermion
loop is compensated by another factor (—1) due to the permutation of two
external identical fermions. Using the two-dimensional identity

()07 = ()P (%7 = 2527670 — 5077,

where 7y, are the first two Pauli matrices, we obtain

(N —-1)A

Zy=1-—
A 2me

(2.93)

Exercise 12 Write the Lagrangian of the previous exercise in the equivalent
form

L=9(F+m)+ \/gw/zaw + %cr?,

having introduced an auxiliary field o. Renormalize the theory in this form
at one loop, and check the results already found.

Solution. The divergent one-loop diagrams are the first three of the list
(2.92), plus a tadpole (the fermion loop with one external leg o). The calcu-
lation is straightforward and gives the renormalized Lagrangian

— 4 A A €/2 i
Lr=9d + (HR) <m+\/;,u a> e

1, AN AmN  _
= 1+ — s . 2.94
+20 ( +27T€>+ 27r6'u 7 (299)

Integrating o away, we retrieve the results of the previous exercise. Note that
to have (2.94) real, the coupling A\ must be positive. This is the reason why
we have put a minus sign in front of the four fermion vertex of the Lagrangian
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(1.102). If the fields were bosonic, that minus sign would be wrong. Instead,
for the reason just explained it is the right sign for fermionic fields. O

The last two exercises teach us that, if we make a change of field vari-
ables, the theory remains renormalizable, but the renormalization organizes
itself in a different way. For example, the Lagrangian (1.102) has nontrivial
renormalization constants for m and A, at one loop, while (2.94) also has a
renormalization constant for o, and contains a ¢ linear term. The two renor-
malized Lagrangians are mapped into each other by a renormalized change
of field variables. For the moment we content ourselves with these observa-
tions. We will say more later, where we investigate general changes of field
variables in quantum field theory.

Exercise 13 Find the renormalized change of field variables that maps (2.94)

into the renormalized version of (1.102).

Solution. 1t is
AN (2N —1)A \/X _
= 1 - ! 1 N T - 6/2
7 ( 47T€> 7 ( dme > la vy
_@_e/z | AN mN
2 2re ) e’
plus higher orders. Indeed, (2.94) becomes

D0+ i — ST + 0,

plus a constant, plus higher orders. This is the renormalized version of
(1.102), plus a quadratic term that decouples (and is not renormalized).

2.7 Composite fields

Composite fields are defined as products of elementary fields, and their deriva-
tives, in the same spacetime point. Sometimes they are also called “opera-
tors”, or “composite operators”, although strictly speaking no operator is
involved in the functional-integral approach. Being just nontrivial monomi-
als of the fields and their derivatives, composite fields are local. Sometimes
it is useful to consider also local functionals, that is to say the integrals of
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composite fields over spacetime. Local functionals are also called integrated
operators.

The renormalization of a composite field is in general not related in an
obvious way to the renormalization of its component fields, and has to be
calculated anew. The simplest example of a composite field is p?(z) in the
¢* theory. The renormalization of ¢? is unrelated to the renormalization of
. Specifically, the correlation functions that contain insertions of ¢? can be
made convergent with a new renormalization constant, Z 2, which has no
relation with Z.

Let us recall that Z, renormalizes the divergences of the correlation func-
tions where scalar fields are inserted at different spacetime points, e.g.

Gy, z,w) = (p(@)p(y)p(2)p(w)), (2.95)

with x # ¥y, z,w, etc. Instead, consider the ? two-point function

(¢ (@)¢* (). (2.96)

Recall that the correlation functions have to be meant as distributions. In
a distribution it often makes no sense to take the limit of coinciding points.
Therefore, (2.96) is not the z — z, w — y limit of (2.95).

For a while, we write formulas assuming that we are dealing with a sin-
gle composite field. Later we generalize our arguments by eliminating this
restriction.

We must distinguish bare and renormalized composite fields. The bare
composite fields are denoted by Op and are just the products of the bare
factors. For example, the bare operator p?(x) is just the product of two bare
scalar fields in z, i.e. gsz (). The renormalized composite fields are denoted
by Og, or by writing the composite field between square brackets, such as
[©%(z)], to distinguish it from ?(x).

Bare and renormalized operators are related by new renormalization con-
stants Zp,

O = ZoOg. (2.97)

For example, we have pf = Z,2[¢?]. On the other hand, we know that
1/2
YB = Z, "¢, hence

) = 2 Zpy”. (2.98)
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This formula emphasizes that the renormalized operator ¢? does not coincide
with the square of the renormalized field ¢, unless Z 2 = Z,, which is in
general not true.

Thus, the renormalized two-point function (2.96) reads

Gr(z,y) = ([W* @] [W*W)])) = Z225(0% () &* (y)), (2.99)

at © # y. Here Z;f cancels the extra divergences due to the pairs of coin-
ciding points.

A composite field can be described as a vertex. Its structure is visible
when it is written in terms of renormalized (elementary) fields. Formula
(2.98) tells us that [¢?] is a vertex with two ¢ legs. To exhibit the vertex
associated with a composite field, we couple the composite fields to appro-
priate sources, which we denote by L, and add them to the action. At the
bare level, we just need to add

— LO(¢s) (2.100)
to the bare Lagrangian. At the renormalized level, we have to add

where f(p, L) denotes counterterms that are at least quadratic in L. They
renormalize the divergences of the correlation functions that contain more
than one insertion of O(yp), such as those of (2.99) at y — = (see below).

The generating functionals Z, W and I' are defined as usual. Now, they
depend on the sources L, besides J or ®. The correlation functions that carry
O insertions can be obtained by differentiating the generating functionals
with respect to L.

Since the bare and renormalized actions are the same quantity, written
in terms of different variables, we also have

LgOgp = LOg. (2.102)

Let Z;, denote the renormalization constant of L (Lp = Z1L). We clearly
have
Zn = Zy".

In the case of p? we have the new vertex —L¢?, with one leg L and
two legs ¢. Once LO is written in terms of renormalized fields, the new
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vertex can be treated as any other vertex, L being considered as an external,
nonpropagating field. The Feynman rules are supplemented with the vertices
generated by (2.100) or (2.101). We add

- % /deLB(x)csz(a;) = —% /deL(x)¢2(x) (2.103)

to the bare action (2.46) and

(2.104)

to the Feynman rules. Observe that the source L has dimension two in units
of mass, so by power counting the action must be completed with a term
that is quadratic in L. We write it as

1 nw 1
—— [ I3 =— — +dq L. 2.1
2ap B 2 <a + ) / (2.105)
We have written )
aptZ R
— Za
BT + ad, pa

The terms quadratic in L are important when we consider multiple insertions
of composite fields, as in (2.99).
The generating functional becomes

Z(J,L) = VUL _ / (] exp <—S(¢,L)+ / Jg0>, (2.106)

where in our example

21,7 < /1
S(e.1) = S(o) - 2552 [ 12 -2 (L4an) [ 2

and S(p) is given by (2.16). Since L is an external field, the Feynman

diagrams can have external legs L, but no internal legs L. There are only
two overall divergent correlation functions that contain (? insertions, namely
the “vertex”

(D (x)e(y)e(2)) (2.107)

and the two-point function (2.96). The counterterms associated with them
give Z1, and Z,, which we now calculate at one loop.
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In the case (2.107) we have

L (2.108)

It gives (—Au®/2)Zp(k,m), where Zp is given by (2.28). We find

Zp = Z;zl =1+ + O(\?).

16m2¢e

The ? two-point function (2.96) is given at one loop by the diagram

l :Q:
2
L L (2.109)

which gives (1/2)Zp(k,m), so

1
0g = ——— A). 2.11
“ T2 T O ) (2.110)
Exercise 14 Calculate the functionals W (J, L) and and its Legendre trans-
form T'(®, L) with respect to J for a free massless scalar field in the presence

of the composite field ©?.

Solution. We have the renormalized generating functional

VL) — /[d(p] exp (—% / {(8u<,0)2 — Ly? — “7_6 (14 ady) Lz} + / J(p)

(2.111)
where §, is given by (2.110) with A = 0. The functional integral is easy to
work out, since it is Gaussian. The source L plays the role of a spacetime
dependent mass. We obtain

_1 ! (1 )]~ Lo
W(J,L)—a/[:]ﬁ:]‘{‘/i <a+5a>L:| ZtTIH( U L),
F(@,L):%/ [(8M<I>)2—L<I>2—u‘€ <1+5a> L2] +%trln(—D—L),

a

(2.112)
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where

1
b = - J 2.113
/ ——— (2.113)
]

More generally, the renormalization of a composite field is not just multi-
plicative, but involves other composite fields. It is then said that composite
fields “mix” under renormalization. Then, formulas (2.97), (2.100), (2.101)
and (2.102) must be interpreted in a vector-matrix form.

Call O = O!(pp) the bare composite fields, O% the renormalized ones,
LIB and L' their sources, and Z!” the matrix of the renormalization constants,
such that (’){3 =zl (’)13{. The linear terms in L that must be added to the
Lagrangian read

LEOL = L'OL = LY (27 0 (Z22¢). (2.114)

These terms are sufficient to describe the correlation functions that contain
single insertions of the composite fields and arbitrary insertions of the ele-
mentary fields. Multiple insertions of composite fields, such as (2.96), are
renormalized by terms that contain higher powers of the sources L:

S(p. L) = S(p) = L2 OR(2¢) — L' Ars(p)L” + -

Organize the O's in a row such that the composite fields of equal dimen-
sions are close to one another and the composite fields of higher dimensions
follow those of lower dimensions. Since the theory, by the renormalizability
assumption, contains only parameters of non-negative dimensions, a compos-
ite field can only mix with composite fields of equal or smaller dimensions.
For this reason, the matrix Zj; is block lower triangular. Each diagonal
block encodes the renormalization mixing of the composite fields of equal di-
mensions. The off-diagonal blocks encode the mixing among composite fields
of different dimensions.

Let us comment on the multiple insertions of composite fields, i.e. the
terms of Sy, that contain quadratic or higher powers of the sources L;. In
general, the renormalized action Sp is not polynomial in Lj. Indeed, if
the dimension of Oé is large, the dimension of Ljp is negative. Then, in-
finitely many local counterterms with high powers of the sources L;p and
their derivatives can be constructed. By the no-miracle principle of renor-
malization, S; must contain all of them. This means, in particular, that,
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strictly speaking, St is not even local, since it contains terms with arbitrar-
ily many derivatives. However, it is perturbatively local, since each order of
the perturbative expansion is local. At any rate, we do not need to worry,
because we are not required to resum the L; powers. Every correlation func-
tion contains a given, finite number of composite-field insertions, so it can be
calculated by truncating Sy, to appropriate finite powers of L;. Every trun-
cation is local and polynomial. Thus, we can still call Sy, a local functional,
according to the extended definition of local functionals introduced before.

Exercise 15 Calculate the one-loop renormalization of the composite field
O(p) = ¢* and the composite fields that miz with it, in the massless ¢*
theory.

2.8 Maximum poles of diagrams

An L-loop diagram has at most poles 1/’ of order L. However, sometimes
the order of its maximum pole can be considerably smaller than L. For
example, exercise (5) shows that the diagram (k) of figure (2.59) has two
loops, but it has only a simple pole at m = 0. Here we prove a general
theorem bounding the maximum pole of a diagram.

We are interested only in the UV divergences of the quantum theory,
and their renormalization. Then it is consistent to treat the mass terms, if
present, as vertices of two legs, the propagator being just the massless one.
Any other dimensionful parameter that multiplies a quadratic term must be
treated in a similar way. To avoid IR problems in the intermediate steps,
it is convenient to calculate the UV divergences of the Feynman diagrams
by means of deformed propagators that are equipped with an artificial mass
9, and let 0 tend to zero at the end, as explained in formula (2.76). The
tadpoles are loops with a single vertex, and vanish identically. Instead, the
loops with at least two vertices are not tadpoles (even if one of the vertices
is a two-leg “mass” vertex) and may give nontrivial divergent contributions.

Theorem 3 The mazimum pole of a diagram with V wvertices and L loops

1S at most
1

=m(V.L)’
where

m(V,L) = min(V — 1, L).
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Proof. We prove the statement inductively in V' and, for fixed V', induc-
tively in L. The diagrams with V = 1 and arbitrary L are tadpoles, which
vanish identically and trivially satisfy the theorem. Suppose that the state-
ment is true for V' < V, V > 1, and arbitrary L. Consider the diagrams
that have V vertices. For L = 1 the maximal divergence is 1/¢, so the the-
orem is satisfied. Proceed inductively in L, i.e. suppose that the theorem
is also satisfied by the diagrams that have V vertices and L < L loops, and
consider the diagrams Gy f that have V vertices and L loops. If Gy 1 has
no subdivergence, its divergence is at most a simple pole, which satisfies the
theorem. Higher-order poles are related to the subdivergences of Gy 1 and
can be classified by replacing the subdiagrams by their counterterms. Con-
sider the subdiagrams -, of Gy  that have [ loops and v vertices. Clearly,
1 <l < Land1<wv<V. By the inductive hypothesis, the maximal di-
vergence of v,; is a pole of order m(v,l). Contract the subdiagram ~,; to
a point and multiply by 1/Em(”’l). A diagram with V — v + 1 < V vertices
and L —1 < L loops is obtained, whose maximal divergence is at most a pole
of order m(v,1) + m(V — v + 1,L — 1), if we take the factor 1/e™® into
account. The inequality

m(v,l)+m(V —v+1,L—1) <m(V,L),

which can be derived case by case, proves that the maximal divergence of
Gy 1 associated with v, satisfies the theorem. Since this is true for every
subdiagram 7, , the theorem follows for Gy ;. By induction, the theorem
follows for every diagram. O

Recall that this theorem holds after expanding in powers of the dimen-
sionful parameters that are contained in the propagators. The diagram (k)
of figure (2.59) has V =2 and L = 2, so m(V, L) = 1: indeed, its maximum
pole in the massless limit is a simple pole instead of a double pole. It can be
easily checked that at m # 0 the diagram has a double pole proportional to
the squared mass. If we view the mass term as a two-leg vertex, that pole
arizes from the diagram obtained from (k) by attaching the two-leg vertex
to one internal line. In that case, we have V =3 and L =2, so m(V, L) = 2,
in agreement with the theorem.
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2.9 Subtraction prescription

When we subtract a simple pole 1/¢, we can equivalently subtract an arbi-
trary finite constant together with it, as shown in formula (2.32). Similarly,
when we subtract a multiple pole 1/¢", we can affect the less singular poles:
1 I &Koo
iR D=2

i=1

Sometimes, a prescription, called subtraction scheme, is adopted to associate
finite constants ¢; to the subtractions of the poles, according to a convenient
rule. The minimal subtraction (MS) scheme is the convention according to
which the poles are subtracted with no finite constants attached.

By locality of counterterms, the scheme arbitrariness can only affect the
local terms. This means that it amounts to a finite redefinition of the con-
stants that multiply the vertices and the kinetic terms contained in the La-
grangian. Since those constants, including the field normalizations, are arbi-
trary anyway, the arbitrariness amounts to a finite reparametrization of the
theory. In any case, it does not affect the physical quantities.

In other words, renormalization is an infinite reparametrization of the
theory, while a change of subtraction scheme is a finite reparametrization.

To be more explicit, consider the vertex ¢* and its one-loop counterterm

(2.32):
: 2 e 904
Apf =+ 3\ —. 2.11
ST <167125+cl> Al (2.115)
Now, move the arbitrary constant c; from the counterterm to the vertex ¢*
and define
N = A+ 3\ + O(N). (2.116)
We can rewrite (2.115) as
4 124
3\
N et o B, 2117
WA T e ar TON (2.117)

We see that the finite reparametrization (2.116) converts the arbitrary sub-
traction (2.115) to the minimal form (2.117). It is always possible to make a
similar rearrangement.

From the experimental point of view, the arbitrariness disappears when
enough physical quantities are measured, and the theory is uniquely deter-
mined. Specifically, in the massive ¢* theory three independent quantities

14B1 Renorm



2.10 Regularization prescription 119

need to be measured. From them, the values of m and X and the ¢ normaliza-
tion can be derived, after which the theory is uniquely determined. Observe
that the parameter m needs not be identified with the physical mass, some-
times denoted with mpy. Since mpp can only be a finite function of m and
A, it is determined once m and A are.

In the minimally subtracted X parametrization (2.117), the theory does
not depend on ¢, so it is uniquely determined once )\ is measured (to-
gether m and the normalization of the field). On the other hand, in the
nonminimally subtracted A parametrization (2.115) there appears to be an
additional arbitrary constant cj, so it seems that an extra measurement is
necessary. This is just a blunder, because after the three measurements men-
tioned above, ¢; disappears from all the physical quantities.

The matter can be better explained as follows. Consider some physical
quantity. Write it as a function f(\) of A in the first scheme and a function
F/(N) of X in the second scheme. When we change the scheme, we do not
change just A, but also the form of the function f of A\. The two changes
compensate each other, so that the physical results remain the same, that is
to say

fQ) = f/(X).

Check for example (2.115) and (2.117): the coupling changes, but also the
function multiplying ¢? changes, so that (2.115) and (2.117) coincide. So, if
an experimental measurement gives A’ = £ in the second scheme, where /£ is
some number that we assume to be small, a measurement in the first scheme

must give the number
A= —30c; + O3,

whatever the value of ¢; is.

2.10 Regularization prescription

So far we have mostly worked using the dimensional regularization, but equiv-
alent results can be obtained using any regularization technique we like. Now
we prove that changing the regularization technique is equivalent to change
the subtraction scheme, so it has no physical consequence. To this purpose,
it is helpful to clarify the definition of regularization technique.
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Definition 3 We call naive (or formal) limit, the limit in which the regu-
larization parameters are removed by keeping the bare fields and parameters
fized.

We emphasize that, in spite of its name, the naive limit is a rigorous
notion. The naive limit of the action is the classical action. The naive limit
of the correlation functions is in general ill defined, because of the divergences.

Definition 4 We call physical limat the limit in which the regularization pa-
rameters are removed by keeping the renormalized fields and parameters fized.

The physical limit of the action is ill defined, but the physical limit of
the correlation functions exists.

Consider a quantum field theory 7, defined by an action S(y¢) and a
functional measure [dy].

Definition 5 A regularized theory for T is a deformed theory Tr, defined
by a deformed action Sr(p) and a deformed functional measure [drp], such
that: (i) all the reqularized diagrams are convergent; (ii) the propagators and
the vertices tend to the ones of T in the naive limit; and (iii) all the diagrams,
or derivatives of diagrams, that are convergent at the unregularized level are

recovered by taking the naive limits of their regularized versions.

Now, consider an integral [ f and define two regularized versions of it,

/fl(Al) < 00, /fz(A2) < 00,

Ay and Aj denoting some regularization parameters. We just call them cut-
offs and assume that they are removed by sending them to infinity. By
definition, we must have

A fi(A) = A f2(A2) = f. (2.118)
Indeed, the integrands contain vertices and propagators, namely ingredients
inherited from the classical action, so must tend to f in the naive limit.
However, we cannot extend the naive limit to the integrals, because they
might be divergent (this is the reason why the limit is called naive or formal).
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Expanding for large A; 2, we can write

/fi(Ai) = Ligiv(As) + Lifinite + Liev (i), (2.119)

where ¢ = 1,2, while I;4;, collects the terms that diverge, ;o those that tend
to zero and I;gnite those that have finite limits.

We know that (assuming that the subdivergences have been subtracted
with the usual algorithmic procedure) if we take a sufficient number of deriva-
tives with respect to the external momenta k, the integrals become conver-
gent. This property is independent of the regularization technique, to the
extent that is also holds for the unregularized integral, namely there exists

of

%<OO

Now, because of (2.118), we also have

an n such that

o - o o f
A}lglooak‘"f(Al)_ lim 8/{71}"'2(1\2) ETEN

Integrate each side of this equation. The first two integrals can be inter-
changed with the limits, which gives
871 nf
li — fi(A1) = l As) < 00
Allﬁloo/ phen 11 () = i /8k"f2 2= | Gin
In the first two expressions we can also interchange the integrals and the
derivatives. So doing, we obtain

A S /fl Ay = /f2 A2) =
Using (2.119), we get

om om om
%Ildiv(Al) = %I2div(A2) =0, ETE ({1finite — I2finite) = 0.

The first formula is just the statement that counterterms are local with any
regularization technique. The second formula, instead, states that the finite
parts, calculated using two different regularizations, can differ at most by
local terms:

Ifinite = Iofinite + local.
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If the theory is renormalizable, such local terms are of the types already
present in the Lagrangian, so they amount to a scheme change, but the
physical quantities are unaffected. This concludes the proof.

Sometimes it is useful to regularize different classes of diagrams in differ-
ent ways, or can be convenient to introduce multiple cutoffs A;. Divergences
expressed in terms of different cutoffs can be identified, up to local terms.
The cutoffs A; can be removed in different orders, e.g A1 — oo followed by
Ao — 00, or Ay — oo followed by A; — oco. When the limits are inter-
changed, the results can differ at most by local terms, i.e. again a scheme
change, but the physical quantities are always the same.

Ultimately, we have an enormous freedom. We can regularize a theory
as a whole, or diagram by diagram. We can use one cutoff or many cutoffs,
and we can remove the cutoffs in the order we like. We can even use a
different regularization technique and a different subtraction scheme for each
diagram. No matter how we regularize the theory, the physical results always
come out right. The core of quantum field theory is finite and regularization
independent: the divergences are confined to the “superficial” parts of the
integrals, so to speak, since they are killed by a finite number of derivatives.

Different regularization techniques can demand very different amounts of
effort. If we want to better keep track of what we do, it is convenient to
use a simple regularization technique, with one or two cutoffs, defined on the
theory as a whole.

2.11 Comments about the dimensional regulariza-
tion

Some people use to say that the dimensional regularization “misses some-
thing” or “has problems of internal consistency”, because integrals such as
(2.12) are set to zero and the powerlike divergences disappear, or because of
other caveats that we will mention later.

The truth is that the dimensional regularization does not miss anything
and has no problems of internal consistency. Actually, it is the most powerful
regularization technique developed so far. It is very convenient both to make
calculations (to the extent that the renormalization of QCD has been worked
out to four loops and the one of the standard model to three loops) and to
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prove theorems to all orders. Under both respects, no other regularization
technique is even comparable with the dimensional one.

One of its virtues is that it smartly chooses a subtraction scheme where
the powerlike divergences are automatically absent. Actually, it allows us to
prove that, no matter what regularization technique we use, the powerlike di-
vergences can always be subtracted away just as they come, without leaving
any remnants. Later we will better understand what this means, studying
the renormalization group. For the moment, it is sufficient to say that the
powerlike divergences are completely scheme dependent, and can be washed
away with a smart scheme choice, while the logarithmic divergences are only
partially scheme dependent. The logarithmic divergences do contain physi-
cal information, while the powerlike divergences are devoid of any physical
meaning.

Two main kinds of assumptions inspire some people to take unreason-
able attitudes towards the dimensional regularization. One assumption is
that behind empty space there should be a sort of lattice, or aether. The
analytic way to regularize the integrals is not intuitive, they say, while a
lattice spacing is supposed to be more “physical”. We leave to them to ex-
plain why a regularization should be intuitive, or “physical”’, and what it is
supposed to mean. We just observe that sometimes hypothetical links with
condensed matter physics may be inspiring, but other times they may put
us on the wrong track. More generally, there is no reason to assume that
the human intuition (which is always the product of our interaction with
a classical environment) should guide us. It may be helpful in some cases,
misleading in others. Once we have given up the correspondence principle
almost completely, we can live without intuition.

Another assumption is that the ultimate theory should be finite, that is
to say a theory with no divergences. In that case, the powerlike divergences
are not really divergences, but physical quantities that depend on a large
energy scale and grow polynomially with it. The assumption that the final
theory be finite turns out to be appealing to some people (for quite sub-
jective and “human” reasons), but rather restrictive. Having learned that
we can renormalize the divergences away, we no longer need to require that
they are absent from the start. If one insists that the final theory must be
finite, he/she should explain why we can make sense of theories that are not
finite, and why we should privilege a small subset of the theories we can
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work with, and ignore the other ones. Somebody explicitly advocates aes-
thetic criteria to answer these questions. We do not feel necessary to stress
that such arguments are completely meaningless in physics. Other people
try to disguise their arbitrary requirements under suspicious conditions of
“simplicity”. Certainly, simplicity can be advocated for practical purposes.
It cannot, however, be advocated to discriminate what is physical from what
is not: that part pertains to nature.

A more serious point about the dimensional regularization is that it is
just perturbative. However, at present we do not know how to define the
functional integral nonperturbatively, so this problem goes beyond the di-

mensional regularization itself.

2.12 About the series resummation

We have stressed several times that our task is to define the functional inte-
gral as a perturbative expansion. We have converted the functional integral
of the interacting theory into an infinite sum of functional integrals of the
free-field theory, since those are the only ones we can deal with. Each prop-
erty we use must be understood in the same spirit. For example, when we use
that the integral of a functional total-derivative vanishes, we mean that each
term of the perturbative expansion vanishes. At this level, the perturbative
expansion must be regarded as a sequence, a list of terms, not as a series
that should be summed. Indeed, our primary objective is to define the terms
of the sequence and check that they are consistent with the key physical
and mathematical requirements. As we have seen, this task already raises
nontrivial problems. Several other difficulties will appear in gauge theories
and dealing with anomalies. It makes no sense to investigate the summation
properties, before defining the terms of the sequence.

In various cases, the sum of the perturbative series might not exist, at
least naively. This, however, is not necessarily a limitation. It might just
mean that different ways to organize the sum can give different results. Then,
we must classify the resummation prescriptions that make physical sense.
There might be more meaningful resummation prescriptions, each of them
leading to a different physical theory, with the same perturbative expansion.
Recalling that, so far, we have not been scared away by the divergences (and
now we appreciate what we would have missed if we had), there is no point
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in worrying about a problem that is not even there, yet.

We will actually see that whenever we have control on the perturbative
expansion to arbitrarily high orders (such as in the cases of the anomalies, the
renormalization-group flow and the conformal fixed points), the series does
make sense, or the theory itself provides a natural resummation prescription.
For example, there are anomalies that can be calculated exactly, since they
receive no corrections beyond one loop (if we are careful enough, in a sense
that will be specified, which includes choosing an appropriate subtraction
scheme).

In this book, we make no attempt to define the functional integral beyond
its perturbative expansion, unless that means searching for the physical pre-
scriptions that allow us to resum the perturbative expansion when possible.
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Chapter 3

Renormalization group

In this chapter we begin the exploration of the physical consequences of
renormalization. Our considerations are very general, although we often
illustrate them using specific models. We start by comparing the bare and

renormalized actions

SB(QOBa)‘BymI%aLB) = SR(@? A7m27L7N) (31)

of a theory of fields , where ¢ denote the fields, A and m the dimensionless
and the dimensionful parameters, respectively, and L are the sources for the
composite fields. We do not really need to keep A and m distinct, but for the
moment it is convenient to do so. Similarly, the relation between the bare
and the renormalized I" functionals is

FB(q)B,)\B,sz,LB) :FR(q)v)‘)m27L7M)' (32)

We recall that in a theory with a single coupling A, such as the ¢ theory,
we have relations of the form

on=Z2N\e)e, A= ptAZi(\e),
mE=m2Z,2(\¢e), Lg = Z(\e)L. (3.3)

Theories with more couplings and fields will have more complicated relations,
but these details do not really concern our discussion here. The key point is
that the renormalized sides of (3.1) and (3.2) depend on one quantity more
than the bare sides. Precisely, the renormalized sides depend on A and u
separately, while the bare sides contains only Ag, which depends on A and u.
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Therefore, it must be possible to solve the p dependence exactly in terms of
the renormalization constants. The solution can be obtained by comparing
the bare version and the renormalized version of any equation. The u depen-
dence of the physical correlation functions is called “renormalization-group
flow”.

Let us see what originates the dependence on u. At the tree level, the
action depends on a unique combination of A and g, such as Au® in the case
(3.3). However, that combination cannot survive beyond the tree level, be-
cause the subtraction of divergences is an operation that separates p from A:
the counterterms are multiplied by higher powers of A, which is dimension-
less, by by the same power of u, which is fixed by dimensional analysis (see
for example (2.33)). This produces the final relation Agp = puAZy (), €).

The key quantities that are used to describe the renormalization-group
flow are the beta function and the anomalous dimensions. To introduce them,
we define the total derivative pud/du, which is the derivative calculated by
keeping the bare quantities fixed, and the partial derivative ud/du , which is
the derivative calculated by keeping the renormalized quantities fixed. When
we apply the total derivative to the functional I' we obtain, by the Leibniz

rule,

2
d 9 d o  dm?® 0 +/ LG

,u@ :M@ + M@ﬁ T dp Om? dp  0®(x)

dLf(z) o
+/dDw PR IAIEE (3.4)

If we apply the total derivative to the action, we obtain the same formula
with ® replaced by . If we apply the total derivative to the functional W,
we obtain the same formula with ® replaced by J.

Beta function

Define the “hat beta function” as

A dA

By = M@-
At the tree level A = pPe ), so 3y = —peA+O(A2). It is convenient to define
the beta function ) such that

A

Ba(A ) = Ba(A,e) — pe. (3.5)
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Clearly, B\ = O(A?). Now, we apply the identity (3.4) to A\g and recall that
Zy depends only on A and . We find

d\p o . 0 e ~ d(AZy)
— _ = e —_— Z — £ Z £
0 Sy <M8M+ﬁ>\a)\>(ﬂ AZ)\) = peptAZy + pu° By o
whence dln 7
nZy__ B (3.6)
dA ABy
Using (3.5) we have
)\2d1n)\ZA

We also find the inverse formula

B AAN BN, e)
Zx(\,e) = exp (— N Vo) —ps)\’> . (3.8)

The lower integration limit is fixed by demanding Z,(0,¢) = 1, since in the

free-field limit the renormalization constants are equal to one.

Anomalous dimension
Let us study the total derivative of pp. Using (3.4) with & — ¢ we find

des d 1/2 dzy* de
0= —u— (Z2Y2p) = L2 zV2, =
Ha udu<¢¢) H ¢+¢udu,

that is to say

de
gy = e
where 1 dinZ, 1 d\dlnZ, din Z,
n n n
v =T T2 __5* ax (39)

The quantity ~, is called anomalous dimension of the field ¢, and depends
on A and €. Since ® = (p) we also have

de

e

From (3.9) we find the inverse formula

Z,(\e) = exp< / dx zf“)/ 6;») .
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When the renormalization is multiplicative, we have

/JBsDB z/JsD,

so the renormalization constants of ¢ and J are the reciprocals of each other.

Then we also find
— =, J. 3.10
2 1 Yo ( )

Exercise 16 Calculate the beta functions and the anomalous dimensions
of the ¢} theory and the cp% theory at one loop in the minimal subtraction
scheme.

Solution. In the minimal subtraction scheme, the constants ¢; and co of
formula (2.44) are equal to zero. Applying the formulas (3.7) and (3.9) to
(2.44), (2.47) and (2.48), we get

3\2
e1: Br= Tk O, 7, =0(\?), (3.11)
3. _ 3)‘3 5 _ )‘2 4
¥6 - Br = 4(47‘(‘)3 + O()‘ )7 Yo = 12(47‘(’)3 + O()‘ )7 (312)

Exercise 17 Calculate the beta function and the anomalous dimension of
the ¢} theory at two loops.

Solution. Applying the formulas (3.7) and (3.9) to (2.64) and (2.65) we

get
332 1TA8 A2
=2 Lo = ——— + 0.
O =z 3t TN e = T O
Note that the divergences have canceled out. Later we will prove that this is
a general fact.

Exercise 18 Calculate first nonvanishing contributions to the beta function
and the anomalous dimension of the massless 5 theory.

Solution. Applying the formulas (3.7) and (3.9) to (2.66) and (2.68), and
recalling that here p = 2, we get

52
By = +O(N), Yo = c——7

S + ON).
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Composite fields

Similarly, taking the total derivative ud/dp of Lp we get

dLgp dZz;, dL
O=p——=p—L+Z;, p—
whence AL dnZ din 7
nary ~ nary
D Ly B B
Recalling that LgOp = LO, and Zf, = Z(,_)l, we have
doO dln Zp dln Zj,
pro—=-700,  Yo=-yL=p =—p :
du du du

The inverse formula reads
A !
Zo(\ e) = exp (/ dx ro(,¢) > . (3.13)
0

For example, consider the mass operator ¢?. Its renormalization coincides

with the renormalization of the integrated mass term

/degpz. (3.14)

Indeed, the integral determines the integrand up to local total derivatives,
which in this case must also have dimension 2 (for D = 4). Since there exist
no local Lorentz invariant objects with these features, ¢? and (3.14) renor-
malize in exactly the same way. Correspondingly, the source L2 coupled to
©? renormalizes exactly as m?, and Zy2 = Z;z% By dimensional analysis,
pudm? /du must be equal to m? times a function of A and . We have

dm? dInZ,,2 dlIn sz

2
— = A = — = = Y2
0 p mn(\e), n 0 u p 02

More generally, the composite fields mix with one another. As explained
in Chapter 2, it is convenient to collect all of them into a huge vector O,
where the composite fields of the same dimension are close to one another and
the composite fields of higher dimensions follow those of lower dimensions.
Then, we have
of = 7" [0"),
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where the matrix Z’7 of renormalization constants is block lower triangular.

We find o K
d J ., dZ
=— =7 op—. 1
arm Y1[07], T = Lk (3.15)
Due to (2.102), the sources L! coupled to the O's satisfy
dL!
—— =L, 3.16
iy V1 (3.16)

3.1 The Callan-Symanzik equation

Let us apply (3.4) to I'(®). We obtain

O—ME—Ma 6)‘8)\ nm %o/dfﬂq) ) (3.17)

On W we have, instead,

AW OW . OW L, OW b oW
0=p i _,ua’u + 5y 5 +nm —6m2+’y¢/d xJ(x)éJ(x). (3.18)

Let us take two functional derivatives of (3.17) with respect to ® and set
® = 0 afterwards, or, equivalently, two derivatives of (3.18) with respect to
J and then set J = 0. We obtain the Callan-Symanzik equations for the
connected-irreducible two-point functions I'y and the connected two-point

function Wy = (p(z)e(y))e:

o 5 0 0
0= <M£ +ﬁ>\a + nm? oz 2%) Iy, (3.19)
(0 0 e,
0= (M@ + ,8)\5 +nm 2 + 274,0) Wo. (3.20)

The two equations are indeed equivalent, because I'oWs = 1.

For the moment let us work in the massless theory. We do not make the
€ dependence explicit, because it is not important for the present discussion.
Since W5 has dimension D — 2 it is convenient to write

Goar(t, \)

Wa(lz —yl, A pu) = my = —In(jz — ylp). (3.21)
Then (3.20) at m = 0 becomes
0= 84—6 84—2 Gar(t, N). (3.22)
“\ o T Tax e ) '
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We want to solve this equation. To this purpose, we define the “running
coupling” A(t, A), which is the solution of the first-order differential equation

DN .
We have dt = dA/3,()), hence
AN )
t= —. 3.24
/x\ Br(N) 24

It is convenient to consider \ as a function of both ¢ and the initial condition

A. If so, the t derivative appearing in (3.23) must be written as a partial
derivative OX(t,\)/0t. Differentiating each side of (3.24) with respect to A,
we can work out the derivative of the solution with respect to its initial
condition, which is

aS‘(tv )‘) _ ﬁA(S‘(tv )‘))

= 2 . (3.25)
2 Ba(N)
The solution of the Callan-Symanzik equation (3.22) reads
G2r(t7)‘) = z_l()"t)GZ“(O’S‘(t’ )‘))7 (326)

with
t 2\ 1) = exp (-2 /0 t W(X(S,A))ds> . (3.27)

We prove this statement by checking that (3.26) satisfies the equation and the
initial condition. Given a function f of many variables, we write f(1:72:)
to denote its nith partial derivative with respect to its first variable, noth
partial derivative with respect to its second variable, and so on.

The initial condition is certainly satisfied, since at ¢ = 0 we have the
identity Ga,(0,\) = G2,(0,\). Moreover, we can easily calculate the partial
derivatives of o, with respect to ¢ and A. We find

G5V (8, A) = 20 (A (8, M) Gar (1, A) + 27 (L ) By (A(E )G (0, A(F V),

t \ ~
GH(1:3) =26 (0.3) [ Ay (s, s
0
0 2B G0 0,31, 2)).
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Now, using (3.25) we also have

B [ PG ads = [ BGes NG @29

= /0 a)\(ass, A)V:o(j\(s’)\))ds = /0 st — 7¢(5\(t7 )\)) . %0()\)

Summing, we find immediately that (3.22) is satisfied.
When the theory contains more parameters \; (which can include also
the masses), equation (3.22) becomes

0 i O
0= <‘a B+ 2@ G (1,1), (3.20)

Define the running parameters \; (£, ) as the solutions of the following system
of first-order differential equations:

‘“ B, A0 = A (3.30)

The solution (3.26) and formula (3.27) remain the same. However, formulas
(3.24) and (3.25) do not hold. Define

e = B 2N

where the sum over j is understood. We have f;(0,) = B;(A) Moreover, if
Brx(N) = OBA(N)/OAw, we get

Ofi i, OBNALN)
o = AT ey pea ke

P55 300,00 = £ At )

We obtain the system of first-order equations and initial conditions
ot
It is easy to check that

— fE NBLAGA), F(0,0) = BV,

Fi(t7 )‘) = Bz)\(}“(t )‘))
satisfies the equations and the initial conditions. In particular,

OFi(t,\)
ot
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Therefore, we conclude that F;(¢,\) = f;(t, \), that is to say

AN 56w (3.31)

This formula is a generalization of (3.25). Going through the proof of (3.26)
we realize that (3.25) was necessary only to derive (3.28). Extending the
proof of (3.26) to the theories that contain more parameters, we see that
(3.31) is just sufficient to derive the desired generalization of (3.28).

In the end, we find that (3.26) satisfies (3.29), as wanted.

General solution of the Callan-Symanzik equation

So far, we have studied the two-point function. However, the results can be
extended to a generic correlation function

WA (@, y, A 1) = (o (21) -+ Pay () O (1) - - O (ym))e (3.32)

that contains both insertions of elementary and composite fields. The sub-
script « in ¢, is used to distinguish the different types of elementary fields,
including the ghosts and the Lagrange multipliers. We denote the ¢, anoma-
lous dimensions with 7,(A). Finally, A; collects the couplings and any other
parameters, including the masses and the gauge-fixing parameters.

The Callan-Symanzik equation for (3.32) can be derived by applying (3.4)
(with ® — J) to W(J, L) and using (3.10) and (3.16). We find

o=( 2+ Sk +2z%i) Wity
-1 K I Im
+ZWJKJ o A A (3.33)

Repeating the proof of the previous section it is easy to show that the solution
reads

m

Whihn (24 A, ) Hza}/z H Zphe (8) WE Ko (2., A(2), o),

(3.34)
where now t = In(fi/u), A(t) are the solutions of (3.30) and

2o (1) _exp< / dsya (s > Z(t)zTexp(— /Otd87(8)>, (3.35)
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where Z and 7 are the matrices with entries Z;; and 7, (t) stands for
v(A(t)) and T denotes the T-ordered product. Precisely,

_ - _ 1)k ‘
Z(t)_1~|—kZ:1( 1) /Odt1

t1

tp—1
dtz"'/ dtk’y(t1)""7(tk—1)'7(tk)v
0

(3.36)
Thus, formula (3.34) tells us how the correlation function depends on the

0

scale .

3.2 Finiteness of the beta function and the anoma-
lous dimensions

Formulas (3.11) and (3.49) show that the poles in e cancel out in the one-

loop beta functions and the anomalous dimensions. This is a very general

fact: the beta functions and the anomalous dimensions are finite quantities.

Consider the Callan-Symanzik equation (3.17) for I'(®, X\, m?, ). Restore h
and expand each quantity perturbatively,

I = ; KT, By = ;hz’fhi, n= Z%him, Yo = Z% B ygi.
) i - T (3a7)

Assume inductively that B A> 1 and 7y, are finite up to and including the order
n — 1, that is to say

BxisisYpi <00 fori<n—1. (3.38)

The assumption is obviously true for ¢ = 0, since 3)\0 = —e\, o = Y0 = 0.
Consider the contribution to (3.17) of order n. We have

Oy =, O, G) 6Ty i
= g2 | P2 )

Recall that every I'; is convergent, and so are its derivatives with respect to
the renormalized parameters. Using (3.38) we conclude

anﬁ + npm i fyw/@ﬁ = finite. (3.39)

Now, Ty is just the classical action, and dL¢/0\, OT/dm? and ®(5T¢/IP)
are independent terms, because they are the vertex, the mass term and the
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field equation (which contains the vertex, the mass term and the kinetic
term), respectively. Therefore, each coefficient of the linear combination
(3.39) must be finite, which proves

/BAn < 00, M < 00, Yon < Q.

The inductive assumption (3.38) is thus promoted to n = co.

We have set L' = 0, but clearly the argument can be repeated in the
presence of sources for composite fields O!, which proves that the ;s are
also finite.

3.3 Fixed points of the RG flow

Consider the correlation function WZi I of formula (3.32) and rescale the
coordinates, the momenta and the parameters A by powers of ¢ equal to
their dimensions in units of mass. For example, rescale the coordinates z*
to ¢"lz#, the momenta p* to (p*, the masses m to (m, and so on. If we also
rescale p to (u, we get

War i (¢, ¢y (B, G = WV (o, 4 o),

Q1 Qi Q1O

where dy and d are the dimensions of W/ Im and ), respectively. Replac-

Q1O

ing p by ¢~'u, we obtain

Waiiin (g, A ) = MW (¢l Ty, ¢ ).

a1---om, a1

The left-hand side of this equation tells us that the limit 4 — oo in the cor-
relation function is equivalent to let ¢ tend to zero. The right-hand side tells
us that this operation is equivalent to let the distances tend to infinity (and
rescale the parameters of the theory appropriately). Thus, the limit pu — oo
gives information about the infrared, or large-distance, limit of the correla-
tion function. Similarly, the limit g — 0 is equivalent to take ¢ (in particular
the distances) to infinity, so it gives information about the ultraviolet limit.
The solution (3.34) of the renormalization-group equations gives

Wartn @y, A ) = [T 2220 T 20k, () Wil (@, y, A, ),
i=1 j=1
(3.40)
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where now ¢t = In(. Thus, to understand the infrared and the ultraviolet
behaviors of the correlation functions, it is useful to work out the infrared and
the ultraviolet behaviors of the beta functions and the anomalous dimensions.

For simplicity, we assume that the theory has a unique dimensionless
coupling, and keep calling it A. We also assume that X\ is defined to be
non-negative. Typically, as in the case of the theory ¢?, this requirement is
necessary to ensure that the potential is bounded from below.

An alternative way of defining the running coupling is by viewing it as
a function \(p) of the energy scale p. Start from formula (3.24), and set
e=0,t=1In(i/pu), A = A(jz) and X\ = A(1). In a generic subtraction scheme,
define S\(A\) = B5(A,0). Exponentiating (3.24), relabeling the integration
variable and splitting the integral into two symmetric parts with the help of

an arbitrary constant A\, we can write

_ A dA A d .
HeXp —/)\ XS = [ exp —/)\ /8/\—()\) = constant = Ar.

The scale At (called Agcp if the theory T is QCD and A is chosen appro-
priately) is RG invariant, i.e. independent of u. We also have

M) B m

Now, the infrared (ultraviolet) behavior of X is studied for t — —oo
(t — o0), which is equivalent to take the limit i — 0 (& — oo) of the
function X = A(%2). Then, it is also the limit 4 — 0 (1 — 00) of A(u). We see
that in both the infrared and ultraviolet limits, the right-hand side of (3.41)
diverges. On the other hand, the left-hand side can diverge in the following
two cases: (i) the running coupling tends to a zero of the beta function, i.e.
lim A(p) = Arr, and/or lim A(p) = Auv,
u—=0 p—00
where B\(A1r) = Ba(Auv) = 0; or (i7) the running coupling tends to +00 and
the infrared and/or ultraviolet limits. In all the cases the integral of (3.41)
must diverge in the correct way.
The values of the couplings for which the beta functions vanish at € = 0,
i.e. the solutions A, of B\(A.) = 0, define a particular class of quantum field
theories, which are called fixed points of the RG flow. Clearly, A = 0 is
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a trivial example of a fixed point, and corresponds to the free field theory
we have been expanding around. However, there may exist interacting fixed
points, that is to say solutions with A, # 0. This happens, for example, when
the beta functions have the forms

B(A) B(A)

M\\A | -

In some cases the nontrivial fixed point can be reached perturbatively from

(3.42)

the free fixed point. Then, the perturbative expansion allows us to follow
the entire renormalization group flow in between the fixed points.

At any fixed point, the coupling does not run (at € = 0), since Sy = 0
implies A = A,. However, a theory behaves rather differently around the
free and the interacting fixed points. Now we study the typical behaviors,
starting from the trivial fixed point.

Expand Sy perturbatively around A = 0:

Ba(N) = BiA% 4 Bod® + BsAt + O(ND). (3.43)

If the running coupling \ is small, we can keep the first nontrivial contribution
to B, (A) in the RG equation (3.23) and neglect any higher orders. We assume
here that 51 # 0, so the first nontrivial contribution is the one-loop one. The
running coupling reads

- A
up to two-loop corrections. Setting ¢ = In(jz/p), A = A(72) and A = \(u), we

can also write the running in the form (3.41), or

! + 811 tant
— 1 In 4 = constant.
Aw)
However, this result is just one loop, and can be trusted only if the running
coupling is small. This happens when p — 0 (which is the IR limit) for
B1 > 0!, and when p — oo (which is the UV limit) for 8; < 0. Specifically,

'Recall that A is assumed to be non-negative.

14B1 Renorm



142 CHAPTER 3. RENORMALIZATION GROUP

formula (3.44) gives

A(t,A) ~ Ll o It > 1, (3.45)
Bt

The running coupling tends to zero, so the theory tends to the free fixed
point. Observe that the behavior (3.45) is A independent.

The theory is said to be infrared free if 5; > 0, and asymptotically free
(or ultraviolet free) if 81 < 0. Nontrivial examples of asymptotically free
theories are provided by non-Abelian gauge field theories, as well as the two-
dimensional four-fermion model (1.102). In the latter case, formula (2.93)
allows us to work out the one-loop beta function, which reads

(N —1)\?

3
s T o).

By = —

Now we study the behavior of the theory around an interacting fixed
point. We expand by writing A\ = A\, + 1 and taking n < 1. The Taylor
expansion of the beta function gives, to the lowest order,

Ba(N) = BA(A)n + O ().

We assume that the slope 5} (A.) of the beta function at the fixed point is
nonvanishing. If not, we would have to go to the first nontrivial order of

the Taylor expansion and modify the analysis accordingly. The RG equation
(3.23) becomes

&
d_Z =BA)N+ 0@,  7(0) =n,

The running coupling reads

(i) = e’ A,
Writing ¢ = In(fi/p) to switch to the form (3.41), we obtain
n(p)pPAA) = constant. (3.46)

With the help of this formula, we can reach the fixed point. There, n(u)
must tend to zero. This happens when p — oo for 4 (A\) < 0 and when
pw— 0 for B3 (M) > 0. We learn that when the slope of the beta function is
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negative (positive) at the fixed point, the interacting fixed point is reached
in the ultraviolet (infrared) limit.

Recapitulating, in the first (second) example of (3.42) the theory is free
in the infrared (ultraviolet) limit, and tends to the interacting fixed point in
the ultraviolet (infrared) limit.

At an interacting fixed point, the anomalous dimensions 7,2 (\«) = 7;2
(and 7o, (Ax) = 72, 717(A) = 77, in general) are just constants. Then,
formulas (3.35) with ¢t = In(f1/p) give

2o (t) = (%)mi, Z(t) = (%)V .

Finally, formula (3.34) gives

*

Il o Yisiva, M i Y oK ~
Whln (2,y, A 1) = <—> I1 <—> WL (2, y, A )
H j=1 M/ LK

(3.47)
In the particular case of the two-point function Wy = (p(z)¢(y))c in the
massless four-dimensional ¢* theory, formulas (3.21), (3.26) and (3.27) give,
in D=4,

_QV*C
__H Fle
(QO(‘T)(‘D(y)>C - ’x _ y‘z(l_’_,)/:;) I

where C,, is a constant. If we compare this result with the two-point function
of the free-fixed point, which is

1

(p(x)p(y))e = W7

we see that the exponent is modified to twice the “critical exponent”
1+ 5.

In turn, this is the sum of the naive ¢ dimension, which is equal to one,
plus 7. Similarly, the two-point function of a composite field O of naive

dimension dp is
p~ 20 Co
2(do+75)
|z — y|?(do+10)

(O(@)0(y))e =

These remarks justify the name “anomalous dimensions” for the quantities
v.
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The solution (3.47) is simple at the fixed points, because the Callan-
Symanzik equation (3.33) becomes simpler there. Dropping the terms pro-
portional to the beta functions, we get

0 " Ui Iiodi  KilinqeIom
0= (,u% + 227%‘) Woﬁ(lﬁ + Z’ijKjWai...a]n 15 ,
=1 =1

so the entire u dependence of a correlation function is encoded in an appro-
priate multiplicative factor.

©7 at one loop The RG flow of the theory ¢? in four dimensions can be
worked out at one loop by means of the beta function (3.11). Formula (3.11)
is correct also at € # 0 in the minimal subtraction scheme, while it contains
corrections of the form O(e)?) in a generic scheme, where the constants c;
and ¢y of formula (2.44) can be nonzero. In either case, the solution of (3.23)
at € = 0 reads

~ A
)\(t’)\) = 1— 3t 7

1672
which is the running coupling in the one-loop approximation. Since 31 > 0,

(3.48)

the theory is infrared free.

The anomalous dimension of the composite operator ¢? is
dln Z,, ~ dlnZ,, A

e R S s W T

+ O(N\?). (3.49)

Let us study the ¢? two-point function in the massless case. From (3.35) we
have

2,2(\t) = exp <— /Ot ywz(j\(s,A))ds> = <1 - %)Ug.

Applying the RG solution (3.34), we get (again at e = 0)

G2 (62 (-
i f y,,u) (2)
w—glt " B =g Cerr 0@ —wm) (350)

(P*(2)*(Y))e =

at large distances, where
167
3In(ulz —yl)

We cannot define a critical exponent here, since A¢ has a logarithmic behavior.

)\f(x - Y, M) =

The reason is that at the free fixed point the slope 8} of the beta function
vanishes.
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3.4 Scheme (in)dependence

Now we work out other useful properties of the beta function. Observe that
in the minimal subtraction scheme the A renormalization constant (which we
denote with a bar) has the form Z) = 1+poles. Thus, formula (3.7) gives

By = € x poles = finite + poles, (3.51)

with no orders €, n > 0. However, we just proved that g, is finite, so the
poles that appear on the right-hand side of (3.51) must cancel out. Thus, 3,
depends only on A and not on . In the minimal subtraction scheme we can
write R
BN e) = Br(N) — e

We know that the coefficients of the poles 1/e are scheme independent at
one loop. For this reason, the one-loop coefficients of beta functions and the
anomalous dimensions are always scheme independent at € = 0. Moreover,
if the theory contains a unique dimensionless coupling A, we can easily show
that both the one-loop and the two-loop coefficients of the beta function are
scheme independent at € = 0. Expand (x(\) as in (3.43). A scheme change
amounts to a perturbative reparametrization of A. Write

A= N +a)\? +az\? + ON?). (3.52)

We have

d\ dX dN dx\ !
AVA NN — — 4 —

= BIN? + B3 + (B3 + azfa + (a3 — a3)B1) N + O(NP).

We see that the first two coefficients, and only those, are scheme indepen-
dent. The result does not extend to € # 0, since then we have to include
reparametrizations of the form A = c(g)\ + O(N?), with c(e) = 1+ O (e).

With a suitable choice of as and ag the third coefficient can be set to
zero, for example

_ O
B
It is easy to prove that with a suitable choice of the function A()\') all the

as = 0, as (3.53)

coefficients but the first two can be set to zero. However, this is just a cu-
riosity. For example, the two-loop beta function cannot be trusted as an
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exact formula, not even within the perturbative expansion. A warning that
there is a problem here is the 31 in the denominator of (3.53). Typically, 51
is proportional to the number N of fields circulating in loops. Nowhere the
perturbative expansion can generate inverse powers of N. In Yang-Mills the-
ory, for example, f; is equal to a numerical factor times 11C(G) —4N;C(r),
where C(G) and C(r) are the Casimir elements of the representations. It is
obvious that, at the perturbative level, the Casimir elements cannot appear
in the denominators.

Moreover, the reparametrization (3.52) can introduce spurious singulari-
ties at finite values of A\. For example, factors such as

=— +0) (3.54)

can easily be generated. If we ignore the awkward S; in the denominator
(maybe because we are working with a given number of fields and are not
aware of the importance of this point), such functions appear to have a per-
fectly good perturbative expansion around the free-fixed point of the RG flow.
Nevertheless, they do not have a good perturbative behavior around an inter-
acting fixed point, because they are singular there. If we make reparametriza-
tions that involve expressions such as (3.54), we may loose the possibility of
smoothly interpolating between two fixed points of the RG flow.

Finally, the “curiosity” mentioned above does not extend to theories that
contain more than one coupling. When we generalize the argument given
above, both A and ) become vectors, while the coefficients 3; become tensors
with ¢ 4+ 2 indices, and the coefficients a; become tensors with ¢ + 1 indices.
The coeflicients of the transformed beta function can be set to zero by solving
linear recursive equations that have ¢ + 2 indices, but their unknowns just
have 7 + 1 indices. The solution does not exist, in general.

3.5 A deeper look into the renormalization group

If we insert the one-loop values (2.44) of the ¢ renormalization constants into
the inverse formulas (3.8) and (3.13), we can reconstruct the renormalization
constants Z) and, for example, Z 2. Then we find something interesting.
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Working in the minimal subtraction scheme, we obtain

. 1 . 33 \'/*
Z)\()\,E) = _73)\2, ZSOZ()\,E) = <1 - 167‘(25> . (355)
1672e

These results give the correct values (2.44) (at ¢; = co = 0) at O(\) and the
two-loop double poles agree with formula (2.65). However, they tell us much

more.

Now we include the higher-order corrections to the beta function. We
insert them in (3.8)by writing B,(\) = AY_2, B;A%, and find

A / PN
ZA<A,e>=exp< WX _ i )

/ i
0o A 1—23‘ 1@'?

i 2 i
— 14524 (B >+Zﬁffz<ﬁ1 B B ) 50)

€

where the functions f; are power series of their arguments and receive con-
tributions from the jth orders, j < ¢, of the beta function. We see that the
maximum poles A" /e n > 0, even those that are due to diagrams with
arbitrary many loops, are not affected by the higher-order corrections, but
depend only on the one-loop coefficient of the beta function. Resumming
them, we find

1 — A
Zx(Ae) = 1B + Z ?fi-
T e i=2

The first two coefficients of the beta function contribute to the poles that
have the form (\2/¢)"(\/e)™, with n > 0 and m > 0. However, they do not
determine all of them, because the same powers of A and € can be obtained
in different ways. For example, A\*/e? can be viewed as (A?/e)?, which is
next-to-maximum, or (A3/g)(A\/e). It is better to reorganize (3.56) as

)\6—1+Z—gz< ) (3.57)

where the functions g; are power series that depend only on the first ith
coefficients of the beta function. The nezt-to-mazimum poles are those of
the form (A2/g)(\/e)™, m > 0, the next-to-next-to-maximum poles are those
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of the form (A\3/e)(A\/e)™, m > 0, etc. Since the power of A coincides with
the power of A, the poles are organized according to the general scheme

L=1 1
L=2 L I
E3 63 3
L=3 Z_i Z_i %4 ) (3.58)
L=4 & & & &
& & &

The one-loop coefficient of the beta function determine the first column (i.e.
the maximum poles), the one- and two-loop coefficients determine the first
two columns (i.e. the maximum and the next-to-maximum poles), and so
on: the j-loop coefficients, 7 < ¢, of the beta function determine the first ¢
columns. Some terms on the ith column receive contributions from the j-loop
coefficients with j < 4, but they can also receive contributions from the i-
loop coefficient. Brand new information is contained only along the diagonal.
Each nondiagonal element corresponds to some type of subdivergence.

For example, if we include the two-loop corrections to the beta function,
By = BiA2 + B2 A3 + O(A*), we can determine Zy up to the next-to-maximum
poles. We get

+ = +=
B 2 B
1-52 ﬁ1<1—@> 1-52 ¢

€

. 14 281 (122 1 2
Zi(ne) = — 2 (1-%) p Agz<A>‘

£

The poles of a generic correlation function G have a similar structure,
where now the first ¢ columns receive contributions from the j-loop coefhi-
cients, j < ¢, of the beta functions and the anomalous dimensions. We have,
in the minimal subtraction scheme,

G(he)=Ge+ > %Gi (?) , (3.59)
i=1

where G, is the classical contribution and G; are power series in h/e. The
ith column of (3.58) is h'G;/e.
Now, assume that the first coefficient 1 vanishes. Then (3.56) becomes

_ NN _ N
Zx(Ae) =1+ Zﬁi;fi <52?, e ,5i—> :
=2

3
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The first column of scheme (3.58) disappears, the second column is just made
of its top element, and the other column are made by their top elements and
sparse other elements. Again, the first ¢ columns are determined by the first
1 coefficients of the beta function. Similar restrictions apply when the first
two coefficients of the beta function vanish, and so on.

Another way to reach the conclusions derived above is to write

=3

1=1

where ¢;(\) are power series in A that begin with O(\?). Next, we insert this
expression into formula (3.7) (with p = 1). Equating each order in € we get

= de ()\) dCZ()\) B dCi_l()\) .
Ky 24C] P

Br=A T D for ¢ > 1.
Knowing that ¢;(\) = O(\) we find

A / A . AN !
(N = /BAA(,Q)dX, ci(\) = / dc’aiﬁ”/@i,”dx for i > 1.
0 0

We see that the one-loop beta function determines the orders O(\!) of all
the ¢;(\)s. Similarly, the two-loop beta function determines all the ¢;(\)s up
to and including O(A*!) and the k-loop beta function determines them to
and including O\ TF1).

To summarize, the power of the renormalization group is that it relates
infinitely many quantities, such as the entries of the columns of (3.58), and
allows us to resum them. A consequence is that computing the entries of the
same column involves more or less the same level of difficulty. As a check,
we suggest the reader to compute the two-loop double poles of the ¢} theory,
which is part of exercise 6. It may be easily realized that if we just want
the poles 1/e2, we can considerably reduce the effort of the calculation. In
the end, the two-loop double poles do not involve the typical difficulty of a
two-loop calculation, but the one of a one-loop calculation. The same occurs
with the three-loop triple poles, and so on.

To further appreciate the meaning of these facts, consider the formula
(3.48) of the one-loop running coupling and compare it to the one-loop bare

coupling:
~ A _ A
)\(t,)\)zl_w, ABl 821_73)\.
1672 1672¢e
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We see that Agpp ™% is nothing but the running coupling S\(t,)\) at t = 1/e.
In a cutoff regularization framework, it would be the running coupling at an
energy scale equal to the cutoff A (1/e ~ In(A/u)). The resummation of the
powers of (A/e) in Agu~¢ is just like the resummation of the powers of (t)\)
in A(t,\).

Actually, there is a much closer relation between the two resummations.
For definiteness, assume that the theory contains a unique dimensionless
coupling A and consider the correlation functions

Way o an (1‘, Y, A, ,u) = ((pal (1'1) P (xn)>c
— - A /'704()\/) -
= il;IleXp (/}\ dA By ) W oan (2,9, A(t), 1), (3.60)

where we have used the solution (3.34) of the Callan-Symanzik equation,

and rewritten (3.35) by means of an integral on the coupling. Now, the
limit of integration A that appears on the right-hand side of (3.60) has no
physical meaning, since it can be absorbed into the normalization of the
fields. Obviously, the cross sections and the other physical quantities do not
depend on such normalizations. Thus, ignoring that limit of integration, the
right-hand side of (3.60) depends on the coupling just through the running
coupling S\(t) If X is small, the perturbative expansion of the right-hand
side does in powers of X\ makes sense. Formula (3.44) shows that when [t] is
large, the running coupling can be small even if X is of order one. The point
is that if X\ is of order one, the perturbative expansion of the left-hand side
of (3.60) does not make sense. In other words, the renormalization group
teaches us that, after resumming the powers of A into 5\, the perturbative
expansion can become meaningful, if it is understood in the sense offered
by the right-hand side of (3.60) (apart from an overall constant that is not
physically important).

We have already remarked that little is known about the resummation
of the perturbative expansion in quantum field theory, to the extent that
different resummations may give different results and correspond to different
physical theories. The renormalization group helps us on this, because it
allows us to partially resum the perturbative expansion in powers of A. Pre-
cisely, although we started with the aim of defining a perturbative expansion
in powers of A\, and we ended by discovering that we may be able to define
the perturbative theory even if X\ is of order one, at least in a domain of
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energies where the running coupling A is small. Indeed, the renormalization
group equations tell us that, if we appropriately resum the powers of tA, we
can reorganize the expansion as an expansion in powers of A\. So doing, we

are resumming the analogues of the columns of (3.58).
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Chapter 4

Gauge symmetry

In this chapter we begin the study of Abelian and non-Abelian gauge sym-
metries in quantum field theory. After giving the basic notions and the main
properties, we discuss the problems raised by their quantization, such as the
gauge fixing and unitarity. In the next chapter we upgrade the formalism to
make it suitable to prove the renormalizability of gauge theories to all orders.
Then we proceed by proving the renormalizability of quantum electrodynam-
ics (chapter 6) and the renormalizability of non-Abelian gauge field theories
(chapter 7). In this part of the book, we assume that the theory is parity
invariant, so no chiral fermions are present. The renormalization of parity
violating quantum field theories raises bigger issues.

4.1 Abelian gauge symmetry

The propagation of free massless vector fields A, is described by the massless

limit of the Proca action (1.87),
1
Stee() = [ aPa ER, (1)

where F,, = 0,A, —0, A, is the field strength. This action is invariant under

the gauge symmetry
A;L = A, + OuA, (4.2)

where A is an arbitrary function of the position. In infinitesimal form, the
symmetry transformation reads

oA, = 9,A. (4.3)
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We have already written the action (4.1) in complex D dimensions, be-
cause one of the main virtues of the dimensional regularization is that it
is manifestly gauge invariant, as long as the theory does not contain chiral
fermions. Gauge invariance looks formally the same in all (integer) dimen-
sions, so it is easy to generalize it to the formal objects A,, 0., x#, v*, 1,
etc., that are used in the dimensional regularization. Instead, the notion of
chirality is dimension dependent, so gauge invariance is not manifest in D
dimensions when the Lagrangian explicitly contains -s.

A direct consequence of the local gauge symmetry is that the quadratic
part of the action (4.1) is not invertible. Indeed, it is proportional to kzéw, —
kyk, in momentum space, and has a null eigenvector k,. Therefore, the
Green function (A, (k)A,(—Fk)) is not well defined. This fact is also evident
by taking the massless limit of the Proca propagator (1.89), which is singular.

The free fermion action (1.100) is invariant under the global U(1) trans-
formation

U = eTiehy, (4.4)
where A is constant. The photon A, is the gauge field that promotes the
global U(1) invariance (4.4) to a local symmetry

!/

A=A +0,A, Y =ehy, Y =y, (4.5)

where now A is a function of the spacetime point.
Replacing the simple derivative 9, with the covariant derivative 0, +ieA,
and adding (4.1), we obtain the Lagrangian of quantum electrodynamics

(QED) .
Lo= ZFS,, + (@ + ied +m)p, (4.6)

which is invariant under the gauge transformation (4.5). In infinitesimal
form, (4.5) becomes

5AA,u = a,uAa 5A7/) = —’L'€A¢, 5/\?2) = ZGATZJ (47)

4.2 Gauge fixing

To define the functional integral of a gauge theory, actually its perturbative
expansion, we first need to choose a gauge, by imposing a condition of the
form
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where G(A) is a suitable local function. Later we must show that the physical
quantities do not depend on the choice we make. Among the most popular
gauge choices we mention the Lorenz gauge fixing

G(A) =0,A,,
and the Coulomb gauge fixing
Go(A) = -V - A, (4.8)

Now we describe how to implement the gauge fixing at the quantum level.
Start from the functional integral

20J) = / [dA] exp (—S(A) + / JA>

in the absence of matter. The functional integration measure is certainly
gauge invariant, since the gauge transformation is just a translation. For
the moment, we assume that the current J is divergenceless, so the gener-
ating functional Z(J) is formally gauge invariant. We know that Z(J) is ill
defined, because we are integrating also on the longitudinal mode (4.3) and
the integrand is independent of it. For the moment, we ignore this fact and
proceed.

Let us insert “1”, written in the form
- / [dA] (det 0) 67 (=, A, + Q + D), (4.9)

where ) is an arbitrary function. Here dp(Y) denotes the “functional delta
function”, which means the product of §(Y (x)) over all spacetime points z,
where Y (z) is a function of the point. Formula (4.9) is the functional version
of the ordinary formula

/Hd:nij(x) Hé(fk(x)) = Zsignj(i“). (4.10)
=1 T

i= k=1

where

J(z) = det o
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and Z are the points where the functions fi(z) simultaneously vanish. As
long as it does not vanish, the right-hand side of (4.10) is just a normalization
factor, which can be omitted. In our case it is precisely 1, so we get

2(J) = / [dAdA] (det 0)5r(—9, A, + Q + CIA) exp <—S(A) + / JA> .

Now, perform a change of variables A’ = A — OA. Recalling that J is di-
vergenceless and the functional measure is invariant under translations, after
dropping the primes we obtain

2(J) = / [dA] / (dA] (det ) 6p(~9, A, + Q) exp <—S(A)+ / JA).

We see that the integral over the longitudinal mode A factorizes. Since the
normalization of Z is physically irrelevant, we can equivalently define

2(J) = / (dA] (det 0)8r(~9,A,, + Q) exp (—S(A) + / JA> ,

which is gauge-fixed. At this point, introduce a “Lagrange multiplier” B!
and write the functional delta function as

Si(=0, A, + Q) = / [AB] exp (—z’ / P2 B9, A, — Q)> .

We prefer to work with Hermitian quantities in the exponent, so we replace
B with —iB. This operation factorizes an irrelevant constant in front of the
integral, which we omit henceforth. Then

2(J) = / [dAdB] (det O) exp <_ / Py GFg + BO,A, — BQ - JA>> .

(4.11)
We see that the function @ plays the role of an external source for the
Lagrange multiplier B. We can easily work out the propagator of the pair
(A, B), and find

<<Aﬂ<k>Ay<—k>> <Aﬂ<k>B<—k>>> RN (L
K iky 0

(4.12)

! Also known as Nakanishi-Lautrup auxiliary field, in this context.
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The functional integral can be easily evaluated and gives
1
Z(J) = (det )L exp <§ /dedDyJM(x)GA(a: - y)JM(y)> ,

where the Green function G4(z — y) coincides with Gp(z —y) at m = 0, and
we have used that J is divergenceless. We see that the result is independent
of @, which was expected, since @ is arbitrary in formula (4.9).

Formula (4.11) contains a det [J in the numerator, for which it is not easy
to write Feynman rules. We could ignore this factor, because it is a just
constant in QED. However, in more general gauge theories the analogue of
this factor depends on the fields. If we introduce suitable anticommuting
fields C and C, called Faddeev-Popov ghosts and antighosts, respectively, we
can exponentiate the determinant. The complete gauge-fixed functional then

reads
2(J) = / (dy] exp (— / APz GF@ + B, A, — COC — BQ - JA>> ,
(4.13)
where [du] = [dAdCdCdB]. The ghost propagator is simply
= 1
(C(k)C(=k)) = =k (4.14)

We can also relax the assumption that J is divergenceless. Then the
functional integral (4.13) does depend on @, but is still well defined. If we
average over () with the Gaussian measure

JQiex (<55 [abeqar).

where A is an arbitrary parameter, we obtain

A
Z'(J) = /[du] exp (—/de <4F3,, — —B2 +Bd-A-COC — JA))
(4.15)
Since B now appears quadratically, it can be easily integrated away, giving

2(J) = /[d,u]exp( /dD <4 2 %(8-A)2—CDC—JA>>,

(4.16)
where now [du] = [dAdCdC).
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In this framework, the ghost propagator (4.14) is unchanged, while the
gauge-field propagator reads

1 kky
(A4, A(—) = 7 (B + (A= )5 ). (417)
A simple gauge choice is the Feynman gauge, where A = 1 and
Opv
(A (k) A, (R)) = 5. (4.18)

The choice A = 0 is also known as the Landau gauge.
Everything we said so far can be repeated by replacing 9,4, in (4.9) with
the Coulomb gauge fixing (4.8). Then we get

1 _
Z'(J) = /[d,u] exp <—/de (ZF‘%” - %Bz —BV-A+CAC - JA>> ,
(4.19)
and, after integrating B away,

Z'(J) = /[du] exp <— /de GFﬁV + %(v AP+ CNC — JA)) .
(4.20)

For the moment we content ourselves with these two choices of gauge
fixing. However, in principle the gauge-fixing function G(A) can be arbitrary,
as long as it properly fixes the gauge. Later we will see how to define the
functional integral with an arbitrary G(A).

The arguments given above are formal, however the final result is correct.
We can take the final result as the definition of the functional integral for
gauge fields and then prove that this definition satisfies the properties we
need.

Physical degrees of freedom

The physical degrees of freedom are more clearly visible in the Coulomb
gauge. Indeed, formula (4.20) gives us the gauge-field propagators, which in
Minkowski spacetime read

2 .
(Ao() Ao =R = g — e Aok A= = i
(AR A (~R)) = (5@- - ﬁi’;ﬂ) i) (421)
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To switch from the Euclidean framework to the Minkowskian one we have
written A = (i4g,A) and k = (¢E,k), and then recalled that the Fourier
transforms of the fields get a further factor i. Studying the poles of (4.21),
we see that only (A4;A4;) has any, precisely two. They have positive residues
and their dispersion relations are E' = |k|. The ghost propagator is now

(CHOF) = 1 (422)
and has no pole. In total, the physical degrees of freedom are 2, as expected.

In the Lorenz gauge the propagators have a more complicated pole struc-
ture. For example, the ghost propagator (4.14) has poles and the gauge-field
propagators (4.17) and (4.18) have extra poles. We will show that the un-
physical degrees of freedom that appear with an arbitrary choice of gauge
fixing compensate one another. More precisely, we will prove that the phys-
ical quantities do not depend on the gauge fixing, and that property will
allow to freely switch to the Coulomb gauge, where no unphysical poles are
present.

When we add matter, the gauge-fixing procedure does not change. For
example, in the Lorentz gauge the gauge-fixed Lagrangian of QED is

Lo | 5 : Ao ~
Lot = JFp + 0@ +ied+m)y - B2+ B 9-A-COC,

before integrating B out. For completeness, we report the propagator of the
multiplet made of A, and B

K2 ,
k? ik, 0
(4.23)

C@Wmewmww@m>:; b+ (A — DR

which coincides with (4.12) ad A = 0.

The gauge-fixing procedure we have described breaks the local symmetry
(4.3). Nevertheless, the symmetry is not truly lost, because the functional
integral acquires new properties. Thanks to those, we will be able to prove
that the physical quantities are gauge invariant and gauge independent, be-
fore and after renormalization. Such properties are elegantly combined in a
very practical and compact canonical formalism. That formalism is actually
more than we need for Abelian theories, but has the virtue of providing a
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unified treatment that is also suitable to treat the non-Abelian gauge theo-
ries, as well as quantum gravity and every general gauge theory. Thus, before
introducing the canonical formalism for the gauge symmetry, we introduce
non-Abelian gauge symmetry.

4.3 Non-Abelian global symmetry

Consider a multiplet 9¢ of fermionic fields. The free Lagrangian

> (F ' +mi'y)

2

is invariant under the global transformation
W =Uty, g = glut, (424)

where U is a unitary matrix. More generally, given a non-Abelian group G,
we can consider multiplets 1 of fermionic fields that transform according to
some representation of G, and theories that are symmetric with respect to
these global transformations.

We focus our attention on the case G = SU(N), where U can be parame-

trized as
U =exp (—gA*T?), (4.25)

by using a basis of N x N traceless anti-Hermitian matrices T, where g and

i
A% are real constants and a is an index ranging from 1 to dimG = N? — 1.
Consider the commutator [T, T?]: since it is traceless and anti-Hermitian,

it can be expanded in the basis 7*. We have
[T, T = f*T°, (4.26)
where f%¢ are real numbers such that

fabc — _fbac’ (4.27)
fabCfcde + fdaCfcbe + fdefcae =0. (428)

The second line follows from the Jacobi identity of the anticommutator.
The matrices T can be normalized so that

15@’), (4.29)

tr[T°T"] = —
f[T*T"] = =5
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where the sign is determined by the anti-Hermiticity, while the factor 1/2 is
conventional. In a basis where (4.29) holds, the constants f2¢ are completely
antisymmetric, which can be proved from

C a 1 aoc
(T[T, T = =3 £,

by using the cyclicity of the trace.

For example, in the case G = SU(2) we have T* = —ic®/2, where o are
the Pauli matrices in the standard basis, and fo¢ = g2,

Any real constants f%° that satisfy the properties (4.27) and (4.28) define
a Lie algebra. The f%¢s are called structure constants of the algebra. We
can introduce abstract generators T that satisfy the formal commutation
rules

[T, T" = fT°. (4.30)

When the generators 7% are given an explicit form, as matrices of some kind,
we have a representation of the Lie algebra.

The commutation rules (4.30) define the Lie algebra associated with the
group G. The set of N x N traceless anti-Hermitian matrices T form the
fundamental representation of the algebra, which is the one of minimal di-
mension > 1. It is commonly denoted with its dimension, which is equal to
N. Taking the complex conjugate of (4.26), we obtain a new representation
with 7¢ = T9, called antifundamental, commonly denoted with N. The
trivial representation, which has dimension 1, is called singlet.

In a generic representation r, the matrices 7% can be normalized so that

tr[ToT%] = —C(r)6%, (4.31)

where C(r) is a constant depending on r. We have C(N) = C(N) = 1/2.
Another important identity is

TT = —Cg(’f’)]l, (4.32)

where Co(r) is called quadratic Casimir operator of the representation r. The
property (4.32) is proved below.
A consequence of the Jacobi identity (4.28) is that the matrices

(Ta)bc — _fabc
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satisfy the commutation rules (4.30), so they form another representation
of the Lie algebra, called adjoint representation, normally denoted with G.
Contracting @ and b in (4.31) and tracing the equation (4.32), we get

C(r)d(G) = Ca(r)d(r),

where d(r) is the dimension of the representation r. With » = N we find
Cy(N) = (N? —1)/(2N). Choosing 7 = G we obtain that the two Casimirs
of the adjoint representation coincide: C'(G) = Ca(G). It can be shown that
C(G) = C3(G) = N. In particular, using (4.31) for r = G, we get

facdfbcd — N(Sab (433)

Observe that any N x N matrix can be written as a complex linear
combination of the identity matrix and the matrices T%. Consider the tensor
030k @s a N x N matrix in the indices j and k. It can be expanded as

0ij0rt = aulkj + g Tiy, (4.34)
where a;; and of; are complex numbers. Taking j = k we get
0yt = Nay. (4.35)
Moreover, we also have

1
Tj; = Tis01j0k = o a[T°T"] = —Zaf. (4.36)

Collecting (4.35) and (4.36), formula (4.34) can be rephrased as

1
T4 = -

g 2

5 <5z‘15kj - %5ij5kl> ; (4.37)
an identity that is often handy.

We have started this discussion with fields 1" and 1212 that, according to
(4.24), transform in the fundamental and antifundamental representations,
respectively. It is convenient to distinguish these two types of indices. We
introduce the following notation. We call

i1vin
v]l]m
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a tensor whose upper n indices transform in the fundamental representa-
tion and lower m indices transform in the antifundamental representation.
Globally and infinitesimally, we have

,U/‘il""in — UTll . UTlm U7,1 Uzn kl kn
Im

Jigm Ji Uty edim
and
dim G
N =m0 D A (T T )

dim G
g Yo AT (TR e e TR L) (438)

Jm ,71 Jm—1km

respectively. We have written the matrices 77} as T ; to emphasize the roles
of their indices.
The tensors

(5;, EzlmlN, Ei1-in (439)
are clearly invariant. Observe that 5; can contract only different types of
indices.

Let u’, v*, ... and u;, v;,... denote vectors transforming in the funda-

mental and antifundamental representations, respectively We can construct
new representations by considering the products u’ v]w . Using the ten-
sors (4.39), the products of fundamental and antifundamental representations
can be decomposed into sums of irreducible representations. The decomposi-
tion is obtained by repeatedly subtracting contributions proportional to the
invariant tensors, until what remains vanishes whenever it is contracted with
invariant tensors.

For example, the product uivj of a fundamental and an antifundamental
representation can be decomposed as the sum of two irreducible representa-
tions, as follows

u'vj = (Pfék + Pfék) uFvy, (4.40)

by means of the projectors
].]k - 5k5l - _525]67 PZ]k‘ 5251(; (441)

It can be shown that the traceless combination given by P is equivalent to
the adjoint representation. The term proportional to 5; is obviously a singlet.
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We symbolically write the decomposition (4.40) as
N®N =Adg®1.

The matrices T‘”gk of the representation acting on the product u¥v; are
T“ikéé — T“ljdlic. They do not need to be projected with (4.41), since they
act nontrivially only on the adjoint combination.

Another example is the product u’v? of two fundamental representations.
It can be decomposed as the sum of the symmetric and antisymmetric com-
binations,

1
2(N — 2)!

u'! = §(ulvj +u'?) — ik kN*2Ek1...kN72mnumv”,

which are new representations of dimensions N(N +1)/2 and N(N —1)/2,
respectively. We have

o = o (T8 + T, £ T, 0 + 6T )

N | —

or, symbolically,
T¢=P(T*"®1+1®T%) Py,

where Py are the projectors on the symmetric and antisymmetric combina-
tions, respectively.

A theorem ensures that all the representations can be obtained by means
of a similar procedure.

Theorem 4 All the irreducible finite dimensional representations can be ob-
tained from the products of fundamental and antifundamental representa-
tions, decomposed by means of the invariant tensors (4.39).

Actually, even the antifundamental representation can be obtained from
the fundamental one. Indeed,

— k k
Ui = oy Eikgiy ¥ U

(N — 1)

does transform in the antifundamental representation. Thus,

Theorem 5 All the irreducible finite dimensional representations can be ob-
tained by decomposing products of fundamental representations.
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The theorem just stated ensures that

Corollary 6 the generators T® of every representation can be written using
the matrices T“ij and the invariant tensors (4.39).

Symbolically, we can write
T =P T'®1--- @1 +--+ 1® ---1TY)P,, (4.42)

where P, is the projector on the representation r, constructed with the ten-
sors (4.39).

The identity (4.32) can be proved as follows. Observe that 7.7 is an
invariant tensor, since 7%, as well as any 7,%, transforms in the adjoint rep-
resentation. Using (4.42) and (4.37) we know that it has the form P.(Q,)P,,
where @, is constructed by means of Kronecker symbols. Thus, 7,7 is a
constant times P, itself, as wanted.

Expanding by means of the Kronecker tensor, contracting in all possible
ways and using the identities already proved, we also find

) 1 . )
T T T, = 2(80307" — 0,8707"). (4.43)

4.4 Non-Abelian gauge symmetry

Now we want to gauge the non-Abelian global symmetry. We promote the
unitary matrix (4.25) to a family of spacetime-dependent unitary matrices

U(z) = e 9A" @1 (4.44)

and introduce the non-Abelian gauge fields A,, as well as the covariant
derivative
(D) = 09" +ig(Auv)', (4.45)

where g denotes the gauge coupling. Formula (4.45) shows that the A,s
must be matrices with indices ij. The gauge field A, is often called gauge
connection.

We determine the transformation AL of the gauge field by requiring that
(D))" transform exactly as 1*. We have

(Du¢)/i = 8u¢/i + ig(A;LT/)/)i
= (0,U)W +ig(A,U — UAL) "¢ + U9 Dy = U9 Dy

14B1 Renorm



166 CHAPTER 4. GAUGE SYMMETRY

hence

Al = é(@uU)U‘l +UAU, (4.46)

The transformation rule for D, is
D, =UD,U". (4.47)

Since the covariant differential operator ¢D, must be Hermitian, as is
10, the matrices A, are also Hermitian, so they can be parametrized as

Al (z) = —i A} () T3], (4.48)

where Af,(z) are real functions. We can write, in matrix and index notations,
D, = 8, +igA, and D)} = &'jau + igAff, respectively. Distinguishing upper
and lower indices, we have AL ;= —iT*" ;A which emphasizes that A, is the
traceless product of a fundamental and an antifundamental representation.

Define the field strength

1
Fu = [Dy D) = Fi, T

Clearly, (4.47) implies the transformation rule
F,=UF,U™". (4.49)

We find
Ff, = 0,A% — 0,A% + g™ Ab AL
So far, we have taken matter fields 1/’ in the fundamental representation.
For fields x! in a generic representation r, described by matrices 7,%, we have
Al = —iALTY | and still Dy, = 9, +igAy, but D} = 6179, +igAl’.
The infinitesimal forms of the transformations (4.24), (4.49) and (4.46)
read

OAAL = 0N + gf**° AL A = DAY,
5AF5V :gf“chﬁyAc, ! =—g TaUAaXJ. (4.50)

We can state that the functions A® belong to the adjoint representation of
G, s0 G5 Aj; is just the covariant derivative of A%
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The gauge-invariant action of fermionic fields x! can be constructed by
means of the covariant derivative, and reads

Sy = /dDazx(lD—l—m)X: /deXI(&J(?—FgAZ’];“U—l—méu)x‘]. (4.51)

Similarly, if ¢ are (complex) scalar fields transforming according to some
representation of the gauge group, the scalar action is

S, = /de (\Dugp\z + m2¢><p) , (4.52)
up to other interactions. The invariant action of the gauge fields is

SA:i/dD:EFﬁVQ:—%/dDa:tr[Fiu], (4.53)
where F),, is written using the matrices 7' of the fundamental representation.
The gauge invariance of S4 is a consequence of (4.49) and the cyclicity of
the trace. The theory (4.53) is called non-Abelian Yang-Mills theory. Note
that (4.53) is an interacting theory.

The free-field limit g — 0 of (4.53) describes a set of N2 —1 free photons.
For this reason, the propagator of non-Abelian Yang-Mills theory has the
same problems as the propagator of QED, and can be defined only after
a gauge fixing. Now, the gauge-fixing procedure is more involved than in
quantum electrodynamics. It becomes relatively simple if we endow the
gauge symmetry with a suitable canonical formalism, which is introduced
in the next chapter.
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Chapter 5

Canonical gauge formalism

Gauge symmetry can be treated efficiently by means of a canonical formalism
of new type, known as Batalin-Vilkovisky formalism. It is equipped with
suitable notions of parentheses, canonical transformations, and a number of
tools that allow us to make a number of crucial operation with a relatively
small effort. The “time” evolution associated with this formalism is just
the gauge transformation. We do not need to explicitly introduce a “time”
coordinate 6 for this kind of evolution, because this § would be constant
anticommuting parameter, so every function of 6 has a Taylor expansion
that stops at the first order.

Briefly, the Batalin-Vilkovisky formalism is a practical tool to (i) gather
the key properties of the infinitesimal symmetry transformations and their
algebra in a single equation, (i7) fix the gauge and have control on the gauge
fixing with a straightforward procedure, (iii) prove that gauge theories can be
renormalized by preserving gauge invariance to all orders, (iv) prove that the
physical quantities are gauge independent, and (v) study the anomalies of the
global and gauge symmetries to all orders. Combined with the dimensional
regularization (or its modifications and upgrades, to be defined later on),
the Batalin-Vilkovisky formalism allows us to derive these and several other
properties in a systematic way.

We generically refer to the resulting formal appratus by calling it “canon-
ical gauge formalism” for quantum field theory. Its main virtue is that it
allows us to prove old and new results to all orders with much less effort
than is required by the other approaches.

Although we mainly work with gauge (that is to say local) symmetries,
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everything we say also works for global symmetries. At the same time, we
stress that the canonical formalism is well suited to study infinitesimal sym-
metries. At present, there exists no equally compact and elegant formalism
for finite or discrete symimetries.

In the rest of this chapter we mostly work at the bare level, but drop the
subscripts g that we normally use to denote bare quantities. The properties
we are going to derive can be interpreted at the classical level, if they concern
the action S, and at the bare and tree levels, if they concern the generating
functionals. The renormalization program will be carried out in detail in the
next sections. Among other things, we will have to prove that the properties
derived here are preserved by the subtraction of divergences.

We collect the classical fields into a single row

¢Z = (AZJ 12}7 ¢7 (IO)

and assume that a classical action S.(¢) is given, which is invariant under
some infinitesimal transformations

579" = RL(¢, M), (5.1)
that is to say
015, ; 5,S,
ins. = [ = [ Rio.n) 5k =0 (5.2)

Here A(x) denote the local parameters of the symmetry.

5.1 General idea behind the canonical gauge for-
malism

We first introduce the basic ideas behind the canonical formalism, without
paying too much attention to the details, such as the statistics of the fields,
the correct relative positions of fields and sources and some crucial minus
signs that will be dealt with shortly after. It is useful to have a general idea
of what we want to do, before plunging into the technical aspects. Later, we
go through the systematics.

The functions R.(¢,A) are local, and linear in A. Apart from this, they
can be arbitrary functions, nonlinear in ¢, and renormalize independently of
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the elementary fields. In other words, they must be regarded as composite
fields. We know that composite fields can be treated by adding them to the
action, coupled to external sources K. This defines the extended action

SM K) = Su() + / Ri(6, M K:.

The identity (5.2) can be written in the form

_ ik oy _ [ap. [ 08 4} 68} S, \ _
5ASC—(SC,SC)—/d x{ééi(x)éKi(x) _5¢i(x)5K,~(x)} =0. (5.3)

This expression is appealing, because it reminds us of a canonical formalism,
once the sources K are viewed as canonically conjugate to the elementary
fields ¢. The symmetry transformation of a functional X (¢) can be expressed
as the parenthesis with S

0X .
A

The identity (5.3), however, just tells us about the symmetry transfor-
mations, but does not incorporate the algebra of the transformations, in
particular their closure. Closure means that the commutator [d,0x] of two
transformations dz and Jy;, with parameters A and Y, is a symmetry trans-

formation (s x) of the same algebra, with certain parameters A(A, X):

[0A,05] = 0a(a,5)- (5.4)

A priori, renormalization may affect both the action S, and the transfor-
mations R!, as well as the closure relations (5.4). Thus, it is important to
collect these three pieces of information into a unique extended functional.
So doing, we will be able build a powerful formalism that allows us to easily
understand how those pieces of information renormalize and what role they
play inside the generating functionals.

In formula (5.3) we have two different functionals, S, and S2. Moreover,
S¢, does not contain the sources K. As said, we would like to collect all pieces
of information into a unique extended functional, and find an identity that
involves only that functional. Now, the parenthesis (S2,S%) = 0 is trivial,
because it is the subtraction of the term

552 oS
/ 69" OK;

(5.5)
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with itself. Nevertheless, the expression (5.5) goes into the right direction, as
we can see if we split it into two pieces, the contributions that do not contain
K and the contributions that are linear in K:

58, SRJ
it LK
/&W’ /&wl’

The former give the transformation of the action S. and the latter somehow
point to the transformation of the transformation, that is to say the closure
of the algebra.

A trick to make the terms (5.5) to sum up instead of cancel out, is to
change the relative statistics of ¢* and K;, and distinguish left- and right-
derivatives. The resulting definition of parentheses and all other details are
given below. The formalism satisfies all the usual properties, appropriately
adapted, including a generalized Jacobi identity. For the moment, we just
anticipate that we get something like

5S4 5SA
5pt 0K

(S, 58 = 2 / Py (5.6)
Again, this cannot be the final answer, because the “double” A transform-
ation contained in (5.6) is not really a commutator. However, it becomes the
commutator once we also play with the statistics of A and provide suitable
transformation rules for the As themselves.

Now, closure demands two indipendent parameters, e.g. A and X, so S2
is certainly inadequate to contain the closure relations (5.4). On a functional
X, we have

[0a.05]X = (52, (57, X)) = (S, (52, X)) = daa X = (52, X).
(5.7)
We may expect that the generalized Jacobi identity for the parentheses allows
us to replace the sum of terms that follows the first equal sign in (5.7) with
something like ((S2,S82), X). Thus, (5.7) gives

(52, 87) — 824 x) =0, (5.8)
for every X, so we can express closure by means of a relation of the form

(82, 57) = s,
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We have two functionals instead of one here. We can collect everything
into a single functional, if we replace A(z) and 3(z) by C(z) and ¢'C(x),
respectively, where 6 and 6’ are anticommuting parameters (that we drop
after moving them to the right or left of each identity) and C(z) is an anti-
commuting field, to be identified with the Fadeev-Popov ghosts. They main
virtue is that they can carry an anticommutator by themselves. For example,
if 8% are also anticommuting quantities, we have

(9%?62:-—%w%9ﬂ0ﬂ0@

This trick allows us to work with a unique, but anticommuting, C(x)
and a unique extended action. Later we will show that, if done properly, the
operations encoded into the replacements A — 0C, ¥ — 6'C are completely
reversible, so they do not cause any loss of information. Finally, A(C,C) is
identified with the transformation of C itself, apart from a proportionality
factor.

The new extended action is something of the form

.0,C.1) = 5.0) + [ @V (KiRi(0.0) - 3KeA(C.0)).
where K¢ are sources for the C transformations. Next, we have an identity
of the form
55’ 55’ 5S., 55’
'S =2 [ dPx—¢ 2/dD =0. :

The terms proportional to K; in this expression do give the closure of the
algebra. The terms proportional to K¢ cancel out by themselves, because
they are just the Jacobi identity of the Lie algebra.

Summarizing, once the crucial identity (S.,S.) = 0 is satisfied, the ex-
tended action S. incorporates the invariant action, the symmetry transfor-
mations of the fields, the closure of the algebra and its Jacobi identity.

5.2 Systematics of the canonical gauge formalism

Without further premises, we are now ready to present the systematics of
the canonical gauge formalism. Make the substitution A(z) — 6C(x) in the
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identity (5.2), then move 6 to the far left and drop it. Since R’ is linear in
A, we get an identity of the form

&S
/RZ ,C 5l¢z 0. (5.10)

The functions R'(¢, C') are such that
Ri(¢,0C) = 6R'(,C) (5.11)

and may differ from R%(¢,C) by a sign, depending on the statistics of ¢.

The fields C' are called this way, because they coincide with the Faddeev-
Popov ghosts already met. For the moment, we do not need to introduce
antighosts C' and Lagrange multipliers B. They are useful to fix the gauge,
but they are not basic ingredients of the canonical formalism. We include
the fields and the ghosts into the extended row

= (AZ’ Ca? 12)7 ¢7 (10)'
The conjugate row made by the sources is
KCV = (ng ng, Kﬂn th KAO)

We define the statistics g, €k, €), €x of a field ®, a source K, a parameter
A or a functional X to be zero if the field, source, parameter or functional
is bosonic, one if it is fermionic. We define the statistics of the sources as
opposite to the statistics of the fields that are conjugate to them:

€K, = €po + 1 mod 2. (5.12)

Given two functionals X (®, K) and Y (®, K) of the fields and sources, we
define their antiparentheses as the functional

_ 0. X oYy 0r X 0y
(X.y) = /dDa; {5@0‘(@ 0K () - 0K () 09 (x) } ’ (5.13)

where the sum over « is understood. Observe that if X and Y are local
functionals, then (X,Y) is a local functional.
The antiparentheses satisfy the properties

(¥, X) = = (=) y),
(=1)Ex+DEzH) (X (Y, Z)) + cyclic permutations = 0, (5.14)
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and €(xy) = €x + €y + 1, which can be verified straightforwardly. In par-
ticular, formula (5.14) is the Jacobi identity. Immediate consequences are

5B 6B 5B 8B
5b K, K, 6d’

(F,F)=0, (B,B)=2 (5.15)
if the functionals F' and B have fermionic and bosonic statistics, respectively.
In (5.15), as often below, we understand integrations over spacetime points
associated with repeated indices «, (,.... Another important consequence
is

(X, (X, X)) =0 (5.16)
for every functional X. This property follows from the Jacobi identity (5.14)
and is useful to study the anomalies.

The action S(®, K) is defined as the solution of the master equation

(S8,8) =0, (5.17)
with the boundary conditions
0, S(P, K i
s@o0) =5, 2P _Rpgo). ey
? K=0

In the naive derivation given above, the extended action S was linear in
the sources K. This is actually true in all the applications we have in mind,
at least at the tree level. Thus, we write the solution of the master equation
in the form

S(®,K) = S.(¢) + Sk (P, K), (5.19)

where
Sk (®.K) = / RO (@)K = Su(6) — / Ri(¢,C)K; — / RE(B)KS, (5.20)

and R%(®) are functions to be determined, related somwhow to A(A, A). The
signs have been adjusted to match the choices of statistics we have made.
It can be shown that the linearity of S(®, K) in K means that the algebra
closes off shell.

More explicitly, using the last expression of (5.15), we find the formula

oS

0= (S,9) :2/3&(@) 05 :2/ [Rw,c*)@uzg(@)é—m

5P 5
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The terms of order 0 in K are twice the identity (5.10), while the terms of
order 1 in K give the formula

0= —2/R%¢)%/RW¢)K5,

which implies

S RO (®
:/Ra(cp) lwi ) (5.21)
for every . Taking 8 = i, we find
. i 5lRZ(¢7 C) a 5IRZ(¢7 C)
0= /Rw), 0155 +/RC(Q>)W. (5.22)

Since R' are linear in C, the last term is equals to R%(¢, Ro(®)). Setting
C* = 0A* + 6'2% in (5.22), where 6 and 0" are both anticommuting parame-

ters, we obtain

SR (¢, 0A +0'%)
dpd
Note that setting C* = §A® in formula (5.11), we also obtain

+ Ri(¢, Ro(OA” +0'%)). (5.23)

0= /Rﬂw, GA® 4+ 0'%)

ORL(¢, ) = R'(¢,00). (5.24)

Using this formula and taking the terms proportional to 88" (all other terms
being zero), let us write

REOA +0'S) = —00'A(A, ). (5.25)

This formula can be taken as the definition of Rc(®), where A(A,X) is
assumed to be known from the closure relation (5.4).
Then formula (5.23) gives

j 519,RZ ¢7 519RZ (Qb, Aa) ! i
ORI (¢, A® 0'R’ =00'R.(¢, A(A,Y)).
[ orioan 2R [ i) MR gyio, a0, 3)
Moving 6 and 6’ to the left and using (5.1), we obtain

01(6s¢ 01(04 0" '
/<5 # 1(52525) 5 l<5;j’>> = 00'RL(6, A(A, 3)),

or, finally,
00'[0n, 0x]¢" = 00'0a(n 50",
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which is equivalent to (5.4).
Finally, taking R® — R% in (5.21), we get

0= /R%(C)&R%f), (5.26)

having observed that R%(®) in the end depends just on C. Formula (5.26),
which is the closure of the closure, in some sense, is just the Jacobi identity
of the lie algebra.

For example, in non-Abelian Yang-Mills theories, we have (on fermions
1, for definiteness) dp¢)¢ = —gTi‘;A“W, S0

[0, O]9’ = g?[T°, T*)ij/ DA = —g* T feN%" = O ¥,
hence
A*(A, ) = gf*"A%e,
Using this expression in (5.25), we find
RL(OA + 0'Y) = —06gf*e AP R = —gg 0N + 0'S)0(0A + 0'%)°,
whence
RE(C) = ~S fChCe,
Thus, the identity (5.26) gives
0 = fabe pbdececdcre.

Since the C's are anticommuting, this equation is equivalent to (4.28).

In the Abelian case, A(A,X) =0, so Rc(®) = 0.

Given a functional Y, we can view the antiparentheses (Y, X) as a map
acting on the space of functionals X. Choosing Y = S, the map (S, X)
is nilpotent, because of the Jacobi identity (5.14) and the master equation
(5.17). Indeed,

1
(5,(58,X)) = 5((5’5)’)() = 0.
On the fields and sources, we have

5,8
T

Basically, (S, K4 ) is the ®* field equation, plus O(K).

(57 (I)a) = Ra(@)7 (S, Ka)

14B1 Renorm



178 CHAPTER 5. CANONICAL GAUGE FORMALISM

The map (S, X) sends functionals G(®) that depend only on the fields
into functionals that depend only on the fields:

s.9@) = [ me@) 9D

On the functionals G(¢) that depend only on the physical fields ¢ the map
is precisely the gauge transformation:

/RZ ¢,C 51?(# ).

In particular, (S,S.(¢)) = 0, which is nothing but the gauge invariance of
the classical action S¢(¢).
It is always possible to generate solutions S(®, K) of the master equa-

tion that are nonlinear in K by means of field and source redefinitions that
preserve the master equation (or the antiparentheses, in which case they are
canonical transformations, see below). However, not all the solutions that
are nonlinear in K can be obtained this way. To understand this issue better,
consider again the relation

0=(S,8) = /dD ;KS ;jli (5.27)

The K-independent contributions are always the identity (5.10), but when
S(®, K) is not linear in K, the terms of (5.27) that are linear in K (which
encode the closure of the algebra) contain extra contributions proportional to
the field equations. If there exists no canonical transformation that absorbs
the extra terms away, it means that the gauge algebra does not close off shell,
but just on shell.

In most physical applications the symmetry algebras that close off shell
play a major role. In this book we mainly focus on those. Nevertheless, it is
important to know that more general structures exist. Still, we see that the
solution (5.19) does depend on the field variables we choose.

The canonical formalism does not apply only to local functionals, such as
the action S, but also to the generating functionals Z, W, I and 2, which
are nonlocal. For this reason, it is necessary to prove some general properties
before proceeding. We have remarked above that the antiparentheses map
local functionals X and Y into a local functional (X,Y"). We now prove that
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they also map one-particle irreducible functionals X and Y into a one-particle
irreducible functional (X,Y’). Define the operator
5. 4
— D r l
V:/d 5% () 0K (x)

We focus on the contribution XVY to (X,Y) in (5.13), since the other con-
tribution can be treated in an analogous way. Note that if X and Y are
one-particle irreducible, a functional derivative with respect to ®(x) is an
amputated ®“ leg and a functional derivative with respect to K,(z) is an
insertion of R*(®(x)). In particular, no propagators are attached to such
legs. The operator V produces a sort of new vertex, whose legs are the legs
attached to ®(x) in 0, X/0®(x) plus the legs attached to K (z) in ;Y /K (z).
Since the diagrams of 6, X/0®(z) and ;Y /0K (x) are irreducible, the contri-
bution XVY to (X,Y) is also irreducible. Diagrammatically, we have

(5.28)

where the double lines are sources and the single lines are fields.

The solution (5.19) to the master equation is called minimal, because it
contains the minimal set of fields. The minimal solution is not sufficient to
gauge-fix the theory and define the propagators of the gauge fields, because
it does not contain the antighosts and the Lagrange multipliers. We can
include them by enlarging the sets of fields and sources to

O = (AZ,C“,C’“,B“,”JJ,”L/},@), K, = (Ké‘,Kg;,K%,K%,Kﬂ),Kw,K@).
(5.29)
Again, the statistics of the sources are defined to be opposite of those of their
conjugate fields.
It is easy to prove that if Spin(®, K) is a minimal solution to the master
equation the extended action

Spin (@, K) — / BKE

14B1 Renorm



180 CHAPTER 5. CANONICAL GAUGE FORMALISM

is also a solution. We call it extended solution to the master equation. This
extension is sufficient for the purposes of gauge fixing. From now we under-
stand that the sets of fields and sources are (5.29) and the general solution
to the master equation is

S(®,K) = Se(¢) — / [R'(¢,C)K; + RL(®)KE + BKE] .

It is also useful to introduce the ghost number,

gh(A) = gh(¢)) = gh(¥) = gh(y) = gh(B) =0, gh(C) =1, gh(C)=-1.
Indeed, the global U(1) transformation
P — Peleh(®), (5.30)

o being a constant parameter, is a symmetry of the actions we are going to
work with, as well as the functional integration measure. The ghost number
is trivially preserved by the Feynman rules and the diagrammatics, so also
by the radiative corrections and renormalization.

The fermionic number of a field or a source is equal to zero or one,
depending on whether the field or source is a boson or a fermion. The
statistics of a field or a source is equal to the sum of its fermionic number
plus its ghost number, modulo 2. For example, the sources Ky and Ky
associated with the Dirac fermions are commuting objects, since they are
fermions, but they also have odd ghost numbers. Thus, Ky and Ky are
“fermions with bosonic statistics”, while C' and C' are “bosons with fermionic
statistics”.

Now we are ready to derive the solutions of the master equation for
Abelian and non-Abelian gauge theories. In quantum electrodynamics for-
mulas (4.7) give the functions R.(¢,A). Replacing A by 6C and using
Ri(¢,0C) = OR'(¢,C), we obtain the functions R'(¢,C) for A,, ¢ and
1, which read

0,C, —ieC, —ieypC,

respectively. The functions R¢, associated with the ghosts can be derived
from the closure of the algebra. Since it is trivial in the Abelian case, we just
have R¢ = 0. Thus, the extended solution of the master equation reads

S(®, K) = Su(6)— / 0P (0,CK,, — iedC Ky — ieK,Cip+ BEg) , (5.31)
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where the classical action is
S, = [ dP 1F2 (P + ied
(¢) T R + (@ +ied +m)y| .

It is easy to check that (5.17) is indeed satisfied.

In non-Abelian Yang-Mills theory we start from (4.50) to read the func-
tions R%(4,A), replace A by C and use R.(¢,0C) = R (¢,C) again. We
find that

0,0% + gfiteAbce,  —gTEO™I, g’ TECC, (5.32)

are the functions R*(¢, C) for the gauge potential Af, the fermions " in the
fundamental representation and their conjugates, respectively.
The solution reads

S(®,K)=S5.(¢) +g / (WT}?C“KéJrK,ZT{;C“W)
a aoc C a g aoc C a a a
—/ [(auc + gf e ALC K = FICNCUKE + B Ké} , (5.33)
where the classical action is
S.(0) = = [ aPy a2 APt (60 + gT%A + mébi; )y 4
c(ﬁb)—z vk, + P (0459 + 9T A+ méij )y . (5.34)

In the next chapters we prove the renormalizability of both theories.

From (5.33) and (5.34) we can read the dimensions [ | of the fields and
the sources, as well as their statistics eg4, €x,. The ghost numbers gh(K) of
the sources are obtained by demanding that (5.33) be invariant under (5.30)
combined with K — Ke@8"(5) We have the tables

A2 Cce C* B* 4 ¢
10821 -1 o1 2 g2 22 2oa| G
gh 0 1 1 0 0 0 0
T L R S
s 7 3 -1 = == 3 (5.36)
gh -1 -2 0 -1 -1 -1 -1

Now we stress a property that will be useful later, in the proof of the
renormalizability of non-Abelian Yang-Mills theories. Theorem (5) allows us
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to work without the matrices T or 7%, just using the invariant tensors (4.39)
and the gauge-field variables (4.48). Distinguishing upper and lower indices,
we have Ai = —iT% ;Aj,. Using formula (4.29) the converse formula reads

Al = —21T'” ZAL ;- Similarly, the ghosts, antighosts and Lagrange multipliers

can be written as C’;- = —iT“ijC“, C'§ = —z'T“ijC’“, and B; = —iT“ijB“.
When the fermions are in the fundamental representation the solution of
the master equation is written as

S(®,K) = Sa(6) + ig / dPz («ZZC;Ké + K¢iC§¢j)
_ / a7 [(8,0% + ig(ALCF — A8 0D) Ki, (537)
—2igCLCE KD, + B Ké] ,
where

/ dPz [ i) b (60 + gALT +m5l)1/)]] (5.38)

and
WJ =0, A2 &,Azj + ig(ALkA — Al kA )

To derive these expressions we have also used formula (4.43).

A matter field ¢! in an irreducible representation r can be denoted by
1/1;-1:::;’;, if the indices have appropriate symmetry properties. From (4.38)
we derive that its contribution to the solution S(®, K) proportional to the

sources K becomes

ig / AP (Crlyizsin oy Ojngliintin) g

ig [ 0 (CRw o ChvT ) KR 6539
Finally, a generic vertex has the form

gl gty (5.40)

ly---lg Avi-vs

with indices contracted by means of the invariant tensors (4.39).
An important theorem states that Yang-Mills theory in practice exhausts
the gauge theories of vector fields.
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Theorem 7 The most general local, power counting renormalizable quantum
field theory of vector fields is a Yang-Mills theory based on a Lie algebra.

Proof. 'To prove this theorem we can take advantage of the canonical
formalism, because we know that it collects the properties of the Lie algebra
in a compact form. Let A{L denote the set of gauge vectors contained in
the theory. In the free-field limit, the theory must obey the Abelian gauge
symmetry 5AfL = GMAI. Writing AT = 0C!, as usual, the ghosts C can
always be defined so that the derivative term in R{L(gb, C)is 8,C1. By locality,
ghost number conservation and power counting, the most general K sector
of the minimal solution to the master equation must have the form

1
_(8#01 +A;{CK/{JKI)KI + §CJCKhJKIK(Ij,

1J

where k!5 and h’/%! are numerical constants and h/5! are antisymmetric

in J and K. Now we study the constraints imposed by the master equation
(S,8) = 0. It is easy to show that the terms proportional to K} in (S, S) = 0
imply that the constants h”/®7 satisfy the Jacobi identity (4.28)

hIJKhKLM + hLIKhKJM + hJLKhKIM = 0.

Since both assumptions (4.27) and (4.28) are satisfied, the constants h’/%!
define a Lie algebra. It is also straightforward to check that the terms pro-
portional to K7 in (S,9) = 0 give x//% = 7K Thus, the gauge transfor-
mations have the Yang-Mills form

I_ I JANK1 JKI
OAA, = 0N + AJ AT R
which proves the theorem. [J

We stress again that we have not proved the renormalizability, yet, but
this theorem anticipates that if Yang-Mills theory is renormalizable, it is
unique.

5.3 Canonical transformations

A canonical transformation C of the fields and the sources is a transformation

Y(®,K),  KL(®,K),
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that preserves the antiparentheses, that is to say such that
(X, Y)Y =(X,Y)
for every pairs of functionals X and Y, where X’ and Y’ are defined as
X'(@® K'=X(®(®, K'),K(®' 6 K")),
Y (@' K')=Y(®® K'), K@, K')),

and (.,.)" denotes the antiparentheses calculated with respect to ® and K.
Sometimes we simply write

—CX, Y =cv.

By this we mean that X and Y are regarded as functions of the new variables
@', K’ obtained by expressing their arguments ®, K in terms of &', K.

A canonical transformation is generated by a functional F(®,K’) and
can be expressed as

oF oF
Y = Ky=—.
0P«

ST (5.41)

Formula (5.12) implies that F is a functional of fermionic statistics. For this
reason, there is no need to specify whether the derivatives of (5.41) are left
or right.

The generating functional of the identity transformation is

I(®,K') = / dPz®(z)K! ().
Observe that if X is such that (S, X) = 0, then X’ is such that (5", X') =

Let us inspect the most general canonical transformation, to understand
what it can be useful for. We can write the generating functional as a sum
of a term independent of the sources plus the rest:

F(®,K') =¥ (d) +/K{1U‘1(<I>,K’). (5.42)

Then (5.41) gives

= U%(®, K') /KB SKT K, =" 5@ /KB spa- (543)
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Recall that at the end we must set the sources K to zero, since they are
introduced just to have control on the gauge symmetry. To illustrate the
meaning of (5.42), we set them to zero after the canonical transformation. If
we drop the terms proportional to K’ in (5.43) we obtain

5U(D)
ol _ (63 i
o =U,0), K=z

The @ transformation is a field redefinition. Instead, as we will explain later,

(5.44)

the K transformation is a gauge fixing, or a change of gauge fixing. The
K-dependent terms contained in (5.43) do not have a particular meaning.
They are there to promote (5.44) to a canonical transformation, which is
much easier to manipulate, because it preserves the antiparentheses. Thus,

Proposition 8 the most general canonical transformation (5.42) is the com-
bination of the most general field redefinition and the most general gauge-

fizing.

Of course, the physics should not depend on the field variables we use.

5.4 Gauge fixing

We have gauge-fixed quantum electrodynamics in chapter 4. Now we are
ready to gauge-fix non-Abelian Yang-Mills theory. Call G*(A) the gauge-
fixing functions, i.e. G*(A) = J,,Aj, in the Lorenz gauge, and G¢(A) = —V-A?
in the Coulomb gauge. Define the gauge fermion

(D) = /d%ca <—%B“ + g“(A)) : (5.45)

The gauge fermion is a local functional of fermionic statistics that fixes the
gauge in the way explained below. Its typical form is (5.45), but more general
functionals can be chosen.

Working in the Lorenz gauge, for definiteness, define the gauge-fixed ac-
tion

Se(®,K) = (@, K) + (S, D). (5.46)

It is easy to prove that Sy and S are related by the canonical transformation
generated by the functional

F(@,K') = / TOK! + T(D). (5.47)

14B1 Renorm



186 CHAPTER 5. CANONICAL GAUGE FORMALISM

Indeed, (5.41) gives

5 (d)
3o

Y =9, K, =K,-

Recalling that the action is linear in the sources, we have from (5.19)

SU(P)
5

S(@, K') = $(d, K) + /RO‘(@) — (D, K) + (S, T) = S¢(, K).

Moreover,

Proposition 9 If S satisfies the master equation, then every Sy = S +
(S,W(®)) satisfies the master equation.

The reason is that the canonical transformations preserve the antiparen-
theses, so (S,5) = 0 if and only if (Sg,Sy) = 0. In particular, the gauge-
fixing procedure preserves the master equation.

Working out Sy explicitly, we find

Sy (@, K) = Sc(@) + Sgr(® /RaKa, (5.48)
where
D a 2 A a a a ~a a
Se($) + Ser(® /d <4FW——(B) + B9 A —C’@uDuC’>.
(5.49)

Observe that the ghosts do not decouple in non-Abelian Yang-Mills theory.
The gauge-field propagator can be worked out from the free subsector
of (5.49), after integrating B® out, which gives the equivalent gauge-fixed

action
S= / dPz ( 4ng2 2>\ (0, A%)? C’“@#D#C“> . (5.50)
The result is
u 5ab Kk,
(430 AL 0) = S (B4 (=5 )., (5:51)

The ghost propagator is

(5.52)
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Repeating the argument that leads to (4.21) we can check, in the Coulomb
gauge, that the physical degrees of freedom are 2dim G, as it must be.

The argument just given does not change when we add matter fields,
since they are not interested by the gauge-fixing procedure. Clearly, in QED
we get back (4.15) and (4.16).

Exercise 19 Show that the action Sy (P, K) continues to satisfy the master

equation after integrating the Lagrange multipliers B® out.

Solution. Integrating B out is equivalent to replace B with the solution
of its own field equation, that is to say make the replacement

a 1 a a
B" = £(9- A"~ K¢).

Then Sy (P, K) becomes

_ 1 _ 1
Sg,(CD,K):Z/Fﬁf—/C’“@uDuC’“Jrﬁ/( 4 9. A%

- / (DL +2 / feChCeKe,

At this point, it is straightforward to check that the master equation (Sy, Sy) =
0 holds. Note that (Sy,C) = (9 - A* — K&)/A.

Observe that the action Sy (®, K) is no longer linear in the sources K, but
contains a term that is quadratic in K. This means that after integrating
B out the ® transformations do not close off shell anymore, which the reader
can verify directly. Working with the canonical formalism this problem is
cured by itself, since the master equation is satisfied both before and after
the integration over B.

Exercise 20 Derive the Feynman rules of (5.50) coupled to fermions.
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Solution. The propagators have been given above. The vertices are

P e i J
‘ § ¢ g fabegn, § = =g/ (1),

= igfabc((s;LV(klp - kQ/J) + 5#p<k3v - kll/) + 5Vp(k2u - k3;t>>7

(5.53)
pa vb = _92 {fmhfmd(éupdun - 5;1(;61//1)

+f€adf6bc(6w/6pa - 6up61/0>
pc O'd +fmcfnbd(5/w5pﬁ - 5/4051//)” .

Exercise 21 Prove that the term [ R*K, can be written as (S, x) for a local
functional x.

Solution. Consider the canonical transformation generated by
F(®,K') :/ DK + (b — 1)/C“Kg’+ (e—C - 1) /C’“K%’. (5.54)
Let S¢(®, K) denote the rescaled action. Expanding in ¢ we obtain
Se(®,K) = S(®,K) + ¢ <S, /(C“Kg — C’%g)) +0(¢?). (5.55)

Now, the transformation rescales the ghosts by a factor e¢, the antighosts
by the reciprocal factor e=¢, and their sources K¢ and K& by e ¢ and e,
respectively. Applied to (5.31) and (5.33), even after including the gauge
fixing (5.48), it is equivalent to rescale all the sources K by e¢, which gives
S¢(®, K) = S(®,e° K). Differentiating this equation and (5.55) with respect
to ¢ and setting ¢ = 0 we get

/ ROK, = <S, / (COKE — caKg)> .

The reader is invited to check this formula explicitly in both QED and Yang-
Mills theory. This result teaches us that [ R*K, is exact in the cohomology
defined by the application X — (.5, X), acting on the local functionals X. [J
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From now on, we drop the subscript ¥ in Syg (P, K) and when we write
S(®, K) we mean the gauge-fixed action (5.48).

5.5 Generating functionals

Define the generating functionals as
2(J,K) = / [d®] exp <—S(<1>,K) + / <I>°‘Ja> — exp(W(J,K)), (5.56)

and I'(®, K) as the Legendre transform of W (J, K) with respect to J, the
sources K remaining inert:

go= 0 r@) = W)+ [t 65T
Observe that I' is the generating functional of one-particle irreducible dia-
grams, including the diagrams that have ghosts, Lagrange multipliers and
sources K on their external legs. We are tacitly assuming that the inte-
gral (5.56) makes sense, at least perturbatively. This means that the action
S(®, K) should be gauge-fixed, so that the propagators are well defined. In
the next subsection we show how the action can be gauge-fixed preserving
the master equation. For the moment we study the canonical formalism for
the traditional functionals Z, W and I'. Later we introduce the master func-
tional Q) for gauge theories and discuss the composite fields and the changes
of field variables in detail.

It is apparent from (5.43) that the canonical transformations cannot be
implemented as changes of field variables inside the functional integral. In-
deed, in general they mix the fields ®, over which we integrate, with the
external sources K. While it is legitimate to make a change of field vari-
ables ® — ®'(®, K) in the functional integral, it is not legitimate to redefine
the external sources as functions of the integrated fields. Thus, when we
use canonical transformations we means that we apply them to the action
S(®, K), while the generating functionals Z, W and I are just replaced with
the ones associated with the transformed action. We will not be able to de-
scribe our operations, including the renormalization, as true changes of field
variables until we introduce the master functional for gauge theories.
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To some extent, we can study the composite fields already at the level of
Z, W and I'. We can treat the correlation functions

(O1 (21)--- O (2,)) (5.58)

of gauge-invariant composite fields O!(¢) by adding them to the action, mul-
tiplied by suitable sources L. Thus, we consider the generating functionals

Z(J,K,L) = /[dcp] exp <—S(<I>,K) +/L1(’)I(¢) + /<I>°‘Ja> = WKL),

(5.59)
and the Lagrange transform I'(®, K, L) of W (J, K, L) with respect to ®. We
have S0 W 6T §W G

Jy = 2 LA SUAS . 5.60
doo’ 0K, 0K’ oLy 0Ly ( )

Recall that in this chapter we are working at the bare level. Indeed, for-
mula (5.59) is the correct bare form for the generating functionals, while the
renormalized structure is considerably more involved. Among other things,
the exponent of the integrand becomes nonpolynomial in the sources L and
K, when higher-dimensional composite fields are present. For the moment,
the correlation functions (5.58) that are gauge invariant and gauge indepen-
dent (see below), but still divergent.

Consider the change of field variables

P = ™ 4+ R™ = B* + 4(S, D), (5.61)

in the functional integral (5.56), where # is a constant anticommuting pa-
rameter. In a sense that we now explain, (5.61) is equivalent to a canonical
transformation generated by

F(@,K') = / (®°K’, + 9R°K) .

Indeed, formulas (5.41) give

al a a / 51RB
O = O+ ORY, K= Ko~ [ S K. (5.62)

We have inverted the second relation using % = 0, which ensures that the
Taylor expansions in 0 stops after the first order in 6. The K transformation
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appearing here does not affect the action, because S depends on K only via
the combination — [ R*(®)K,, which gets an extra contribution equal to

/ R%@)‘?ﬁf Kg6 = / (S, R*) Ko / (S, (S, D)) Kal = 0.
Thus, (5.62) is equivalent to just (5.61).

We know that, using the dimensional regularization the functional inte-
gration measure is invariant under the local change of field variables (5.61),
by theorem 1. There actually exists a stronger argument to prove the same
result, which can be applied to a more general class of regularization tech-
niques. Thanks to (1.98) we have

B 00 (x) af SORY(x)]\ IR (x)]
j—SdetW —Sdet <5 5(x_y)+W —1—|—S‘C1‘W
(5.63)
We have again used 6% = 0. In QED the matrix
S[0R™(x)] _ 6]6(9,C,0, B,0, —iepC, —ieC1p)]
5¢B (y) B 5(AV7 C7 C’? B7 Q_ﬁ, ’l/))
has no diagonal elements except for the block
§(ie0C, —iefC) [ 0C 0
_ = 5.64
55, 9) “No e ) 500

but the trace vanishes. Clearly, this is due to the fact that + and v have
opposite charges. Using (1.97) we see that the supertrace of (5.63) vanishes,
so J =1.

In non-Abelian gauge theories formulas (5.32) and (5.33) give

5(0Ra) aoc C 5(0Ra) aoc (&
TS = OO, T = 0hehCr,
50 =—gT;;0C" | —— = g1;;0C

The scalar contribution is similar to the fermion one. When the representa-
tion is not the fundamental one it is sufficient to replace T* by the appro-
priate matrices 7. The A and C contributions to (5.63) are zero, because
f¢ is completely antisymmetric. If the gauge group has no Abelian factors,
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then tr[7% = 0, so the traces of the 1 and ¢ contributions are also zero.
If the gauge group has Abelian factors, the traces tr[7?] are given by the
U(1) charges. They cancel out summing the contributions of both v and %,
or both ¢ and @, as in (5.64). Finally, the contributions of C' and B are
obviously zero.

Now we prove that

Theorem 10 If the action S satisfies the master equation, the generating
functionals Z and W are invariant under the transformation

TKo=(-1)"Jo,  7Ja=0, 7L/ =0.

Observe that the operator 7 flips the statistics. Because of this, it pro-
duces a minus sign every time it crosses an object with fermionic statistics.
This property can be proved by observing that d, = 67 obeys the ordinary
Leibniz rule, where 6 is an anticommuting constant.

Proof. Apply the operator ¢, to the Z functional (5.59). Using (5.19),
we see that the exponent of the integrand is changed into itself plus

0 / R(®).J,. (5.65)

Thus, we obtain the formula

W= </Ra(¢>)Ja>. (5.66)

We can prove that this average vanishes by performing the change of field
variables (5.61) in (5.59). Indeed, recall that the functional measure is invari-
ant, the action S satisfies the master equation and the composite fields O
are gauge invariant. Then, (5.61) affects only [ ®*J,, by an amount equal
to

9/(5, B, = e/Ra(cp)Ja, (5.67)

and W by an amount equal to the average of (5.67). Since a change of field
variables cannot modify the result of the integral, we conclude that

rZ(J,K,L) =0, TW(J,K,L)=0. (5.68)

O
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Using (5.60), we can write

- SW [ & [&T &
TW_/TKQE_( 1) /JaéKa _/5@5%. (5.69)

Using (5.15) and (5.68), we obtain

1
W = 3(I.T) =0, (5.70)

which is the master equation for I'. Later we will show that it encodes the
gauge invariance of physical correlation functions. We have thus proved that

Theorem 11 If S satisfies the master equation, then I satisfies the master
equation.

When the action S is not assumed to satisfy the master equation, a more
general result tells us that the violation of the I' master equation (I',T") =0
is given by the average of (S,S). This gives a formula that, due to its
importance, we call master identity. It will be crucial in the proofs of renor-
malizability and in the study of anomalies and gauge independence to all
orders.

Theorem 12 The generating functional I' satisfies the master identity

([, 1) = ((S,9))-

Proof. Tt can be proved by going through the argument that lead to
(5.70), and making the necessary modifications. Formula (5.66) is unaffected.
Instead, the change of variables (5.61) does not only affect [®J, by an
amount equal to (5.67), but also —S, by an amount equal to —6(S,S)/2.
Since W cannot change under a change of variables, we obtain

W= </Ra(<I>)Ja> _ %((S, )

Formula (5.69) is also unmodified, so in the end

1 1
S((8,8)) = 7W = S(L,1).
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5.6 Ward identities

Consider the change of variables (5.61) in the functional integral

/ [dB]Q(®) exp <—S(<1>,K) + / LIOI(QS)) , (5.71)

where now Q denotes a completely arbitrary function of the fields. It can
include any string of insertions of elementary and composite fields, including
ghosts and Lagrange multipliers, as well as functionals, and does not need to
be local. However, for the derivation that we give below Q cannot depend
on the sources K. The reason is that the functional integral is only over ®,
so the change of variables cannot transform K. Note that in (5.71) we have
set the sources J for the elementary fields ® to zero. The reason is that most
sources J are not gauge invariant. By means of (5.71), we can study the
correlation functions (5.58).

If S satisfies the master equation, then only Q(®) is affected by (5.61),

and we easily obtain
299\ _ _
([ rese) = (5.9 o (572

where the subscript 0 reminds us that the sources J for the elementary fields
are set to zero.

This identity is called Ward identity. Its meaning is that an object of the
form (S, Q) is zero for every physical purposes, that is to say a completely
unobservable quantity. Observe that (S, Q) is just a functional of the fields.
Replacing @ with Q(S, Q)" ! in (5.72), it follows that

((5,2)")0 =0

for every m. Then, if we specialize Q to be a local functional ¥ of fermionic
statistics, we also have the identity

/[d@] e—S\p(CP,K)—i-fLIOI(Qﬁ) _ /[d@] G_S((I)’K)+ILIOI(¢)7 (573)

where Sy and S are related by formula (5.46), or, which is the same, the

canonical transformation (5.47). Identity (5.73) tells us that we are free to

add an arbitrary functional of the form (S, ¥) to the action, and no cor-

relation function (5.58) will depend on it. We have already seen that this

freedom allows us to gauge-fix the theory, by choosing a ¥ of the form (5.45).
This proves that
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Theorem 13 The correlation functions (5.58) are invariant under the canon-
ical transformations of the form (5.47), for an arbitrary local V(D).

Since the most general canonical transformation is a combination of a
canonical transformation of type (5.47) and a change of variables for the
fields ®, we conclude that

Theorem 14 The physical quantities are invariant under the most general

canonical transformation.

Among the freedom we have, we can replace 9,4, in (5.45) by another
gauge-fixing function G(A). From the arbitrariness of ¥(®) and theorem 13,
we conclude that

Theorem 15 The correlation functions (5.58) are gauge-independent,

that is to say they are independent of the gauge fixing. Even if we stick to
the same G(A), they are independent of the gauge-fixing parameter A that
appears in (5.45).

Note that the notion of gauge independence does not coincide with the
notion of gauge invariance. A gauge invariant quantity is a quantity that
does not change when a gauge transformation is applied to it. A gauge
independent quantity is a quantity that does not change by modifying the
gauge-fixing function G(A) that is used to define the functional integral.

Gauge independence ensures that the value of the physical correlation
functions, such as (5.58), is the same with any gauge choice. In particular, it
coincides with the value we would find, for example, in the Coulomb gauge
(4.8), where only the physical degrees of freedom propagate. For this reason,
gauge independence is crucial to prove unitarity.

We will have more to say about the independence of the physical quanti-
ties on canonical transformations later on. Moreover, we still have to prove
that the theory is renormalizable. So far, we have been working with physical
quantities that may be gauge invariant and gauge independent (see below),
but still divergent. We must show that the subtraction of divergences can be
organized so as to preserve the properties proved above.
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Chapter 6

Quantum electrodynamics

In this chapter we study quantum electrodynamics and prove its renormal-
izability to all orders. Since the action does not contain chiral fermions
the properties we have derived in the previous chapter, such as the master
equation (5.17), hold in arbitrary complex D dimensions. In particular, the
Lagrangian

Lo leu + (@ + ieh +m)p (6.1)

T 1
is gauge invariant in D dimensions and the dimensionally regularized gauge-
fixed extended action

S(®,K) = / Liot + / (Ku9,C + iepCKy +iek,C — BKg),  (6.2)

where

A
72
satisfies (5,S) = 0 identically.

After integrating B out, the Feynman rules are

Lioy = L B*+ Bo-A-COC, (6.3)

ANNANN = ;?1‘2(5;1”4‘ (A= 1)%)
/1/ k 14 — _Ze/yﬂ
D p+m i (6.4)

where the wiggled line denotes the photon. We do not need rules for the
ghosts, since they decouple.
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The first thing to note is that (6.1) does not contain all the terms that
are allowed by power counting. The missing ones, such as

AL SO A, (A2 (6.5)
etc., are forbidden by gauge invariance. We know that such terms are ab-
sent at the tree level, because the tree-level Lagrangian is gauge invariant.
In principle, renormalization might generate them at one loop or higher or-
ders. More precisely, it might be necessary to introduce the vertices (6.5) as
counterterms, to remove divergences proportional to them. However, if that
happened, renormalization would ruin the gauge invariance of the theory. We
need to prove that, instead, the divergent parts of the Feynman diagrams are
gauge invariant, and can be removed by by redefining the ingredients (fields,
sources and parameters) of the tree-level action S(®,K). Fortunately, in
most cases, which include QED, renormalization and gauge invariance are
compatible with each other.

For the moment, we just assume that this compatibility holds and work
out some consequences. The renormalizability of (6.3) is proven in section
6.2.

Exercise 22 Using the dimensional reqularization prove by explicit computa-
tion that the photon four-point function (A, (x)A,(y)A,(2)As(w)) is one-loop
convergent.

Solution. By power counting and locality, the divergent part is just a
constant, so it can calculated at vanishing external momenta. Although the
divergent part is also independent of the mass, we keep m nonzero, because
the limit when both the external momenta and the masses tend to zero
cannot be taken inside the integral in dimensional regularization. We have
the diagram

o p (6.6)

plus permutations of external legs, which means exchanges of v, p and o.
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The integral corresponding to (6.6) is

A / dPp tr[(—ip + m)yu(—ip + m)n(=ip + m)y,(—ip + m)7o]
(2m)P (p* +m?)? '

The masses in the numerator can be dropped, since they contribute only to
the finite part. We get

dPp  papppyp
4 aPBPyP§
- /(QW)D (p2+m2)4tr[’ya’y“’YB’YV'YWp’YJ%]- (6.7)

By Lorentz covariance, the integral can only be proportional to d,z0,s +
dar08s + 0as08,- The factor in front of this tensor can be calculated by
contracting a with 8 and v with 6. We can thus write

/ dPp  papspyps _ 0ap0y5 + darnps + Gasdpy / dPp  (p?)?
(2m)P (p2 +m?)4 D(D +2) (2m)P (p2 + m2)t

Evaluating the integral with the help of formula (A.5) and using (2.14) and

(2.15) to compute the trace, we can easily find that the divergent part of
(6.7) is nontrivial, equal to

8et

“3e@n)? (0416 ps — 26,0000 + 0ucdup)

where ¢ = 4 — D. However, the pole disappears by summing over the per-
mutations of the external legs. Without this cancellation, there would be
a divergent part proportional to (AZ)Q, which would violate gauge invari-
ance. This exercise is an explicit check that the dimensional regularization
is manifestly gauge invariant.

Exercise 23 Show that the three-point function (A, (x)A,(y)A,(2)) is also
convergent at one loop.

Solution. We leave the details to the reader. The fermion loop with
three external photons has a nontrivial divergent part, which is linear in
the external momenta. As before, the pole cancels when the permutations
of the external legs are included. Note that exchanging two photon legs is
equivalent to flip the arrow of the fermion loop.

There exist more powerful methods, based on the invariance under charge
conjugation, to show that the n-photon correlation functions identically van-
ish when n is odd. However, it is not straightforward to use those arguments
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together with the dimensional regularization. The reason is that the charge-
conjugation matrix, like the matrix 75, does not admit a simple extension
to D dimensions, and the dimensionally regularized QED Lagrangian is not
exactly invariant under charge conjugation. [J

As usual, we have bare and renormalized versions of Ly, which read

1 - .
Lop = ZF’%”B + Yg(@ + iegAp + mp)yB =

1 = .
Lo =7 ZaF5y + 200 + ien 22" A+ mZ), (6.8)

having defined
Aup = Zix/zAua Y = Z}/%/), e = ey Ze, mp = MZp.

We have replaced e by eu® at the tree level, to have the renormalized electric
charge e dimensionless.

The renormalization of the gauge-fixing sector is rather simple. Since C'
and C decouple, they are not renormalized, so Cg = C, Cg = C. Moreover,
since B appears only quadratically in (6.3), no one-particle irreducible dia-
gram with external legs B can be constructed. Therefore, the Lagrangian
terms involving B are not renormalized either. Writing

Bg = Zl/zB AB = )‘Z)\)

we have

A AB )\Z)\

~ 5B BO-A =~ By Bad-Ap = =2 Zp B>+7,/*Z'’Bo-A, (6.9)

that is to say
Zp =7, Zy=Z4. (6.10)

We see that B can have a nontrivial renormalization constant.

Now, let us consider the terms proportional to the sources in (6.2). The
term B K is not renormalized by the argument just given. Moreover, since
the ghosts decouple, no irreducible diagrams with sources Ky, K and/or
K, on the external legs can be constructed. This means that the entire K
sector of the solution (6.2) to the master equation is nonrenormalized and

Kyp=2'2,'""K;, Ky =2.'2,""K,,  Kep=25""Ke.
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The renormalized solution of the master equation reads
Sr(®, K) = /(»COR + Lgs + L) = Sp(PB, Kp),
where

cgfz—gB2 +Bd-A—COC,
Ly =K,0,C +iep pCKy, +iep” KyCyp — BKg.

6.1 Ward identities

The Ward identities (5.72) allow us to derive relations among the correla-
tion functions and the renormalization constants. Before deriving the main
formulas, let us mention two simple, but useful properties concerning the
functional integral over the ghosts C', C' and the Lagrange multiplier B.

Since B does not propagate and appears quadratically in the action,
integrating over B is equivalent to replace it with the solution

B— %&A (6.11)

of its own field equation. Precisely, let X (B) be a local functional of B (and
possibly other fields). Making a translation we find

(X)p= /[dB]X(B) exp (ATBQ —BJ- A)

:/[dB]X (B + %) exp <ATBZ _ (8éf)z> .

Now, expand X (B) in powers of B. Observe that each odd power integrates

to zero. On the other hand, nonvanishing even powers give §(0)s or deriva-
tives of §(0)s, e.g.

2

JuB1B@0,B@e (25-) = 066 -,

which, by formulas (2.12) and (2.13), vanish using the dimensional regular-
ization. We conclude that

(X)p=X (%) exp (- (8éf)2> . (6.12)
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Another useful property is that, since the ghosts decouple, the correlation
functions involving ghost insertions factorize, i.e.

(C(a1) - Clem)C(y1) - Cyn) x)

= (C(z1) -+ Clam)C(y1) - - Clyn)) (X), (6.13)

where x is any string of elementary fields other than the ghosts, e.g.

X = Ay (1) -+ Ay (@n) (1) - P(ym)(21) - - ¢ (zm)-

Formula (6.13) can be easily proved by writing down the expressions of the
averages as functional integrals.

We obtain the first Ward identity by choosing ¥ = C(x)d - Ag(y) in
formula (5.72), which gives

0= (Bg(z)9 - A(y))o — (C(x)EC(y))o-

We recall that the subscript 0 reminds us that the sources J are set to zero.
Using (6.9) and (6.12) we can replace Bg with (0 - Ag)/Ag. Next, using

(C(y)C(x))o = Giree(y — ) (6.14)
where Giee(y — ) is the solution of —OGfee(y — ) = d(y — z), we find
(0- Ap(x)0 - Ap(y))o = ABd(z — y).

In terms of renormalized quantities, this identity becomes

A2y,

(0-A(x)0 - A(y))o = Z—A5(w —y).

Since the left-hand side is convergent, by construction, the right-hand side
must also be convergent, so we find
Z

71 finite. (6.15)

In the minimal subtraction scheme every Z has the form 1+4poles in €, so

Z\ = Zy. (6.16)

The bar over the Zs is to remind us that the renormalization constants are
evaluated in the MS scheme. The result (6.16) agrees with (6.10). When we
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derived (6.10), indeed, we implicitly used the minimal subtraction scheme,
since we concentrated on the form of divergences. More generally, we know
that we can always “subtract” arbitrary finite local counterterms. If we do
this in the sector (6.9), we end up with (6.15).

As a second example, take ¥ = Cp(z)1g(y)¥p(2) in (5.72), which gives

0= (Bg(z)Y(y)YB(2))o + ieg(C(x)Yg(y)C(y)YB(2))o
—ieg(C(x)Yp(y)C(2)YB(2))o.

Using (6.14), (6.12) and (6.13) we find

é(a‘AB(w)le(yWB(Z»o = —ieg(Yp(Y)VB(2))0 [Giree( — ¥) — Giree(r — 2)] .

In terms of the renormalized quantities, we have

1/2
%<@A(ZE)TZJ(ZJ)¢(Z)>O = —z'e,uaZe(q_ﬁ(y)¢(Z)>o [Gree(x — Y) — Grree(z — 2)] .

Since the correlation functions appearing in this equation are finite, we con-

clude
71 /2

A
Z)\Ze

Summarizing, in the minimal subtraction scheme

= finite. (6.17)

Za=17)=22 (6.18)

Exercise 24 Using the dimensional regularization, compute the renormal-
ization of QED at one loop and check (6.18).

Solution. We have already checked in exercises 22 and 23 that the photon
four- and three-point functions are convergent. The surviving diagrams are

The first diagram is called “vacuum polarization”. Its divergent part is

62

o —— (k%0 — kyuky), (6.20)
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where k is the external momentum, and gives

62

6m2e’

Note that (6.20) is transverse, namely it vanishes if contracted with k, or k, .

Za=1

(6.21)

This means that the gauge-fixing term (9 - A)?/(2)) is nonrenormalized, so

62

T 6n2e
in agreement with the first Ward identity (6.16).
The second diagram of (6.19) is the electron self-energy. Its divergent

Zy=1 Za,

part is
—ie )\ me?
B2e P e
where p is the external momentum, oriented according to the arrow. We find

A+3), (6.22)

Ae? _q 3e?
8m2e’ T 8w’

Finally, by locality and power counting the divergent part of the vertex-

Zy=1- (6.23)

diagram can be calculated at vanishing external momenta. Moreover, masses
in numerators can be dropped. We then easily find

ied
whence
2 —1/2
Ze =1+ 19222 =2Z,"", (6.25)

in agreement with the second Ward identity (6.18). Observe that only Z,
is gauge dependent. Later we will appreciate why. We will be also able to
characterize the gauge dependence more precisely. [

Two interesting consequences of the Ward identities in the minimal sub-
traction scheme can be derived very easily.
i) The covariant derivative is not renormalized. Precisely,

D, =0, +iegAp, = 0, + ie/fﬂzeZ;mAu =0, + z’e,ue/zAM.

i1) The renormalization of the fields and the sources can be expressed in the
form

Of = (Zg)'/20, Ko = Z; ' (Zo) /K, (6.26)
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where no sum over « is understood. Indeed, collecting all the pieces of
information found so far, we have

AMB = Ze_lAlM KMB = KM? Y = ZQ},/2¢7

Kyp=27'7,""K;,  Kcp=27'Ke, Cp=C, (6.27)
Bp = Z.B, Kpp = Z.°Kp, Kep = 2, Kg, Cg=0C,
e = euZ,, ms = mZp, AR = )\26_2.

The renormalizations of Kp and K¢ are completely arbitrary, since the action
does not depend on them. We have chosen them to enforce (6.26).

We see that only three renormalization constants are independent. The
meaning of (6.26) is that the renormalization of the fields and the sources
is Z_ ! times a canonical transformation. The complete renormalization is
made of these two operations plus a redefinition of the electric charge e, the
electron mass m and the gauge-fixing parameter .

Precisely, we have the canonical transformation (®p,Kp) — (@', K’)
generated by

F(®', Kp) = / (ZglA;Kg + 2Kyt + 2,0 Ky
+KepC'+ C'Kep + Z.B'Kpg) .
composed with the source redefinition
=9, K =ZK,

and
e = ey Z,, mg = mZp, AB = )\26_2.

We can write the relation between the bare and the renormalized antiparen-
theses as
Ze_l(Xay)B = (X7Y) (628)

Details about nonminimal subtraction schemes are given in the next sec-
tion.

6.2 Renormalizability of QED to all orders

Now we prove that quantum electrodynammics is renormalizable to all orders in
a gauge invariant way. We first work out the proof in the minimal subtraction
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scheme and at the end extend the proof to a generic gauge invariant scheme.
Consider the bare generating functional

i

ZB(JB,KB) = /[dq)B] exp (—SB((DB, KB) + Z (I)%JBZ) = eWB(JB’KB),

(6.29)
written in terms of bare fields and sources. The action Sg is the one of
formula (5.31) once the subscript B is inserted everywhere.

We know that Sp satisfies the master equation, (Sg, Sg)p = 0 and then
theorem (11) ensures that the bare I" functional I'g also satisfies (I'g, I's)p =
0. This identity implies

6 I'g ;' / 0l's
ZEO{ @ X .
0 KB 093 (Rp(®)) Py (6.30)

Now, observe that (R4(®p)) = R4(®p). This is obvious for &g =
Ap,Cg,Cp and Bg, because their functions RS(CDB) vanish or are linear
in the fields themselves. It is less obvious for ®g = 1), ¥, yet true, be-
cause the ghosts decouple, so by (6.13) we have (Cpyp) = (Cp)(¥p) and
(YpCB) = (¥)(CB). We conclude that the bare functional I'p satisfies

/R"(@B)igf = 0. (6.31)

More explicitly,

o' ' . 6B 5lFB
_ = .32
/ <8#C'B SAT — iegpCp—— 50m +ieg—— Sun Cpyn + 5CB> 0 (6.32)

Now we proceed inductively. Assume that the theory can be renormalized
up to and including the nth loop order by means of renormalization constants
Ze,n, Zd,,n and me and the renormalized action

5.@,K) = [ 123+ [ Zuni@+ iew Mot mZa)i+ [ Lyt L)

in the minimal subtraction scheme. The relations between the bare and
the renormalized quantities are (6.27) with ZE,Z/,,Zm — Ze7n,2¢7n,2m,n.
Let I',,(®, K, e, \) = I'g(®p, KB, en, Ap) denote the n-loop renormalized and
bare generating functionals of one-particle irreducible diagrams.
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We must prove that the inductive hypotheses are promoted to the (n+1)-
th loop order. Switching formula (6.32) to the renormalized quantities, we
find that all the renormalization constants simplify apart from a common
factor Z,, which we can drop. At the end, we have

O e o 0T Sl
/(M TR 5o+ 5 5é>_o. (6.33)

We know that the gauge-fixing sector and the K sector do not renormalize.

Actually they do not receive any radiative corrections, because no diagrams
can be constructed with those sets of external legs. Thus we have

Ln(®,K) =T,(A,¢,19) + /(,cgf +L).

Inserting this formula in (6.33), we get

A RS EPA
/ ( San iSOG W”’)”

Multiplying by a constant anticommuting parameter £ to the left and identi-

fying £C with a commuting function A, we obtain that T',, is gauge invariant,
that is to say

5aT, =0, (6.34)
where 0, is given by (4.7).
To keep track of the orders of the expansion, we reintroduce h for a
moment. Define

L => KT, (6.35)
k=0
Observe that 0, is independent of A. Taking the (n + 1)-th order of (6.34),
we obtain
SAT D) — o (6.36)

By the inductive assumption, I',, and T,, are convergent up to and including
the nth order. Instead, f‘(nH) is the sum of a divergent part, which we
denote by Ffl dw), and a finite part. Since all F( ) , k < n, are convergent by
the inductive assumption, all the subdivergences of the Feynman diagrams of

order A"t are subtracted by appropriate counterterms. By the theorem of
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)
part of (6.36) (i.e. its poles in €), we obtain

the locality of counterterms, ff&fvl is a local functional. Taking the divergent

5A0HD — (6.37)

ndiv

Thus, we learn that 1:7(1%4;’1 ) is gauge invariant. Summarizing, f%fvl )(A, ), )
is a local, gauge-invariant functional. Precisely, it is the integral of a local
function A, 11L(A,,%) of dimension four.

Now we use power counting. With the Lorenz gauge-fixing, the photon
propagator behaves correctly for large momenta. Moreover, the theory does
not contain parameters of negative dimensions. These facts ensure that the
function A, 41L(A,,1)) is a linear combination of the local terms of dimen-
sions < 4 that are not total derivatives and can be built with the fields A,
¥ and v and their derivatives. Such terms are F2, (9 - A)?, Y@y, ¥ Ay and
Ynp. We cannot use neither the tensor /7, nor the matrix 7s, since the
Feynman rules do not contain them. Finally, (6.37) reduces the list to the
gauge-invariant combinations F2, 1) It and 11, so we can write

Api1 £ = a1 Fp, + by 1h Py + coamapih, i = /dDmAnHﬁ,

ndiv
(6.38)
for suitable divergent coefficients a,41, by4+1 and cy4+1. These divergences
can be subtracted by means of new renormalization constants

(Ze_g - an+1)_1/27 Z@Z},n—l—l = Zw,n - bn-l—l:

)

(Ziﬁ,n - bn+1)_1(2¢7n2m,n - Cn+1)-

Ze,n+1

Zm,n+1

The renormalized action

1 L _
S (B, K) = / VIR / Zpmr D@+ iep A+ 1o )

= (n41

+ [t i) = Su(@, 1) - T

produces a generating functional I',,;1 that is convergent up to and includ-
ing n + 1 loops. Indeed, since the actions differ by O(R"*!), the Feyn-
man diagrams with n loops or less are exactly the same, which ensures
i1 = Iy + O(R™H). Moreover, at n + 1 loops we have exactly the same

diagrams plus the vertices of _1:7(22;} ), which subtract the overall divergent
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parts. In conclusion,

Cuos = 30T, = = T + 00

that is to say fff_zl = f%k) < oo for k < n and fgfll) = fﬁﬁ“) sz:‘;l) < 00.

This result extends the inductive hypotheses to n+1 loops, as we wanted.
[terating the argument to n = oo, the map relating the bare and renormalized
quantities is (6.27) with Z, = Ze o, Zy = Zyoo and Zy, = Zpoo- The

renormalized action is
1 212 7 . € A
Sp = Ss = 426 F2 4 | Zyp(@+iep AmZp )+ [ (Lor+Lk) (6.39)

and the renormalized generating functional of the one-particle irreducible

correlation functions is
La(®K) = oo, K) = T4 B0) + [ (Lt L) (640

Moreover, we have
(Z) Ze_l(X7Y)B = (X7Y)5
(#) (Sr,Sr) = 0;

(#1i) (T, Tg) = 0.

Point () follows from (6.27), as shown in (6.28). Point (i7) follows from
(SB,SB)B = 0 and point (z). It can also be verified immediately by using
(6.39). Point (7iz) follows from point (i) and theorem 11.

So far, we have worked in the absence of composite fields, which is enough
to derive the S matrix. When we include gauge-invariant composite fields,
built with the physical fields A, 1 and 1), both the gauge-fixing sector and
the K sector remain uncorrected, because no nontrivial diagrams affecting
them can be constructed. The derivation given above is unmodified up to
and including (6.37).

Let O1(®,euf) denote a basis of gauge-invariant composite fields, which
includes the identity. The O's may depend on e by gauge invariance, but
there is no need to assume that they depend on m. The bare action is
extended to

SB((I)B,KB,LB) = SB((I)B,KB) + /LIBOI((I)B,GB).
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Clearly, the master equation (Sg,Sp)p = 0 is still satisfied. We write the

n-loop renormalized action as
Sp(®, K, L) = S,(®,K) + /f,{(L)Of@,em), (6.41)

where f!(L) are local functions to be determined that have the form L +poles
in ¢, with f{(L) = L!. Obviously, (Sy,S,) = 0.

The sources L that multiply the composite fields of dimensions > 4 have
n(?gagi)ve dimensions in units of mass. This means that the divergent part
f n+

ndiv_ 18 no longer restricted by power counting. Nevertheless, we can write

V@) = [ AL+ [ KO @0,

ndiv

where the divergent functions hl (L) = O(L) are local. As before, the di-
vergent terms of A, 1L can be reabsorbed in the constants Z,, Z¢ and Z,,.
Instead, the L-dependent divergent part can be reabsorbed by defining

ni1(L) = fo(L) = hy(L). (6.42)

The relations among the bare sources LIB and the renormalized sources
L', and the solutions of (6.42), are

L= 1LY L) =L =) hi(L),
k=1

where the matrices of constants d./ = §//+poles in ¢ are defined by
O (®p, ep) = (’)I(Zé{fb@, ept Ze n) = 7O (®, epsf).
The (n + 1)-renormalized action S,41(®, K, L) has the form (6.41) with
n — n+ 1. We still have
Spi1(®,K,L) = S,(®, K,L) — T (@ K, L),

ndiv

which ensures that the T' functional T';, 11 (®, K, L) is renormalized up to and
including n+1 loops. Iterating the argument to n = oo, we find the renormal-
ized action Sp(®,K,L) = Soo(®, K, L) and the renormalized I' functional
Ir(®,K,L) = I'eo(®, K, L), which still satisfy the properties (), (i¢) and
(#37) listed above.
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Chapter 7

Non-Abelian gauge field
theories

In this chapter we use the Batalin-Vilkovisky formalism to prove the renor-
malizability of Yang-Mills theory to all orders in the perturbative expansion.
We concentrate on gauge theories with a simple gauge group, since the gen-
eralization to product groups is straightforward. We also assume that the
theories are parity invariant, which ensures that the classical Lagrangian does
not contain the matrix s, the tensor e##? or their d-dimensional analogues,
where d denotes the physical dimension of spacetime.

7.1 Renormalizability of non-Abelian gauge theo-
ries to all orders

Denote the bare fields and the bare sources with ®g and Kg, respectively.
Denote the bare action and the bare I" functional, defined according to (5.59),
with SB((I)B, Kg, Lg, (B, fB) and PB((I)B, Kg, (s, Lp, (B, fB), where ¢ denote
the physical parameters, ¢ are the gauge-fixing parameters and L are sources
for gauge-invariant composite fields. At L = 0 the bare action can be read
from (5.34) and (5.33), or (5.38) and (5.37), if all the quantities that appear
in those formulas are interpreted as bare quantities.
From (5.17) we have the master equation

(SB,58)B =0, (7.1)
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which implies, according to theorem 11,
(FB) I‘B)B =0. (72)

The subscript g attached to the antiparentheses means that they are calcu-
lated with respect to the bare fields and sources, the other bare quantities
being kept fixed.

As usual, renormalizability is proved by proceeding inductively. We give
two proofs: a raw one and a more detailed one.

Raw subtraction The simpler proof amounts to subtract the countert-
erms “as they come” in the minimal subtraction scheme. We will see in a
moment what this means. We do not need to preserve the master equation
at each step of the subtraction. Instead, higher-order violations are allowed.

Call S,, and I';, the action and the I' functional renormalized up to and
including n loops. Assume the inductive hypotheses

S, =S8y +poles,  (Sp,S,) =0FTYH, TI'®<oo VE<n, (7.3)

having used the expansion (6.35). The last requirement is just the statement
that 'y, is convergent up to and including n loops. Clearly, the inductive
assumptions are trivially satisfied for n = 0. In particular, Sy coincides with
the bare action Sg, and formula (7.1) ensures (Sp, So) = 0. Using the master
identity 12 we have
(Ty,Ty) = ((Sn, Sn))- (7.4)

Since the antiparenthesis (S,,S,) is a local functional of order A"*!, the
contributions to ((Sy, Sy,)) of order A"*! are given by tree diagrams, so they
coincide with the order-A"*! contributions to (S, S,), which we denote by
(SnsSn)lpyq- Such quantity is divergent, by (So,So) = 0 and the first as-
sumption of (7.3).

Use the expansion (6.35) and think of (7.4) diagrammatically, as shown
in (5.28). The order A" of (7.4) gives

n+1

3 (rg@,rg”—k)) = (S Sn)l i1 (7.5)

k=0

We know that F,(Tk) are convergent for £ < n, by the inductive assumption.
Taking the divergent part of (7.5), we obtain

2 (rg)) F(n—i—l)) — (S Sl - (7.6)

'+ n div
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(n

:ﬁi) is the order-A"*! divergent part of I',,. By the third inductive

(n+1)
n div

where T’

assumption (7.3), all the subdivergences are subtracted away, so T’ is a

)

local functional. Now, 'Y coincides with the classical action So, so (7.6)

becomes .
n+1
(So, Ty = 5 (S Sn)lnsr (7.7)
At this point, define
Spi1 =S, — T, (7.8)

The first inductive assumption of the list (7.3) is clearly promoted to Sp41.
Formulas (7.8) and (7.7) give

(Sni1s Snr1) = (Sny Sp) — 2 (sn,r("“>) + (r“"”“) r<"+1>) — O(h"*?),

n div n div * ~ n div

so the second of (7.3) is also promoted to S,+;. Finally, the diagrams con-

structed with the vertices of 5,11 coincide with the diagrams of .S,,, plus new

(n+1)
_Fn div -
of the new diagrams have order A"*!, so

diagrams containing the vertices of However, the first contributions

r® =1® i <n.

n+1

(n+1)
n div
alone, since it is already of order A"*'. Thus,

Moreover, at n 4+ 1 loops any vertex of —I" can be used only once and

r(+) _ plr+1) _ plntl)

n+1 n ndiv < 99

which promotes the third inductive assumption of (7.3) to I'p41.
We conclude that formulas (7.3) and (7.4) also hold for the renormalized
action Sp = So, and the renormalized generating functional I'p = I', i.e.

(Sr,Sr) =0, (Fr,Tr) = 0. (7.9)

The subtraction algorithm just given is clearly compatible with proposi-
tions 16 and 17. In particular, formula (7.8) ensures that those propositions
hold at every step of the subtraction procedure.

We now study the renormalized action.
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Proposition 16 The renormalized action is independent of K% and depends
on B, K¢ only by means of the terms

)\ a a a a a
/<—§(B )2+ B%-A* - B Ké>,
which are nonrenormalized.

Proof. Clearly the classical action (5.37) satisfies these properties. Then,
no one-particle irreducible diagrams with external legs B¢, K% and K¢ can
be constructed, so no counterterms can depend on B*, Kg or KZ. Note
that, in particular, the absence of vertices with B legs is due to the linearity
of the gauge fixing G* in A.

Proposition 17 The renormalized action depends on C and KL only by
means of the combination

KF 4 omCe. (7.10)

Proof. Again, this property is satisfied by the classical action (5.37).
Then, the vertices that contain an antighost leg always have a derivative 0
acting on C. Moreover, the vertex containing C has an identical vertex-
partner with C replaced by K}. Therefore, given a diagram G with a K%
external leg, there exists an almost identical diagram G’, which differs from
G only because the external K% leg is replaced by a 0*C® leg, and vice versa.
Thus all the counterterms satisfy the property, and so does the renormalized
action.

Proposition 18 The renormalized action is linear in K.

Proof. Indeed, from (5.35) and (5.36) it follows that in the absence of
composite fields any local terms that are quadratic in K have either dimen-
sion greater than four or ghost number different from zero. [

Propositions 16 and 17 also hold in the presence of source for composite
fields, because their proofs do not require arguments based on power count-
ing. Instead, 18 does not hold at L # 0, in general, because the sources L for
the composite fields can have arbitrarily large negative dimensions, as well
as vanishing ghost number. Then, local Lagrangian terms with arbitrarily
large powers of K can be constructed, provided we adjust their dimensions
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by means of powers of L and their ghost numbers by means of powers of C.
We know that, in renormalization, when a term cannot be excluded a priori
by advocating power counting, symmetries or other properties, it is typically
generated as the divergent part of some diagram. For this reason, we cannot
guarantee that proposition 18 holds at L # 0. For a while we argue at L = 0,
then generalize our arguments to L # 0.

Since the renormalized action Sy is linear in the sources K at L = 0, we

can write

Sgr(®,K) / dPz R (®

The functions RS (®) that multiply the sources inside Sk are the renormal-
ized field transformations. By proposition 16, ghost number conservation,
locality and power counting, we must have, in the notation of formulas (5.37)
and (5.39),

Sp(®,K) = Sp(®) — / (a0, C + bA;,,CF — cAl . CLK / hCLCK K,
—/B;KéiJr/ [(alcfll fizoin 4 gy O 11”) Km —i—hc},

where a, b, ¢, h, a; and by are numerical constants. Note that, out of the
three tensors of (4.39), we can only use 5; The ¢ tensors cannot appear,
just because they are not present in the Feynman rules. It is easy to check
that the terms proportional to Kj- in the master equation (Sg, Sr) = 0 give

,71 ]m

2b = 2¢ = h. Moreover, the terms proportional to K/ give 2ar = h for

every k, [. Writing h = 2iga’, we have
Sp(®, K) = Siy(®) + ga’ / AP (@' TE O K] + KL T 0
D a I pabc Ab e aga/abcbca ar-a
_/d . (aaﬂc 4 gd' f AMC)KM—7f C'C°Kg + BKL| |

Propositions 16 and 17 ensure that the B-dependent terms are nonrenor-
malized. Then, by locality, power counting and ghost number conservation,
S%(®) has the form

Sp(@)=Sun0) ~ 5 [ B8]+ [ B0,

—/og'a# (a0,C5 + bALCF — 2Al;Ch)
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where a, b and ¢ are other constants. Imposing (Sg, Sr) = 0, we get a = a,
b=2¢=gad and (Sg,Scr) = 0. Then, we can write

S}f(q)) = SCR((ﬁ) + (SR7 \IJ) = SCR(¢) + ng(CI)) =
— cR(¢) +/ |:—3(Ba)2 + B9 - A® — C’aaﬂ (aaﬂca + ga/fabcAZCc):| ‘

Note that the gauge fermion
~a )‘ a a
U = C ——B + 8 A

Let us focus, for simplicity, on the pure gauge theory. Writing the most

is nonrenormalized.

general local form of S.g(A), it is easy to check, by explicit computation,
that the most general solution to (Sg,Scgr) =0 is

S.r(A) = “Z / 4Pz (aaﬂAﬁ — ad, A% + gd f“bCAZAf,)Q :
where a” is another constant. Writing
a=Zo, a =725  d =p?2,2Y7 7,
we finally obtain
Sr(®, K, g, \) = Sg(Ps, KB, g8, AB), (7.11)
with

1/2 1/2
ZB = ZA/ AZ7 C]% = ZC/ ce, 9B = gﬂa/zzgy
By=2z,""B*,  Cf=2zL"C",  Ag=A\Za, (7.12)
K' =7 PKe, Kép=7Z°Ke, K&, = ZYPKE.

The inclusion of matter is straightforward: only S.r(¢) changes, since it
must include all the terms of dimensions < 4 that are invariant with respect
to the renormalized gauge transformations.

At L # 0 the renormalized action has a more involved structure, since
higher-dimensional composite fields make it nonpolynomial in ®, K and L. In
the sector L # 0, we just subtract the counterterms as they come, according
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to formula (7.8). We do not need to worry about rewriting the subtraction as
a redefinition of the fields, the sources and the parameters. If we wanted to,
we would have nonpolynomial field redefinitions. The gauge transformations
would also be affected, so the L sector would have to include nonpolynomial
corrections that are not invariant under the starting gauge transformations,
but invariant under suitably corrected gauge transformations. For the mo-
ment, we do not need to go through this, because formula (7.8) is sufficient
for most practical purposes.

Expressing renormalization as a redefinition of the fields, the sources and
the parameters (which is the true meaning of the word “re-normalization”)
is more useful in the L = 0 sector, which contains, among other things,
the physical parameters. So doing, we can show that the renormalization
program can be carried out to the end by keeping the number of independent
physical parameters finite. This is a necessary requirement to ensure that
predictivity is retained. The composite fields, on the other hand, do not
add physical parameters to the theory, since the sources L are just tools to
simplify the derivations of various properties. Thus, we do not lose much,
if we renormalize the divergences belonging to the L-dependent sector by
subtracting them away just as they come.
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Appendix A

Notation and useful formulas

The flat space metric tensor reads

10 0 0
0 -1 0 0
M =11 00 -1 0
00 0 -1

The Pauli matrices are

S o L T S (R N
10 i 0 0 -1

The v matrices in four dimensions read

0 o# -1 0
H — 5:
w0 ) (0 Y):

where o = (1,0',02,0%) and 6* = (1, —c', =02, —03). The ¢ tensor e"*P°
is defined so that 923 = 1.
In Minkowski spacetime the Fourier transform is defined as

D .
o) = [ e o) (A1)

while in Euclidean space it is

D .
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To manipulate the denominators of Feynman diagrams it is useful to
introduce Feynman parameters by means of the formula

1 / a;—1 6(1 =2 o)
| | dw; x;" .
i A H F (o)) ) (memAm)z”“”

Particular cases are

1 L 1
E:/0 Ch;[A:v—i—B(l—a:)]27 (4.2)

1 T(a+p) /1dx T € R
AeBS T T(a)L(B) Jo ~ [Az + B(1 — 2)]*tF’

1—x 1
— =2 dx/ d .
ABC /0 0 y[Ax+By+C(1 —z—y)’

The integration over Feynman parameters often reduces to the integral

! _ 1 D((B)
r 1 — )Pl = NV }
/0 dz 2°-1(1 — 2) S (A.3)

The most frequently used D-dimensional integral is

Pp 1 _iCUT-B) e,
/ eGP P B~ (ampir@ (A4)

More generally,

/ d” )¢ )T (B4 9)T(a—B-F) (m2)3—ots
2m)P (p? —m?)> (4m)P/2T ()T (D) ’

In Euclidean space this result reads

Py @ _TEEHT-8-8) 0.,
/ L) v ey ) AR RN
We also recall that .
/ (;ﬂ')pD (n*)* =0, (A.6)

for every a.
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We have I'(z + 1) = 2'(z), I'(n + 1) = n! and

n (n—2)!
P (5) =iy
P(z)=7 — e +0) (A7)

[(z)= /7

1+ <z— %) O (1/2) + 0 <<z— %)2)] :

where y5 = 0.5772... is the Euler-Mascheroni constant, while (% (1/2) =
—1.96351.... and (™) (2) are the polygamma functions.
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