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Prefae

Most modern high-energy physis, inluding the standard model of partile

physis, is formulated by means of perturbative quantum �eld theory.

When the perturbative expansion is performed in a naïve way, it gen-

erates �divergenes�, that is to say quantities that appear to be �in�nite�,

instead of being small. Typially, they are due to diverging improper in-

tegrals. The presene of divergenes suggests that it should be possible to

de�ne the perturbative expansion in a smarter way.

With the help of a uto�, divergenes beome temporarily �nite. Then

they an be lassi�ed and moved around. Clearly, if a divergene disappears

by hanging the parametrization of the theory, it is not a true divergene,

but just a blunder due to an unfortunate hoie of variables. If there exists a

reparametrization that makes all the divergenes disappear, then the theory

is atually onvergent.

Divergenes an be reloated by performing all sorts of operations that

in normal irumstanes leave the physis unhanged, suh as hanges of

�eld variables, as well as rede�nitions of the parameters, in partiular the

oupling onstants. Renormalization is the reparametrization that moves

the divergenes �to the right plaes�, assuming that suh plaes do exist. In

simple theories, �elds and ouplings just get multiplied by onstants, whene

the name re-normalization. In more ompliated situations the rede�nitions

an even be nonpolynomial. One the theory is renormalized, the uto� an

be safely removed, and the physial quantities beome meaningful.

The reparametrization solves the problem of divergenes, and allows us to

de�ne the orret perturbative expansion. Under ertain, rather general, as-

sumptions it is always possible to absorb the divergenes into reparametriza-

tions. However, the prie an be onsiderably high: the introdution of

in�nitely many new independent parameters. If the divergenes an be an-
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4 PREFACE

elled by keeping the number of independent parameters �nite the theory

is alled renormalizable. The renormalizable theories aquire a very speial

status among all theories.

Renormalizability provides a way to selet the theories. This seletion is

atually welome, sine it gives us a reason to disard a huge set of theories

that otherwise would have to be a priori inluded. Among other things, no

physial theory in more than four spaetime dimensions survives the sele-

tion, whih makes renormalization a good andidate to explain why we live

in four dimensions. The set of renormalizable theories ontains the standard

model in �at spae. Therefore, it allows us to explain three interations

of nature out of four. Unfortunately, there is no known way to formulate

quantum gravity so as to inlude it in the set of renormalizable theories.

Inserting a parameter (the uto�) to remove it later is a mathematial

trik like many. In some sense, it is just a �tehniality�, and most of renor-

malization appears to be a rather tehnial issue. However, tehnialities like

this may have extremely important and unforeseen onsequenes, and on-

siderably a�et the physial preditions of the theory. Examples are given by

the renormalization-group �ow and the anomalies: sale invariant theories

an beome sale dependent, oupling �onstants� an beome energy depen-

dent, strong interations an beome weak, eternal partiles an deay. The

reason why the reparametrizations used to eliminate the divergenes do not

leave the physis ompletely unhanged is preisely that they are divergent.

Ironially, the �divergenes� are the best known quantities of quantum

�eld theory, to the extent that ertain physial amplitudes an be alulated

exatly to all orders, beause of the intimate relation they have with diver-

genes. At present, perturbative quantum �eld theory is the most suessful

theoretial ahievement of elementary partile physis. Some of its aspets

are so deep that most physiists need years and years to apture their true

meanings. In some sense, the oneptual gap between quantum �eld the-

ory and quantum mehanis an be ompared to the one between quantum

mehanis and lassial mehanis. Several physiists have been puzzled by

the indeterminay priniple, and have never aepted that it ould be part

of the ultimate desription of nature. Nowadays, some physiists still view

divergenes as �pathologies� and think that �renormalization is a way to hide

what we do not understand under the arpet�. More probably, they do not

understand what they are talking about.
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5

Removing divergenes is just a more sophistiated way to de�ne improper

integrals. Following Riemann, we an insert a uto�, alulate an integral for

�nite values of the uto�, and remove the uto� at the end. If the proedure

works, the integral is alled onvergent. If the proedure does not work,

the integral is alled divergent. Di�erent presriptions may lead to di�erent

results. For example, it is well known that the Riemann and the Lebesgue

approahes are not equivalent.

Quantum �eld theory requires just one step more. There, we do not

have one integral at a time, but a whole theory, whih is a huge olletion of

integrals, related to one another. We insert a uto�, and make alulations for

�nite values of the uto�. However, before removing it, we have the freedom

to make a variety operations that normally do not hange the physis. If

the proedure is suessful, the theory is atually onvergent, otherwise it

is divergent. In the end, we disover that the operations we make a�et

some physial preditions in ruial ways with respet to what we naïvely

expeted at the beginning. However, there is no soure of embarrassment

in that, beause the Riemann and the Lebesgue approahes may also give

results that di�er from what one naïvely expets.

Ultimately, renormalization is one of the onepts we understand better,

at present, in high-energy theoretial physis. We bet that all the future

developments of high-energy physis will emerge more or less diretly from

it. At the same time, there is no doubt that quantum �eld theory is still

formulated in a rather primitive way. A omplete reformulation is desirable.

One purpose of this book is to ollet the present knowledge about renor-

malization and stimulate people to start from that point and make an e�ort

to upgrade the formulation of quantum �eld theory as muh as it takes to

ahieve substantial progress and trigger a renaissane of the topi.

We are aware that in the past deades several approahes alternative

to quantum �eld theory have been proposed, but we remain skeptial about

their laimed virtues. Although they are often presented as �beyond quantum

�eld theory�, we do not see any justi�ation to the arti�ial enthusiasm that

has surrounded them for too long. For example, there is little doubt that,

oneptually speaking, string theory is a huge step bakwards with respet

to quantum �eld theory. We an only wish good luk to those who still do

not see that all the alternatives to quantum �eld theory are doomed to sink

into anonymity.
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6 PREFACE

The book ontains the basi notions of renormalization. The main goals

are to onstrut perturbative quantum �eld theory, study the onsequenes

of renormalization, and show that the perturbative formulation of a wide

lass of quantum �eld theories, whih inludes the standard model oupled

to quantum gravity, is onsistent to all orders. Most issues are treated using

modern tehniques, privileging the most eonomial and powerful tools. On

the ontrary, not muh e�ort is devoted to explain how suh a suessful

theoretial framework has emerged historially. Some aspets of quantum

�eld theory are very involved, and those who study the matter for the �rst

time an greatly bene�t from the rational, non historial approah of this

book.

Although self-onsistent, this book is not meant to replae the existing

books on quantum �eld theory. Sine its main fous is renormalization,

several basi notions of quantum �eld theory are just taken for granted.

Quantum �eld theory is formulated using the funtional integral and the

dimensional regularization tehnique. Algebrai aspets are overed to the

extent that is neessary to treat renormalization. In partiular, issues suh

as the topologial properties of anomalies, the geometri aspets of gauge

�elds, and so on, are not disussed. A number of exerises, with solutions,

are distributed along the book to help the layman familiarize with the most

important tools of renormalization.
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Chapter 1

Funtional integral

The funtional integral is an integral over a spae of funtions. It is one of

the basi tools that an be used to formulate the perturbative expansion of

quantum �eld theory. It also provides an alternative formulation of quantum

mehanis, whih is equivalent to the Shrödinger and the Heisenberg ones.

The funtional integral is de�ned as a limit of an ordinary multiple inte-

gral, when the number of integrated variables tends to in�nity. Imagine that

spaetime is disretized, with elementary ubi ells of size a, and put into a

box of �nite size L = Na. The disretized pattern is alled �lattie� and the

distane a between two verties of the lattie is alled �lattie spae�. For

the moment, we work at �nite values of a and N , but at a seond stage we

take the limits a → 0 and N → ∞. At �nite a and N , the set of spaetime

points xi is �nite and the disretized version of a funtion f(x) is a �nite set

of values fi = f(xi), with i = 1, 2, . . . N . The fi are the variables over whih

we integrate.

Consider the �nite-dimensional ordinary integral

c(a,N)

∫ N∏

i=1

dfi Ĝ(fi), (1.1)

where c(a,N) is a normalization fator, whih an depend on a and N , and

Ĝ(fi) is the disretized version of a generi funtional G(f). When a tends

to zero and N tends to in�nity, the number of integrated variables tends to

in�nity. Assume that there exists a normalization fator c(a,N) suh that

the limits a→ 0, N →∞ exist. Then, the funtional integral over the spae
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8 CHAPTER 1. FUNCTIONAL INTEGRAL

of funtions f(x) is de�ned as

∫
[df ] G(f) = lim

a→0
N→∞

c(a,N)

∫ N∏

i=1

dfi Ĝ(fi).

The simplest integrals we need are Gaussian. The basi Gaussian multiple

integral reads

∫ +∞

−∞

N∏

i=1

dxi exp


−1

2

N∑

i,j=1

xiMijxj


 =

(2π)N/2√
detM

, (1.2)

where M is a positive-de�nite symmetri matrix. Formula (1.2) an be

proved by diagonalizing M with an orthogonal matrix N . Write M =

NDN t
, where D = diag(m1, · · · ,mn) and mi are the eigenvalues of M .

Perform the hange of variables x = N y and reall that the integration mea-

sure is invariant, sine detN = 1. Then, the integral beomes the produt

of the one-dimensional Gaussian integrals

∫ +∞

−∞
dyi exp

(
−1

2
miy

2
i

)
=

√
2π

mi
,

whene (1.2) follows. We also have the formula

Z(a) =

∫ +∞

−∞

N∏

i=1

dxi exp


−1

2

N∑

i,j=1

xiMijxj +

N∑

i=1

xiai




=
(2π)N/2√
detM

exp


1

2

N∑

i,j=1

aiM
−1
ij aj


 , (1.3)

whih an be easily proved from (1.2) by means of the translation x = y +

M−1a.

We an de�ne orrelation funtions

〈xi1 · · · xin〉=
1

Z(0)

∫ +∞

−∞

N∏

i=1

dxi xi1 · · · xin exp


−1

2

N∑

i,j=1

xiMijxj




=
1

Z(a)

∂nZ(a)

∂ai1 · · · ∂ain

∣∣∣∣
a=0

. (1.4)
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For example, we �nd

〈xjxk〉=
1

Z(a)

∂2Z(a)

∂aj∂ak

∣∣∣∣
a=0

=M−1
jk ,

〈xjxkxmxn〉=M−1
jk M

−1
mn +M−1

jmM
−1
kn +M−1

jn M
−1
km. (1.5)

Every orrelation funtion that ontains an odd number of insertion van-

ishes: 〈xi1 · · · xi2n+1〉 = 0 ∀n. Instead, the orrelation funtions that ontain

even numbers of insertions are determined by a simple reursion relation,

whih reads

〈xi1 · · · xi2n〉 =
2n∑

k=2

M−1
i1ik
〈xi2 · · · x̂ik · · · xi2n〉. (1.6)

where the hat denotes a missing insertion. This formula is proved by noting

that

〈xi1 · · · xi2n〉=
1

n!

∂2n

∂ai1 · · · ∂ai2n

(
1

2
atM−1a

)n

=
1

2n−1(n− 1)!

∂2n−1

∂ai2 · · · ∂ai2n

[(
M−1a

)
i1

(
atM−1a

)n−1
]

=
1

2n−1(n− 1)!

2n∑

k=2

M−1
i1ik

∂2(n−1)

∂ai2 · · · ∂̂aik · · · ∂ai2n

(
atM−1a

)n−1

=

2n∑

k=2

M−1
i1ik
〈xi2 · · · x̂ik · · · xi2n〉.

In the third line the hat on ∂aik denotes a missing derivative. The reurrene

relation (1.6) gives

〈xi1 · · · xi2n〉 =
∑

P

M−1
P (i1)P (i2)

· · ·M−1
P (i2n−1)P (i2n)

, (1.7)

where the sum is over the inequivalent permutations P of {i1, · · · i2n}. By

this we mean that idential ontributions are ounted only one.

Our �rst goal is to de�ne the N → ∞ limits of the multiple integrals

just met, and others of similar types, and use them to formulate quantum

mehanis and perturbative quantum �eld theory. We begin with quantum

mehanis.
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10 CHAPTER 1. FUNCTIONAL INTEGRAL

1.1 Path integral

Consider a non relativisti partile of massm, potential V (q) and Lagrangian

L(q, q̇) = m

2
q̇2 − V (q). (1.8)

Suppose that the partile is observed in the loations q
in

at time t
in

and

q
f

at time t
f

and that it is not observed in the time interval t
in

< t < t
f

.

Quantum mehanis teahes us that it is meaningless to tell �where� the

partile is while it is not observed, or even assume that it is somewhere.

More or less equivalently, we an imagine that it is anywhere, or everywhere.

In partiular, it does not make sense to say that the partile moves from q
in

to q
f

along a partiular trajetory q(t), suh as the lassial trajetory that

extremizes the ation

S(q
f

, t
f

; q
in

, t
in

) =

∫ t
f

t
in

dt L(q(t), q̇(t)). (1.9)

A possible way out is to imagine that it moves from q
in

to q
f

along all possible

paths

q(t), t
in

6 t 6 t
f

, q(t
in

) = q
in

, q(t
f

) = q
f

,

at the same time. Then, eah path must ontribute to physial quantities,

with a suitable (omplex) weight. Clearly, if this idea is right we have to

�integrate� over the paths.

In some sense, we replae the priniple of minimum ation with a new

priniple, whih is able to aount for the quantum e�ets. The semilassial

approximation suggests that eah path should be weighted by the fator

exp

(
i

~
S(q

f

, t
f

; q
in

, t
in

)

)
. (1.10)

Indeed, in the limit ~ → 0 the strongly osillating exponent singles out the

trajetory of minimum ation as the only one that survives.

These onsiderations, although inspiring, are still vague. We do not know

how to de�ne the integral over the paths. As mentioned before, one possibility

is to disretize the problem and de�ne the path integral as the limit of an

ordinary multiple integral, when the number of integrated variables tends to

in�nity. Thus, let us disretize the time interval t
in

6 t 6 t
f

by dividing it in

N subintervals

ti−1 6 t 6 ti, ti = ti−1 + ε, ε =
t
f

− t
in

N
,
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1.1 Path integral 11

i = 1, ..., N , with t0 = t
in

and tN = t
f

. The path q(t) is then replaed by the

set of positions qi = q(ti) at times ti.

The trajetory of the i-th subinterval an be taken to be the one that

extremizes the ation. However, in many ases simpler subtrajetories are

equally good approximations. For example, we an take the straight lines

q̄(t) =
qi − qi−1

ε
(t− ti−1) + qi−1. (1.11)

This hoie produes a piture like

q

t

qin

qf

tftin
ε

In the limit ε → 0 the approximate path an tend to any funtion q(t),

inluding the ones that are not di�erentiable and not ontinuous. From the

physial point of view there is no reason why the unobservable trajetory

q(t) should be ontinuous and/or di�erentiable, so the path integral should

sum over all funtions q(t).

In the i-th subinterval we have the onstant veloity

qi − qi−1

ε
,

so the ation (1.9) an be approximated by

N∑

i=1

S̄(qi, ti; qi−1, ti−1) =
N∑

i=1

{
m(qi − qi−1)

2

2ε
− εV (qi)

}
+O(ε3/2), (1.12)

where the bar over S is there to remember that we have hosen the speial

subtrajetories (1.11). Below we prove that |qi − qi−1| ∼ O(ε1/2) and that

14B1 Renorm



12 CHAPTER 1. FUNCTIONAL INTEGRAL

the orretions O(ε3/2) appearing in formula (1.12) an be negleted in the

limit ε→ 0.

Inspired by (1.10), we weigh eah in�nitesimal portion of the trajetory

by the fator

1

A
exp

(
i

~
S̄(qi, ti; qi−1, ti−1)

)
,

where A is some normalization onstant, to be determined. This means that

during a time subinterval the wave funtion ψ(q, t) evolves into

ψ(q, t+ ε) =
1

A

∫ +∞

−∞
dq′ exp

(
i

~
S̄(q, t+ ε; q′, t)

)
ψ(q′, t). (1.13)

Consequently, during the �nite interval t
in

6 t 6 t
f

the evolution of the wave

funtion ψ(q, t) is given by the formula

ψ(q, t) =

∫ +∞

−∞
dq′K(q, t; q′, t′)ψ(q′, t′), (1.14)

where K(q, t; q′, t′), alled kernel of the time evolution, has the path-integral

expression

K(q, t; q′, t′) = lim
N→∞

A−N

∫ N−1∏

i=1

dqi e
i
~

∑N
i=1 S̄(qi,ti;qi−1,ti−1)

(1.15)

≡
∫

[dq] exp

(
i

~
S(q)

)
,

and now t0 = t′, tN = t, q0 = q′, qN = q, ε = (t− t′)/N . The last line is the

ommon short-hand notation used to denote the funtional integral.

Observe that, in partiular, we must have

K(q, t; q′, t) = δ(q − q′). (1.16)

Shrödinger equation

Now we prove that the time evolution enoded in the path-integral formulas

(1.13) and (1.15) is equivalent to the one predited by quantum mehanis.

In partiular, we show that the wave funtion (1.14), with the kernel de�ned

by (1.15), satis�es the Shrödinger equation. We disretize time as explained

above, and ompare ψ(q, t+ ε) and ψ(q′, t) by means of (1.13). We have

ψ(q, t+ ε) =
1

A

∫ +∞

−∞
d∆ e

im∆2

2~ε
− iε

~
V (q)+O(ε3/2)ψ(q −∆, t), (1.17)
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1.1 Path integral 13

after a translation q′ = q −∆. Reall that

lim
ε→0

√
m

2πi~ε
e

im∆2

2~ε = δ(∆).

This formula an be proved assuming that the mass has a small positive

imaginary part. Thus, the two sides of (1.17) math in the limit ε→ 0 if we

take

1

A
=

√
m

2πi~ε
.

Observe that this hoie also ensures that (1.16) holds. We are still assuming

that |∆| ∼ ε1/2, whih allows us to neglet the∆ dependene ontained inside

O(ε3/2). This assumption is justi�ed by the alulations that follow.

Expanding the integrand of (1.17) in powers of ∆, we obtain

√
m

2πi~ε

∫ +∞

−∞
d∆ e

im∆2

2~ε

(
1−∆

∂

∂q
+

∆2

2

∂2

∂q2
+O(∆3)

− iε
~
V (q) +O(ε3/2)

)
ψ(q, t). (1.18)

De�ning the integrals

In =

∫ +∞

−∞
d∆ ∆ne

im∆2

2~ε ,

we �nd I2k+1 = 0 and

I2k = −2iε~
∂I2k−2

∂m
, I0 =

√
2πi~ε

m
,

whih gives

I2k = Γ

(
k +

1

2

)(
2i~ε

m

)k+ 1
2

.

We �nd I2k/I0 ∼ εk, whih also proves |∆| ∼ ε1/2, as laimed before. Finally,

rearranging (1.17), dividing by ε and taking the limit ε → 0, we �nd the

Shrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂q2
+ V ψ.

The outome is independent of the approximation we have used to expand

S̄(qi, ti; qi−1, ti−1). For example, we ould have written V (qi−1) in (1.12),
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14 CHAPTER 1. FUNCTIONAL INTEGRAL

instead of V (qi), or (V (qi) + V (qi−1))/2. The di�erene is always made of

terms that are O(ε3/2) in the integrand of (1.18), whih are negligible in the

limit ε→ 0.

Thus, we have proved that the path integral provides a formulation of

quantum mehanis that is equivalent to the Shrödinger and the Heisenberg

ones.

Free partile

We expliitly alulate the kernel in the ase of the free partile. There,

S̄(qi, ti; qi−1, ti−1) =
m(qi − qi−1)

2

2ε
,

so we have

K
free

(q, t; q′, t′) = lim
N→∞

( m

2πi~ε

)N/2 ∫ N−1∏

i=1

dqi e
im
2~ε

∑N
i=1(qi−qi−1)

2
.

Changing variables to q̃i = qi − q, we an rewrite the integral as

e
im
2~ε

(q−q′)2
∫ N−1∏

i=1

dq̃i e
im
2~ε(q̃

tM̃q̃+2q̃1(q−q′)),

where

M̃ =




2 −1 0 0 · · ·
−1 2 −1 · · · 0

0 −1 · · · −1 0

0 · · · −1 2 −1
· · · 0 0 −1 2




(1.19)

is an (N − 1) × (N − 1) matrix. Now the integral is of the Gaussian form

(1.3) with

M = − im
~ε
M̃, a =

im(q − q′)
~ε

(0, . . . 0, 1)

and N → N − 1. Again, we assume that the mass has a small positive

imaginary part. We have

det M̃ = N, (M̃−1)N−1,N−1 =
N − 1

N
. (1.20)
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1.2 Free �eld theory 15

The �rst formula an be proved reursively. Indeed, denoting the I×I matrix

M̃ of (1.19) with M̃I , we have

det M̃N−1 = 2det M̃N−2 − det M̃N−3, det M̃1 = 2 det M̃2 = 3.

The seond formula of (1.20) gives the last entry of the inverse matrix M̃−1
N−1,

and is just the determinant of the assoiated minor (whih oinides with

M̃N−2), divided by the determinant of M̃N−1.

Finally, using formula (1.3), with the appropriate substitutions, and re-

alling that εN = t− t′, we �nd

K
free

(q, t; q′, t′) =

√
m

2πi~(t− t′) e
im(q−q′)2

2~(t−t′) ,

whih is the known result.

1.2 Free �eld theory

Given a lassial �eld theory, desribed by the ation S(ϕ), we want to de�ne

the funtional integral

∫
[dϕ] exp

(
i

~
S(ϕ)

)
. (1.21)

At present, we an do this only perturbatively, by expanding around the

free-�eld limit.

From now on, we work in Eulidean spae, where some ompliations are

avoided. For simpliity, we also set ~ = 1.

Free �eld theories are desribed by Gaussian funtional integrals. We

start from the salar �eld in four dimensions. Its ation in Eulidean spae

is

S(ϕ) =
1

2

∫
d4x

(
(∂µϕ)

2 +m2ϕ2
)
. (1.22)

We want to de�ne the generating funtional

Z(J) ≡ eW (J) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
ϕJ

)
(1.23)

where J are external soures,

∫
ϕJ ≡

∫
d4xϕ(x)J(x) andW is the logarithm

of Z. First, we disretize the Eulidean spae. Eah oordinate xµ is replaed
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16 CHAPTER 1. FUNCTIONAL INTEGRAL

by an index iµ, and the �eld ϕ(x) beomes ϕ{iµ}. The disretized form of

the ation reads

S
disr

(ϕ{iµ}) =
1

2

∑

{iµ},{jν}

ϕ{iµ}M{iµ}{jν}ϕ{jν}, (1.24)

for some matrix M{iµ}{jν} that we do not need to speify here. It su�es to

reall that M is the disretized version of the kineti operator −�+m2
:

M{iµ}{jν} = (−�+m2)
∣∣
disr

. (1.25)

The disretized version of the funtional integral reads

Z(J{iµ}) =

∫ ∏

{iµ}

[dϕ{iµ}] exp


−S

disr

(ϕ{iµ}) +
∑

{iµ}

ϕ{iµ}J{iµ}


 .

Using formula (1.3), we �nd

W (J{iµ}) = lnZ(J{iµ}) =
1

2

∑

{iµ},{jν}

J{iµ}M
−1
{iµ}{jν}

J{jν} −
1

2
ln detM + C,

(1.26)

where C is a onstant that ollets also the normalization fator c(a, L) of

formula (1.1).

To de�ne the ontinuum limit, we basially need to de�ne the inverse of

M and its determinant. However, note that the determinant, as well as the

onstant C, appear only in Z and W , but not in the orrelation funtions

(1.4). Therefore, we atually just need to de�ne M−1
. This is not di�ult,

beause the inverse of −�+m2
is by de�nition the Green funtion GB(x, y),

that is to say the solution of the equation

(−�x +m2)GB(x, y) = δ(4)(x− y). (1.27)

Normalizing the funtional integral onveniently and using (1.3) and

(1.26), we an write

Z(J) = eW (J), W (J) =
1

2

∫
d4xJ(x)GB(x, y)J(y)d

4y. (1.28)

We an de�ne the J-dependent orrelation funtions

〈ϕ(x1) · · ·ϕ(xn)〉J =
∫
[dϕ]ϕ(x1) · · ·ϕ(xn) exp

(
−S(ϕ) +

∫
ϕJ
)

∫
[dϕ] exp

(
−S(ϕ) +

∫
ϕJ
)

=
1

Z(J)

δnZ(J)

δJ(x1) · · · δJ(xn)
, (1.29)
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1.2 Free �eld theory 17

where the subsript J means that soures are non-vanishing. In partiular,

formulas (1.5) give

〈ϕ(x)ϕ(y)〉 =
1

Z(J)

∂2Z(J)

∂J(x)∂J(y)

∣∣∣∣
J=0

= GB(x, y), (1.30)

〈ϕ(x)ϕ(y)ϕ(z)ϕ(w)〉 = GB(x, y)GB(z, w) +GB(x, z)GB(y,w)

+GB(x,w)GB(y, z), (1.31)

and so on. We see that, in pratie, the free theory ontains just one piee

of information, whih is the Green funtion.

Formulas (1.6) and (1.7) an be generalized following the same steps. We

have

〈ϕ(x1) · · ·ϕ(x2n)〉=
2n∑

k=2

GB(x1, xk)〈ϕ(x2) · · · ϕ̂(xk) · · ·ϕ(x2n)〉 (1.32)

=
∑

P

GB(xP (1), xP (2)) · · ·GB(xP (2n−1), xP (2n)), (1.33)

while the orrelation funtions that ontain an odd number of insertions

vanish.

Equation (1.33) is known as Wik's theorem. It says that i) the external

points x1 · · · x2n must be onneted pairwise in all inequivalent ways, ii) eah

onnetion is a Green funtion and iii) eah inequivalent set of onnetions

is multiplied by the oe�ient 1.

It is natural express Wik's theorem graphially. A Green funtion is

drawn as a double line onneting a pair of points. Then formula (1.32)

reads

= Σ
2n

k=2

...

x1

x2 x2n

x1

xk

...
x2 ...

x̂k

x2n

(1.34)

where the legs attahed to the diss denote the insertions of the orrelation

funtions.
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18 CHAPTER 1. FUNCTIONAL INTEGRAL

The Eulidean Green funtions an be omputed by swithing to momen-

tum spae. We de�ne the Fourier transform as

ϕ(x) =

∫
d4p

(2π)4
eip·xϕ̃(p). (1.35)

Then we �nd

GB(x, y) = 〈ϕ(x)ϕ(y)〉 =
∫

d4p

(2π)4
eip·(x−y)

p2 +m2
=

m

4π2|x− y|K1(m|x− y|),
(1.36)

where K1 denotes the modi�ed Bessel funtion of the seond kind.

This result is proved as follows. We must assume that x and y do not

oinide, and use a trik to dump the osillating behavior at in�nity. Let us

start from the massless limit. To alulate the integral at m = 0, we multiply

the integrand by e−δ|p|, where δ > 0, and take the limit δ → 0 at the end.

Swithing to spherial oordinates, we �rst integrate over |p| and later over

the angles. The basi steps are

GB(x, 0)|m=0 = lim
δ→0+

∫
d4p

(2π)4
eip·x−δ|p|

p2
= lim

δ→0+

1

4π3

∫ π

0

dθ sin2 θ

(δ − i|x| cos θ)2

= lim
δ→0+

1

4π2x2

(
1− δ√

δ2 + x2

)
=

1

4π2x2
. (1.37)

To alulate the integral at m 6= 0, we make it onvergent in a di�erent

way, at x 6= 0, that is to say by di�erentiating with respet to m. Then,

after swithing to spherial oordinates, we �rst integrate over the angles,

and later over |p|. We �nd

∂

∂m
GB(x, 0) =−

∫
d4p

(2π)4
2meip·x

(p2 +m2)2

=− m

2π2|x|

∫ ∞

0

p2J1(p|x|)dp
(p2 +m2)2

= − m

4π2
K0(m|x|),

where J1(x) is the Bessel funtion of the �rst kind. Integrating over m and

requiring (1.37) at m = 0, we obtain (1.36).

The orrelations funtions an be mathematially interpreted as distri-

butions. Then, the soures J should be viewed as test funtions. Indeed, the

Green funtion GB(x, y), whih appears to be singular at x = y, is atually

14B1 Renorm



1.3 Perturbative expansion 19

regular as a distribution. To see this, it is su�ient to observe that when

GB(x, y) ats on a test funtion J(y), the behavior of the integral

∫

|x−y|∼0
d4yGB(x, y)J(y) ∼

1

4π2

∫
d4y

J(y)

(x− y)2 ,

around x ∼ y shows no singularity. We have used the result (1.37), sine the

behavior of (1.36) at x ∼ y oinides with the behavior at m→∞.

1.3 Perturbative expansion

Interating theories are de�ned by expanding perturbatively around their

free �eld limits. Although this sounds like a straightforward proess, the

perturbative expansion of quantum �eld theory atually underlies a huge

oneptual advanement with respet to the notions we are austomed to.

To larify this point, it is worth to pay attention to what we do when we

normally approximate. We have, say, di�ult di�erential equations, whih

we want to solve. We know some lasses of exat solutions, whih typially

do not over the ases of physial interest. We realize that some physial

situations are only slightly di�erent from those desribed by the exat so-

lutions, so we work out other solutions by expanding perturbatively around

the exat ones. What is important for our present disussion, is that we are

talking about a well de�ned problem, desribed by di�ult, but well de�ned,

equations. Then, we approximate. We approximate something that does

exist, something that exists before the approximation.

In quantum �eld theory, instead, we must really start from nothing, apart

from the free �eld limit. There are no equations, and no theory, before we

make approximations. Thus, when we say that we perturbatively expand

around the free �eld theory, we are atually lying: we are not expanding at all.

The truth is that we are perturbatively building the interative theory, piee

by piee, out of the free �eld one. The enterprise we are going to undertake

is a reative one, not just a dedutive proess. Therefore, if something goes

wrong along the way, it will be no real surprise. To solve the problems that

emerge, we have to be more and more reative. In partiular, we have to build

the mathematis that we need by ourselves. Moreover, every time we �nd a

di�ulty, and guess a possible solution, we must start over, implement the

proposed solution from the very beginning, and rederive everything up to the
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20 CHAPTER 1. FUNCTIONAL INTEGRAL

point where we found the problem, hek that the problem does disappear

as expeted and ensure that no ollateral di�ulties emerge.

Another ruial point is that the perturbative expansion should be on-

sidered as a formal power series. In mathematis, a formal power series is a

power series that is just viewed as a list of addends, disregarding ompletely

whether the sum onverges or not. Perturbative quantum �eld theory in-

vestigates the onsisteny of the perturbative expansion as a formal power

series. It studies the properties of the addends (e.g. their onsisteny with

gauge invariane, unitarity, ausality, et.) and the relations among them.

Proving that, for example, the Standard Model is onsistent to all orders,

as a perturbative quantum �eld theory, whih is one of the main objetives

of this book, is already a nontrivial task. The great advantage of working

with formal power series is that it allows us to freely exhange the sum with

derivative operations, as well as integral operations. Only at the very end we

will inquire whether the sum onverges or not. Indeed, it is meaningless to

demand that a power series be onvergent before having shown that it obeys

all the desirable physial and mathematial requirements as a formal powers

series. The renormalization group and the anomalies of quantum �eld theory

provide well-known ases where the power series is in the end onvergent.

Having to build some of the mathematis anew is not surprising either.

If we take for granted that the mathematis we already have is good enough

to formulate the physial laws of so far unexplored researh domains, we

may be making a too restritive assumption. More reasonably, our mathe-

matis is a produt of our interation with the environment in whih we are

plaed as human beings. When we explore energy domains that are very far

from those we are austomed to, the mathematis we have previously de-

veloped may be unsatisfatory. In the study of osmologi and astrophysial

phenomena, for example, it has so far proved to be exhaustive. However,

in some ases, suh as in the study of mirosopi phenomena, it has al-

ready shown its limitations. In the ase of quantum mehanis, we ould

�ll the gap by means of a �orrespondene priniple�. The idea was that,

although there was a huge di�erene between the lassial and the quantum

phenomena, at least there was a sort of orrespondene between the two.

Clearly, we annot expet to go on forever relying on luky orrespondenes,

to the extent that quantum �eld theory fores us to abandon that idea. For

example, the �lassial� Lagrangian of quantum hromodynamis, whih is
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1.3 Perturbative expansion 21

the theory that desribes what the strong interations beome at high en-

ergies, has no orrespondene with lassial phenomena. Exploring smaller

and smaller distanes, the problem beomes harder and harder, and we may

be fored to give up every orrespondene with what we know, and even

renoune ommon sense and intuition, to develop a ompletely new mathe-

matis by plunging into pure abstration and tehnialism. Quantum �eld

theory, renormalization, with all the problems we �nd along the way and the

partial solutions we work out, give us hints of what the new mathematis

will have to be.

That said, the only thing we an do in this moment is pretend there

is nothing to worry about, and make a step forward along the proess of

�reative approximation�.

Consider a theory of interating salar �elds with ation S(ϕ) = S0(ϕ)+

SI(ϕ), where S0(ϕ) is (1.22). For onreteness, we an take the ϕ4
theory in

four dimensions, whih has

S(ϕ) =

∫
d4x

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

λ

4!
ϕ4

)
. (1.38)

De�ning Z(J) as in (1.23) we an write

Z(J) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ

)

=

∫
[dϕ] exp (−SI(ϕ)) exp

(
−S0(ϕ) +

∫
Jϕ

)

=

∞∑

n=0

(−1)n
n!

∫
[dϕ] SnI (ϕ) exp

(
−S0(ϕ) +

∫
Jϕ

)

=Z0(J)
∞∑

n=0

(−1)n
n!
〈SnI (ϕ)〉0,J , (1.39)

where Z0(J) is given by (1.28). We use the subsript 0 to denotes quanti-

ties at λ = 0. In partiular, 〈· · · 〉0,J are free-�eld orrelation funtions at

nonvanishing soures. We have

〈SnI (ϕ)〉0,J =

(
λ

4!

)n ∫ n∏

i=1

d4xi〈ϕ4(x1) · · ·ϕ4(xn)〉0,J .

Now, by (1.29) every ϕ-insertion an be expressed as a funtional derivative
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with respet to J . Therefore,

〈SnI (ϕ)〉0,J =

(
λ

4!

)n 1

Z0(J)

∫ n∏

i=1

d4xi
δ4nZ0(J)

δJ4(x1) · · · δJ4(xn)
.

Inserting this formula into (1.39), we get

Z(J) =

∞∑

n=0

1

n!

(
− λ
4!

)n n∏

i=1

(∫
d4xi

δ4

δJ4(xi)

)
Z0(J)

= exp

(
− λ
4!

∫
d4x

δ4

δJ4(x)

)
Z0(J).

More generally, we have

Z(J) = eW (J) = exp

(
−SI

(
δ

δJ

))
Z0(J). (1.40)

The salar �eld inside SI is formally replaed by the funtional derivative

δ/δJ , whih ats on the free-�eld generating funtional Z0(J).

Formula (1.40) expresses the generating funtional of the interating the-

ory as an in�nite sum of terms, eah of whih involves just funtional deriva-

tives of the generating funtional of the free theory (whih, as we know,

ontains only the Green funtion) and integrals over oordinates. Some

funtional derivatives are taken at the same point, whih is alled �vertex�.

Moreover, the Green funtions onnet pairs of points, as we see from the

Wik theorem (1.34). Formula (1.40) an be e�iently expressed diagram-

matially. Diagrams are made of verties and lines, and are drawn following

a simple set of rules, whih we now derive.

Feynman rules

The orrelation funtions an be de�ned from the expansion of the generating

funtional Z(J) in powers of J :

Z(J) = Z(0)

∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉J(x1) · · · J(xn).

For some pratial purposes, it is also useful to de�ne orrelation funtions

that have a di�erent normalization. At J 6= 0 we de�ne

〈ϕ(x1) · · ·ϕ(xn)〉′J =
1

Z0(0)

δnZ(J)

δJ(x1) · · · δJ(xn)
, (1.41)
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while at J = 0 we write them as 〈ϕ(x1) · · ·ϕ(xn)〉′. In partiular, we have

〈ϕ(x1) · · ·ϕ(xn)〉 =
Z0(0)

Z(0)
〈ϕ(x1) · · ·ϕ(xn)〉′ =

〈ϕ(x1) · · ·ϕ(xn)〉′
〈1〉′ . (1.42)

Sine we have normalized Z0(0) to 1, we ould omit this fator. However,

the formulas are more expliit if we keep it, whih also emphasizes that Z(0)

is not equal to one.

Observe that Z(J) an be viewed as the generating funtional Z ′(J) of

the orrelation funtions (1.41):

Z ′(J) = Z0(0)
∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉′J(x1) · · · J(xn) = Z(J).

(1.43)

Consider a generi orrelation funtion (1.41) in the ϕ4
theory. Writing

〈ϕ(x1) · · ·ϕ(xn)〉′ =
1

Z0(0)

∫
[dϕ]ϕ(x1) · · ·ϕ(xn)e−S0(ϕ)−

λ
4!

∫
d4xϕ4(x)

=

∞∑

k=0

(−λ)k
(4!)kk!

∫ 


k∏

j=1

d4yj


 〈ϕ(x1) · · ·ϕ(xn)

k∏

j=1

ϕ4(yj)〉0, (1.44)

we obtain a sum of ontributions that are due to free-�eld orrelation fun-

tions with n + 4k insertions. We all the points x1, · · · , xn �external� and

the points y1, · · · , yk �internal�. Eah internal point arries four ϕ insertions.

We refer to it as a vertex with four legs.

The free-�eld orrelation funtions of (1.44) an be worked out by means

of Wik's theorem. Let us onsider the graphial version (1.34) of that

theorem. We see that eah point is onneted one to every other point.

Moreover, eah ontribution is multiplied by the oe�ient one. Thus, the

interating orrelation funtion (1.44) is expressed as a sum of diagrams that

are onstruted by applying the following rules:

1) the diagrams have n external points x1, · · · , xn and an arbitrary number

k of internal points y1, · · · , yk; the latter are alled verties;

2) lines onnet pairs of points; a line is alled internal if it onnets two

internal points, otherwise it is alled external;

3) the line that onnets two points z and w is assoiated with the Green

funtion GB(z, w);

4) four legs are attahed to eah internal point, one leg to eah external point;
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5) eah diagram with k verties is multiplied by the fator

1

k!

(−λ
4!

)k
; (1.45)

6) the positions y of the verties are integrated with measure d4y.

For example, onsider the ase n = 2, k = 0, 1. We have

〈ϕ(x1)ϕ(x2)〉′ =GB(x1, x2)−
λ

4!

∫
d4y〈ϕ(x1)ϕ(x2)ϕ4(y)〉0 +O(λ2)

=GB(x1, x2)−
λ

2

∫
d4yGB(x1, y)GB(y, y)GB(y, x2)

−λ
8
GB(x1, x2)

∫
d4yG2

B(y, y) +O(λ2),

whih graphially reads

=
x1 x2

−λ
2x2x1 yx1 x2

−λ
8

x2x1

y

(1.46)

plusO(λ2). Di�erent ontributions originated by the right-hand side of (1.34)
an give the same diagram, that is to say the same integral. For example,

the seond diagram on the right-hand side of (1.46) appears 12 times, whih

is why its oe�ient is in the end 1/2. Instead, the third diagram appears 3

times, so its oe�ient is 1/8.

We an ollet the arrangements that give the same diagram into a single

ontribution, provided that we multiply it by a suitable ombinatorial fator.

Then, the perturbative expansion is organized as a sum over inequivalent

diagrams G, whih are multiplied by (1.45) and an extra fator sG that

ounts how many ontributions of Wik's theorem give the same G.

It is also onvenient to move to momentum spae, where some further

simpli�ations our. For example, onsider the last-but-one diagram of

(1.46). We �nd

∫
d4u GB(x, u)GB(u, u)GB(u, y)

=

∫
d4u

∫
d4p

(2π)4
d4k

(2π)4
d4q

(2π)4
eip(x−u)+iq(u−y)

(p2 +m2)(k2 +m2)(q2 +m2)
. (1.47)
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The u-integral an be evaluated immediately, and gives (2π)4δ(4)(p − q).

Thus, (1.47) is the Fourier transform of

(2π)4δ(4)(p − q) 1

p2 +m2

(∫
d4k

(2π)4
1

k2 +m2

)
1

q2 +m2
(1.48)

on p and q. This formula illustrates some properties that are atually valid

for all graphs. First, we learn that it is muh more onvenient to work in mo-

mentum spae, rather than in oordinate spae. Indeed, (1.48) looks muh

simpler than the left-hand side of (1.47). Seond, the theory is invariant

under translations, so the total momentum is onserved. As a onsequene,

eah orrelation funtion is multiplied by a delta funtion like the one ap-

pearing in (1.48), whih ensures that the momentum that enters the graph

equals the momentum that exits from it, or, equivalently, that the total mo-

mentum that enters the graph vanishes. We do not need to write this delta

funtion down every time, and from now on we will simply omit it. Third,

the fators 1/(p2 + m2) and 1/(q2 + m2) are just the Green funtions at-

tahed to the external legs: they do not enter the surviving integral. Thus,

in momentum spae we an �amputate� the diagram, whih means omit the

Green funtions attahed to the external legs. Note that the fatorization

(1.48) does not our in oordinate spae.

What remains is the �ore� of our diagram, that is to say its truly non-

trivial part, whih is, in the ase at hand,

∫
d4k

(2π)4
1

k2 +m2
. (1.49)

Unfortunately, the integral (1.49) is in�nite, as are many integrals that we are

going to work with. However, this kind of problem, whih is the main topi

of this book, does not onern us right now. What is important here is that

we have identi�ed a few triks that an help us save a lot of e�ort, by working

in momentum spae and onentrating on what ours inside the diagram,

sine what happens outside is not new. From a ertain point onwards, we

will not need to use double lines to denote Green funtions anymore, apart

from the situations where it is really neessary: it will be understood that

internal lines arry Green funtions, while external lines do not.

Fousing on the ores of diagrams, we an now formulate the Feynman

rules in momentum spae, in arbitrary d dimensions, for the orrelation fun-

tions (1.41) of a salar �eld theory with arbitrary interations.
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The Fourier transform G̃B(p) of the two-point funtion 〈ϕ(x)ϕ(y)〉′ is
alled propagator. We have

〈ϕ(x)ϕ(y)〉′ =
∫

ddp

(2π)d
eip(x−y)G̃B(p).

The propagator is graphially denoted with a line that onnets two points.

We assoiate a vertex with eah interation term of the Lagrangian. A vertex

is graphially denoted with lines ending at the same point, also alled legs.

Eah leg is a �eld ϕ. The value of the vertex is equal to minus the oe�ient of

the assoiated Lagrangian term, summed over the permutations of idential

legs. In momentum spae, the momentum p of the Fourier transform ϕ̃(p) is

onventionally oriented towards the vertex.

For example, in the ϕ4
theory we have (in arbitrary dimensions)

= 1
p2 +m2

= −λ
p

(1.50)

Consider a orrelation funtion (1.41) at J = 0 with n = E external legs

and assume that we want to alulate its O(λk)-orretions. To ahieve this

goal,

1) assign a momentum p to every external leg, imposing overall momentum

onservation;

2) draw all di�erent diagrams G that have k verties and E external legs;

3) assign a momentum q to every internal leg, imposing momentum onser-

vation at every vertex.

Next, assoiate an integral IG with eah diagram G as follows:

a) write the propagator assoiated with every internal leg;

b) multiply by the value of every vertex;

c) multiply by the ombinatorial fator cG explained below;

d) integrate over the surviving independent internal momenta q, with the

measures ddq/(2π)d.

The ombinatorial fator is given by the formula

cG =
sG∏
i ni! c

ni
i

. (1.51)

Here, ni is the number of verties of type i ontained in G, and c−1
i is the

ombinatorial fator that multiplies the vertex of type i. For example, ci =
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N !, if the ith vertex has N idential legs, suh as ϕN . Instead, ci = N1!N2!,

if the vertex is ϕN1ϕN2
, and so on. Finally, the numerator sG in the number

of ontributions of Wik's theorem that lead to the same diagram G.

The safest way to ompute sG is by drawing the verties of G on a piee

of paper, together with E points assoiated with the external legs. Then,

ount how many ways to onnet the external legs to the legs attahed to

the verties give the diagram G. The result of this ounting is sG. It is

not advisable to avoid the ounting and ompute sG by means of shortuts

(typially based on the symmetry properties of the diagram, whih may be

very di�ult to spot), although some textbooks suggest to do so.

Normally, sG is a huge number, to the extent that it almost simpli�es

the fators appearing in the denominator of (1.51). This is one reason why

it is onvenient to arrange the expansion in terms of diagrams. Nevertheless,

sometimes it an be better, for theoretial purposes, to forget about diagrams

and write the expansion as a sum over the sets of ontributions oming from

Wik's theorem, eah of whih has s = 1. So doing, it is muh easier to have

ontrol over the ombinatorial fators. We will use this kind of expansion in

some proofs later on.

Diagrams an also be lassi�ed aording to the number L of their �loops�.

The preise de�nition of L is the number of independent internal momenta q,

those on whih we must integrate. Thus, formula (1.46) ontains a one-loop

diagram and a two-loop one. We will see later that the expansion in powers

of λ oinides with the expansion in the number of loops. Graphially, loops

appear as losed internal lines. However, it is not always easy to ount them

as suh.

Basially, the ombinatorial fators are due to idential legs. This is

the reason why, to simplify some formulas, it is ommon to divide eah

Lagrangian term by the permutations of its idential legs. For example, in

the ϕ4
theory we have multiplied the quadrati part of the Lagrangian by 1/2!

and the vertex by 1/4!. With a di�erent normalization, the propagators and

the verties get multiplied by extra oe�ients. Apart from that, the rules

to onstrut graphs and the formula for the ombinatorial fators remain the

same.

Finally, observe that the fators 1/(
∏
i ni!) in cG are brought by the
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expansion of the exponential in power series, e.g.

exp

(
−λ4

4!

∫
ϕ4 − λ6

6!

∫
ϕ6

)
=

∞∑

n,m=0

(−λ4)n(−λ6)m
n!m!(4!)n(6!)m

(∫
ϕ4

)n(∫
ϕ6

)m
,

and orrespond to the permutations of idential verties.

We illustrate the alulation of ombinatorial fators with a ouple of

examples. Consider the one-loop diagram of (1.46). It ontains just one

vertex with c = 4!. Moreover, we an easily verify that s = 4 ·3, sine the left
external leg an be onneted to the vertex in four ways, and then the right

external leg an be onneted to the vertex in three ways. In this partiular

ase, the diagram in uniquely determined one the external legs are assigned.

Thus, cG = (4 · 3)/4! = 1/2, whih is indeed the fator that multiplies the

diagram in formula (1.46), together with the value of the vertex, whih is

−λ.
Next, onsider the diagram

(1.52)

It is made of three idential verties, so we have a fator 1/(4!)3 and a fator

1/3!. The oe�ient s is equal to 3(4!)3. To alulate it, let us �rst draw

three verties with four legs eah, and four external points. Then we onnet

the points in all the ways that lead to the graph we want. We begin from

the up-left external leg, whih an be arranged in 4 · 3 ways, where 3 is the

number of verties we an hoose, and 4 is the number of legs of eah vertex.

One that is done, the down-left external leg an be hosen in just 3 ways,

beause its vertex is already determined. Next, the up-right external leg an

be arranged in 4 · 2 ways, after whih the down-right external leg an be

onneted in 4 ways. Then, onsider an internal leg of the left vertex: it

an be attahed to other internal legs in 6 ways. When this is done, the

remaining internal leg of the left vertex an be attahed to 3 internal legs.

Finally, the remaining internal legs an be onneted in 2 ways. In total

cG =
4 · 3 · 3 · 4 · 2 · 4 · 6 · 3 · 2

3!(4!)3
=

3(4!)3

3!(4!)3
=

1

2
.

Beause of (1.42), the information just given is also su�ient to determine

the orrelation funtions (1.29) at J = 0. In partiular, Z(0) = 〈1〉′Z0(0)
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is a sum over diagrams with no external legs. There is a simple way to

haraterize the orrelation funtions without primes. Indeed, they di�er

from the orrelation funtions with primes just beause they do not reeive

ontributions from the diagrams that ontain subdiagrams with no external

legs. This statement will be proved at the end of the next setion. Here we

just give a simple example: the two-point funtion without primes at O(λ)
simply looses the last term of (1.46), so

〈ϕ(x1)ϕ(x2)〉 = GB(x1, x2)−
λ

2

∫
d4yGB(x1, y)GB(y, y)GB(y, x2) +O(λ2).

1.4 Generating funtionals, Shwinger-Dyson equa-

tions

The rules given in the previous setion determine the orrelation funtions

with primes and the generating funtional Z(J). It turns out that Z(J)

ontains redundant information. For example, working with W (J), instead,

of Z(J), it is possible to redue a lot of e�ort. A third funtional, whih is the

Legendre transform of W (J) and is denoted with Γ(Φ), allows us to further

simplify the alulations. In this setion we study the generating funtionals

and their properties. We start by deriving a funtional equation for Z(J),

alled Shwinger-Dyson equation.

We begin by noting that the funtional integral of a total funtional

derivative is zero. We have

0=

∫
[dϕ]

δ

δϕ(x)
exp

(
−S(ϕ) +

∫
Jϕ

)

=

∫
[dϕ]

(
− δS

δϕ(x)
+ J(x)

)
exp

(
−S(ϕ) +

∫
Jϕ

)
. (1.53)

Using the perturbative expansion, it is su�ient to prove this formula for

the free �eld theory, but with an arbitrary set of ϕ-insertions. Consider a

massive �eld. In the disretized version of the funtional integral, where we

have a �nite number of ordinary integrals, we obviously have the identity

0 =

∫ +∞

−∞

∏

{iµ}

[dϕ{iµ}]
∂

∂ϕ{kρ}






 ∏

{nσ}⊂I

ϕ{nσ}


 exp

(
−S

disr

(ϕ{iµ})
)


 ,

(1.54)
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for every {kρ} and every set I of insertions ϕ{nσ}, where Sdisr(ϕ{iµ}) is

the free disretized ation (1.24). Indeed, one integral, the one over ϕ{kρ},

vanishes, beause the exponential ontains

exp

(
−m

2

2
ϕ2
{kρ}

)
,

whih su�ient to kill all ontributions of the boundary ϕ{kρ} → ±∞. Sine

(1.54) holds for every lattie spae a and size L, it also holds in the ontinuum

limit.

The result is atually muh more general, to the extent that it also holds

when the mass vanishes and the free-�eld ation is not positive de�nite in

the Eulidean framework (whih is the ase, among others, of gravity). In-

deed, we should not forget that, although we are temporarily working in the

Eulidean framework, the orret theory is the one in Minkowski spaetime.

There, the funtional integral (1.21) ontains an osillating integrand, whih

an be always damped at in�nity by assuming that the �eld has a mass with

a small positive imaginary part +iε, whih is later sent to zero. So doing,

we an prove that the identity (1.53) is always true in perturbative quantum

�eld theory. The reader who is familiar with the operatorial formulation of

quantum �eld theory will notie that this presription is also the one that

de�nes the orrelation funtions as T-ordered produts. In other words, the

funtional integral automatially selets the T-ordered orrelation funtions.

Then, formula (1.53) gives

J(x)Z(J) =

∫
[dϕ]

[
(−�+m2)ϕ(x) +

λ

3!
ϕ3(x)

]
exp

(
−S(ϕ) +

∫
Jϕ

)
,

(1.55)

whih an be graphially represented as

x
= (−✷ +m2) + λ

3!

(1.56)

Here the dis stands for Z(J) and the dot for J . A leg attahed to the dis

is a funtional derivative with respet to J , i.e. a ϕ-insertion. Three legs

meeting at the same point x denote three funtional derivatives with respet

to J(x). To write (1.55), we have exhanged the funtional integral with the

derivatives ontained in �. In general, we have the identity ∂µ〈ϕ(x) · · · 〉 =
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〈∂µϕ(x) · · · 〉, where the dots stand for any insertions at points di�erent from

x. We an prove this identity as follows. Consider the generating funtional

Z(J) (1.23) and (for de�niteness) the two-point funtion

〈ϕ(x)ϕ(y)〉J = Z(J)−1 δ2Z(J)

δJ(x)δJ(y)
.

If we write J(x) = J1(x) − ∂µJ
µ
2 (x) inside (1.23), where J1 and Jµ2 are

arbitrary, the funtional derivative with respet to Jµ2 originates an insertion

of ∂µϕ(y). To see this, we must use

∫
ϕ(J1 − ∂µJµ2 ) =

∫
ϕJ1 +

∫
Jµ2 (∂µϕ),

where the integration by parts an be justi�ed by assuming that Jµ2 dereases

rapidly enough at in�nity. Indeed, sine the soures J are test funtions, we

an hoose them as smooth as we want and, if needed, with ompat support.

Thus, we �nd

〈ϕ(x)∂µϕ(y)〉J =Z(J)−1 δ2Z(J)

δJ1(x)δJ
µ
2 (y)

= Z(J)−1 δ
2Z(J1 − ∂ρJρ2 )
δJ1(x)δJ

µ
2 (y)

=Z(J)−1∂(y)ρ

δ2Z(J)

δJ(x)δJ(y)
= ∂(y)ρ 〈ϕ(x)ϕ(y)〉J .

Multiplying both sides of (1.55) by GB(y, x), integrating over x and re-

labeling y → x we obtain

x
=

x
− λ

3!

(1.57)

where, as before, the double line stands for the Green funtion.

We an derive an alternative equation,

(−�+m2)〈ϕ(x)〉J = J(x)− λ

3!
〈ϕ3(x)〉J , (1.58)

if we divide both sides of (1.55) by Z(J). Again, if we insert the Green

funtion in (1.58), we get

〈ϕ(x)〉J =

∫
d4y GB(x, y)J(y)−

λ

3!

∫
d4yGB(x, y)〈ϕ3(y)〉J . (1.59)
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Now, realling that Z = exp(W ), observe that

〈ϕ3〉J = e−W (J) δ
3

δJ3
eW (J) =W ′′′ + 3W ′W ′′ +W ′3, (1.60)

eah apex denoting a J derivative. Then equation (1.59) an be graphially

represented as

x

W =

W

W

W

W

W

W

x

−

λ

3!

−

λ

2
−

λ

3!

(1.61)

where now the dis denotes W . Again, the legs attahed to the dis denote

funtional derivatives with respet to J .

The third generating funtional Γ(Φ) is the Legendre transform of W .

De�ne the funtional Φ(J) as

Φ(J)x =
δW (J)

δJ(x)
= 〈ϕ(x)〉J . (1.62)

From (1.28) we have

Φ(J)x =

∫
d4yGB(x, y)J(y) +O(λ).

We an perturbatively invert Φ(J) and de�ne the funtional J(Φ)(x) suh

that J(Φ(J))x = 1. We have

J(Φ)x = (−�+m2)Φ(x) +O(λ). (1.63)

Now, the funtional Γ(Φ) is de�ned as

Γ(Φ) = −W (J(Φ)) +

∫
d4x J(Φ)xΦ(x). (1.64)

We easily �nd

Γ(Φ) =
1

2

∫
d4x

(
(∂µΦ)

2 +m2Φ2
)
+O(λ),
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so Γ looks like a sort of �quantum ation�. In the literature it is often alled

e�etive ation. Note, however, that in Minkowski spaetime Γ is not even

real. The Γ funtional ollets the amplitudes that are neessary to alulate

the S matrix.

Let us work out the Shwinger-Dyson equation satis�ed by Γ. First,

observe that sine Γ is a Legendre transform we have

δΓ(Φ)

δΦ(x)
= J(Φ)x. (1.65)

This relation an be easily veri�ed by expliit di�erentiation. Seond, using

the formula for the derivative of the inverse funtion, we also have

δ2W

δJ(x)δJ(y)
=
δΦ(J)y
δJ(x)

=

(
δJ(Φ)x
δΦ(y)

)−1

=

(
δ2Γ(Φ)

δΦ(x)δΦ(y)

)−1

. (1.66)

We write this formula symbolially as Wxy = 1/Γxy, where the subsripts

denote derivatives with respet to the arguments (J for W , Φ for Γ) at the

spei�ed points. Third,

Wxyz = −
∫

1

Γxs

1

Γyt

1

Γzu
Γstu, (1.67)

where the integral is over the repeated subsripts. Using (1.60)-(1.67), equa-

tion (1.58) beomes

− δΓ(Φ)
δΦ(x)

= −(−�+m2)Φ(x)− λ
3!

(
Φ3(x)−

∫
1

Γxs

1

Γxt

1

Γxu
Γstu +

3

Γxx
Φ(x)

)
.

(1.68)

Graphially, this formula reads

x
= −

(
−✷ +m2

)
Φ(x)− λ

3! Φ
3(x)−Γ

+ λ
2!−Γ

x

−Γ

Φ(x)

− λ
3!

(1.69)

where the line with a ut denotes 1/Γ′′
.
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We know that the orrelation funtions 〈ϕ · · ·ϕ〉 an be expressed as

funtional derivatives of Z(J) with respet to J , alulated at J = 0, and

divided by Z(0). Similarly, the funtional derivatives of W with respet to

J , alulated at J = 0, and the funtional derivatives of Γ with respet to

Φ, alulated at Φ = 0, de�ne W and Γ orrelation funtions, respetively.

Our purpose is to haraterize the orrelation funtions of Z, W and Γ more

preisely and �nd the relations among them.

The funtional Z is the generator of all orrelation funtions. We prove

that W is the generating funtional of the onneted orrelation funtions.

That is to say, W ontains preisely the ontributions to Z originated by

onneted diagrams. We then write

W (J) =

∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉cJ(x1) · · · J(xn),

where the subsript c stands for �onneted�.

Moreover, we prove that Γ is the generating funtional of the onneted,

amputated (whih means that the external legs arry no Green funtions GB)

one-partile irreduible (ommonly abbreviated as 1PI) orrelation funtions,

whih we simply all �irreduible�. Irreduible diagrams are those that do

not beome disonneted by utting one internal line. Preisely, we prove

that −Γ exatly ontains the (amputated) ontributions to Z and W that

are due to irreduible diagrams, with only one exeption: the free two-point

funtion, whih has an extra minus sign. We then write

−Γ(Φ) =
∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉1PIΦ(x1) · · ·Φ(xn).

To prove that the W and Γ orrelation funtions are onneted and irre-

duible, respetively, it is su�ient to note that

i) W and Γ are onneted and irreduible, respetively, at the free-�eld level;

ii) the W equation (1.61) and the Γ equation (1.69) are onneted and irre-

duible, respetively;

iii) equations (1.61) and (1.69) an be solved algorithmially from the free-

�eld theory.

Property i) is obvious. We now prove that equations (1.61) and (1.69)

are onneted and irreduible, respetively. Observe that equation (1.57),

instead, is neither of the two. Indeed, (1.57) ontains the produt J(x)Z(J),
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and generates disonneted ontributions when we di�erentiate with respet

to J . Equation (1.61) ontains no produts of funtionals, whih means that

it is onneted. On the other hand, it is learly reduible. Finally, equation

(1.69) is onneted and irreduible. Indeed, the �rst three terms of (1.69)

are the lassial �eld equations. Being loal, they are just verties, rather

than diagrams, so they are irreduible. The other terms of (1.69) are learly

irreduible.

Next, we prove that equations (1.57), (1.61) and (1.69) an be solved al-

gorithmially starting from the free-�eld theory. Observe that by repeatedly

di�erentiating those equations with respet to the soures, J or Φ, and later

setting J or Φ to zero, we obtain relations among the orrelation funtions

of Z, W and Γ. Eah di�erentiation amounts to add a leg to a dis and sum

appropriately. The right-hand sides of equations (1.57), (1.61) and (1.69) are

the sums of two sets of ontributions, whih we all U1 and U2. The set U1 is

the one that does not arry a fator of λ. It ontains no dis, or a dis with

no leg. The set U2 is the one that arries a fator of λ and ontains diss with

at most three legs. An analogous deomposition holds for the di�erentiated

equations and is the ruial property to prove our onstrution. If we take

n funtional derivatives, the left-hand sides beome diss with n + 1 legs,

whih stand for the (n+1)-point orrelation funtions. The right-hand sides

are, again, the sums of two types of ontributions, U1 and U2. The set U1

ontains no fator of λ and diss with at most n legs. In the ases of W and

Γ suh a set vanishes after a su�ient number of funtional derivatives. The

set U2 ontains a fator of λ and diss with at most n+ 3 legs.

Equations (1.57), (1.61) and (1.69) ensure that to determine the (n+1)-

point funtion to the order λk, it is su�ient to know the m-point funtions,

m 6 n, up to the order λk and the m′
-point funtions m′ 6 n + 3, up to

the order λk−1
. Iterating the argument r times, we �nd that to determine

the (n+ 1)-point funtion up to the order λk, we need to know the m-point

funtions, m 6 n−r+3h, to the orders λk−h, with h = 0, 1, . . . r+1. Taking

r = n+3k, we need to know the m-point funtions, m 6 3(h− k), up to the

order λk−h: if H 6= K we have zero, if H = K we have Z0(0), whih an be

normalized to 1. This proves that equations (1.57), (1.61) and (1.69) an be

solved algorithmially, as laimed.

We have onsidered, for simpliity, the ϕ4
theory, but the results learly

extend to any polynomial theory in arbitrary spaetime dimensions.
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Clearly, disonneted diagrams are produts of onneted ones, so W (J)

and Z(J) ontain the same amount of information. However, working with

W (J) instead of Z(J) saves us some e�ort. In the free-�eld limit, for example,

only the two-point funtion is onneted, soW (J) ontains just one term [see

(1.28)℄, while Z(J) ontains in�nitely many, beause it is the exponential of

W (J).

The simpli�ation due to Γ is more learly visible in momentum spae,

rather than in oordinate spae. Observe that a onvolution beomes a prod-

ut after Fourier transform. The reduible diagrams are those that an be

split into two parts, onneted by a single leg. In momentum spae they

fatorize, so they �disonnet�. Clearly, we loose no information if we on-

entrate on the �minimal� fators of suh produts. Working with Γ we take

advantage of this simpli�ation.

So far, we have proved that all the diagrams that ontribute toW (respe-

tively, Γ) are onneted (irreduible). We still have to prove the onverse,

i.e. that all the onneted (irreduible) diagrams do ontribute to W (Γ).

To show this, we proeed as follows.

Let us begin with W . Write

Z(J) = 1 +W (J) +
1

2!
W 2(J) +

1

3!
W 3(J) · · · . (1.70)

Sine Z(J) ontains all the diagrams, and W (J) ontains only onneted

diagrams, W (J) ontains all the onneted diagrams of Z(J). Now, take the

onneted part of equation (1.70), and note that the powers W n(J), n > 1,

an give only disonneted ontributions. Using (1.43), we get

Z ′(J)
∣∣
c
= Z(J)|c = 1 + W (J)|c = 1 +W (J). (1.71)

Thus, the onneted diagrams ontained in Z ′(J) = Z(J) and W (J)

oinide. Moreover, in these two funtionals they appear with the same o-

e�ients. This property ensures that the Feynman rules we have determined

for Z an be used also for W : we just have to disard the diagrams that are

disonneted.

Comparing the two sides of (1.70), we get, in the �rst few ases,

〈ϕ(x)〉c = 〈ϕ(x)〉, 〈ϕ(x)ϕ(y)〉c = 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉,
〈ϕ(x)ϕ(y)ϕ(z)〉c = 〈ϕ(x)ϕ(y)ϕ(z)〉 − 〈ϕ(x)ϕ(y)〉〈ϕ(z)〉 − 〈ϕ(y)ϕ(z)〉〈ϕ(x)〉

−〈ϕ(z)ϕ(x)〉〈ϕ(y)〉 + 2〈ϕ(x)〉〈ϕ(y)〉〈ϕ(z)〉.
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Observe that W (0) is the sum of onneted diagrams that have no ex-

ternal legs. Consider a orrelation funtion 〈ϕ(x1) · · ·ϕ(xn)〉 and write it

in terms of W derivatives [see (1.60) for an example℄. It is easy to hek

that W (0) never appears: only the derivatives W (n)
with n > 0 are in-

volved. Thus, the orrelation funtion 〈ϕ(x1) · · ·ϕ(xn)〉 an be expressed as

the sum of produts of onneted diagrams that have a nonvanishing num-

ber of external legs. This statement was left without proof at the end of

the previous setion. Instead, the orrelation funtion 〈ϕ(x1) · · ·ϕ(xn)〉′ =
〈ϕ(x1) · · ·ϕ(xn)〉eW (0)−W0(0)

ontains produts of all the onneted diagrams,

inluding those that have no external legs. The diagrams that appear in both

orrelations funtions are multiplied by the same oe�ients.

It remains to study the orrelation funtions of −Γ. From (1.65) and

(1.69) we see that J(Φ) is a sum of irreduible diagrams. Consider (1.64)

and restrit it to the irreduible diagrams. We have

− Γ(Φ) = −Γ(Φ)|
1PI

= W (J(Φ))|
1PI

−
∫
J(Φ)Φ|

1PI

. (1.72)

To manipulate this formula, it is onvenient to write J = (−�+m2)Φ+∆J

and expand in powers of ∆J , where ∆J = O(λ) an be read from the right-

hand sides of (1.68) and (1.69). We �nd

W ((−�+m2)Φ) =W (J−∆J) =W (J)−
∫

∆J
δW

δJ
+
1

2

∫
∆J

δ2W

δJδJ
∆J+· · ·

Turning this expansion around, we an also write

W (J)−
∫
JΦ =W ((−�+m2)Φ) +

∫
(∆J − J)δW

δJ
− 1

2

∫
∆J

δ2W

δJδJ
∆J

+ · · · =W ((−�+m2)Φ)−
∫

Φ(−�+m2)Φ− 1

2

∫
∆J

δ2W

δJδJ
∆J + · · ·

Now we take the one-partile irreduible ontributions of both sides of this

equation. Note that the last term, as well as the higher-order orretions

olleted inside the dots, always give reduible diagrams, sine ∆J ontains

verties. Thus, we get

− Γ(Φ) = W ((−�+m2)Φ)
∣∣
1PI

−
∫

Φ(−�+m2)Φ. (1.73)

Replaing J by (−� + m2)Φ inside W (J) is equivalent to amputate the

external legs and attah a �eld Φ to them. Formula (1.73) tells us that −Γ
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ontains the amputated irreduible diagrams of W , with exatly the same

oe�ient they have in W , apart from the free two-point funtion, whih

has an extra minus sign beause of the last term of (1.73). Indeed, at the

free-�eld level we have

Γ0 =
1

2

∫
Φ(−�+m2)Φ =

1

2

∫
J(−� +m2)−1J =W0,

so +Γ is the amputated W (instead of −Γ). Finally, the Feynman rules

worked out for Z and W also work for −Γ (apart from the free two-point

funtion), provided we disard the reduible diagrams.

It is easy to see that the results of this setion do not depend on the

form of the vertex, nor on the free-�eld ation around whih we perturb,

nor on the type of the �elds. For example, if we replae the interation

∼
∫
ϕ4

by ∼
∫
ϕ6

, or by the sum of

∫
ϕ4

and

∫
ϕ6

, or even by interations

that ontain derivatives, suh as ∼
∫
ϕ2(∂µϕ)

2
, et., all the arguments given

above an be generalized with obvious modi�ations. The only assumption

that is ruial for the derivation is that the interations be loal, whih

means that eah vertex should be the integral of a monomial onstruted

with the �elds and their derivatives. In the end, we �nd that in every loal

perturbative quantum �eld theory the generating funtional Z ontains all

the orrelation funtions, while W and Γ ontain only the onneted and

one-partile irreduible orrelation funtions, respetively. Moreover, the

orrelation funtions appear in Z, W and Γ with the same oe�ients, apart

from the Γ free-�eld two-point funtion.

Exerise 1 Integrating (1.69), alulate Γ(Φ) at the tree level and at one

loop.

Solution. The �rst line of (1.69) an be integrated straightforwardly, and

gives S(Φ). The seond line is made of two terms. The �rst of them an

generate only two-loop diagrams, so we an neglet it. The seond term

gives diagrams that ontain at least one loop. Thus, at the tree level the Γ

funtional oinides with the lassial ation: Γ(Φ) = S(Φ).

To alulate the one-loop orretions it is su�ient to alulate Γxx at

the tree level, whih is just

Sxy ≡
δ2S(Φ)

δΦ(x)δΦ(y)
= (−�+m2 +

λ

2
Φ2(x))δ(x − y),
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in the limit y → x. Then we insert it into the last term of equation (1.69),

whih beomes

λ

2
Φ(x)

1

Γxx
=
λ

2
Φ(x)

1

Sxx
=

1

2

δ

Φ(x)

∫
d4y lnSyz|z→y , (1.74)

having used λΦ = S′′′
. Finally, the Γ funtional reads

Γ(Φ) = S(Φ) +
1

2

∫
d4x lnSxy|y→x ≡ S(Φ) +

1

2
tr

[
ln

δ2S(Φ)

δΦ(x)δΦ(y)

]
, (1.75)

plus two-loop orretions, plus unimportant onstants. Although for larity

we have used the ϕ4
theory to derive this result, it an be easily heked that

formula (1.75) holds for an arbitrary ation S(Φ), beause the spei� form

of the ation is atually not neessary for the derivation. �

The lassial ation S(ϕ) and the funtional −W (J) satisfy an interesting

duality relation. Consider iJ as the ��elds�, SJ(iJ) ≡ −W (−iJ) as their

lassial ation and ϕ as the soures oupled to iJ . Then, the W funtional

is equal to −S(ϕ) itself. Preisely,
∫

[dJ ] exp

(
W (−iJ) +

∫
iJϕ

)
= exp (−S(ϕ)) . (1.76)

Indeed, using (1.23) the left-hand side an be written as

∫
[dJdϕ′] exp

(
−S(ϕ′) + i

∫
ϕJ − i

∫
ϕ′J

)
.

Integrating over J we get the �funtional δ funtion�

δF (ϕ− ϕ′) =
∏

x

δ(ϕ(x) − ϕ′(x)),

whose meaning an be easily understood from the disretized version of the

funtional integral. Finally, integrating over ϕ′
we get the right-hand side of

(1.76).

From the perturbative point of view, it does not really matter whether J

is multiplied by i or not. Thus, we an also write

∫
[dJ ] exp

(
W (J)−

∫
Jϕ

)
= exp (−S(ϕ)) .

The meaning of this identity is that if we take the diagrams that ontribute

to the onneted orrelation funtions, replae their verties by minus the

onneted diagrams themselves, and the propagators by minus their inverses,

the results we obtain are minus the verties again.
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1.5 Advaned generating funtionals

We an also de�ne generating funtionals for n-partile irreduible onneted

Green funtions, that is to say onneted Green funtions that beome dis-

onneted when n or fewer internal lines are ut into two. In this setion we

explain how. Although the new funtionals are rarely met in the literature,

they an help us gain a more omplete piture of what we are doing. More-

over, some generalizations of these funtionals are useful treat some topi of

the next hapters.

We �rst study the generating funtional of two-partile irreduible Green

funtions. We introdue a new soureK(x, y) oupled to the bilinear ϕ(x)ϕ(y)

and de�ne

Z(J,K) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ+

1

2

∫
ϕKϕ

)
= eW (J,K),

where

∫
ϕKϕ =

∫
dxϕ(x)K(x, y)ϕ(y)dy. Then, de�ne

Φ(x) =
δW

δJ(x)
= 〈ϕ(x)〉, N(x, y) =

δ2W

δJ(x)δJ(y)
= 〈ϕ(x)ϕ(y)〉c, (1.77)

at nonzero J and K. Observe that

δW

δK(x, y)
=

1

2
(N(x, y) + Φ(x)Φ(y)) =

1

2

δ2W

δJ(x)δJ(y)
+

1

2

δW

δJ(x)

δW

δJ(y)
.

(1.78)

This is a funtional di�erential equation for W (J,K). It shows that the K

dependene is not unrelated to the J dependene, so the advaned funtional

W (J,K) does not ontain new information, but just the information already

known, expressed in a di�erent way.

Now, all Γ2(Φ, N) the Legendre transform of W (J,K) with respet to

both J and K, that is to say

Γ2(Φ, N) =−W (J,K) +

∫
δW

δJ
J +

∫
δW

δK
K

=−W (J,K) +

∫
JΦ+

1

2

∫
(NK +ΦKΦ),

where NK stands for N(x, y)K(x, y) and J and K are meant to be funtions

of Φ and N , obtained by inverting (1.77). That this transform is well de�ned

will beome evident soon. Di�erentiating Γ2 we get

δΓ2

δΦ(x)
= J(x) +

∫
K(x, y)Φ(y)dy,

δΓ2

δN(x, y)
=

1

2
K(x, y). (1.79)
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To retrieve Γ(Φ) from Γ2(Φ, N) it is su�ient to set K = 0, beause

then W (J,K) beomes preisely the funtional W (J) enountered before.

Inverting (1.79) we obtain Φ and N as funtions of J and K. One K is set

to zero, the relations Φ = Φ(J, 0) and N = N(J, 0) allow us to express J as a

funtion J(Φ) of Φ, whih oinides with the relation found in the previous

setions, but also N as a funtion N(Φ) of Φ. Finally,

Γ(Φ) = Γ2(Φ, N(Φ)).

At J = K = 0 we have that Φ is the expetation value of the �eld and N is

the propagator.

The funtional Γ2(Φ, N) an also be seen as the Legendre transform

Γ2(Φ, N) = Γ(Φ,K) +
1

2

∫
K(N +ΦΦ) (1.80)

of Γ(Φ,K), whih is the usual Γ funtional for the modi�ed lassial ation

S(ϕ,K) = S(ϕ)− 1

2

∫
ϕKϕ. (1.81)

Exerise 2 Calulate Γ2(Φ, N) for a free salar �eld and rederive Γ(Φ).

Solution. The soure K(x, y) is like a non-loal squared mass, soW (J,K)

an be obtained from the usual funtional, replaing the mass m2
with m2−

K. From (1.26) we get

W (J,K) =
1

2

∫
J(−�+m2 −K)−1J − 1

2
tr ln

[
−�+m2 −K

]
.

We immediately �nd

Φ = (−�+m2 −K)−1J, N = (−�+m2 −K)−1,

thus

Γ2(Φ, N) =
1

2

∫ [
(∂µΦ)

2 +m2Φ2
]
− 1

2
tr lnN +

1

2
tr

[
(−�+m2)N − 1

]
.

Observe that objets suh as lnN and N−1
and meaningful, sine by (1.77)

N−1
is just the salar propagator. Setting K = 0 we �nd N = (−�+m2)−1

and the usual free-�eld Γ-funtional

Γ2(Φ, (−�+m2)−1) =
1

2

∫ [
(∂µΦ)

2 +m2Φ2
]
+

1

2
tr ln(−�+m2) = Γ(Φ),
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whih agrees with (1.75). In an interating theory we obtain this expres-

sion plus orretions proportional to the ouplings. As said before, all suh

orretions are made of tree-level expressions plus two-partile irreduible

diagrams.

Exerise 3 Calulate Γ2(Φ, N) at one loop for a generi theory S(ϕ).

Solution. We start from formula (1.75), whih gives the most general

one-loop Γ-funtional, and apply it to a lassial theory with modi�ed ation

(1.81). We obtain the one-loop Γ-funtional

Γ(Φ,K) = S(Φ)− 1

2

∫
ΦKΦ+

1

2
tr ln(S′′ −K),

where S′′
stands for Sxy. Now we further Legendre-transform with respet

to K. Di�erentiating we get

δΓ

δK
= −1

2

1

S′′ −K −
1

2
ΦΦ = −δW

δK
,

whih gives

N =
1

S′′ −K .

Finally, using (1.80) the one-loop funtional Γ2 is

Γ2(Φ, N) = S(Φ)− 1

2
tr lnN +

1

2
tr

[
NS′′(Φ)− 1

]
. (1.82)

�

Now we study the diagrammatis of Γ2(Φ, N). Sine every one-loop di-

agrams are two-partile reduible, unless they ontain just one vertex (in

whih ase they are alled �tadpoles�), it is useful to onsider the di�erene

Γ̃2(Φ, N) between Γ2(Φ, N) and its one-loop expression (1.82):

Γ̃2(Φ, N) = Γ2(Φ, N)− S(Φ) + 1

2
tr lnN − 1

2
tr

[
NS′′(Φ)− 1

]
. (1.83)

Now, the funtional Γ(Φ,K) is the set of one-partile irreduible diagrams

of the theory S(ϕ,K), namely the set of one-partile irreduible diagrams of

S(ϕ) with inverse propagator shifted by −K. Separate the tree-level ontri-

bution S(Φ,K) of Γ(Φ,K) from the rest, by writing

Γ(Φ,K) = S(Φ)− 1

2

∫
ΦKΦ+ Γ̃(Φ,K). (1.84)
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The two-point funtion of Γ(Φ,K) is

δ2Γ(Φ,K)

δΦδΦ
= S′′(Φ)−K − δ2Γ̃(Φ,K)

δΦδΦ
=

(
δ2W (J,K)

δJδJ

)−1

=
1

N
. (1.85)

The last two equalities follow from (1.66) and the seond of (1.77).

Take formula (1.80). Using (1.84) and (1.85) we have

Γ2(Φ, N) = S(Φ) + Γ̃(Φ,K) +
1

2
tr

[
NS′′(Φ)−N δ2Γ̃(Φ,K)

δΦδΦ
− 1

]
.

Now we must re-express K as a funtion of Φ and N on the left-hand side.

Formula (1.85) tells us that all propagators just beome N . Then we just

have to replae the soures K that appear in the verties. Observe that eah

K is attahed to two ϕ legs, so also two propagators N . Thus, we have to

onsider the produt NKN . Using (1.85) we see that

NKN → NS′′(Φ)N −N −N δ2Γ̃(Φ,K)

δΦδΦ
N.

The soures K on the right-hand side an be treated reursively. Then it is

easy to see that the diagrams of Γ2(Φ, N), and also those of Γ̃2(Φ, N), are

one-partile irreduible.

Working out the N derivative of Γ̃2 and using (1.85), we get

δΓ̃2

δN
=
δΓ2

δN
+

1

2N
− 1

2
S′′(Φ) = −1

2

δ2Γ̃(Φ,K)

δΦδΦ
.

Repeating the argument above, we �nd that the diagrams of δΓ̃2/δN are also

one-partile irreduible. Then the diagrams of Γ̃2 are two-partile irreduible,

beause taking an N derivative is equivalent to utting one internal line.

The funtional Γ∞ is de�ned by oupling soures Kn(x1, . . . , xn) to arbi-

trary strings ϕ(x1) · · ·ϕ(xn) of ϕ-insertions:

Z(J,K) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ+

∞∑

n=2

1

n!

∫
Kn

n︷ ︸︸ ︷
ϕ · · ·ϕ

)
.

Then W (J,K) = lnZ(J,K) as usual and

Φ =
δW

δJ
= 〈ϕ〉, Nn =

δnW

δJ · · · δJ︸ ︷︷ ︸
n

= 〈
n︷ ︸︸ ︷

ϕ · · ·ϕ〉c. (1.86)
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We have, in ompat notation,

δW

δKn
=

1

n!
〈

n︷ ︸︸ ︷
ϕ · · ·ϕ〉 = 1

n!
e−W

δn

δJn
eW
∣∣∣∣
W ′→Φ,W (k)→Nk

.

Performing the Legendre transform with respet to all the soures, we obtain

the funtional

Γ∞(Φ, N) = −W (J,K) +

∫
δW

δJ
J +

∞∑

n=2

∫
δW

δKn
Kn,

where J and the souresKn need to be expressed as funtions of Φ and Nk by

inverting (1.86). The funtional Γ(Φ) is retrieved by setting all the soures

Kn to zero. The funtional Γ2(Φ, N) is obtained by setting all of them to

zero but K2, and so on.

1.6 Massive vetor �elds

So far, we have just onsidered salar �elds. Massive vetor �elds an be

treated in a similar way, while fermions of spin 1/2 require that we extend

the de�nition of funtional integral to antiommuting variables. Finally,

gauge �elds need a separate treatment, sine the de�nition of the funtional

integral in the presene of gauge symmetries is not obvious, even in the

Gaussian limit.

In the ase of massive vetor �elds, we start from the free Proa ation

S
free

(W ) =

∫
d4x

(
1

4
W 2
µν +

m2

2
W 2
µ

)
, (1.87)

where Wµν ≡ ∂µWν − ∂νWµ. The �eld equations

−�Wµ + ∂µ∂νWν +m2Wµ = 0 (1.88)

ensure that the theory propagates only three degrees of freedom at the las-

sial level, sine the divergene of (1.88) gives m2∂µWµ = 0. The propagator

Gµν(x, y) = 〈Wµ(x)Wν(y)〉 is the solution of the di�erential equation

(−�δµν + ∂µ∂ν +m2δµν)Gνρ(x, y) = δµρδ
(4)(x− y)
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and an be easily expressed by means of the Green funtion GB of the salar

�eld. Indeed, realling (1.27), we �nd

Gµν(x, y) =

(
δµν −

∂µ∂ν
m2

)
GB(x, y) =

∫
d4p

(2π)4
eip·(x−y)

δµν +
pµpν
m2

p2 +m2
. (1.89)

At the quantum level the degrees of freedom an be ounted by ount-

ing the poles of the propagator in momentum spae, after swithing to the

Minkowskian framework. Basially, on the pole, whih an be reahed from

the Eulidean notation by writing p = (±im, 0, 0, 0) in the rest frame, the

numerator is the matrix diag(0, 1, 1, 1). The three positive eigenvalues are

the propagating degrees of freedom, while the eigenvalue zero orresponds to

the nonpropagating degree of freedom ∂µWµ.

When we add interations, the Feynman rules and the diagrammatis fol-

low straightforwardly, as well as the de�nitions of the generating funtionals.

Massless vetors are the �elds of gauge theories. It is lear that the mass-

less limit of (1.89) is singular. Thus, gauge �elds need a separate disussion.

For the same reason, the ultraviolet limit of a theory that ontains massive

vetor �elds is singular, beause there the mass beomes negligible. An-

other way to see the problem of massive vetor �elds at high-energies is that

the propagator in momentum spae behaves like ∼ pµpν/(m
2p2) for large,

p instead of ∼ 1/p2. We will see that this behavior does not derease fast

enough to have renormalizability. In general, an interating quantum �eld

theory that ontains massive vetor �elds is nonrenormalizable. The same

onlusion applies to the theories that ontain massive �elds of higher spins,

whih we do not treat here.

1.7 Fermions

The funtional integral provides a formulation of quantum mehanis that is

equivalent to the orthodox ones. Its main virtue is that it allows us to work

with funtions, instead of operators. In pratie, summing over all paths that

onnet the initial point to the �nal one has the same e�et as working with

objets that have nontrivial ommutators. In some sense, the right-hand

sides of the ommutators [q̂, p̂] = i, [â, â†] = 1, where [A,B] = AB−BA, are
replaed by the funtional integration.

We know that, to be onsisteny with the Fermi statistis, the seond

quantization of fermions is done, in the operator approah, by assuming that

14B1 Renorm



46 CHAPTER 1. FUNCTIONAL INTEGRAL

there exist annihilation and reation operators âf and â†f that satisfy the

antiommutation relation {âf , â†f} = 1, where {A,B} = AB + BA. We

expet that a funtional integral over fermions an replae the right-hand

side of this antiommutator. We do not expet, however, that it an do more

than that, for example allow us to work with ommuting objets, instead

of antiommuting ones. Indeed, the Pauli exlusion priniple, whih is the

origin of antiommutators, survives the lassial limit ~→ 0. The right-hand

sides of ommutators and antiommutators vanish when ~ tends to zero, but

the left-hand sides remain unhanged. Thus, to desribe fermions we need to

work with antiommuting objets, and de�ne a suitable integral over them.

Suh objets are alled Grassmann variables, and for the time being we

denote them with θi, θ̄i. They satisfy

{θi, θj} = {θi, θ̄j} = {θ̄i, θ̄j} = 0.

We also need to de�ne funtions of suh variables, then the �ordinary� in-

tegral over them and �nally the funtional integral. These onepts will

sound a bit formal, however we know that we must be prepared to upgrade

the mathematis and inlude notions that may not sound familiar at �rst.

Quantum mehanis already thought us a lot on this. In the derivations of

physial preditions we may need to work with quantities, suh as the wave

funtion, whih do not have a diret onnetion with reality. Ultimately, we

just need to retrieve ordinary real numbers at the very end, when we work

out ross setions or any other physial quantity. In the intermediate steps,

we are free to introdue any objets we want, not matter how awkward they

may look at �rst sight, as long as they are equipped with a set of onsistent

axioms that allow us to manipulate them, and are suh that the physial

quantities we get at the end are real.

Consider a generi funtion of a single Grassmann variable θ. Making a

Taylor expansion around θ = 0, we just have

f(θ) = a+ θb, a = f(0), b = f ′(0). (1.90)

Here a and b are onstants. Every other term of the Taylor expansion disap-

pears, sine θ2 = (1/2){θ, θ} = 0.

Similarly, a funtion of two variables θ, θ̄ reads

g(θ, θ̄) = c+ θd+ θ̄e+ θθ̄f,
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c, d, e and f being other onstants.

Ordinary ommuting variables are normally alled �c-numbers�, to dis-

tinguish them from the Grassmann variables. If the funtion f of formula

(1.90) is a c-number, then a is also a c-number, while b is an antiommut-

ing onstant. If f is antiommuting, then a also is antiommuting, while

b is a c-number. We also say that c-numbers have bosoni statistis, while

antiommuting objets have fermioni statistis.

Now we de�ne the integral of f(θ) in dθ. We introdue di�erentials dθ,

whih are also antiommuting objets, and assume that the integral is linear

and translational invariant. By linearity

∫
dθ f(θ) =

(∫
dθ 1

)
a+

(∫
dθ θ

)
b,

so it is su�ient to de�ne the integrals of 1 and θ. Let us perform the hange

of variables θ = θ′ + ξ, where ξ is onstant and antiommuting. Then, by

translational invariane dθ = dθ′, so

∫
dθ θ =

∫
dθ′ (θ′ + ξ) =

∫
dθ′ θ′ +

(∫
dθ′ 1

)
ξ =

∫
dθ θ +

(∫
dθ 1

)
ξ.

We onlude that the integral of 1 in dθ must vanish. Then, the integral of

θ must not be zero, otherwise our integral would identially vanish. Normal-

izing the integral of θ to 1, we have the formal rules

∫
dθ 1 = 0,

∫
dθ θ = 1,

whih de�ne the Berezin integral .

In pratie, the Berezin integral behaves like a derivative. For example,

under a resaling θ′ = cθ we have

1 =

∫
dθ′ θ′ = c

∫
d(cθ) θ =

∫
dθ θ,

whene, di�erently from usual,

d(cθ) =
1

c
dθ.

This rule oinides with the one of the derivative with respet to θ.
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The basi Gaussian integral reads

∫
dθ̄dθ e−mθ̄θ =

∫
dθ̄dθ

(
1−mθ̄θ

)
= m. (1.91)

The minus sign disappears when we antiommute θ̄ with dθ.

With more variables it is easy to prove that

∫ N∏

i=1

dθ̄idθi θ̄i1θj1 · · · θ̄iN θjN = (−1)Nεi1···iN εj1···jN . (1.92)

Indeed, the result must be ompletely antisymmetri in i1 · · · iN and j1 · · · jN .
Taking ik = jk = k and using (1.91) we orretly get (−1)N .

Then, de�ning the ation

S(θ̄, θ) =

N∑

i,j=1

θ̄iMijθj ,

where Mij is some matrix, we get

∫ N∏

i=1

dθ̄idθi e
−S(θ̄,θ) =

(−1)N
N !

∫ N∏

i=1

dθ̄idθi S
N (θ̄, θ)

=
1

N !
εi1···iN εj1···jNMi1j1 · · ·MiN jN = detM.

Every other ontribution oming from the exponential integrates to zero,

beause it annot saturate the Grassmann variables θ and θ̄. We an easily

generalize this formula to

Z(ξ̄, ξ)≡
∫ N∏

i=1

dθ̄idθi exp

(
−S(θ̄, θ) +

N∑

i=1

(ξ̄iθi + θ̄iξi)

)

=exp




N∑

i,j=1

ξ̄iM
−1
ij ξj


 detM, (1.93)

with the help of the translation θ = θ′ +M−1ξ, θ̄ = θ̄
′
+ ξ̄M−1

.

Finally, a generi hange of variables θ = θ(θ′) produes the reiproal of

the usual Jaobian determinant,

N∏

i=1

dθi =

(
det

∂θ

∂θ′

)−1 N∏

i=1

dθ′i. (1.94)
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The derivative with respet to Grassmann variables an be plaed at the

left of the di�erentials dθ̄, dθ, or at the right of them, so we de�ne left-

and right-derivatives ∂l and ∂r, whih an at most di�er by a minus sign.

Preisely, the di�erential of a funtion reads

df(θ̄, θ) =
∂rf

∂θ̄i
dθ̄i +

∂rf

∂θi
dθi = dθ̄i

∂lf

∂θ̄i
+ dθi

∂lf

∂θi
.

Of ourse, ∂l/∂θ̄ and ∂l/∂θ are antiommuting objets, as well as ∂r/∂θ̄ and

∂r/∂θ. However, observe that

∂r
∂θ̄i

∂l
∂θj

=
∂l
∂θj

∂r
∂θ̄i

.

We an de�ne averages

〈θi1 · · · θin θ̄j1 · · · θ̄jn〉 =
1

Z(ξ̄, ξ)

∂l
∂ξ̄i1

· · · ∂l
∂ξ̄in

∂r
∂ξjn

· · · ∂r
∂ξj1

Z(ξ̄, ξ)

∣∣∣∣
ξ=ξ̄=0

.

In partiular,

〈θiθ̄j〉 =M−1
ij , 〈θiθj θ̄kθ̄l〉 =M−1

il M
−1
jk −M−1

ik M
−1
jl . (1.95)

We an also have integrals over both ommuting variables x and anti-

ommuting variables θ. Writing z̄ = (x̄, θ̄) and z = (x, θ), we de�ne the

superdeterminant as

(sdetM)−1≡ 1

(2π)N

∫
dz̄dz exp(−z̄tMz)

=
1

(2π)N

∫
dx̄dxdθ̄dθ exp(−x̄tAx− x̄tBθ − θ̄Cx− θ̄Dθ),

where the normalization fator is hosen so that sdet1 = 1,

M =

(
A B

C D

)

and eah blok A, B, C and D is a N × N matrix, where A, D ontain

ommuting entries and B, C ontain antiommuting entries. To ompute

the superdeterminant, we perform the translations ȳt = x̄t + θ̄CA−1
and

y = x + A−1Bθ and observe that in the variables ζ̄ = (ȳ, θ̄), ζ = (y, θ), we
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have z̄tMz = ȳtAy + θ̄(D −CA−1B)θ, so the integrals over ommuting and

antiommuting variables fatorize. At the end, we �nd

sdetM =
detA

det(D −CA−1B)
. (1.96)

A useful property, whih we do not prove here, is

ln sdet(expM) = strM ≡ trA− trD, (1.97)

where �str� denotes the so-alled supertrae. Moreover, the in�nitesimal

variation is

δsdetM = δ exp(str lnM) = (sdetM)str(M−1δM). (1.98)

In this book we just need a speial ase of this formula, when M = 1 + δM

and δM is small. Then

sdet(1 + δM) ∼ 1 + tr[δA] − tr[δD] = 1 + str[δM ].

This result an also be proved by expanding formula (1.96) to the �rst order

in δM .

Finally, for a generi hange of variables (z̄, z)→ (ζ̄ , ζ) we have

dz̄dz = dζ̄dζ sdet

∂(z̄, z)

∂(ζ̄ , ζ)
.

Again, we leave this formula without proof, but it is easy to derive the

in�nitesimal version that we need later. For (z̄, z) = (ζ̄+ δζ̄, ζ+ δζ) we have,

to the �rst order,

dz̄dz ∼ dζ̄dζ

(
1 + str

∂(δζ̄, δζ)

∂(ζ̄ , ζ)

)
. (1.99)

The minus sign inside the supertrae is due to the exponent −1 of the Jao-

bian determinant in (1.94).

The ontinuum limit is now straightforward. Consider for example free

Dira fermions, whih have the ation

S(ψ̄, ψ) =

∫
d4x ψ̄(/∂ +m)ψ. (1.100)
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Here

/∂ = γµ∂µ and γµ are the γ matries in Eulidean spae, whih satisfy

{γµ, γν} = 2δµν and (γµ)† = γµ. The Green funtion GF (x, y) = 〈ψ(x)ψ̄(y)〉
is the solution of the equation

(/∂x +m)GF (x, y) = δ(4)(x− y).

We have

GF (x, y) = (−/∂x +m)GB(x, y) =

∫
d4p

(2π)4
−i/p+m

p2 +m2
eip·(x−y). (1.101)

De�ne the generating funtionals

Z(ξ̄, ξ) =

∫
[dψ̄dψ] exp

(
−S(ψ̄, ψ) +

∫
ξ̄ψ +

∫
ψ̄ξ

)
= eW [ξ̄,ξ],

where

∫
ξ̄ψ and

∫
ψ̄ξ stand for

∫
d4xξ̄(x)ψ(x) and

∫
d4xψ̄(x)ξ(x), respe-

tively. Using (1.93) we �nd

W (ξ̄, ξ) =

∫
d4xξ̄(x)GF (x, y)ξ(y)d

4y

plus an irrelevant onstant.

Wik's theorem reads

〈χ1 · · ·χ2n〉 =
∑

P

εP 〈χP (1)χP (2)〉 · · · 〈χP (2n−1)χP (2n)〉,

where χi an either be ψ(xi) or ψ̄(xi), while εP is the signature of the

permutation P . Preisely, εP is equal to 1 or −1, depending on whether

{P (1), P (2), · · · , P (2n)} is obtained from {1, 2, · · · , 2n} by means of an even

or odd number of permutations of two nearby elements. The free orrelation

funtions with an odd number of insertions still vanish.

The perturbative expansion around the free theory is de�ned by following

the guideline of salar �elds. We an onsider, for example, the four-fermion

model

S4(ψ̄, ψ) =

∫
d4x

(
ψ̄(/∂ +m)ψ − λ

4
(ψ̄ψ)2

)
(1.102)

14B1 Renorm



52 CHAPTER 1. FUNCTIONAL INTEGRAL

The Feynman rules are

δγ

α β

=
λ
2 (δ

αβδγδ − δαδδγβ)
βα
=
(

1
i/p+m

)
αβp

(1.103)

where α, β, et. are spinor indies. Observe that:

1) the vertex and the Lagrangian term have opposite signs;

2) eah inoming line of the vertex is a ψ and eah outgoing line is a ψ̄;

3) fermion lines are drawn with arrows pointing from the right to the left;

then their Lorentz indies are ordered from the left to the right;

4) if the Lagrangian term is ordered by putting eah ψ̄ to the left and eah

ψ to the right, the vertex is drawn by putting the ψ̄ legs to the left, and the

ψ legs to the right;

5) if we order the �elds ψ̄ (respetively, ψ) from the left to the right, the legs

assoiated with them are ordered from the top to the bottom (resp., from

the bottom to the top);

6) the exhange of two idential fermion lines �ips the overall sign;

7) the verties must inlude all the permutations of idential lines.

Point 1) is due to the minus sign that appears in front of the ation in

the exponential fator e−S . Point 7) is why the fator 4 of λ/4 drops out.

Diagrams are onstruted with the previous rules, plus the following one:

8) every fermion loop must be multiplied by a fator (−1).
Finally, in evaluating the diagram it must be remembered that, beause

of 3),

9) fermion lines must be followed in the sense opposite to the arrow.

The minus sign in front of fermion loops is due to the Berezin integral.

Consider for example

∫ ∏

i

dθ̄idθi(θ̄V1θ)(θ̄V2θ) exp
(
−θ̄tMθ

)
,

where the Vi's are the matries that appear in the verties, possibly depending

on other �elds. Using (1.95) we obtain

−tr[V1M−1V2M
−1] + (−tr[V1M−1])(−tr[V2M−1]).
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The �rst ontribution orresponds to a one-loop diagram that ontains both

verties, and is indeed multiplied by −1. The seond ontribution is instead

the produt of two diagrams, eah of whih has one loop and ontains a single

vertex.

The result is easily generalized to diagrams with an arbitrary number of

loops. The minus sign appears when we move the �rst θ̄ to the far right:

N∏

i=1

(θ̄Viθ)→ −tr[V1〈θθ̄〉V2〈θθ̄〉V3〈θθ̄〉V4θ · · ·VN 〈θθ̄〉].

The simplest example of salar-fermion theory is the (massless) Yukawa

model

S(ϕ,ψ) =

∫
d4x

(
1

2
(∂µϕ)

2 + ψ̄(/∂ + gϕ)ψ +
λ

4!
ϕ4

)
(1.104)

with Feynman rules

= 1
k2 α βpk

= −λ = −g

=

 1
i/p




αβ

(1.105)

The rules to onstrut the diagrams are the same as before.

The funtional Γ is de�ned as the Legendre transform

Γ(Φ, Ψ̄,Ψ) = −W (J, ξ̄, ξ) +

∫
JΦ+

∫
ξ̄Ψ+

∫
Ψ̄ξ,

where

Φ =
δW

δJ
, Ψ =

δlW

δξ̄
, Ψ̄ =

δrW

δξ
.

All the arguments applied before to prove that W and Γ are the generating

funtionals of the onneted and one-partile irreduible diagrams, respe-

tively, an be repeated here with obvious modi�ations. Atually, we have

already remarked that the derivation an be extended to the most general

loal perturbative quantum �eld theory. The Feynman rules for Z, W and

Γ are the same, sine the diagrams appear in eah funtional with the same

oe�ients (apart from the free two-point funtion of Γ).
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Working on Γ makes the study of renormalization muh simpler. For this

reason, from now on we mostly onentrate on the irreduible diagrams.

The loality assumption, whih is ruial for perturbative quantum �eld

theory, has intriguing aspets. It requires that the ation S(ϕ, ψ̄, ψ, Vµ, . . .)

be a loal funtional of the �elds. It should be noted, however, that the

ation S does not ontain the true interations, whih are enoded in the

orrelation funtions. As we will see, the orrelation funtions are most of

the times nonloal. So, why should we require that the lassial ation be

loal? Even more, why should we require that there exist a lassial ation,

and the theory be built on it? Why not investigate all the oneivable Γ

funtionals diretly?

An attempt like this has been made, a few deades ago, but did not lead

to substantial progress. The point is that if we do not have a su�iently

onstrained starting point, suh as a loal (and renormalizable, as we will

see) lassial ation, what we an say is so arbitrary that making preditions

beomes almost impossible. We have to remember that when we explore

the quantum world, we are not in the same situation as when we explore the

lassial world. We an make only sporadi experiments, and just ollet data

here and there. Instead, when we observe the world around us, the observed

objet emits a pratially in�nite number of photons, whih are olleted by

our eyes, or instruments, in a �nite amount of time, and eah photon is like

an individual experiment. Beause of this, we do not worry so muh about

onstraining the physial laws a priori, beause the experimental observation

is so powerful that it onstrains them for us a posteriori. On the other hand,

if we did not have a way to selet lasses of theories and interations a priori

in quantum �eld theory, we would not be able to get anywhere.

All this is �ne, but prompts a dilemma: why should nature arrange itself

so as to make us apable of investigating it? And isn't it a really twisted

assumption to require that the observable interation be built starting from

a loal �lassial� ation that may have no diret onnetion with the exper-

imental observation of the lassial world?

Well, suh an involved priniple is all that remains of the orrespondene

priniple. We all S the �lassial ation� not beause it has something to do

with lassial phenomena, but beause it is the starting point of a proess of

quantization. Sine we annot have a diret intuition of the quantum world,

the best we an hope is to be able to quant-ize a phantom of the lassial
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world. If we did not even have this hane, we would probably have no way

to make progress in high-energy physis.

After properly formulating loal, perturbative, renormalizable quantum

�eld theory, we will be ready to explore more general quantum �eld theories,

inluding the nonrenormalizable and the nonloal ones. What we stress here

is that if we make a too long oneptual jump at the beginning, we risk to

plunge into the domain of absolute arbitrariness. We have to start from what

is working for sure, or has most hanes to work, and depart from that little

by little.
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Chapter 2

Renormalization

We have seen that the perturbative expansion produes ill de�ned integrals,

suh as (1.49). This is the �rst serious problem of the �reative approxima-

tion� we undertook in the previous hapter. Despite what may appear at �rst

sight, it is not so di�ult to overome this di�ulty. It is useful to ompare

this situation to the situation of a mathematiian in front of an integral over

the real line, ∫ +∞

−∞
dx f(x). (2.1)

Written like this, this expression has no intrinsi meaning, and needs to be

de�ned. Riemann gives us a natural attempt to de�ne it by means of the

improper integral

lim
Λ→∞

∫ +Λ

−Λ
dx f(x). (2.2)

Preisely, a �uto�� Λ is inserted, to replae the original integral (2.1) into

a de�nite one. After alulating the de�nite integral, the limit Λ → ∞ is

studied. If the limit exists, the integral is onvergent. If the limit does not

exist, the integral is divergent.

In quantum �eld theory we do not have to de�ne one integral, but a

theory, whih ontains an in�nite number of integrals, one for eah diagram.

Di�erent diagrams may be related to one another by ertain identities. Phys-

ial quantities involve, in general, sums, produts and onvolutions of inte-

grals. If a single integral does not onverge, the reason may simply be that

we have isolated that integral from the rest of the theory in an inonvenient

5714B1 Renorm



58 CHAPTER 2. RENORMALIZATION

way. This happens, for example, when the �divergene� disappears by hang-

ing variables (�elds, spaetime oordinates or momenta, ouplings and any

other parameter of the theory), i.e. by performing all sorts of operations that

normally do not hange the physis. When that is the ase, the divergene

is not a problem, but just a blunder due to an unfortunate parametrization

of the theory.

Instead of taking the limit Λ→∞ integral by integral, right after insert-

ing the uto�, we postpone this operation till the physial quantities have

been fully worked out. In the meantime, we take the liberty to perform a

number of �almost innouous� operations, whih means move the Λ diver-

genes around, from one quantity to another, by performing hanges of �eld

variables and reparametrizations. Before laiming that our theory is ill de-

�ned, we want to take full advantage of the freedom we have. It is not orret

to view the single integral as an improper integral: it is orret to view the

whole theory as an �improper theory�.

Thus, we have to answer the following question: is there a rearrangement

based on reparametrizations and �eld rede�nitions after whih the theory

admits the Λ→∞ limit?

The insertion of a uto� is alled regularization, the rearrangement of the

Λ divergenes that allows us to ahieve our goal is alled renormalization. Of

ourse, we will have to prove that the physial results do not depend on the

way we regularize and renormalize our theory.

The uto� is a useful tool to lassify the divergenes. In priniple, it may

not be stritly neessary to introdue it, and in the literature there exist

several regularization-independent approahes that do not make expliit use

of a uto�. On the other hand, working with a uto� is very onvenient,

beause it helps us keep trak of what we do when we move the divergenes

around. The goal of the rearrangement is to identify the right plaes of the

divergenes, so that, after moving those �in�nities� to their right destinations,

the limit Λ→∞makes sense in all the physial quantities, but not neessarily

in the single integrals and the quantities that are physially meaningless. If

this program works, we obtain a onsistent (perturbative) de�nition of the

loal quantum �eld theory.

De�nition 1 A theory is alled onvergent if, possibly after a reparametriza-

tion, all the physial quantities admit the limit Λ→∞. Otherwise it is alled

divergent.
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The de�nition of onvergent theory is not equivalent to the de�nition of

�renormalizable� theory. We will appreiate the di�erene later.

The uto� (2.2) is the simplest and most intuitive way to smooth out the

singularities. It amounts to state that the domain of integration is bounded

to momenta that have a modulus smaller than Λ. Clearly, this trik makes

every integral onvergent at �nite Λ. For example, the two-point funtion

GB(x, y) is divergent at oiniding points. At �nite Λ we �nd

GB(x, x) =

∫

|p|≤Λ

d4p

(2π)4
1

p2 +m2
=

1

16π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]

=
1

16π2

[
Λ2 −m2 ln

Λ2

m2
+m2O

(
m2

Λ2

)]
. (2.3)

When Λ is sent to in�nity, we have a quadrati divergene, whih is the

term proportional to Λ2
, plus a logarithmi divergene, whih is the term

proportional to ln Λ, plus �nite ontributions.

Divergenes our at large momenta, or, equivalently, at oiniding points.

They are basially due to the loality of our theories. If we were satis�ed with

nonloal, rather than pointlike, interations, then we ould easily onstrut

theories with no divergenes. However, that is not our purpose, beause, as

we have remarked at the end of the previous hapter, nonloalities may open

that door to a huge arbitrariness. It is better to �rst deal with divergenes

in loal theories, then investigate nonloal theories. Besides, we have already

said that the divergenes of isolated integrals are not the true problem: it

would be a mistake to throw away theories just beause they look divergent

at �rst sight.

De�nition 2 Given a theory having Feynman rules F , a regularization is

any deformation FΛ of the Feynman rules that gives sense to all the individual

integrals generated by the perturbative expansion, and is suh that FΛ gives

bak F when the deformation is swithed o�.

We stress that the regularization does not need to be physial, beause

the uto� must be eventually removed. Atually, the most ommon regu-

larization tehniques are unphysial, in the sense that regularized theories

are not physially aeptable as quantum �eld theories per se, beause they

violate some physial priniple. The uto� is an example of unphysial reg-

ularization, sine it violates unitarity. Indeed, it exludes the ontributions

14B1 Renorm



60 CHAPTER 2. RENORMALIZATION

of high frequenies from the integrals, while unitarity says (loosely speaking)

that the set of partiles that irulate in the loop must oinide with the set

of ingoing and outgoing partiles.

On the other hand, the violation of loality does not sound like the viola-

tion of a physial priniple, so a theory regularized in a nonloal way might

well be physial in its own right. Yet, we stress again that the intrinsi ar-

bitrariness of nonloal theories makes us postpone their investigation to the

very end. For the moment, the problems we �nd in loal theories are rather

welome, beause they give us hope to selet the set of theories that are

admitted a priori. If the seletion is powerful enough we might be able to

make preditions that an be suessfully ompared with experiments.

It may be objeted that inserting a uto� à la Riemann may not be the

smartest hoie. The Lebesgue integral is known to be an exellent gener-

alization of the Riemann integral, and supersedes it in many way. So, the

natural question is: an we regularize quantum �eld theory à la Lebesgue?

Unfortunately, nobody has pursued this diretion, so far. Nevertheless, there

exists a regularization tehnique that very well �ts the needs of perturbative

quantum �eld theory. This is the dimensional regularization.

2.1 Dimensional regularization

The dimensional regularization is a regularization tehnique based on the

ontinuation of the dimension of spaetime to omplex values. We reall

that, as awkward as this onept may sound at �rst, we just need to provide

a onsistent formal onstrution, and equip it with a set of axioms that

allow us to make manipulations and get bak to real numbers in the physial

preditions.

Consider an integral I4 in four dimensions, in momentum spae. Call

the integrated momentum p and the external momenta k. Assume that the

integrand is Lorentz invariant in Minkowski spaetime, and a rational fun-

tion. To dodge a number of nuisanes that are not important for the present

disussion, we still hoose to work in the Eulidean framework. There, the

integrand is invariant under rotations, and an be expressed as a funtion f

of p2 and the salar produts p · k:

I4(k) =
∫

d4p

(2π)4
f(p2, p · k).
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An analyti integral ID(k) in omplex D dimensions an be assoiated with

I4 as follows. Replae the four-dimensional integration measure d4p with

a formal D-dimensional measure dDp, and inlude a (2π)D in the denom-

inator for onveniene, instead of (2π)4. Replae pµ and kµ with formal

D-dimensional vetors inside the integrand. This gives

ID(k) =
∫

dDp

(2π)D
f(p2, p · k). (2.4)

We want to de�ne the analyti integral in D dimensions so that it oinides

with the ordinary integral Id(k) when D takes integer values d and Id(k) is
onvergent. When Id(k) is not onvergent, we want to use ID(k) to lassify

its divergene.

To ahieve this goal, we start by writing the analyti integral ID(k) in
spherial oordinates. The measure reads

∫
dDp=

∫ ∞

0
pD−1dp×

×
∫ 2π

0
dθ1

∫ π

0
dθ2 sin θ2 · · ·

∫ π

0
dθD−1 sin

D−2 θD−1,

any time D is integer. When L is integer and greater than one, we also have

∫ 2π

0
dθ1

∫ π

0
dθ2 sin θ2 · · ·

∫ π

0
dθL−1 sin

L−2 θL−1 1 =
2πL/2

Γ
(
L
2

) ,

whih is the total solid angle in L dimensions.

Sine the external momenta k are �nitely many, beause a Feynman dia-

gram has a �nite number of external legs, the integrand of (2.4) depends on

�nitely many angles θD−L, · · · , θD−1. The number D is still unspei�ed and

for the time being we an imagine that it is integer and su�iently large, in

any ase larger than L. Then we an write

ID(k) =
1

2D−1π(D+L)/2Γ
(
D−L
2

)
∫ ∞

0
dp×

×
∫ π

0
dθD−L

∫ π

0
dθ2 · · ·

∫ π

0
dθD−1p

D−1f̄(p, θ1 · · · θL,D). (2.5)

The funtion f̄ also inludes the fators sini−1 θi, i = D − L, . . . D − 1.

Now, the expression on the right-hand side of (2.5) is meaningful for

generi omplex D. Assume that there is an open domain D in the omplex
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plane where the integral ID(k), written as in (2.5), is well-de�ned. Evaluate

ID(k) in D. Then, analytially ontinue the funtion ID(k) from D to the

rest of the omplex plane. The value of this funtion at D = 4, if it exists,

is the physial value of the integral I4(k). If it does not exist, the funtion

ID(k) has poles around D = 4. Suh poles lassify its divergenes.

For example,

ID(m) ≡
∫

dDp

(2π)D
1

p2 +m2
=

1

2D−1πD/2Γ
(
D
2

)
∫ ∞

0
dp

pD−1

p2 +m2
. (2.6)

The integral is well-de�ned in the strip 0 < ReD < 2. The analyti ontin-

uation gives (see Appendix A, formula (A.5))

Γ
(
1− D

2

)
mD−2

(4π)D/2
=

1

16π2

[
−2m2

ε
+m2

(
ln
m2

4π
− 1 + γE

)
+O(ε)

]
, (2.7)

where γE = 0.5772... is the Euler-Masheroni onstant. The right-hand side

of formula (2.7) is the expansion around four dimensions, having written

D = 4− ε and used formula (A.8).

Observe that the term m2 lnm2
oinides with the one of (2.3). The

logarithmi divergenes of (2.3) and (2.7) oinide after identifying lnΛ with

1/ε. Indeed, for large momenta we have

∫

|p|>δ

dDp

(2π)D(p2)2
∼ 1

8π2ε
+ �nite,

∫

δ6|p|6Λ

d4p

(2π)4(p2)2
∼ 1

8π2
ln Λ,

where δ is an infrared uto�. The other ontributions to (2.3) and (2.7) di�er

from eah other. In partiular, (2.7) ontains no analogue of the quadrati

divergene Λ2
. Di�erenes and similarities will beome learer later.

What happens when the integral, expressed in the form (2.5) does not

admit a domain of onvergene D? Or when it admits more disonneted

domains of onvergene?

First, observe that the Feynman rules of a loal quantum �eld theory

an only give rational integrands. Then, if the domain of onvergene D
exists, it is always unique (a strip X < ReD < Y ), whih ensures that

the analyti ontinuation is also unique, as well as the value of the integral

in D dimensions. The situation where an integral admits two disonneted

onvergene domains annot our.

If an integral does not admit a onvergene domain, assume that we an

deompose the integrand f into a �nite sum of integrands fi, suh that eah of
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them admits its own domain of onvergene Di. Then we de�ne the integral

of f as the sum of the integrals of eah fi. For example, the integrand f ≡ 1

does not admit a domain of onvergene. However, writing

1 =
p2 +m2

p2 +m2
= f1 + f2, f1 =

p2

p2 +m2
, f2 =

m2

p2 +m2
,

we see that f1 and f2 admit the domains of onvergene −2 < ReD < 0 and

0 < ReD < 2, respetively. We thus �nd

∫
dDp

(2π)D
f1 =

DmDΓ
(
−D

2

)

2D+1πD/2
,

∫
dDp

(2π)D
f2 = m2ID(m).

Summing the two ontributions, we disover that the analyti integral of one

is atually zero. The same integral, treated with the uto� method, behaves

like Λ4
. We learn that the dimensional regularization kills every powerlike

divergene. It is sensitive only to the logarithmi divergenes, whih manifest

themselves as poles in 1/ε.

With exatly the same proedure we an alulate the analyti integral

of (p2)α, for every omplex α: we �nd again 0. More generally, let f(p) be a

rational funtion of p. Let αIR and αUV denote the exponents suh that

f(p) ∼ (p2)αIR , f(p) ∼ (p2)αUV ,

for p→ 0 and p→∞, respetively. Deompose the integrand as

f(p)

(
p2 +m2

p2 +m2

)n
=

n∑

k=0

(
n

k

)
(m2)n−k

f(p)(p2)k

(p2 +m2)n
.

The integral of the k-th term of the sum is onvergent in the strip −2αIR −
2k < ReD < 2n−2αUV−2k, whih is non-trivial if its width 2n−2αUV+2αIR

is stritly positive. Note that the width is k independent. Thus, if we hoose

n su�iently large, in partiular larger than αUV − αIR, all the terms of the

sum an be integrated.

Conluding, we an always deompose the analyti integral of a rational

funtion as a �nite sum of integrals admitting nontrivial onvergene do-

mains. The onstrution easily extends to multiple integrals. Sine a loal

quantum �eld theory an only generate rational integrands, our arguments

prove that the dimensional-regularization tehnique is able to de�ne every

integral we need.
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It remains to prove that our de�nition is onsistent. We do not provide

a omplete proof here, but ollet the basi arguments and mention the key

properties of the integral.

First, the analyti integral is linear, and invariant under translations and

rotations. In partiular, the result does not depend on the enter of the

polar oordinates used to write (2.5). Moreover, the usual formulas for the

multiple integration and the hange of variables hold.

The rules of multiple integration deserve some omment. It is always safe

to split an analyti integral in D dimensions as the sequene of two analyti

integrals in D1 and D2 dimensions, with D = D1 +D2, whih are de�ned as

explained above: ∫
dDp

(2π)D
=

∫
dD1p1
(2π)D2

∫
dD2p2
(2π)D2

.

Sometimes, however, it is onvenient to split the integral as an analyti in-

tegral followed by an ordinary integral. For example,

∫
dp1
2π

∫
dD−1p2
(2π)D−1

,

∫
d4p1
(2π)2

∫
d−εp2
(2π)−ε

, (2.8)

and so on. This kind of deomposition also works. However, the outside

integral is still to be meant in the analyti sense. Preisely, after evaluat-

ing the inside integral, we obtain the ordinary integral of a funtion f that

depends on D. That integral must be evaluated in a domain D where it

onverges, and analytially ontinued to the rest of the omplex plane, as

explained above. If a domain D does not exist, it must be written as a �nite

linear ombination of ordinary integrals that separately admit domains of

onvergene Di. For example, if we use the seond split of (2.8) on ID(m),

we an represent it as a four-dimensional integral:

ID(m) =
Γ (1 + ε/2)

(4π)−ε/2

∫
d4p1
(2π)2

1

(p21 +m2)1+ε/2
.

Negleting the prefator, whih tends to 1 when ε tends to zero, this formula

an be viewed as an alternative regularization of the integral. It does not

hange the integration per se and does not introdue a uto� for the large

momenta. Instead, it replaes the propagator by

1

(p2 +m2)1+ε/2
,
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where ε is a omplex number. The integrals have to be alulated in a om-

plex domain of ε-values where they onverge, and then analytially ontinued

to the rest of the omplex plane. In the literature, this proedure is known

as analyti regularization. The good feature of the analyti regularization is

that it deals with ordinary integrals all the time, so its onsisteny is easier

to prove. We antiipate that, however, it breaks gauge invariane, while the

dimensional regularization manifestly preserves it. Using the analyti regu-

larization (or the uto� one), gauge invariane has to be reovered by hand,

whih is possible, but requires a lot of e�ort. The dimensional regularization

is a sort of rationalized analyti regularization, whih knows how to rearrange

itself so as to preserve gauge invariane at no ost.

Finally, it is normally not safe to split an analyti integral as an ordinary

integral followed by an analyti integral, e.g.

∫
d−εp1
(2π)−ε

∫
d4p2
(2π)2

beause the ordinary integral might not onverge. Chek it on ID(m).

2.1.1 Limits and other operations in D dimensions

Limits an be taken applying similar steps. Consider a funtion f(D,x). Its

limit f(D,x0) for x→ x0 is de�ned by applying the following two rules:

a) searh for an open set D of the omplex plane where the limit exists,

alulate it there, and analytially ontinue the result to the omplex plane;

b) if f(D,x) admits no suh D, searh for a deomposition of f(D,x) into

a �nite sum

∑
i fi(D,x), suh that eah fi(D,x) admits a omplex domain

Di where the limit exists, proeed as in point a) for eah fi(D,x) and sum

the analyti ontinuations fi(D,x0).

As an example, onsider the integral

∫
dDp

(2π)D
Λ2

(p2 +m2)(p2 +m2 + Λ2)
. (2.9)

It an be evaluated by means of formula (A.2) of Appendix A, whih allows

us to express it as

∫ 1

0
dx

∫
dDp

(2π)D
Λ2

(p2 +m2 + xΛ2)2
.
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Then formula (A.4) gives

Λ2Γ
(
2− D

2

)

(4π)D/2

∫ 1

0
dx (m2 + xΛ2)D/2−2

=
Γ
(
1− D

2

)
mD−2

(4π)D/2

[
1−

(
1 +

Λ2

m2

)D/2−1
]
. (2.10)

If we take Λ to in�nity in the integrand of (2.9) we get (2.7). Now, onsider

the �nal result (2.10). It admits a regular limit only in the domain ReD < 2.

The analyti ontinuation of the limit in suh a domain gives again (2.7).

To interhange derivatives and integrals, derivatives and limits, and per-

form all sorts of similar operations, we must follow the same guideline, namely

a) deompose the funtion f into a �nite sum of funtions fi eah of whih

admits a domain Di of the omplex plane where the operation an be per-

formed ordinarily, one the integral is expressed in the form (2.5), b) ana-

lytially ontinue eah result to the omplex plane, and c) sum the analyti

ontinuations.

2.1.2 Funtional integration measure

Now we prove an important property that is going to be useful in many

ontexts. We say that a funtion of the �elds and their derivatives, evaluated

at the same spaetime point, is ultraloal if it depends polynomially on the

derivatives of the �elds. It does not need to be polynomial in the �elds

themselves. We prove that

Theorem 1 In dimensional regularization, the funtional integration mea-

sure is invariant under every ultraloal hange of �eld variables.

Proof. Let ϕi denote the �elds and ϕi → ϕi ′ the hange of �eld variables.

If the �eld rede�nition is ultraloal, then there exists a �nite number of loal

funtions Fµ1···µnij suh that

δϕi ′(x)

δϕj(y)
=

N∑

n=0

Fµ1···µnij (ϕ(x))∂µ1 · · · ∂µnδ(D)(x− y) (2.11)
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and the Jaobian determinant an be written as

J = det

δϕi ′(x)

δϕj(y)
= exp

(
tr

δϕi ′(x)

δϕj(y)

)
= exp

(∫
dDx

δϕi ′(x)

δϕi(x)

)

= exp

(
N∑

n=0

∂µ1 · · · ∂µnδ(D)(0)

∫
dDxFµ1···µnij (ϕ(x))

)

Beause of (2.11), the exponent is a �nite sum of loal funtionals multi-

plied by δ(D)(0) or derivatives of δ(D)(0). Suh expressions vanish using the

dimensional regularization, beause in momentum spae they read

∂µ1 · · · ∂µnδ(D)(0) = in
∫

dDp

(2π)D
pµ1 · · · pµn . (2.12)

Realling that the analyti integral is invariant under rotations, we obtain

zero when n is odd, but also zero when n is even. Indeed,

∫
dDp

(2π)D
pµ1 · · · pµ2k ∝ (δµ1µ2 · · · δµ2k−1µ2k + perms.)

∫
dDp

(2π)D
(p2)k = 0.

(2.13)

�

The theorem we just proved is very general. It also holds when the

hange of variables is not polynomial in the derivatives of the �elds, but an

be treated as a perturbative series of ultraloal terms. Moreover, it holds

for all types of �elds: salars, fermions, vetors, tensors, as well as �elds

of higher spins. To inlude �elds of di�erent statistis in the proof, it is

su�ient to replae the determinant by the superdeterminant and the trae

by the supertrae.

We say that a funtional is perturbatively loal if it an be perturba-

tively expanded as a series of terms that are polynomial in the �elds and

their derivatives, evaluated at the same spaetime point. It is perturbatively

ultraloal if it an be perturbatively expanded in a series of terms that are ul-

traloal. In some situations we may just use the terms �loal� and �ultraloal�

in this extended sense.

2.1.3 Dimensional regularization for vetors and fermions

In the dimensional regularization the oordinates xµ, the momenta pµ, the

Kroneker tensor δµν , and so on, have to be viewed as purely formal objets.
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We need to give a onsistent set of operations to manipulate suh objets, so

that the four dimensional results are retrieved when D = 4. Similarly, vetor

�elds Aµ, the gamma matries γµ and spinors ψα also have to be onsidered

as formal objets. In partiular, the gamma �matries� should not be viewed

as true matries, although we keep alling them with their usual name.

We de�ne the D-dimensional Dira algebra as a set of formal objets γµ
that are equipped with a formal trae operation and satisfy the following

axioms:

{γµ, γν}=2δµν1, γ†µ = γµ, tr[γµ1 · · · γµ2n+1 ] = 0,

tr[AB] = tr[BA], tr[1] = f(D), f(4) = 4. (2.14)

In partiular, the formal trae is yli and vanishes on an odd produt of

gamma matries. Using the formal Dira algebra, that is to say the �rst

axiom of (2.14), we an redue every trae to the trae of the identity, whih

we all f(D). The funtion f(D) must be equal to 4 in four dimensions, but

is otherwise arbitrary.

Spei�ally, the axioms (2.14) imply

tr[γµ1 · · · γµ2n ] =
2n∑

i=2

(−1)iδµ1µitr[γµ2 · · · γ̂µi · · · γµ2n ], (2.15)

where γ̂µi means that the matrix γµi is dropped. The proof is idential to

the one in four dimensions. In partiular,

tr[γµγν ] = f(D)δµν ,

tr[γµγνγργσ] = f(D) (δµνδρσ − δµρδνσ + δµσδνρ) .

We also have the identities

γµγµ = D1, γµγργµ = (2−D)γρ.

It seems that in D dimensions everything proeeds smoothly, with minor

modi�ations with respet to the usual formulas, but it is atually not true.

In four dimensions we an de�ne also a matrix γ5 that satis�es {γµ, γ5} =
0. A matrix with suh properties does not exist in omplex D dimensions.

Another objet that annot be extended to D dimensions is the tensor εµνρσ ,

beause it would have a omplex number of indies! For the moment we
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ignore these problems and limit ourselves to nonhiral theories, where γ5 and

εµνρσ do not appear in the Lagrangian and the Feynman diagrams. Later,

we will see that the problem is related to the appearane of an important

�anomaly�. Another fat that is worth mentioning is that in odd dimensions

it an be inonsistent to assume that the trae of an odd produt of gamma

matries vanishes. For example, in three dimensions the trae tr[σiσjσk℄,

where σi are the Pauli matries, is not zero, but proportional to the tensor

εijk. There exist modi�ed versions of the dimensional regularization that

bypass these di�ulties. We will introdue them when needed.

The dimensionally regularized versions of the models studied so far have

formally idential Feynman rules (1.50), (1.103) and (1.105). However, for

D 6= 4 the ouplings are dimensionful even when they are dimensionless in

D = 4. It is onvenient to rede�ne them in a dimensionless way, by isolating

suitable powers of an energy sale µ. For example, the Lagrangians (1.38)

and (1.104) beome

S(ϕ) =

∫
dDx

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

λµε

4!
ϕ4

)
(2.16)

and

S(ϕ,ψ) =

∫
dDx

(
1

2
(∂µϕ)

2 + ψ̄
(
/∂ + gµε/2ϕ

)
ψ +

λµε

4!
ϕ4

)
, (2.17)

respetively. In the new parametrization, both g and λ are dimensionless in

arbitrary D, and the Feynman rules are (1.50) and (1.105) with the replae-

ments g → gµε/2 and λ→ λµε.

2.2 Divergenes and ounterterms

Now that we know that eah diagram is assoiated with a well regularized

integral, we an study the general properties of the diagrammatis.

Consider a diagram G with V verties, E external legs and I internal legs.

Assign an independent momentum to eah leg, internal and external. In total,

this gives I + E momenta. One we impose the momentum onservation at

eah vertex, we remain with I+E−V independent momenta. Now, observe

that the external legs ontain E− 1 independent momenta, beause the Eth

momentum is determined by the global momentum onservation. Therefore,
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the diagram G ontains I + E − V − (E − 1) = I − V + 1 = L independent

internal momenta, and the integral assoiated with G is performed over them.

We all L the number of loops of the diagram. It satis�es topologial formula

L− I + V = 1, (2.18)

whih holds for every diagram, in every theory. It is alled topologial,

beause it oinides with Euler's formula for simple polyhedra, namely

v − e+ f = 2

where v is the number of verties, e is the number of edges and f is the

number of faes of the polyhedron. The orrespondene with (2.18) is v = V ,

e = I and f = L + 1. Indeed, dropping the external legs and adding the

�loop at in�nity�, whih is the (L+1)-th fae, a graph beomes a generalized

polyhedron, namely a polyhedron whose faes are not neessarily �at (whih

still satis�es Euler's formula).

Another very general fat is that the expansion in the number of loops

oinides with the expansion in powers of ~. Although we have set ~ = 1

so far, we an easily restore the ~ dependene by writing the generating

funtionals Z(J) and W (J) as

Z(J) =

∫
[dϕ] exp

(
−1

~
S(ϕ) +

∫
Jϕ

)
= exp

(
1

~
W (J)

)
,

while Γ(Φ) is de�ned as before. In the new Feynman rules a propagator gets

a fator ~ and a vertex gets gets a fator 1/~. Therefore, eah diagram is

multiplied by a fator

~
I−V =

~L

~
,

having used (2.18). Diagrams ontribute to Z in the usual way. If they are

onneted they ontribute to W/~, beause Z = exp(W/~). If they are irre-

duible they ontribute to −Γ/~. We thus see that the L-loop ontributions

to W and Γ are multiplied by ~L.

Consider the �ϕNd theory�, whih is the d-dimensional salar �eld theory

with interation ϕN , whih has the ation

S(ϕ) =

∫
ddx

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 + λ

ϕN

N !

)
.
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For the moment we do not need to ontinue the physial dimension to om-

plex values. Let [O] denote the dimension of an objet O in units of mass.

Coordinates have dimension −1, while momenta have dimension 1. Sine the

ation is dimensionless, the Lagrangian must have dimension d. From the

kineti term, or the mass term, we an read the dimension of ϕ. Then, we

an read the dimension of λ from the vertex. We �nd

[x] = −1, [∂] = 1, [ϕ] =
d

2
− 1, [λ] = N

(
1− d

2

)
+ d. (2.19)

Consider again a diagram G with V verties, E external legs and I in-

ternal legs. Sine N legs are attahed to eah vertex, we have NV legs in

total. Of these, E exit the diagram and 2I, onneted in pairs, build the

internal legs, eah of whih is attahed to two verties. Therefore, we have

the identity

E + 2I = NV. (2.20)

Calling the loop momenta pi, the integral assoiated with the Feynman dia-

gram has the form

IG(k,m) =

∫ L∏

i=1

ddpi
(2π)d

L∏

i=1

1

(pi + ki)2 +m2

V−1∏

j=1

1

(∆pj + k′j)
2 +m2

, (2.21)

where k and k′ are linear ombinations of external momenta, with oe�ients

±1. Moreover, the ∆pjs are nontrivial linear ombinations of the integrated

momenta p with oe�ients ±1. We have used (2.18) to organize the inte-

grand in the way shown.

We need to hek the onvergene of the integral in all regions of inte-

gration. Sine we are in the Eulidean framework, the integral is regular for

�nite values of the momenta p. We just need to study its behavior when the

momenta tend to in�nity in all possible ways. It is su�ient to onsider the

following situations: i) let the momenta of all internal legs tend to in�nity

with the same veloity, or ii) keep the momenta of some internal legs �xed.

A singularity that ours in ase i) is alled ultraviolet overall divergene. A

singularity that ours in ase ii) is alled ultraviolet subdivergene. Sine

in this book we treat only ultraviolet divergenes, we omit to speify it from

now on.

Overall divergenes are studied by resaling the integrated momenta p

with a fator λ,

pi → λpi, (2.22)
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and then sending λ to in�nity. Subdivergenes are studied by performing

the resaling (2.22) with the onstraint that the momenta of some internal

legs are kept �xed. It an be shown that one the divergenes due to the two

types of limits i) and ii) are ured, the integral beomes onvergent. In other

words, all other ways to send the momenta to in�nity are then automatially

ured, beause they amount to some ombinations of the limits i) and ii).

For example, if some momenta p′i are resaled by a fator λ, and the other

momenta p′′i by a fator λ2, then sending λ to in�nity is like �rst resaling

the p′′i s at �xed p
′
is, then resaling the p′is.

The subdivergenes are the overall divergenes of a suitable subdiagram

G
sub

of G. Preisely, G
sub

is the irreduible part of the diagram obtained

by utting the G internal legs whose momenta are kept �xed. Clearly, if

G is irreduible, as we are going to assume from now on, the subdiagrams

G
sub

have fewer loops, beause when we ut one or more G internal lines

we neessarily break some loop. Moreover, sine the perturbative expansion,

namely the expansion in powers of ~, oinides with the loop expansion, the

divergenes an be subtrated algorithmially. In other words, when we deal

with an L-loop diagram, we an assume to be already equipped with the set

of ounterterms that take are of its subdiagrams G
sub

. For the moment, we

ignore the subdivergenes and onentrate on the overall divergenes.

Let us ompute the dimension of IG(k,m). The momentum integration

measure ddp has dimension d, while the propagators have dimension −2.
Using (2.18) and (2.20), we have

[IG(k,m)] = Ld− 2I = V

[
N

(
d

2
− 1

)
− d
]
− E

(
d

2
− 1

)
+ d. (2.23)

Make the resaling (2.22) and onsider the behavior of the integral when λ

tends to in�nity. Let ω(IG) denote the power of λ in this limit. In our present

ase, given the form of the integral (2.21), we have ω(IG) = [IG]. However,
if some external momentum or a mass fatorizes, we may have ω(IG) < [IG].
In general, we have the inequality ω(IG) ≤ [IG]. We all ω(IG) the degree of
divergene of the diagram G. If ω(IG) < 0 and there are no subdivergenes,

then the integral is ultraviolet onvergent, beause it is onvergent in all the

regions of integration. Instead, if ω(IG) ≥ 0, or ω(IG) < 0 but there are

subdivergenes, the diagram is potentially ultraviolet divergent.

To begin with, onsider a one-loop diagram. Sine it has no subdiagrams,

there an be only an overall divergene, but no subdivergenes. Di�erentiate
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the diagram one time with respet to an external momentum k or a mass m,

and observe that

∂

∂kµ

1

(p+ k)2 +m2
=− 2(p+ k)µ

[(p+ k)2 +m2]2
,

∂

∂m

1

(p+ k)2 +m2
=− 2m

[(p+ k)2 +m2]2
.

The di�erentiated diagram has a smaller degree of divergene:

ω

(
∂IG
∂K

)
≤
[
∂IG
∂K

]
= [IG]− 1,

where K is kµ or m. Repeating the argument, we obtain

ω

(
∂n+rIG

∂kµ1 · · · ∂kµn∂mr

)
≤
[

∂n+rIG
∂kµ1 · · · ∂kµn∂mr

]
= [IG]− n− r.

If n + r is su�iently large, [IG] − n − r beomes negative. Thus, if we

di�erentiate the integral a su�ient number of times with respet to its ex-

ternal momenta and/or the masses, the integral beomes overall onvergent.

Said in equivalent words, the di�erentiation kills the overall divergent part.

When we integrate bak the result, we disover that the divergent part must

be polynomial in the masses and the external momenta. This is the ruial

property of renormalization, and is alled loality of the ounterterms, be-

ause the Fourier transform of a polynomial of the momenta is a �nite sum

of delta funtions and derivatives of delta funtions, whih are distributions

loalized at a single point.

Now we desribe how to subtrat the divergent part of a diagram. Call

the integrand f(p, k,m) and onsider

IGR
(k,m) =

∫
ddp

(2π)d

(
f(p, k,m)−

ω̄∑

n=0

1

n!
kµ1 · · · kµn

∂n0 f(p, k,m)

∂kµ1 · · · ∂kµn

)
,

(2.24)

where ω̄ is to be determined, and the subsript 0 in ∂n0 means that after

taking the n derivatives with respet to k, k is set to zero. The sum in (2.24)

ollets the �ounterterms�. They remove the divergenes from the integral.

In pratie, we subtrat the �rst ω̄ terms of the Taylor expansion of the

integrand around vanishing external momenta. The integrand of IGR
is still
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a rational funtion, and it is proportional to ω̄ + 1 powers of the external

momenta. Thus, we an write

IGR
(k,m) = kµ1 · · · kµω̄+1

∫
ddp

(2π)d
fµ1···µω̄+1(p, k,m),

for some other rational funtions fµ1···µω̄+1 . Now,

ω(IGR
) ≤ [IGR

]− ω̄ − 1 = [IG]− ω̄ − 1.

If we hoose ω̄ = [IG], we obtain ω(IGR
) < 0, whih means that IGR

is

overall onvergent.

For example, onsider the one-loop orretion to the four-point funtion

in the theory ϕ4
4. We have the sum of the three diagrams

1
2 +1

2 +1
2

(2.25)

eah of whih has the form (λ2/2)I(k,m), where

I(k,m) =

∫
d4p

(2π)4
1

p2 +m2

1

(p+ k)2 +m2
, (2.26)

with di�erent ombinations k of the external momenta. The integral (2.26)

has ω = 0 and a logarithmi divergene. The subtrated integral reads

IR(k,m) = −kµ
∫

d4p

(2π)4
2pµ + kµ

(p2 +m2)2((p + k)2 +m2)
,

whih is learly onvergent.

We have suessfully subtrated the one-loop integrals, but does our pro-

edure make physial sense? Or did we just arbitrarily hange the theory we

started with? Here enters the ruial property of ounterterms, their loality.

Formula (2.24) shows that in momentum spae the ounterterms are poly-

nomial in the external momenta. For example, the ounterterm for (2.26)

is

R(k,m) ≡ IR(k,m)− I(k,m) = −
∫

d4p

(2π)4
1

(p2 +m2)2
, (2.27)
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whih is k independent, i.e. just a (divergent) onstant.

While a diagram is a nonloal funtion of the external momenta, its

divergent part is loal. Thanks to this property, it looks like a vertex, or

an inverse propagator. For this reason, it an be subtrated by adding ad

ho loal terms to the ation. To do this, however, we have to use a spei�

regularization, beause the integral (2.27) is meaningless without a uto�. If

we use a spei� regularization, for example the dimensional one, then we

an onsistently separate I and R, and move the ounterterms around at

will. We stress that the use of an expliit regularization is not neessary to

de�ne perturbative quantum �eld theory. It is however very onvenient to

keep trak of what we are doing.

So, let us swith to the dimensional regularization. The integral of (2.26)

is promoted to D dimensions as

ID(k,m) =

∫
dDp

(2π)D
1

p2 +m2

1

(p+ k)2 +m2
. (2.28)

and eah λ gets multiplied by µε. Using Feynman parameters, namely for-

mula (A.2), we an rewrite the integral as

∫ 1

0
dx

∫
dDp

(2π)D
1

((p+ kx)2 +m2 + k2x(1− x))2
. (2.29)

Then, we an make a translation p→ p− kx and use (A.4). We get

λ2µ2ε

2
ID(k,m) =

λ2µ2εΓ
(
2− D

2

)

2(4π)D/2

∫ 1

0
dx
(
k2x(1− x) +m2

)D/2−2

=
λ2µε

16π2ε
+
λ2µε

32π2

(
2− γE + ln

4πµ2

m2
(2.30)

−2
√

1 +
4m2

k2
arsinh

√
k2

4m2

)
+O(ε).

The ounterterm (2.27) beomes

−λ
2µ2ε

2

∫
dDp

(2π)D
1

(p2 +m2)2
=−λ

2

2

Γ
(
2− D

2

)

(4π)D/2
µε
( µ
m

)ε

=−λ2µε
(

1

16π2ε
+ c1

)
, (2.31)
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where the onstant c1 is �nite in the limit ε→ 0. We see that the divergent

part does not depend on the external momenta. Sine the diagrams of (2.25)

are three, and all of them have the same divergent part, we have to modify

the ation so as to subtrat three times the divergent part of (2.31). This

result an be ahieved by adding

∆L = 3λ2µε
(

1

16π2ε
+ c1

)
ϕ4

4!
(2.32)

to the Lagrangian. Note that the power µ2ε provided by the diagram, shown

in the �rst line of (2.30), has beome µε in the ounterterm (2.32), to math

to dimensions orretly. The other fator µε gets expanded in ε. As a onse-

quene, µ an enter logarithms in the right plaes to make their arguments

dimensionless, suh as in the seond line of (2.30).

Now we note that the onstant c1 appearing in (2.32) does not atually

need to be the one of (2.31), beause what is important is to subtrat the

divergent part. Thus, the c1 of formula (2.32) an be arbitrary. Roughly

speaking, when we subtrat in�nity, we an as well subtrat in�nity plus

any �nite onstant. Later on we will see that the physial quantities do not

depend on this arbitrariness.

The orretion (2.32) produes an extra vertex

= −3λ2µε

 1
16π2ε

+ c1



(2.33)

that must be added to the Feynman rules. The vertex (2.33) arries an

additional (hidden) power of ~, sine it is of order λ2. Diagrammatially, it

ounts like a one-loop diagram, so it appears in the right plae to subtrat

the divergenes of (2.25). The �nite value of a single subtrated diagram of

(2.25) is thus

− λ2µε

16π2

(√
1 +

4m2

k2
arsinh

√
k2

4m2
− 1

2
ln

4πµ2

m2
+ c

)
, (2.34)

where c is an arbitrary �nite, k-independent onstant. We may as well assume

that c is independent of µ and m. The result admits a smooth massless limit

λ2µε

32π2

(
ln

4πµ2

k2
− 2c

)
, (2.35)
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whih an also be easily omputed from (2.28). Indeed, using (A.3) to do

the integral over x, the �rst line of (2.30) gives at m = 0

λ2µ2ε

2
ID(k, 0) =

λ2µ2εΓ
(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)D/2Γ(D − 2)

(
k2
)D/2−2

. (2.36)

Note again that the fator in front of expression (2.35) is µε instead of µ2ε,

and that the argument of the logarithm ontains appropriate fators of µ

that make it dimensionless.

The modi�ation (2.32), whih subtrats the divergene away, does not

look so serious after all. In the end, it just amounts to rede�ning the oupling

onstant in front of ϕ4
. We are ertainly allowed to do that, sine we have

not attahed any physial meaning to λ, so far. This is the idea of renormal-

ization, and justi�es its name. It is the removal of the divergenes by means

of rede�nitions of �elds and parameters. Note that it would not be possible

to ahieve this goal if the ounterterms were not loal, sine the ation is

loal by assumption. At the same time, loality alone is not su�ient to

ensure that the divergenes an be renormalized.

Consider for example the theory ϕ6
4. We write the interating Lagrangian

as

LI = λ6µ
2εϕ

6

6!
,

where λ6 is a oupling onstant of dimension −2. At one loop we have

divergent diagrams suh as

(2.37)

The orresponding integral is again proportional to ID(k,m). However, to

subtrat this kind of divergene we need to modify the Lagrangian with a

ounterterm of the form

∆L = 35λ26µ
3ε

(
1

16π2ε
+ c1

)
ϕ8

8!
, (2.38)

where 35= 8!/(2!4!4!) is the number of nontrivial permutations of the exter-

nal legs. The modi�ed ation ontains an interation, ϕ8
, that is not present

in the ation of the theory ϕ6
4. Therefore, (2.38 ) annot be absorbed into
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a simple rede�nition of the �elds and the ouplings, but demands a radial

modi�ation of the theory, from ϕ6
4 to ϕ6

4 + ϕ8
4. Moreover, that modi�a-

tion is not even su�ient. Using two verties ϕ8
we an easily onstrut

a one-loop diagram similar to (2.37), with 6+6 external legs. Again, it is

logarithmially divergent and its divergent part an be subtrated only at

the prie of introduing a vertex ϕ12
. We an go on like this inde�nitely: we

disover that the renormalization of divergenes is possible only at the prie

of introduing in�nitely many new verties and new independent ouplings.

Conluding, the loality of ounterterms is neessary, but not su�ient,

to have ontrol on the divergenes. We need to hek that all the ountert-

erms have the form of the terms that are already ontained in the initial La-

grangian. When that happens, the divergenes an be removed by rede�ning

the �elds and the ouplings, the subtration of divergenes is a stable pro-

edure and the �nal Lagrangian is a simple rede�nition of the initial one.

Otherwise, we an attempt to stabilize the Lagrangian, by adding new ad

ho loal terms. Next, we must hek that a �nite number of suh new terms

is su�ient to stabilize the subtration of divergenes to all orders. If that

does not happen, the �nal Lagrangian ontains in�nitely many independent

ouplings and interations.

The theories that ontain �nitely many verties and are stable under

renormalization are alled renormalizable. The theories that are not stable

under renormalization, beause they end up ontaining in�nitely many inde-

pendent terms, are alled nonrenormalizable. As we will prove, the theory

ϕ4
4 is renormalizable. We have already proved that the theory ϕ6

4 annot be

stabilized, so it is nonrenormalizable.

Nonrenormalizable theories are desribed by nonpolynomial Lagrangians,

whih are the sums of loal terms with arbitrarily high powers of the �elds

and their derivatives. We have

L
nonren

=
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

∑

{m,n}

λ{m,n}

MX(m,n)

∏

i

(∂miϕni), (2.39)

where M is some energy sale and

X(m,n) =
∑

i

(
mi + ni

d− 2

2

)
− d

is hosen to make the ouplings λ{m,n} dimensionless. Nonrenormalizable

theories are problemati from the physial point of view. Their orrelation
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funtions depend on in�nitely many parameters, whih means, at the prati-

al level, that in�nitely many measurements are neessary to determine the

theory ompletely, and make preditions that are valid at arbitrarily high

energies.

On the other hand, in most ases nonrenormalizable theories an be used

to make preditions at low energies. If a monomial O in the �elds and their

derivatives has dimension dO, then its insertion into a orrelation funtion

behaves like EdO at low energies, so the interating Lagrangian behaves like

LI ∼ Ed
∑

{m,n}

λ{m,n}

(
E

M

)X(m,n)

.

We an have three typial ases.

1) If all the dimensionless ouplings λ{m,n} are of omparable orders at en-

ergies E ≪ M , only a �nite number of interations is important. We then

say that almost all interations beome negligible at low energies. However,

the number of interations that are important grows with the energy and

beomes in�nite at E ∼M .

2) A behavior like λ{m,n} ∼ X(m,n)−X(m,n)
for large m,n, ensures that

almost all the ouplings an be negleted in every energy range bounded

from above. The number of important ouplings grows with the energy and

beomes in�nite only at E =∞.

3) A behavior like λ{m,n} ∼ X(m,n)X(m,n)
for large m,n, ensures that the

parameter λ{m,n} is negligible for energies

E ≪ M

X(m,n)
.

There exists no energy range where almost all ouplings an be negleted.

Intermediate types of behaviors an be traed bak to these three ases.

The behaviors of the ouplings λ{m,n} are a priori unknown, but omparison

with experiments an suggest whether we are in the situations 1), 2) or 3).

Even in the worst ase, a nonrenormalizable theory may still have a non-

trivial preditive ontent. Indeed, even if the Lagrangian ontains in�nitely

many independent unknown parameters, there might still exist physial quan-

tities that just depend on a �nite subset of them. The hard part is to work out

those physial quantities and make experiments that are suitable for them.
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Stritly speaking, the di�erene between renormalizable and nonrenormal-

izable theories is that the former are always preditive, in an obvious way,

while the latter an be preditive, but only in a rather nontrivial way.

It is worth to stress that the nonrenormalizable theories are muh less

problemati from the mathematial point of view, where it does not really

matter whether the number of independent ouplings is �nite or in�nite.

Indeed, most renormalization theorems we are going to prove hold both for

renormalizable and nonrenormalizable theories

ϕ4
4 at one loop

Let us omplete the one-loop renormalization of the ϕ4
4 theory. Formula

(2.23) gives

ωG 6 4− E,
so the potentially divergent diagrams are those with ωG ≥ 0, i.e. E 6 4.

The renormalization of the four-point funtion has been disussed above.

Sine the ϕ4
4 theory has a Z2 symmetry ϕ → −ϕ, the orrelation funtions

that ontain an odd number of insertions are identially zero. Moreover,

the diagrams with zero external legs need not be onsidered, sine they an

always be subtrated by adding a onstant to the Lagrangian. We remain

with the one-loop orretion to the two-point funtion, whih is the seond

term on the right-hand side of (1.46) and gives the integral

− λµε

2

∫
dDp

(2π)D
1

p2 +m2
= λm2

(
1

16π2ε
− c2

)
, (2.40)

where the onstant c2 is regular for ε → 0. To subtrat this divergene we

modify the ation by adding

∆′L = λm2

(
1

16π2ε
− c2

)
ϕ2

2
. (2.41)

Again, we an take an arbitrary �nite c2 here, di�erent from the one appear-

ing in (2.40). Colleting (2.32) and (2.41), the full one-loop renormalized

ation reads

S1(ϕ) =

∫
dDx

(
1

2
(∂µϕ)

2 +m2

(
1 +

λ

16π2ε
− λc2

)
ϕ2

2

+λµε
(
1 +

3λ

16π2ε
+ 3λc1

)
ϕ4

4!

)
. (2.42)
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More generally, the renormalized ation an be written as

SR(ϕ, λ,m, µ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 +m2Zm2
Zϕϕ

2

2
+ λµεZλ

Z2
ϕϕ

4

4!

)
,

(2.43)

where the oe�ients

Zϕ=1 +O(λ2), Zm2 = 1 +
λ

16π2ε
− λc2 +O(λ2),

Zλ=1 +
3λ

16π2ε
+ 3λc1 +O(λ2), (2.44)

whih depend on λ and ε, are alled �renormalization onstants�. At one loop,

SR oinides with S1. If we ollet the �eld and parameter rede�nitions into

the �bare� quantities

ϕB = Z1/2
ϕ ϕ, m2

B = m2Zm2 , λB = λµεZλ, (2.45)

then SR(ϕ, λ,m, µ) an be rewritten in bare form

SB(ϕB, λB,mB) ≡
∫

dDx

(
1

2
(∂µϕB)

2 +m2
B

ϕ2
B

2
+ λB

ϕ4
B

4!

)
. (2.46)

We see that the bare ation is exatly the lassial ation.

We have already observed that the onstants c1 and c2 of formula (2.42)

are arbitrary. Any time we subtrat a pole 1/ε, we an equivalently subtrat

1/ε plus a �nite onstant. This arbitrariness amounts to a �nite rede�nition

of the �elds and the parameters, whih has no physial signi�ane.

A spei� presription to hoose suh arbitrary onstants is alled sub-

tration sheme. For example, subtrating the �rst terms of the Taylor ex-

pansion around vanishing external momenta is a sheme presription. In

massless theories this presription is not onvenient, beause it an originate

spurious infrared divergenes. Then it is better, for example, to subtrat the

�rst terms of the Taylor expansion around some nontrivial on�gurations of

the external momenta. We an even hoose di�erent on�gurations for dif-

ferent diagrams. A very popular sheme, alled minimal subtration sheme,

amounts to subtrat just the poles in ε, with no �nite parts attahed.

The onstants c1 and c2 parametrize the sheme arbitrariness at one loop.

The residues of the poles 1/ε, on the other hand, are sheme independent. For

example, omparing (2.3) and (2.7), we have remarked that the oe�ients
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of ln Λ and 1/ε oinide, as well as the term m2 lnm2
. Instead, the quadrati

divergenes Λ2
end into the arbitrary onstant c2.

A few triks an allow us to ompute the divergent parts quite easily,

taking advantage of their loality. Consider for example the integral ID(k,m)

of formula (2.28). We know that its divergent part is a polynomial of degree

zero in k and m. Therefore, it just a onstant, and an be alulated by

setting k and m to the values we like. We annot put k = m = 0, however,

beause this a�ets the domain of integration in a nontrivial way: the rules

of the dimensional regularization do not allow us to exhange the integral

and the limits k → 0, m→ 0 in this ase. A better hoie is to keep m 6= 0

and put k = 0: sine the domain of integration is una�eted, the limit k → 0

an be safely taken inside the integral. We ould also keep k 6= 0 and put

m = 0, but the �rst hoie is more onvenient. Then, (2.28) beomes a

standard integral (see Appendix A) and its divergent part an be worked out

immediately.

More generally, sine the divergent part of a diagram is a polynomial of

the external momenta k and the masses m, if we di�erentiate the integral

with respet to k and m, we an redue the degree of the polynomial to zero,

and then proeed as above. If we di�erentiate in all possible ways, we an

fully reonstrut the polynomial, i.e. the divergent part of the diagram.

Using these triks,

Exerise 4 Compute the one-loop renormalization of the ϕ3
6 theory.

Solution. The renormalized ation reads

S(ϕ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 +
m2

2
Zm2Zϕϕ

2 + λµεZλZ
3/2
ϕ

ϕ3

3!
+m4µ−ε∆1ϕ

)
,

where ε = 3−D/2. At one loop the divergent diagrams are those with one,

two and three external legs. The tadpole is

−λµεΓ
(
1− D

2

)
mD−2

(4π)D/2
= −λm

4µ−ε

2(4π)3ε
+ �nite,

whene

∆1 = −
λ

2(4π)3ε
.
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The self-energy is equal to the �rst line of (2.30). The di�erene is that

now we have to expand it around D = 6 instead of D = 4. We obtain the

divergent part

− λ2

12ε(4π)3
(
k2 + 6m2

)
,

whih gives

Zϕ = 1− λ2

12ε(4π)3
+O(λ4), Zm2 = 1− 5λ2

12ε(4π)3
+O(λ4). (2.47)

The divergent part of the orretion to the vertex an be alulated at

vanishing external momenta. We have

−
∫

dDp

(2π)D
λ3µ3ε

(p2 +m2)3
= −λ3µ3εΓ(3−D/2)

2(4π)D/2
(m2)D/2−3 = − λ3µε

2ε(4π)3
+�nite,

so the vertex renormalization onstant is

Zλ = 1− 3λ2

8ε(4π)3
+O(λ4). (2.48)

�

Most of the properties of the renormalization at one loop generalize to all

orders. Now we make some remarks about the renormalization at two loops,

whih help us introdue the proofs of all-order statements.

ϕ4
4 at two loops

We denote the verties provided by the one-loop ounterterms (2.32) and

(2.41) with a dot, as in (2.33). At two loops, we have diagrams that ontain,

in general, both subdivergenes and overall divergenes. For example, on-

sider the following two-loop orretions to the four-point funtion, given by

the diagrams

(b)

1
2

(c)

1
2

1
4

(a) (d)

1
2

(2.49)
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plus two permutations of eah. We begin by onentrating on the �rst three

diagrams, sine the forth one is muh simpler t o deal with. The subdiver-

genes of the diagrams (a), (b) and (c) are subtrated by

1
2

(e)

1
2

(f )
(2.50)

The subdivergenes of eah subdiagram of (a), (b) and (c) are given by one

third of (2.33). Moreover, (2.33) absorbs also a ombinatorial fator 1/2,

whih is the ombinatorial fator of the diagrams (2.25). It is onvenient to

de�ne separate ounterterms for the three diagrams (2.25), even if they are

equal in value. We do this by splitting the ounterterm (2.33) into the sum of

three equal ontributions, and using appropriate labels to remember whih

diagram they ure. So doing, we obtain

= + +
I X

(2.51)

Observe that the rules to ompute the ombinatorial fators remain the

same after this splitting. If A is the value of a vertex with N external legs

and V is the number of times it appears in a diagram, its ontribution is

AV /(N !V V !). Now, if A is deomposed as a sum

∑n
i=1 ai, the multinomial

formula ensures that eah �subvertex� ontributes with the same rule. Indeed

we have

AV

(N !)V V !
=

(
∑n

i=1 ai)
V

(N !)V V !
=
∑

{ni}

n∏

i=1

ani
i

(N !)nini!
, (2.52)

where the sum is taken over sets of non-negative nis suh that

∑n
i=1 ni = V .

Note that it is not neessary that eah term ai of the sum be symmetrized

under the exhange of its external legs.

Now, onsider diagram (a) and its ounterterms:

1
4

+1
2 +1

2
(2.53)
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This sum is free of subdivergenes. Indeed, the two subdiagrams of (a) are

of the �rst type of the list that appears on the right-hand side of (2.51).

Moreover, reall that eah subdiagram arries a ombinatorial fator 1/2,

whih explains why the ounterterms in (2.53) are orretly multiplied by

1/2 instead of 1/4.

Next, onsider diagram (b): the sum

+1
2 +1

2
1
2

I X

(2.54)

is also free of subdivergenes. Observe that this time we use the seond and

third verties of (2.51), beause they both orrespond to the divergent sub-

diagram of (b). Again the ombinatorial fators math, taking into aount

the fator 1/2 absorbed by the divergent subdiagram. Diagram (c) is treated

symmetrially to (b).

In onlusion, the sums

s1 = (a) +
1

3
(e) +

1

3
(f), s2 = (b) +

2

3
(e), s3 = (c) +

2

3
(f). (2.55)

are all free of subdivergenes. Therefore, so is the total t = s1 + s2 + s3 =

(a) + (b) + (c) + (e) + (f).

Sine s1, s2 and s3 are free of subdivergenes, so are their derivatives

with respet to the external momenta and the masses. Now, a su�ient

number of suh derivatives does kill the overall divergenes of s1, s2 and s3
and produes fully onvergent integrals. This proves that the divergent parts

of the subtrated integrals s1, s2 and s3 are polynomial in the masses and

the external momenta.

Let us expliitly hek this fat in s1. For simpliity, we work at m = 0.

Diagram (a) is very easy to alulate, sine it is basially the square of any

diagram of (2.25). We have

(a) =
(−λ)3µε

4
(µεID(k, 0))2 .

Write

µεID(k, 0) =
a

ε
+ b ln

k2

µ2
+ c,
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where a, b and c are �nite for ε → 0. Their values an be read from the

alulations already made (in partiular, a = 1/(8π2)), but for what we are

going to say we do not need to do that. Eah ounterterm of (2.53) equals

−aλ2µε/(2ε), so

1

3
(e) =

1

3
(f) = − 1

2ε
aλ2µε

(−λµε
2

)
ID(k, 0).

Finally,

s1 = −
λ3µε

4

[(
a

ε
+ b ln

k2

µ2
+ c

)2

− 2
a

ε

(
a

ε
+ b ln

k2

µ2
+ c

)]
.

In the di�erene, the (nonloal) subdivergenes

2
ab

ε
ln
k2

µ2
(2.56)

do subtrat away and the surviving (overall) divergenes are purely loal.

We �nd

s1 = −
λ3µε

4

(
−a

2

ε2
+ �nite part

)
, (2.57)

as expeted. This example, although very simple, is su�ient to illustrate the

most general fats. The subdivergenes are in general nonloal, beause they

are �produts� of a divergent part, originated by some subdiagram, times a

�nite (thus nonloal) part, due to the rest of the diagram. Subtrating some-

thing like (2.56) would really require to alter the original theory ompletely,

turning it into a nonloal theory. Fortunately, the subdivergenes are auto-

matially subtrated by the ounterterms assoiated with the subdiagrams.

It remains to onsider the diagram (d) of (2.49). Its subdivergene is

subtrated by

(g)
(2.58)

where the dot denotes the ounterterm of (2.41). The sum s4 = (d) + (g) is

learly free of subdivergenes.
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Consider now the two-loop orretions to the two-point funtion, whih

are given by the diagrams

1
3!

(k)

1
4

(h)
(2.59)

The ounterterms that subtrat the subdivergenes are

(c) (d)

1
2

1
2

(2.60)

whih vanish at vanishing masses, sine they are tadpoles. Diagram (h) has

two types of diverging subdiagrams, orresponding to both types of ontri-

butions (i) and (j). Instead, diagram (k) has a single type of subdiagram,

but it appears three times, sine freezing any internal line gives the same

result. The total t′ = (h) + (k) + (i) + (j) an be arranged as s5 + s6, where

s5 = (h) +
1

3
(i) + (j), s6 = (k) +

2

3
(i), (2.61)

are both free of subdivergenes. Expliitly, the (h) subdivergene due to the

bottom loop is subtrated by (i)/3, while the (h) subdivergene due to the

top loop is subtrated by (j). This (i)/3 is obtained using the middle vertex

of (2.53). Similarly, the (k) subdivergenes obtained freezing any internal

line (whih gives a fator 3) are subtrated by 2(i)/3. These two (i)/3's are

obtained using both the �rst and third verties of (2.53).

Again, this proves that the overall divergenes of the sums s5 and s6 are

polynomial in the masses and the external momenta.

Exerise 5 Calulate Zϕ at two loops in the massless ϕ4
4 theory.

Solution. The two-loop ontribution to the self-energy is

λ2µ2ε

3!

∫
dDp

(2π)D
dDq

(2π)D
1

p2q2(p+ q + k)2
, (2.62)
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where k is the external momentum. We �rst integrate over p by means of

formula (2.36). We get

λ2µ2ε

3!

Γ
(
2− D

2

) [
Γ
(
D
2 − 1

)]2

(4π)D/2Γ(D − 2)

∫
dDq

(2π)D
1

q2[(q + k)2]2−D/2
.

Now we use the Feynman parameters again to alulate the integral over q.

We obtain

λ2µ2ε

3!

Γ(3−D)
[
Γ
(
D
2 − 1

)]3

(4π)DΓ
(
3D
2 − 3

) (k2)D−3. (2.63)

Extrating the divergent part, we �nally obtain

Zϕ = 1− λ2

12ε(4π)4
+O(λ3). (2.64)

Exerise 6 Calulate Zλ at two loops in the massless ϕ4
4 theory.

Solution. The diagrams we have to study are those of formula (2.49),

plus the ounterterms (2.50) and (2.58), plus two permutations of eah. The

diagram (d) and its ounterterm (g) vanish in at m = 0. Sine Zλ is indepen-

dent of the external momenta k, we an simplify the alulation by setting k

to zero and working with nonvanishing arti�ial masses δ (to avoid infrared

problems). Alternatively, we an keep the masses equal to zero and hoose

onvenient on�gurations of the external momenta. We adopt the seond

option. The divergent ontributions sdiv3 and sdiv2 of s3 and s2 oinide, so

the total divergent part an be written as 3(sdiv1 + 2sdiv2 ), where sdiv1 an be

read from (2.57) and the overall fator 3 takes the permutations into aount.

Now we evaluate the diagram (b). Let k denote the total inoming mo-

mentum of the two external legs on the left-hand side. We an simplify the

alulation by setting the momentum k′ of the top-right external leg to zero.

Indeed, it is easy to see that the integral beomes fully onvergent after one

derivative with respet to k′, whih means that the divergent part, although

nonloal, annot depend on k′. The same trik does not work for k, so we

annot set k = 0. The subdiagram an be replaed with its exat expression

(2.36). We get

(b) = −λ
3µ3εΓ

(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)D/2Γ(D − 2)

∫
dDp

(2π)D
1

(p2)3−D/2(p− k)2 .
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Now the alulation proeeds as usual. We get

(b) =
λ3µ3ε

[
Γ
(
D
2 − 1

)]3
Γ(3−D)

(4π)D(4−D)Γ
(
3D
2 − 4

)
(
k2
)D−4

=− λ3µε

(4π)4ε2
− λ3µε

(4π)4ε

(
5

2
− γE − ln

k2

(4π)µ2

)
+ �nite.

On the other hand, it is easy to evaluate (e), whih gives

(e) =
3λ3µ2εΓ

(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)2ε(4π)D/2Γ(D − 2)

(
k2
)D/2−2

=
3λ3µε

(4π)4ε2
+

3λ3µε

2(4π)4ε

(
2− γE − ln

k2

(4π)µ2

)
+ �nite.

The total gives

s2 = (b) +
2

3
(e) =

λ3µε

(4π)4ε

(
1

ε
− 1

2

)
+ �nite.

Note that the nonloal subdivergenes anel out, as it must be. Finally,

olleting the ontributions of s1 and s2, we get

3(sdiv1 + 2sdiv2 ) =
3λ3µε

(4π)4ε

(
3

ε
− 1

)
.

Using (2.64) we obtain

Zλ(λ, ε) = 1 +
3λ

(4π)2ε
+

9λ2

(4π)4ε2
− 17λ2

6(4π)4ε
+O(λ3). (2.65)

Exerise 7 Compute the two-loop renormalization of the massless ϕ6
3 theory.

Solution. The renormalized ation is

S(ϕ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 + λµ2εZλZ
3
ϕ

ϕ6

6!

)
,

where ε = 3−D. It an be easily heked that there is no one-loop divergene,

so we just have to onsider the two-loop diagrams. Moreover, there is no two-

loop ontribution to the wave-funtion renormalization onstant. Instead,

the vertex gets a ounterterm from the diagram
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The ombinatorial fator is 1/6. The divergent part does not depend on

permutations of external legs, whih gives an extra fator of 10. We just

have to alulate (2.62), multiplied by 10µ2ε. Using (2.63) and expanding

around D = 3 we get

Zλ = 1 +
5λ

6ε(4π)2
+O(λ2). (2.66)

Note that using the dimensional regularization no other ounterterm an be

generated. For example, a ounterterm of type ϕ4
is in priniple allowed

by power ounting, but it would have to be multiplied by a dimensionful

parameter, whih is absent in the massless ase. On the other hand, the

dimensional regularization kills the powerlike divergenes, beause it has a

sort of dimensionless uto�.

Exerise 8 Compute the �rst ontribution to the self-energy ounterterm of

the massless ϕ6
3 theory.

Solution. The �rst orretion to the self-energy is of order λ2 and has

four loops. It an be omputed with the method used in exerise 5 to go from

(2.62) to (2.63). The di�erene is that now we have to iterate the integration

four times instead of two. The result is

λ2µ4ε

5!

Γ(5− 2D)
[
Γ
(
D
2 − 1

)]5

(4π)2DΓ
(
5D
2 − 5

) (k2)2D−5. (2.67)

Extrating the divergent part, we obtain

Zϕ = 1− 4λ2

45ε(16π)4
+O(λ3). (2.68)

2.3 Renormalization to all orders

In the renormalizable theories, whih we lassify in the next setions, formu-

las like (2.45) generalize to all orders. Now we desribe what happens, and

later prove the theorems that justify our laims. Let ϕ, λ and m olletively

denote the �elds, the ouplings and the masses, respetively. Start from the

lassial ation, and interpret it as the bare ation SB(ϕB, λB,mB) of the

quantum �eld theory, whih depends on the bare �elds and parameters, de-

noted by the subsript B. Then, there exist renormalization onstants Zϕ,
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Zm and Zλ, whih depend on λ and ε, and renormalized quantities ϕ, λ and

m, de�ned by the map

ϕB = Z1/2
ϕ ϕ, m2

B = m2Zm, λB = λµpεZλ, (2.69)

suh that all the renormalized generating funtionals and the renormalized

orrelation funtions are onvergent in the limit ε → 0. The renormalized

generating funtionals oinide with the bare generating funtionals written

in terms of the renormalized �elds and parameters. The renormalized orre-

lation funtions are equal to the bare orrelation funtions, written in terms

of the renormalized �elds and parameters, apart from a multiplying fator,

whih is spei�ed below. In formula (2.69) p denotes the di�erene between

the ontinued and the physial dimensions of λ, the physial dimension being

the one at ε = 0.

Preisely, de�ne the renormalized ation SR, suh that

SB(ϕB, λB,mB) = SR(ϕ, λ,m, µ). (2.70)

Then, de�ne the bare and renormalized generating funtionals Z and W by

means of the formulas

ZB(JB, λB,mB) =

∫
[dϕB]e

−SB(ϕB,λB,mB)+
∫
ϕBJB = e

WB(JB,λB,mB)

=

∫
[dϕ]e−SR(ϕ,λ,m,µ)+

∫
ϕJ = ZR(J, λ,m, µ) = e

WR(J,λ,m,µ), (2.71)

with

JB = Z−1/2
ϕ J.

De�ne also bare and renormalized orrelation funtions, possibly onneted

and/or irreduible, as

GB(x1, ..., xn, λB,mB) = 〈ϕB(x1) · · ·ϕB(xn)〉
=Zn/2ϕ 〈ϕ(x1) · · ·ϕ(xn)〉 = Zn/2ϕ GR(x1, ..., xn, λ,m, µ).

Next, using

ΦB(JB)x =
δWB(JB)

δJB(x)
= 〈ϕB(x)〉J

=Z1/2
ϕ 〈ϕ(x)〉J = Z1/2

ϕ

δWR(J)

δJ(x)
= Z1/2

ϕ Φ(x),
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perform the Legendre transforms, and onstrut the bare and renormalized

generating funtionals Γ. We �nd

ΓB(ΦB, λB,mB) =−WB(JB(ΦB)) +

∫
JB(ΦB)ΦB

=−WR(J(Φ)) +

∫
J(Φ)Φ = ΓR(Φ, λ,m, µ).

By de�nition, the map (2.69) must be suh that

ΓR(Φ, λ,m, µ) <∞,

in the limit ε→ 0, that is to say all the irreduible diagrams are onvergent

one expressed in terms of the renormalized quantities. This fat also implies

ZR(J, λ,m, µ) <∞, WR(J, λ,m, µ) <∞, GR(x1, ..., xn, λ,m, µ) <∞.

Observe that the renormalized ation SR(ϕ, λ,m, µ), instead, is not onver-

gent for ε→ 0. Chek for example, the one-loop renormalized ation (2.42).

However, the lassial ation does not have a diret physial meaning. It is

just a tool that allows us to implement what remains of the orrespondene

priniple in quantum �eld theory. As promised, renormalization amounts to

a hange of �eld variables, ombined with a reparametrization, that is able to

move the divergenes away from all the physial quantities. It does not are

if the nonphysial quantities, suh as the lassial ation, remain or beome

meaningless.

Note that the renormalized sides of (2.69), (2.70), et., depend on one

quantity more than the bare sides, that is to say the dynamial sale µ. The

nontrivial µ dependene of the renormalized orrelation funtions is the root

of the renormalization-group �ow, whih will be studied later.

To prove the renormalizability to all orders, we need to prove two prop-

erties, to all orders, namely that the ounterterms are loal, and that they

have the form of the terms already ontained in the bare ation SB. We

begin with the loality of the ounterterms.

2.4 Loality of ounterterms

Now we are ready to prove the theorem that ensures the loality of the

ounterterms.
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Theorem 2 One subdivergenes are subtrated, the overall divergenes of a

diagram are loal and polynomial in the masses.

Proof. Let V0 denote a vertex of the starting Lagrangian and VL an L-

loop ounterterm, L ≥ 1. Let VL denote the set of VLs, L > 0. Moreover, let

GL denote an L-loop diagram onstruted with the verties of V0, and GL the

set of suh diagrams. Let CL denote an L-loop diagram onstruted with at

least one ounterterm VN , 0 < N < L, and CL the set of suh diagrams. Note

that a CL annot be a VL. A ounterterm VL subtrats an overall divergene

of some diagram GL. Instead, a diagram CL subtrats some subdivergene

of a GL.

Proeeding indutively, assume that the theorem is true up to the nth

loop order inluded, whih means that all Vm's with m 6 n are loal and

polynomial in the masses. Then, onsider a diagram Gn+1. It orresponds

to an integral over n+ 1 momenta pi, i = 1, . . . , n+ 1. The momenta of the

internal legs are linear ombinations ∆pi of the pi with oe�ients ±1. The
potentially diverging ontributions to the integral an only ome from the

integration regions where the momenta pi are sent to in�nity. The overall

divergene orrespond to sending the pis to in�nity with the same veloity.

The subdivergenes also orrespond to sending them to in�nity with the same

veloity, but with the onstraint that some ∆pi are kept �xed. One we ure

the behaviors in suh integration regions, the integral is onvergent, beause

any other integration regions, suh as the ones orresponding to sending some

∆pi to in�nity with di�erent veloities, are automatially overed.

From the diagrammati point of view, keeping the momenta of some

internal lines �xed while all other integrated momenta are sent to in�nity

amounts to ut those internal lines and single out a proper subdiagram.

Suh a subdiagram is not neessarily onneted, nor irreduible. We do not

need to worry about that, sine the indutive assumption ensures that all

the diagrams of orders 6 n are appropriately subtrated. Indeed, one the

irreduible ones are ured to some order, the onneted and disonneted

diagrams are also ured to the same order.

Observe that the subdiagrams themselves have overall divergenes and

subdivergenes. Nevertheless, again, the indutive assumption ensures that

the neessary ounterterms are right there. This is atually a nontrivial

fat, sine we must onvine ourselves that the diagrams CL, whih are built

with at least one ounterterms, appear in the right plae and with the right
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oe�ient. Now we show that this property follows from Wik's theorem.

The examples studied before suggest that there exists a diret math

among the oe�ients of �terms and ounterterms�, the Gs and the Cs. For-

mula (2.55) and (2.61) tell us that we need to multiply the subtrations C

by appropriate oe�ients in order to math the Gs. This is the nontrivial

part of the game: to distribute every C among various Gs, and hek that

the total oe�ient in front of C is still equal to one. For example, the sub-

tration (e) had to be split as follows: one third for (a) and two thirds for

(b). In the end, everything worked perfetly, but what is not obvious is how

to promote those examples to a general proof to all orders. Fortunately, we

are making the problem harder than it atually is. It is su�ient to hange

the viewpoint, to realize that all the oe�ients math in a rather natural

way.

To see this, we rearrange the perturbative expansion not as a sum over

diagrams G, but as a sum over sets of Wik ontrations that lead to the

diagrams. We antiipated that this trik was going to be useful for some the-

oretial proof (although it is de�nitely not onvenient at the pratial level).

Let us denote the Wik ontrations with Ḡ. We know that eah Wik

ontration has a simple ombinatorial fator (the numerator s of (1.51) is

always equal to one for bosons, and ±1 if fermions are present), while dia-

grams have ompliated ombinatorial fators. It is onvenient to apply a

similar trik for ounterterms. Rather than olleting the idential ontri-

butions altogether into a single ounterterm, it is onvenient to �mark� eah

ounterterm, to keep trak of the Ḡ it omes from. To make this operation

learer, we an refer to (2.33) and its splitting (2.51). In (2.51) we marked

eah ontribution to keep trak of the diagram it ame from, rather than the

Wik ontration. We stress that here we want to do even more, that is to say

mark eah ontribution so as to remember the Wik ontration Ḡ it omes

from. Clearly, all suh marked ounterterms have s = ±1. Moreover, after

the deomposition, the ombinatorial fators follow again the usual rules, as

shown in (2.52).

Now, express the orrelation funtion as a sum over the Ḡs. Eah Ḡ

has subdivergenes, whih are just subsets of Wik ontrations. Eah suh

subset is ertainly equipped with its own ounterterm, and the oe�ient is

ertainly orret, beause in this expansion all the fators s are equal to plus

or minus one.
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Therefore, the sum

t =
∑

Ḡn+1

Ḡn+1 +
∑

C̄n+1

C̄n+1 =
∑

Gn+1

Gn+1 +
∑

Cn+1

Cn+1

is free of subdivergenes. Here the bars refer to the rearrangement of the

sums over sets of Wik ontrations and the assoiated ounterterms.

The argument just given teahes us that, in pratie, we do not need

to worry about the ombinatorial fators: they always turn out to be right,

simply beause there exists a rearrangement where the ombinatorial fators

of �terms and ounterterms� naturally math. We emphasize that, ultimately,

this fat is due to Wik's formula, stating that eah Ḡ appears one and only

one.

One we know that t is free of subdivergenes, we also know that a

su�ient number of derivatives with respet to the masses and the external

momenta kills the overall divergene and produes a fully onvergent integral.

Thus, the divergent part of t is polynomial in the external momenta and the

masses, whih ensures that the Vn+1s are loal and polynomial in the masses.

The indutive assumption is then promoted to the order n+ 1 and so to all

orders. �

The one have just onsidered is the �olletive version� of the theorem

about the loality of ounterterms, whih states that the sum of all the

(n + 1)-loop diagrams behaves orretly. A re�ned version of the theorem

holds diagram by diagram, whih states that every time the subdivergenes

of a diagram are subtrated away its overall divergene is polynomial in

the external momenta and the masses. Preisely, there exist onvex linear

ombinations

GRn+1 = Gn+1 +
∑

Cn+1

aC,Gn+1Cn+1,
∑

Gn+1

aC,Gn+1 = 1, (2.72)

that are separately free of subdivergenes. The aC,Gn+1 are appropriate on-

stants that an be worked out with the method desribed below. The di-

vergent part of eah GRn+1 is loal and polynomial in the masses. Examples

of (2.72) are (2.55) and (2.61). The olletive version of the theorem also

follows from its single-diagram version.

We illustrate the single-diagram version of the theorem by onsidering a

ϕ3
6 two-loop diagram together with the ounterterms that subtrat its sub-
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divergenes,

c

d

f

g

g

g
h

h

f

d d

d
e e

e

c

a

a
b

b

hb

a

e

(2.73)

The dot denotes the one-loop vertex ounterterm. Instead, the square de-

notes just one ontribution to the two-loop vertex ounterterm, the one that

subtrats the overall divergene of the subdiagram (sd) of the following pi-

ture:

(c)(sd)
(2.74)

Note that () does not inlude the ontributions assoiated with the permu-

tations of the (sd) external legs. As above, we mark eah ounterterm to

remember whih Wik ontration it omes from. Then, we sum the Wik

ontrations that give the same diagram. Thus, () is already equipped with

the appropriate oe�ient to �t into the linear ombination (2.72).

Consider (2.73). Let R(u1, ...uk) denote the region where the momenta

u1, ...uk are sent to in�nity and the other ones are kept �xed. Observe

that the dot and the square �hide� ertain momenta. Now, a ounterterm

subtrats the overall divergene of a subdiagram, whih means that it or-

responds to the integration region where the hidden momenta are sent to

in�nity. For example, the dot of the seond diagram ontributes to the re-

gions R(a, b, c) and R(a, b, c, d, e, f), but does not ontribute to the region

R(a, b, d, e, g, h).

Now we study the subdivergenes region by region. Region R(a, b, c):

the diagram is orreted by the �rst ounterterm. The other ounterterms

are not onerned. Region R(a, b, c, d, e, f): the diagram is orreted by

the �rst and third ounterterms. Region R(a, b, c, f, g, h): the diagram is

orreted by the �rst, seond and �fth ounterterms. The regions R(f, g, h)

and R(d, e, f, g, h) are symmetri to the �rst two already onsidered. All
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other regions are trivial. We onlude that the sum (2.73) has only overall

divergenes, whih are loal. The argument we have illustrated in the ase

(2.73) generalizes to the most general diagram.

The loality of ounterterms is a very general property. It does not de-

pend on the theory, i.e. the types of �elds, the forms of the propagators and

the strutures of the verties, as long as a su�ient number of derivatives with

respet to the external momenta, or the masses, kills the overall divergenes.

Any loal, Lorentz invariant theory satis�es this property and produes loal

ounterterms. For example, if the verties ontain derivatives, then the inte-

grand of (2.21) are multiplied by ertain polynomials of the momenta. Yet,

it is true that: (i) every derivative with respet to the external momenta or

the masses lowers the overall degree of divergene; and (ii) su�ient numbers

of suh derivatives kill the overall divergenes. The subtration of subdiver-

genes desribed above is a matter of mere diagrammatis. In partiular, it

does not require to satisfy any onditions of renormalizability. Even more,

the loality of ounterterms is so general that it holds in several types of

theories not onsidered so far, inluding Lorentz violating and nonloal ones.

We mentioned before that a few triks an simplify the alulation of the

divergent part of a diagram. Now we an upgrade one of those triks. In

general, an L-loop diagram G orresponds to an integral of the form

IG(k,m) =

∫ L∏

i=1

dDpi
(2π)D

P (p, k,m)

Q(p, k,m)
, (2.75)

instead of (2.21), where P and Q are polynomials of p, k and m. Nontrivial

numerators P appear when the verties ontain derivatives. We know that

the axioms satis�ed by the analyti integral do not allow us to expand the

integrand in powers of k and m, and integrate term by term. Nevertheless,

it would be very onvenient to do so, beause it would allow us to e�iently

isolate the overall divergent parts from the rest. We an make these opera-

tions legitimate by introduing arti�ial masses δ > 0 in the denominators of

propagators. Spei�ally, let IRG(k,m) denote the subtrated integral, that

is to say the integral assoiated with the sum GRL of formula (2.72). Write

IRG(k,m) = lim
δ→0
IRG(k,m+ δ).

Sine IRG is equipped with the ounterterms that subtrat its own subdi-

vergenes, the loality of ounterterms ensures that IG(k,m + δ) only has
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overall divergenes, and those depend polynomially on k, m and δ. Separate

IRG(k,m+ δ) into the sum of its divergent part IRGdiv(k,m + δ) and its on-

vergent part IRGonv(k,m + δ). Sine IRGdiv(k,m + δ) in a polynomial in δ,

it admits a smooth limit IRGdiv(k,m) for δ → 0. Then, IRGonv also admits

a smooth limit for δ → 0, beause the sum IRGdiv + IRGonv must tend to

IRG(k,m). Thus, we an write

IRG(k,m) = IRGdiv(k,m) + lim
δ→0
IRGonv(k,m+ δ).

The seond term on the right-hand side has no poles for ε → 0, so it is

onvergent even after taking the limit δ → 0. Finally, the divergent part of

the subtrated diagram GRL an be alulated as

IRGdiv(k,m) = lim
δ→0
IRGdiv(k,m+ δ). (2.76)

We stress again that it is not legitimate to expand the integrand of IG(k,m)

in powers of both k and m and then integrate term by term. However,

these operations are legitimate on IRG(k,m + δ), as long as δ is nonzero.

Formula (2.76) tells us that when we set δ bak to zero, we reover the

full divergent part of IRG(k,m). The upgraded trik is partiularly useful

in massless theories, beause the arti�ial mass allows us to ompute the

divergent parts by expanding in powers of the external momenta.

Exerise 9 Prove that, in dimensional regularization, an odd-dimensional

loal quantum �eld theory has no nontrivial L-loop divergenes, if L is odd.

Solution. The integrals have the form (2.75). We insert arti�ial masses

δ in the denominators, then expand in powers of the true masses m and the

external momenta k. In the end, all the overall divergenes are given by

expressions of the form

∫ L∏

i=1

dDpi
(2π)D

pµ1 · · · pµn
Q′(p2)

, (2.77)

where the denominator is a polynomial in the squared momenta p2i and ∆p2j .

If both d and L are odd, then n must be odd, otherwise the integral is either

onvergent or powerlike divergent. We reall that powerlike divergenes are

fake divergenes in dimensional regularization. If n is odd, the integral (2.77)

is odd under the transformation pi → −pi, so its overall divergent part

vanishes.
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2.5 Power ounting

The renormalizability of a theory an be established with a simple dimen-

sional analysis, alled power ounting.

Consider a d-dimensional theory of interating bosoni �elds ϕ and fermioni

�elds ψ. We assume that the bosoni �elds have propagators PB(k) that be-

have like ∼ 1/k2 for large momenta k. By this we mean that also behaviors

suh as

PB(k) ∼
∑

n

kµ1 · · · kµ2n
(k2)n+1

(2.78)

are allowed. Similarly, we assume that the fermioni �elds have propagators

PF (k) that behave like ∼ kµ/k2, or more generally

PF (k) ∼
∑

n

kµ1 · · · kµ2n+1

(k2)n+1
, (2.79)

for large momenta. Suh behaviors tell us that the dimensions of the bosoni

and fermioni �elds are (d− 2)/2 and (d− 1)/2, respetively.

More generally, onsider �elds χa of dimensions d/2−a with propagators

that behave like

Pa(k) ∼
∑

n

kµ1 · · · kµn
(k2)n/2+a

at large momenta, where a is integer or half-integer, and n is even or odd,

respetively. We are not making assumptions about the sign of a, nor the

statistis of χa.

Letm olletively denote the masses of the �elds. Let niB, niF , nia denote

the numbers of legs of the types B, F and a of the ith vertex. Assume that

the vertex is a polynomial Vi(k) in the momenta, and that its dimension is

units of mass is δi.

Consider a diagram G with EB , EF , Ea external legs and IB, IF , Ia
internal legs of the various types, vi verties of the ith type and L loops. We

have, from (2.18)

L− IB − IF −
∑

a

Ia + V = 1, V =
∑

i

vi. (2.80)

We denote the external momenta with k and the loop momenta with p. The
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integral assoiated with G has the form

IG(k,m) =

∫
dLdp

(2π)Ld

IB∏

j=1

PBj(p, k,m)

IF∏

l=1

PF l(p, k,m)×

×
∏

a

Ia∏

ja=1

Paja(p, k,m)
∏

i

vi∏

li=1

Vili(p, k,m), (2.81)

where the indies j, l, ja and li of PBj , PF l, Paja and Vili label the propagators

and the verties. Now, resale k and m to λk and λm. It is onvenient to

resale also the loop momenta, whih is just a hange of variables in the

integral. Then IG(k,m) resales with a fator equal to its dimension in units

of mass, whih is

[IG] = Ld− 2IB − IF − 2
∑

a

aIa +
∑

i

viδi. (2.82)

Sine the overall divergenes are loal, one the subdivergenes have been

subtrated away, we infer that they are a polynomial of degree ωG 6 [IG] in
the external momenta and the masses. Now, ount the bosoni legs attahed

to the verties: they an exit the diagram or be onneted to other bosoni

internal legs, so

EB + 2IB =
∑

i

viniB.

Similarly, the ountings of fermioni legs and the legs of the type χa, we

obtain

EF + 2IF =
∑

i

viniF , Ea + 2Ia =
∑

i

vinia.

Using (2.80)-(2.82) and ωG 6 [IG] we get

ωG 6 d(EB , EF , Ea) +
∑

i

vi [δi − d(niB , niF , nia)] ,

where

d(x, y, za) ≡ d−
d− 2

2
x− d− 1

2
y −

∑

a

d− 2a

2
za.

We see that if all the verties satisfy

δi 6 d(niB , niF , nia) (2.83)
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then all the ounterterms satisfy the same inequality, namely

ωG 6 d(EB , EF , Ea). (2.84)

In other words, if the lassial Lagrangian inludes all the verties that satisfy

(2.83), then the divergent parts of all the diagrams an be subtrated by

renormalizing the ouplings, the �elds and the masses. The ondition (2.83)

de�nes a theory that is renormalizable by power ounting.

Instead, when the Lagrangian ontains some vertex v̄ that does not satisfy

(2.83), then the diagrams ontaining v̄s an have an arbitrarily large degree

of divergene. In general, in that ase, it is neessary to add in�nitely many

new verties and ouplings to the Lagrangian, if we want to subtrat the

divergenes by means of rede�nitions of the �elds and the parameters. This

kind of theory is alled nonrenormalizable.

The theories with all the δis equal to d(niB , niF , nia) are alled stritly

renormalizable, those with all the δis smaller than d(niB , niF , nia) super-re-

normalizable, and those with some δi greater than d(niB, niF , nia) nonrenor-

malizable.

It is easy to hek that the requirement (2.83) is equivalent to demand

that all the Lagrangian terms have oe�ients of nonnegative dimensions in

units of mass. Indeed, the dimension of the oupling λi that multiplies the

ith vertex is

[λi] = d− d− 2

2
niB−

d− 1

2
niF−

∑

a

d− 2a

2
nia−δi = d(niB , niF , nia)−δi > 0.

Thus, a theory is renormalizable by power ounting if it ontains no

parameters of negative dimension (and the propagators are well behaved).

This onlusion an be derived more quikly as follows. At the level of the

Lagrangian, a ounterterm, being loal, must have the struture

(∏
λ
)
∂pϕnBψnF

∏

a

χnia
a . (2.85)

The oe�ient is a ertain produt of ouplings and masses. We do not need

to speify where the derivatives at in (2.85), sine it is not important for our

disussion. Now, the dimension of (2.85) must be equal to d. If the theory

ontains no parameters of negative dimensions, we must have

p+ niB
d− 2

2
+ niF

d− 1

2
+
∑

a

d− 2a

2
nia 6 d,
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whih is equivalent to (2.83). On the other hand, if the theory ontains a

parameter λ− of negative dimension, then an arbitrarily large power h of λ−
an multiply the ounterterm, and we just have an inequality of the form

p+ niB
d− 2

2
+ niF

d− 1

2
+
∑

a

d− 2a

2
nia 6 d− h[λ−], (2.86)

whih violates (2.83).

Now, it should be kept in mind that in general, in renormalization theory,

the following �no-mirale� priniple applies:

all the ounterterms that are not a priori forbidden are generated by renor-

malization.

A ounterterm an be forbidden by power ounting, gauge symmetries,

external symmetries. If it is not forbidden, there is pratially no hope

that it will not be generated as the divergent part of a diagram with an

appropriate set of external legs. In other words, no miraulous anellations

should be expeted. Then, the inequality (2.86) implies that in�nitely many

new types of ounterterms will be e�etively generated, so the theory is

nonrenormalizable.

It is important to stress that the propagators must have the right behavior

for large momenta. For example, the Proa vetors of formula (1.87) are

in general not renormalizable, when interations are present. Indeed, the

propagator (1.89) ontains a term ∼ pµpν/(m
2p2) that prevails over δµν/p

2

at large momenta. This fores us to treat the �eld as a χa-�eld with a = 0,

whih means that its dimension, from the viewpoint of the power ounting, is

equal to d/2. The �elds of suh a dimension an appear at most quadratially

in a loal �eld theory, so they annot have renormalizable self-interations.

Thus, in general the Proa vetors annot be inluded in a renormalizable

theory.

Gauge �elds an instead be inluded onsistently, although their prop-

agators are naïvely not well behaved. For this reason the gauge theories

deserve a speial treatment, and we devote hapters of this book to prove

their renormalizability.

Partiular (salar) �elds of dimension d/2 an be useful as auxiliary �elds.

For example, in the massless ϕ4
4 theory we an introdue an auxiliary �eld σ

of dimension 2 and replae the ϕ4
-vertex by

L′I =
1

2
σ2 + iµε/2ασϕ2, (2.87)
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where α =
√
λ/12.The integral over σ an be performed exatly, by means

of a translation σ′ = σ + iµε/2αϕ2
, whih brings L′I to the form

L′I =
1

2
σ′2 +

λµε

4!
ϕ4.

The �eld σ′ deouples and an be dropped, so the modi�ed theory is equiv-

alent to the ϕ4
4 theory. However, sometimes it an be useful to work out the

Feynman rules and the diagrams from (2.87). In that ase, σ has a prop-

agator equal to 1, so it is a χa �eld with a = 0. The renormalizability by

power ounting still works. We just need to add an extra vertex ϕ4
to the

Lagrangian, beause it is allowed by power ounting. We multiply it by an

independent oupling λ′ and treat α as an independent oupling a swell. In

total, the renormalized Lagrangian L′I reads

L′IR =
Zσ
2
σ2 + iµε/2αZαZ

1/2
σ Zϕσϕ

2 +
λ′µεZ ′

λZ
2
ϕ

4!
ϕ4 =

1

2
σ′2 +

λµεZλ
4!

Z2
ϕϕ

4

where σ′ = Z
1/2
σ σ+ iµε/2αZαZϕϕ

2
and λZλ = λ′Z ′

λ+12α2Zα. The theory is

equivalent to the ordinary massless ϕ4
4 theory with the oupling λ = λ′+12α2

.

The no-mirale priniple also implies that a renormalizable theory must

ontain all the Lagrangian terms that are not a priori forbidden. Indeed,

assume that for some reason we start with a Lagrangian with some missing

vertex v̄. A divergent ontribution c̄ of the same form will be generated by

renormalization. To subtrat it, it is neessary to go bak to the lassial

Lagrangian and add v̄, multiplied by a new oupling λ̄. One that is done, it

is possible to remove c̄ by making a rede�nition of λ̄. We see that, beause of

renormalization, we are not free to hoose the theory we like. Most lassial

theories make no sense at the quantum level, either beause they do not

ontain enough verties, the renormalizable ones, or beause they ontain

nonrenormalizable verties. Renormalization either guides us towards the

right theory or blows up to (2.39). In this sense, it provides a way to selet

the theories.

Sometimes, the parameters of zero dimension are alled marginal, those

of positive dimensions relevant and those of negative dimensions irrelevant.

This terminology refers to the low-energy behavior of the theory. For ex-

ample, the parameters of negative dimensions multiply Lagrangian terms of

dimensions larger than d, whih are indeed negligible in the low-energy limit.
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Instead, the parameters of positive dimensions multiply the terms that are

more �relevant� at low energies. This terminology will be rarely used in this

book.

2.6 Renormalizable theories

The list of the renormalizable theories depends on the spaetime dimension

d. We start from four dimensions, where

d(nB , nF ) = 4− nB −
3

2
nF .

By loality, d(nB , nF ) must be non-negative, so nB an be at most 4 and nF
an be at most 2. We have the following possibilities

(nB, nF ) (1, 0) (2, 0) (3, 0)

d(nB , nF ) 3 2 1

Lagrangian terms ϕ ϕ2, ϕ∂ϕ, (∂ϕ)2 ϕ3, ϕ2∂ϕ

(nB, nF ) (4, 0) (0, 2) (1, 2)

d(nB , nF ) 0 1 0

Lagrangian terms ϕ4 ψ̄ψ, ψ̄ /∂ψ ϕψ̄ψ

The notation is symboli, in the sense that we do not pay attention to

where derivatives at and how indies are ontrated. The most ompliated

bosoni interation is ϕ4
and the most ompliated salar-fermion interation

is the Yukawa vertex ϕψ̄ψ. No fermion self-interation is allowed.

The most general four-dimensional Lorentz invariant Lagrangian of salar

�elds ϕ, vetors A and fermions ψ has the form

L4 =
1

2
(∂µAν)

2 − ξ

2
(∂µAµ)

2 +
m2
A

2
A2
µ +

1

2
(∂µϕ)

2 +
m2
s

2
ϕ2

+ψ̄ /∂ψ +mf ψ̄ψ + λ1sϕ+
λ3s
3!
ϕ3 +

λ4s
4!
ϕ4 +

g3
3!
A2
µ(∂νAv)

+
g′3
3!
AµAν∂νAµ +

g4
4!
(A2

µ)
2 + Ysϕψ̄ψ + YAAµψ̄γµψ +

g2s
2
ϕ(∂µAµ)

+
g3s
3!
ϕA2

µ +
g′3s
3!
ϕ2∂νAν +

g′′3v
3!
Aµϕ∂µϕ+

λ4sv
4!

ϕ2A2
µ,

where ξ 6= 1, plus fermioni terms equal to the listed ones with ψ → γ5ψ,

where γ5 is the produt of all the γ matries. At ξ 6= 1 the vetor propagator
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behaves orretly at large momenta, even when the massmA does not vanish.

However, we antiipate that at ξ 6= 1 the theory is not unitary, that is to say

it propagates unphysial degrees of freedom. At ξ = 1, mA 6= 0 the vetor Aµ
is of the Proa type, whih has a bad behavior for large momenta. Instead,

at ξ = 1, mA = 0, the propagator does not exist. This is the ase of the

gauge theories, whih will be treated in the next hapters. After a suitable

�gauge-�xing� the propagator beomes well behaved and the theory an be

proved to be renormalizable by power ounting and unitary.

Simple examples of renormalizable theories in four dimensions are the ϕ4
4

theory (2.46), whih is renormalized by (2.45) in the form (2.43), and, more

generally, the Yukawa theory (2.17). Its bare ation

SB(ϕB, ψB) ≡
∫

dDx

(
1

2
(∂µϕB)

2 + λB
ϕ4
B

4!
+ ψ̄B/∂ψB + gBϕBψ̄BψB

)
(2.88)

is renormalized by the map

ϕB = Z1/2
ϕ ϕ, λB = λµεZλ, ψB = Z

1/2
ψ ψ, gB = gµε/2Zg,

whih gives the renormalized ation

SR(ϕ,ψ)≡
∫

dDx

(
Zϕ
2
(∂µϕ)

2 + λµεZλZ
2
ϕ

ϕ4

4!

+Zψψ̄ /∂ψ + gµε/2ZgZ
1/2
ϕ Zψϕψ̄ψ

)
. (2.89)

We an use this example to illustrate what happens when we start from

a theory with some missing verties. Assume that we �forget� the ϕ4
vertex

and start with the Lagrangian

L =
1

2
(∂µϕ)

2 + ψ̄ /∂ψ + gϕψ̄ψ. (2.90)

Then, onsider the one-loop diagram

(2.91)

and its permutations, where the dashed lines refer to the salars and the

ontinuous ones to the fermions. It is easy to hek that the divergent part
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of (2.91) is nonvanishing. Thus, the theory is (2.90) is not renormalizable as

it stands. The missing ϕ4
vertex must be added to the lassial Lagrangian,

and (2.90) beomes (2.17). Then, the rede�nition of the ϕ4
oupling an

remove the divergent part of diagram (2.91). Thus, the theory (2.90) makes

no sense at the quantum level, although it is a perfetly meaningful lassial

theory. Only (2.17) makes sense.

In three spaetime dimensions, we have

d(nB , nF ) = 3− 1

2
nB − nF −

3− 2a

2
na,

so nB 6 6 and nF 6 2. The most ompliated bosoni interation is ϕ6
and,

again, no fermioni self-interation is admitted. We have inluded a �eld χa,

beause in three dimensions there exist interesting bosoni vetor �elds with

a = 1/2 and propagators ∼ kµ/k
2
(Chern-Simons vetors). Their kineti

term reads

LCS =
i

2
Aµ∂ρAνεµνρ.

In this ase, we have n1/2 6 3, and there an be verties AµA
′
ρA

′′
νεµνρ (with

vetors of several types). Two boson-two fermion interations ϕ2ψ̄ψ, A2
µψ̄ψ,

et., are allowed. Apart from onstraints oming from the statistis, the

Chern-Simons �elds behave like the fermions ψ. Summarizing,

(nB , nF ) (2, 0) (4, 0) (6, 0) (2, 1)

d(nB, nF ) 2 1 0 1

Lagrangian terms (∂ϕ)2 ∂ϕ4 ϕ6 ∂ϕ2ψ

(nB , nF ) (4, 1) (0, 2) (2, 2) (0, 3)

d(nB, nF ) 0 1 0 0

Lagrangian terms ϕ4ψ ψ∂ψ ϕ2ψ2 ψ3

where ϕ an stand for salar �elds and ordinary vetor �elds, while ψ an

stand for fermions and Chern-Simons vetors. We have listed only the La-

grangian terms that have the largest powers of the �elds and the largest

numbers of derivatives. The missing terms are obtained from the listed ones

by suppressing some powers of the �elds and/or some derivatives.

In six dimensions

d(nB , nF ) = 6− 2nB −
5

2
nF ,
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whih implies nB 6 3, nF 6 2. Moreover, for nF = 2, nB must vanish, so the

fermions are free. It is said that they �deouple�, and so an be ignored for our

present purposes. Hene, the only allowed interation is ϕ3
. However, the

theory ϕ3
6 is not physially interesting, sine the potential ϕ3

is not bounded

from below. Vetors deouple also, by Lorentz invariane. In �ve dimensions

the situation is the same as in six. In dimensions greater than six all the

�elds are free.

We see that only in dimensions smaller than or equal to four there ex-

ist physially aeptable interating renormalizable theories. Unfortunately,

gravity is not renormalizable in four dimensions. It is desribed by a spin-2

�eld, a symmetri tensor hµν , whih has derivative interations of the form

∼ κnhn∂h∂h,

whih involve a oupling κ, the Newton onstant, of dimension −1 in units

of mass.

Newton's onstant is dimensionless in two dimensions, whih suggests

that gravity is power ounting renormalizable there. However, it an be

shown that general relativity in less than four dimensions ontains no prop-

agating graviton. In less than three dimensions gauge vetors have no prop-

agating degree of freedom either. We disover that the renormalizable in-

terations are very few, whih means that renormalizability is an extremely

powerful riterion to selet the theories. It is so restritive that it almost

selets the right dimension of spaetime: we have learned that four is the

dimension with the largest variety of renormalizable theories. However, the

fat that gravity is not renormalizable by power ounting in d > 2 suggests

that power ounting renormalizability is not the �nal answer. A more pro-

found renormalization priniple must exist.

The renormalizable theories are those where the subtration algorithm

ahieves its goal of removing all the divergenes by rede�ning the �elds and

a �nite number of independent parameters. Sometimes those theories are

just alled �renormalizable� in the literature. However, it should be kept in

mind that there exist theories that are renormalizable by riteria di�erent

from power ounting. Those theories will be studied the �nal hapters of this

book.

Exerise 10 Compute the one-loop renormalization of the massless salar-

fermion theory (2.17).
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Solution. The nontrivial divergent diagrams are

(2.92)

The alulation an be simpli�ed by means of the triks explained in this

hapter. Note that the last diagram gives 6 idential ontributions: a fator

2 omes from the orientation of the loop and a fator 3 omes from the

permutations of the external legs. We �nd

Zϕ=1− 4g2

(4π)2ε
, Zψ = 1− g2

(4π)2ε
, Zg = 1 +

5g2

(4π)2ε
,

λZλ= λ+
1

(4π)2ε
(3λ2 + 8g2λ− 48g4).

There is no diagram of order g2λ, so λZλZ
2
ϕ does not ontain suh type of

ontribution. Note that in general when the theory ontains more ouplings

it may be not onvenient to de�ne vertex renormalization onstants, suh as

Zλ in this ase, beause they may ontain negative powers of the ouplings.

Sine λZλ is ertainly polynomial, it is better to rewrite λZλ as λ + ∆λ,

where ∆λ ollets the ounterterms and is also polynomial.

Exerise 11 Compute the one-loop renormalization of the four-fermion the-

ory (1.102) in two dimensions, where ψ is a multiplet made of N opies of

the basi spinor doublet.

Solution. This theory is, in some respets, similar to the ϕ4
theory in

four dimensions. The Feynman rules are (1.103) with λ → λµε, where ε =

2 − D. There is no wave-funtion renormalization at one loop. The mass

renormalization is given by a tadpole diagram, whih turns out to be equal

to −λ(2N − 1)mµε/2 times (2.6), where 2N − 1 omes from evaluating the

fermion loop. Expanding the left-hand side of (2.7) around two dimensions,

we get

Zm = 1− (2N − 1)λ

4πε
.
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The vertex renormalization is given by the diagrams

1
2

− +

where the ombinatorial fators and the signs due to the fermion exhanges

are written expliitly. Observe that the �rst diagram is not multiplied by

(−1), sine it does not ontain a losed fermion loop. Instead, the third

diagram has a plus sign, sine the fator (−1) due to the losed fermion

loop is ompensated by another fator (−1) due to the permutation of two

external idential fermions. Using the two-dimensional identity

(γµ)
αβ(γµ)

γδ − (γµ)
γβ(γµ)

αδ = −2(δαβδγδ − δαδδγβ),

where γµ are the �rst two Pauli matries, we obtain

Zλ = 1− (N − 1)λ

2πε
. (2.93)

Exerise 12 Write the Lagrangian of the previous exerise in the equivalent

form

L = ψ̄(/∂ +m)ψ +

√
λ

2
µε/2σψ̄ψ +

1

2
σ2,

having introdued an auxiliary �eld σ. Renormalize the theory in this form

at one loop, and hek the results already found.

Solution. The divergent one-loop diagrams are the �rst three of the list

(2.92), plus a tadpole (the fermion loop with one external leg σ). The alu-

lation is straightforward and gives the renormalized Lagrangian

LR= ψ̄ /∂ψ +

(
1 +

λ

4πε

)(
m+

√
λ

2
µε/2σ

)
ψ̄ψ

+
1

2
σ2
(
1 +

λN

2πε

)
+

√
λ

2

mN

πε
µ−ε/2σ. (2.94)

Integrating σ away, we retrieve the results of the previous exerise. Note that

to have (2.94) real, the oupling λ must be positive. This is the reason why

we have put a minus sign in front of the four fermion vertex of the Lagrangian
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(1.102). If the �elds were bosoni, that minus sign would be wrong. Instead,

for the reason just explained it is the right sign for fermioni �elds. �

The last two exerises teah us that, if we make a hange of �eld vari-

ables, the theory remains renormalizable, but the renormalization organizes

itself in a di�erent way. For example, the Lagrangian (1.102) has nontrivial

renormalization onstants for m and λ, at one loop, while (2.94) also has a

renormalization onstant for σ, and ontains a σ linear term. The two renor-

malized Lagrangians are mapped into eah other by a renormalized hange

of �eld variables. For the moment we ontent ourselves with these observa-

tions. We will say more later, where we investigate general hanges of �eld

variables in quantum �eld theory.

Exerise 13 Find the renormalized hange of �eld variables that maps (2.94)

into the renormalized version of (1.102).

Solution. It is

σ=

(
1− λN

4πε

)
σ′ −

(
1− (2N − 1)λ

4πε

)√
λ

2
µε/2ψ̄ψ

−
√
λ

2
µ−ε/2

(
1− λN

2πε

)
mN

πε
,

plus higher orders. Indeed, (2.94) beomes

ψ̄ /∂ψ +mZmψ̄ψ −
λ

4
µεZλ(ψ̄ψ)

2 +
1

2
σ′2,

plus a onstant, plus higher orders. This is the renormalized version of

(1.102), plus a quadrati term that deouples (and is not renormalized).

2.7 Composite �elds

Composite �elds are de�ned as produts of elementary �elds, and their deriva-

tives, in the same spaetime point. Sometimes they are also alled �opera-

tors�, or �omposite operators�, although stritly speaking no operator is

involved in the funtional-integral approah. Being just nontrivial monomi-

als of the �elds and their derivatives, omposite �elds are loal. Sometimes

it is useful to onsider also loal funtionals, that is to say the integrals of
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omposite �elds over spaetime. Loal funtionals are also alled integrated

operators.

The renormalization of a omposite �eld is in general not related in an

obvious way to the renormalization of its omponent �elds, and has to be

alulated anew. The simplest example of a omposite �eld is ϕ2(x) in the

ϕ4
theory. The renormalization of ϕ2

is unrelated to the renormalization of

ϕ. Spei�ally, the orrelation funtions that ontain insertions of ϕ2
an be

made onvergent with a new renormalization onstant, Zϕ2 , whih has no

relation with Zϕ.

Let us reall that Zϕ renormalizes the divergenes of the orrelation fun-

tions where salar �elds are inserted at di�erent spaetime points, e.g.

G4(x, y, z, w) = 〈ϕ(x)ϕ(y)ϕ(z)ϕ(w)〉, (2.95)

with x 6= y, z, w, et. Instead, onsider the ϕ2
two-point funtion

〈ϕ2(x)ϕ2(y)〉. (2.96)

Reall that the orrelation funtions have to be meant as distributions. In

a distribution it often makes no sense to take the limit of oiniding points.

Therefore, (2.96) is not the z → x, w→ y limit of (2.95).

For a while, we write formulas assuming that we are dealing with a sin-

gle omposite �eld. Later we generalize our arguments by eliminating this

restrition.

We must distinguish bare and renormalized omposite �elds. The bare

omposite �elds are denoted by OB and are just the produts of the bare

fators. For example, the bare operator ϕ2(x) is just the produt of two bare

salar �elds in x, i.e. ϕ2
B(x). The renormalized omposite �elds are denoted

by OR, or by writing the omposite �eld between square brakets, suh as

[ϕ2(x)], to distinguish it from ϕ2(x).

Bare and renormalized operators are related by new renormalization on-

stants ZO,

OB = ZOOR. (2.97)

For example, we have ϕ2
B = Zϕ2 [ϕ2]. On the other hand, we know that

ϕB = Z
1/2
ϕ ϕ, hene

[ϕ2] = Z−1
ϕ2 Zϕϕ

2. (2.98)
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This formula emphasizes that the renormalized operator ϕ2
does not oinide

with the square of the renormalized �eld ϕ, unless Zϕ2 = Zϕ, whih is in

general not true.

Thus, the renormalized two-point funtion (2.96) reads

GR(x, y) = 〈[ϕ2(x)] [ϕ2(y)]〉 = Z−2
ϕ2 Z

2
ϕ〈ϕ2(x)ϕ2(y)〉, (2.99)

at x 6= y. Here Z−2
ϕ2 anels the extra divergenes due to the pairs of oin-

iding points.

A omposite �eld an be desribed as a vertex. Its struture is visible

when it is written in terms of renormalized (elementary) �elds. Formula

(2.98) tells us that [ϕ2] is a vertex with two ϕ legs. To exhibit the vertex

assoiated with a omposite �eld, we ouple the omposite �elds to appro-

priate soures, whih we denote by L, and add them to the ation. At the

bare level, we just need to add

− LBO(ϕB) (2.100)

to the bare Lagrangian. At the renormalized level, we have to add

− LO(ϕ) + f(ϕ,L), (2.101)

where f(ϕ,L) denotes ounterterms that are at least quadrati in L. They

renormalize the divergenes of the orrelation funtions that ontain more

than one insertion of O(ϕ), suh as those of (2.99) at y → x (see below).

The generating funtionals Z, W and Γ are de�ned as usual. Now, they

depend on the soures L, besides J or Φ. The orrelation funtions that arry

O insertions an be obtained by di�erentiating the generating funtionals

with respet to L.

Sine the bare and renormalized ations are the same quantity, written

in terms of di�erent variables, we also have

LBOB = LOR. (2.102)

Let ZL denote the renormalization onstant of L (LB = ZLL). We learly

have

ZL = Z−1
O .

In the ase of ϕ2
we have the new vertex −Lϕ2

, with one leg L and

two legs ϕ. One LO is written in terms of renormalized �elds, the new
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vertex an be treated as any other vertex, L being onsidered as an external,

nonpropagating �eld. The Feynman rules are supplemented with the verties

generated by (2.100) or (2.101). We add

− 1

2

∫
dDxLB(x)ϕ

2
B(x) = −

ZLZϕ
2

∫
dDxL(x)ϕ2(x) (2.103)

to the bare ation (2.46) and

L
= 1

(2.104)

to the Feynman rules. Observe that the soure L has dimension two in units

of mass, so by power ounting the ation must be ompleted with a term

that is quadrati in L. We write it as

− 1

2aB

∫
L2
B = −µ

−ε

2

(
1

a
+ δa

)∫
L2. (2.105)

We have written

aB =
aµεZ2

L

1 + aδa
≡ µεaZa.

The terms quadrati in L are important when we onsider multiple insertions

of omposite �elds, as in (2.99).

The generating funtional beomes

Z(J,L) = eW (J,L) =

∫
[dϕ] exp

(
−S(ϕ,L) +

∫
Jϕ

)
, (2.106)

where in our example

S(ϕ,L) = S(ϕ)− ZLZϕ
2

∫
Lϕ2 − µ−ε

2

(
1

a
+ δa

)∫
L2

and S(ϕ) is given by (2.16). Sine L is an external �eld, the Feynman

diagrams an have external legs L, but no internal legs L. There are only

two overall divergent orrelation funtions that ontain ϕ2
insertions, namely

the �vertex�

〈ϕ2(x)ϕ(y)ϕ(z)〉 (2.107)

and the two-point funtion (2.96). The ounterterms assoiated with them

give ZL and Za, whih we now alulate at one loop.
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In the ase (2.107) we have

L

1
2

(2.108)

It gives (−λµε/2)ID(k,m), where ID is given by (2.28). We �nd

ZL = Z−1
ϕ2 = 1 +

λ

16π2ε
+O(λ2).

The ϕ2
two-point funtion (2.96) is given at one loop by the diagram

LL

1
2

(2.109)

whih gives (1/2)ID(k,m), so

δa = −
1

16π2ε
+O(λ). (2.110)

Exerise 14 Calulate the funtionals W (J,L) and and its Legendre trans-

form Γ(Φ, L) with respet to J for a free massless salar �eld in the presene

of the omposite �eld ϕ2
.

Solution. We have the renormalized generating funtional

eW (J,L) =

∫
[dϕ] exp

(
−1

2

∫ {
(∂µϕ)

2 − Lϕ2 − µ−ε

a
(1 + aδa)L

2

}
+

∫
Jϕ

)

(2.111)

where δa is given by (2.110) with λ = 0. The funtional integral is easy to

work out, sine it is Gaussian. The soure L plays the role of a spaetime

dependent mass. We obtain

W (J,L) =
1

2

∫ [
J

1

−�− LJ + µ−ε
(
1

a
+ δa

)
L2

]
− 1

2
tr ln(−�− L),

Γ(Φ, L) =
1

2

∫ [
(∂µΦ)

2 − LΦ2 − µ−ε
(
1

a
+ δa

)
L2

]
+

1

2
tr ln(−�− L),

(2.112)
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where

Φ =

∫
1

−�− LJ. (2.113)

�

More generally, the renormalization of a omposite �eld is not just multi-

pliative, but involves other omposite �elds. It is then said that omposite

�elds �mix� under renormalization. Then, formulas (2.97), (2.100), (2.101)

and (2.102) must be interpreted in a vetor-matrix form.

Call OIB = OI(ϕB) the bare omposite �elds, OIR the renormalized ones,

LIB and LI their soures, and ZIJ the matrix of the renormalization onstants,

suh that OIB = ZIJOJR. The linear terms in L that must be added to the

Lagrangian read

LIBOIB = LIOIR = LI(Z−1)IJOJB(Z1/2
ϕ ϕ). (2.114)

These terms are su�ient to desribe the orrelation funtions that ontain

single insertions of the omposite �elds and arbitrary insertions of the ele-

mentary �elds. Multiple insertions of omposite �elds, suh as (2.96), are

renormalized by terms that ontain higher powers of the soures L:

S(ϕ,L) = S(ϕ)− LI(Z−1)IJOJB(Z1/2
ϕ ϕ)− LI∆IJ(ϕ)L

J + · · ·

Organize the OIs in a row suh that the omposite �elds of equal dimen-

sions are lose to one another and the omposite �elds of higher dimensions

follow those of lower dimensions. Sine the theory, by the renormalizability

assumption, ontains only parameters of non-negative dimensions, a ompos-

ite �eld an only mix with omposite �elds of equal or smaller dimensions.

For this reason, the matrix ZIJ is blok lower triangular. Eah diagonal

blok enodes the renormalization mixing of the omposite �elds of equal di-

mensions. The o�-diagonal bloks enode the mixing among omposite �elds

of di�erent dimensions.

Let us omment on the multiple insertions of omposite �elds, i.e. the

terms of SL that ontain quadrati or higher powers of the soures LI . In

general, the renormalized ation SL is not polynomial in LI . Indeed, if

the dimension of OIB is large, the dimension of LIB is negative. Then, in-

�nitely many loal ounterterms with high powers of the soures LIB and

their derivatives an be onstruted. By the no-mirale priniple of renor-

malization, SL must ontain all of them. This means, in partiular, that,
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stritly speaking, SL is not even loal, sine it ontains terms with arbitrar-

ily many derivatives. However, it is perturbatively loal, sine eah order of

the perturbative expansion is loal. At any rate, we do not need to worry,

beause we are not required to resum the LI powers. Every orrelation fun-

tion ontains a given, �nite number of omposite-�eld insertions, so it an be

alulated by trunating SL to appropriate �nite powers of LI . Every trun-

ation is loal and polynomial. Thus, we an still all SL a loal funtional,

aording to the extended de�nition of loal funtionals introdued before.

Exerise 15 Calulate the one-loop renormalization of the omposite �eld

O(ϕ) = ϕ4
and the omposite �elds that mix with it, in the massless ϕ4

theory.

2.8 Maximum poles of diagrams

An L-loop diagram has at most poles 1/εL of order L. However, sometimes

the order of its maximum pole an be onsiderably smaller than L. For

example, exerise (5) shows that the diagram (k) of �gure (2.59) has two

loops, but it has only a simple pole at m = 0. Here we prove a general

theorem bounding the maximum pole of a diagram.

We are interested only in the UV divergenes of the quantum theory,

and their renormalization. Then it is onsistent to treat the mass terms, if

present, as verties of two legs, the propagator being just the massless one.

Any other dimensionful parameter that multiplies a quadrati term must be

treated in a similar way. To avoid IR problems in the intermediate steps,

it is onvenient to alulate the UV divergenes of the Feynman diagrams

by means of deformed propagators that are equipped with an arti�ial mass

δ, and let δ tend to zero at the end, as explained in formula (2.76). The

tadpoles are loops with a single vertex, and vanish identially. Instead, the

loops with at least two verties are not tadpoles (even if one of the verties

is a two-leg �mass� vertex) and may give nontrivial divergent ontributions.

Theorem 3 The maximum pole of a diagram with V verties and L loops

is at most

1

εm(V,L)
,

where

m(V,L) = min(V − 1, L).
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Proof. We prove the statement indutively in V and, for �xed V , indu-

tively in L. The diagrams with V = 1 and arbitrary L are tadpoles, whih

vanish identially and trivially satisfy the theorem. Suppose that the state-

ment is true for V < V̄ , V̄ > 1, and arbitrary L. Consider the diagrams

that have V̄ verties. For L = 1 the maximal divergene is 1/ε, so the the-

orem is satis�ed. Proeed indutively in L, i.e. suppose that the theorem

is also satis�ed by the diagrams that have V̄ verties and L < L̄ loops, and

onsider the diagrams GV̄ ,L̄ that have V̄ verties and L̄ loops. If GV̄ ,L̄ has

no subdivergene, its divergene is at most a simple pole, whih satis�es the

theorem. Higher-order poles are related to the subdivergenes of GV̄ ,L̄ and

an be lassi�ed by replaing the subdiagrams by their ounterterms. Con-

sider the subdiagrams γv,l of GV̄ ,L̄ that have l loops and v verties. Clearly,

1 6 l < L̄ and 1 6 v 6 V̄ . By the indutive hypothesis, the maximal di-

vergene of γv,l is a pole of order m(v, l). Contrat the subdiagram γv,l to

a point and multiply by 1/εm(v,l)
. A diagram with V̄ − v + 1 6 V̄ verties

and L̄− l < L̄ loops is obtained, whose maximal divergene is at most a pole

of order m(v, l) + m(V̄ − v + 1, L̄ − l), if we take the fator 1/εm(v,l)
into

aount. The inequality

m(v, l) +m(V̄ − v + 1, L̄− l) 6 m(V̄ , L̄),

whih an be derived ase by ase, proves that the maximal divergene of

GV̄ ,L̄ assoiated with γv,l satis�es the theorem. Sine this is true for every

subdiagram γv,l, the theorem follows for GV̄ ,L̄. By indution, the theorem

follows for every diagram. �

Reall that this theorem holds after expanding in powers of the dimen-

sionful parameters that are ontained in the propagators. The diagram (k)

of �gure (2.59) has V = 2 and L = 2, so m(V,L) = 1: indeed, its maximum

pole in the massless limit is a simple pole instead of a double pole. It an be

easily heked that at m 6= 0 the diagram has a double pole proportional to

the squared mass. If we view the mass term as a two-leg vertex, that pole

arizes from the diagram obtained from (k) by attahing the two-leg vertex

to one internal line. In that ase, we have V = 3 and L = 2, so m(V,L) = 2,

in agreement with the theorem.
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2.9 Subtration presription

When we subtrat a simple pole 1/ε, we an equivalently subtrat an arbi-

trary �nite onstant together with it, as shown in formula (2.32). Similarly,

when we subtrat a multiple pole 1/εn, we an a�et the less singular poles:

1

εn
→ 1

εn
+

n∑

i=1

ci
εn−i

.

Sometimes, a presription, alled subtration sheme, is adopted to assoiate

�nite onstants ci to the subtrations of the poles, aording to a onvenient

rule. The minimal subtration (MS) sheme is the onvention aording to

whih the poles are subtrated with no �nite onstants attahed.

By loality of ounterterms, the sheme arbitrariness an only a�et the

loal terms. This means that it amounts to a �nite rede�nition of the on-

stants that multiply the verties and the kineti terms ontained in the La-

grangian. Sine those onstants, inluding the �eld normalizations, are arbi-

trary anyway, the arbitrariness amounts to a �nite reparametrization of the

theory. In any ase, it does not a�et the physial quantities.

In other words, renormalization is an in�nite reparametrization of the

theory, while a hange of subtration sheme is a �nite reparametrization.

To be more expliit, onsider the vertex ϕ4
and its one-loop ounterterm

(2.32):

λµε
ϕ4

4!
+ 3λ2µε

(
1

16π2ε
+ c1

)
ϕ4

4!
. (2.115)

Now, move the arbitrary onstant c1 from the ounterterm to the vertex ϕ4

and de�ne

λ′(λ) = λ+ 3λ2c1 +O(λ3). (2.116)

We an rewrite (2.115) as

µελ′
ϕ4

4!
+ µε

3λ′2

16π2ε

ϕ4

4!
+O(λ′ 3). (2.117)

We see that the �nite reparametrization (2.116) onverts the arbitrary sub-

tration (2.115) to the minimal form (2.117). It is always possible to make a

similar rearrangement.

From the experimental point of view, the arbitrariness disappears when

enough physial quantities are measured, and the theory is uniquely deter-

mined. Spei�ally, in the massive ϕ4
theory three independent quantities
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need to be measured. From them, the values ofm and λ and the ϕ normaliza-

tion an be derived, after whih the theory is uniquely determined. Observe

that the parameter m needs not be identi�ed with the physial mass, some-

times denoted with m
ph

. Sine m
ph

an only be a �nite funtion of m and

λ, it is determined one m and λ are.

In the minimally subtrated λ′ parametrization (2.117), the theory does

not depend on c1, so it is uniquely determined one λ′ is measured (to-

gether m and the normalization of the �eld). On the other hand, in the

nonminimally subtrated λ parametrization (2.115) there appears to be an

additional arbitrary onstant c1, so it seems that an extra measurement is

neessary. This is just a blunder, beause after the three measurements men-

tioned above, c1 disappears from all the physial quantities.

The matter an be better explained as follows. Consider some physial

quantity. Write it as a funtion f(λ) of λ in the �rst sheme and a funtion

f ′(λ′) of λ′ in the seond sheme. When we hange the sheme, we do not

hange just λ, but also the form of the funtion f of λ. The two hanges

ompensate eah other, so that the physial results remain the same, that is

to say

f(λ) = f ′(λ′).

Chek for example (2.115) and (2.117): the oupling hanges, but also the

funtion multiplying ϕ4
hanges, so that (2.115) and (2.117) oinide. So, if

an experimental measurement gives λ′ = ℓ in the seond sheme, where ℓ is

some number that we assume to be small, a measurement in the �rst sheme

must give the number

λ = ℓ− 3ℓ2c1 +O(ℓ3),

whatever the value of c1 is.

2.10 Regularization presription

So far we have mostly worked using the dimensional regularization, but equiv-

alent results an be obtained using any regularization tehnique we like. Now

we prove that hanging the regularization tehnique is equivalent to hange

the subtration sheme, so it has no physial onsequene. To this purpose,

it is helpful to larify the de�nition of regularization tehnique.

14B1 Renorm



120 CHAPTER 2. RENORMALIZATION

De�nition 3 We all naïve (or formal) limit, the limit in whih the regu-

larization parameters are removed by keeping the bare �elds and parameters

�xed.

We emphasize that, in spite of its name, the naïve limit is a rigorous

notion. The naïve limit of the ation is the lassial ation. The naïve limit

of the orrelation funtions is in general ill de�ned, beause of the divergenes.

De�nition 4 We all physial limit the limit in whih the regularization pa-

rameters are removed by keeping the renormalized �elds and parameters �xed.

The physial limit of the ation is ill de�ned, but the physial limit of

the orrelation funtions exists.

Consider a quantum �eld theory T , de�ned by an ation S(ϕ) and a

funtional measure [dϕ].

De�nition 5 A regularized theory for T is a deformed theory TR, de�ned
by a deformed ation SR(ϕ) and a deformed funtional measure [dRϕ], suh

that: (i) all the regularized diagrams are onvergent; (ii) the propagators and

the verties tend to the ones of T in the naïve limit; and (iii) all the diagrams,

or derivatives of diagrams, that are onvergent at the unregularized level are

reovered by taking the naïve limits of their regularized versions.

Now, onsider an integral

∫
f and de�ne two regularized versions of it,

∫
f1(Λ1) <∞,

∫
f2(Λ2) <∞,

Λ1 and Λ2 denoting some regularization parameters. We just all them ut-

o�s and assume that they are removed by sending them to in�nity. By

de�nition, we must have

lim
Λ1→∞

f1(Λ1) = lim
Λ2→∞

f2(Λ2) = f. (2.118)

Indeed, the integrands ontain verties and propagators, namely ingredients

inherited from the lassial ation, so must tend to f in the naïve limit.

However, we annot extend the naïve limit to the integrals, beause they

might be divergent (this is the reason why the limit is alled naïve or formal).
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Expanding for large Λ1,2, we an write

∫
fi(Λi) = Iidiv(Λi) + Ii�nite + Iiev(Λi), (2.119)

where i = 1, 2, while Iidiv ollets the terms that diverge, Iiev those that tend

to zero and Ii�nite those that have �nite limits.

We know that (assuming that the subdivergenes have been subtrated

with the usual algorithmi proedure) if we take a su�ient number of deriva-

tives with respet to the external momenta k, the integrals beome onver-

gent. This property is independent of the regularization tehnique, to the

extent that is also holds for the unregularized integral, namely there exists

an n suh that ∫
∂nf

∂kn
<∞.

Now, beause of (2.118), we also have

lim
Λ1→∞

∂n

∂kn
f1(Λ1) = lim

Λ2→∞

∂n

∂kn
f2(Λ2) =

∂nf

∂kn
.

Integrate eah side of this equation. The �rst two integrals an be inter-

hanged with the limits, whih gives

lim
Λ1→∞

∫
∂n

∂kn
f1(Λ1) = lim

Λ2→∞

∫
∂n

∂kn
f2(Λ2) =

∫
∂nf

∂kn
<∞.

In the �rst two expressions we an also interhange the integrals and the

derivatives. So doing, we obtain

lim
Λ1→∞

∂n

∂kn

∫
f1(Λ1)− lim

Λ2→∞

∂n

∂kn

∫
f2(Λ2) = 0.

Using (2.119), we get

∂n

∂kn
I1div(Λ1) =

∂n

∂kn
I2div(Λ2) = 0,

∂n

∂kn
(I1�nite − I2�nite) = 0.

The �rst formula is just the statement that ounterterms are loal with any

regularization tehnique. The seond formula, instead, states that the �nite

parts, alulated using two di�erent regularizations, an di�er at most by

loal terms:

I1�nite = I2�nite + loal.

14B1 Renorm



122 CHAPTER 2. RENORMALIZATION

If the theory is renormalizable, suh loal terms are of the types already

present in the Lagrangian, so they amount to a sheme hange, but the

physial quantities are una�eted. This onludes the proof.

Sometimes it is useful to regularize di�erent lasses of diagrams in di�er-

ent ways, or an be onvenient to introdue multiple uto�s Λi. Divergenes

expressed in terms of di�erent uto�s an be identi�ed, up to loal terms.

The uto�s Λi an be removed in di�erent orders, e.g Λ1 → ∞ followed by

Λ2 → ∞, or Λ2 → ∞ followed by Λ1 → ∞. When the limits are inter-

hanged, the results an di�er at most by loal terms, i.e. again a sheme

hange, but the physial quantities are always the same.

Ultimately, we have an enormous freedom. We an regularize a theory

as a whole, or diagram by diagram. We an use one uto� or many uto�s,

and we an remove the uto�s in the order we like. We an even use a

di�erent regularization tehnique and a di�erent subtration sheme for eah

diagram. No matter how we regularize the theory, the physial results always

ome out right. The ore of quantum �eld theory is �nite and regularization

independent: the divergenes are on�ned to the �super�ial� parts of the

integrals, so to speak, sine they are killed by a �nite number of derivatives.

Di�erent regularization tehniques an demand very di�erent amounts of

e�ort. If we want to better keep trak of what we do, it is onvenient to

use a simple regularization tehnique, with one or two uto�s, de�ned on the

theory as a whole.

2.11 Comments about the dimensional regulariza-

tion

Some people use to say that the dimensional regularization �misses some-

thing� or �has problems of internal onsisteny�, beause integrals suh as

(2.12) are set to zero and the powerlike divergenes disappear, or beause of

other aveats that we will mention later.

The truth is that the dimensional regularization does not miss anything

and has no problems of internal onsisteny. Atually, it is the most powerful

regularization tehnique developed so far. It is very onvenient both to make

alulations (to the extent that the renormalization of QCD has been worked

out to four loops and the one of the standard model to three loops) and to
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prove theorems to all orders. Under both respets, no other regularization

tehnique is even omparable with the dimensional one.

One of its virtues is that it smartly hooses a subtration sheme where

the powerlike divergenes are automatially absent. Atually, it allows us to

prove that, no matter what regularization tehnique we use, the powerlike di-

vergenes an always be subtrated away just as they ome, without leaving

any remnants. Later we will better understand what this means, studying

the renormalization group. For the moment, it is su�ient to say that the

powerlike divergenes are ompletely sheme dependent, and an be washed

away with a smart sheme hoie, while the logarithmi divergenes are only

partially sheme dependent. The logarithmi divergenes do ontain physi-

al information, while the powerlike divergenes are devoid of any physial

meaning.

Two main kinds of assumptions inspire some people to take unreason-

able attitudes towards the dimensional regularization. One assumption is

that behind empty spae there should be a sort of lattie, or aether. The

analyti way to regularize the integrals is not intuitive, they say, while a

lattie spaing is supposed to be more �physial�. We leave to them to ex-

plain why a regularization should be intuitive, or �physial�, and what it is

supposed to mean. We just observe that sometimes hypothetial links with

ondensed matter physis may be inspiring, but other times they may put

us on the wrong trak. More generally, there is no reason to assume that

the human intuition (whih is always the produt of our interation with

a lassial environment) should guide us. It may be helpful in some ases,

misleading in others. One we have given up the orrespondene priniple

almost ompletely, we an live without intuition.

Another assumption is that the ultimate theory should be �nite, that is

to say a theory with no divergenes. In that ase, the powerlike divergenes

are not really divergenes, but physial quantities that depend on a large

energy sale and grow polynomially with it. The assumption that the �nal

theory be �nite turns out to be appealing to some people (for quite sub-

jetive and �human� reasons), but rather restritive. Having learned that

we an renormalize the divergenes away, we no longer need to require that

they are absent from the start. If one insists that the �nal theory must be

�nite, he/she should explain why we an make sense of theories that are not

�nite, and why we should privilege a small subset of the theories we an
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work with, and ignore the other ones. Somebody expliitly advoates aes-

theti riteria to answer these questions. We do not feel neessary to stress

that suh arguments are ompletely meaningless in physis. Other people

try to disguise their arbitrary requirements under suspiious onditions of

�simpliity�. Certainly, simpliity an be advoated for pratial purposes.

It annot, however, be advoated to disriminate what is physial from what

is not: that part pertains to nature.

A more serious point about the dimensional regularization is that it is

just perturbative. However, at present we do not know how to de�ne the

funtional integral nonperturbatively, so this problem goes beyond the di-

mensional regularization itself.

2.12 About the series resummation

We have stressed several times that our task is to de�ne the funtional inte-

gral as a perturbative expansion. We have onverted the funtional integral

of the interating theory into an in�nite sum of funtional integrals of the

free-�eld theory, sine those are the only ones we an deal with. Eah prop-

erty we use must be understood in the same spirit. For example, when we use

that the integral of a funtional total-derivative vanishes, we mean that eah

term of the perturbative expansion vanishes. At this level, the perturbative

expansion must be regarded as a sequene, a list of terms, not as a series

that should be summed. Indeed, our primary objetive is to de�ne the terms

of the sequene and hek that they are onsistent with the key physial

and mathematial requirements. As we have seen, this task already raises

nontrivial problems. Several other di�ulties will appear in gauge theories

and dealing with anomalies. It makes no sense to investigate the summation

properties, before de�ning the terms of the sequene.

In various ases, the sum of the perturbative series might not exist, at

least naïvely. This, however, is not neessarily a limitation. It might just

mean that di�erent ways to organize the sum an give di�erent results. Then,

we must lassify the resummation presriptions that make physial sense.

There might be more meaningful resummation presriptions, eah of them

leading to a di�erent physial theory, with the same perturbative expansion.

Realling that, so far, we have not been sared away by the divergenes (and

now we appreiate what we would have missed if we had), there is no point
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in worrying about a problem that is not even there, yet.

We will atually see that whenever we have ontrol on the perturbative

expansion to arbitrarily high orders (suh as in the ases of the anomalies, the

renormalization-group �ow and the onformal �xed points), the series does

make sense, or the theory itself provides a natural resummation presription.

For example, there are anomalies that an be alulated exatly, sine they

reeive no orretions beyond one loop (if we are areful enough, in a sense

that will be spei�ed, whih inludes hoosing an appropriate subtration

sheme).

In this book, we make no attempt to de�ne the funtional integral beyond

its perturbative expansion, unless that means searhing for the physial pre-

sriptions that allow us to resum the perturbative expansion when possible.
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Chapter 3

Renormalization group

In this hapter we begin the exploration of the physial onsequenes of

renormalization. Our onsiderations are very general, although we often

illustrate them using spei� models. We start by omparing the bare and

renormalized ations

SB(ϕB, λB,m
2
B, LB) = SR(ϕ, λ,m

2, L, µ) (3.1)

of a theory of �elds , where ϕ denote the �elds, λ and m the dimensionless

and the dimensionful parameters, respetively, and L are the soures for the

omposite �elds. We do not really need to keep λ and m distint, but for the

moment it is onvenient to do so. Similarly, the relation between the bare

and the renormalized Γ funtionals is

ΓB(ΦB, λB,m
2
B, LB) = ΓR(Φ, λ,m

2, L, µ). (3.2)

We reall that in a theory with a single oupling λ, suh as the ϕ4
4 theory,

we have relations of the form

ϕB =Z1/2
ϕ (λ, ε)ϕ, λB = µελZλ(λ, ε),

m2
B =m2Zm2(λ, ε), LB = ZL(λ, ε)L. (3.3)

Theories with more ouplings and �elds will have more ompliated relations,

but these details do not really onern our disussion here. The key point is

that the renormalized sides of (3.1) and (3.2) depend on one quantity more

than the bare sides. Preisely, the renormalized sides depend on λ and µ

separately, while the bare sides ontains only λB, whih depends on λ and µ.
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Therefore, it must be possible to solve the µ dependene exatly in terms of

the renormalization onstants. The solution an be obtained by omparing

the bare version and the renormalized version of any equation. The µ depen-

dene of the physial orrelation funtions is alled �renormalization-group

�ow�.

Let us see what originates the dependene on µ. At the tree level, the

ation depends on a unique ombination of λ and µ, suh as λµε in the ase

(3.3). However, that ombination annot survive beyond the tree level, be-

ause the subtration of divergenes is an operation that separates µ from λ:

the ounterterms are multiplied by higher powers of λ, whih is dimension-

less, by by the same power of µ, whih is �xed by dimensional analysis (see

for example (2.33)). This produes the �nal relation λB = µελZλ(λ, ε).

The key quantities that are used to desribe the renormalization-group

�ow are the beta funtion and the anomalous dimensions. To introdue them,

we de�ne the total derivative µd/dµ, whih is the derivative alulated by

keeping the bare quantities �xed, and the partial derivative µ∂/∂µ , whih is

the derivative alulated by keeping the renormalized quantities �xed. When

we apply the total derivative to the funtional Γ we obtain, by the Leibniz

rule,

µ
d

dµ
=µ

∂

∂µ
+ µ

dλ

dµ

∂

∂λ
+ µ

dm2

dµ

∂

∂m2
+

∫
dDxµ

dΦ(x)

dµ

δ

δΦ(x)

+

∫
dDxµ

dLI(x)

dµ

δ

δLI(x)
. (3.4)

If we apply the total derivative to the ation, we obtain the same formula

with Φ replaed by ϕ. If we apply the total derivative to the funtional W ,

we obtain the same formula with Φ replaed by J .

Beta funtion

De�ne the �hat beta funtion� as

β̂λ = µ
dλ

dµ
.

At the tree level λB = µpελ, so β̂λ = −pελ+O(λ2). It is onvenient to de�ne
the beta funtion βλ suh that

β̂λ(λ, ε) = βλ(λ, ε) − pελ. (3.5)
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Clearly, βλ = O(λ2). Now, we apply the identity (3.4) to λB and reall that

Zλ depends only on λ and ε. We �nd

0 = µ
dλB
dµ

=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ

)
(µpελZλ) = pεµελZλ + µεβ̂λ

d(λZλ)

dλ
,

whene

d lnZλ
dλ

= − βλ

λβ̂λ
. (3.6)

Using (3.5) we have

βλ =
pελ2 d lnZλ

dλ

1 + λd lnZλ
dλ

. (3.7)

We also �nd the inverse formula

Zλ(λ, ε) = exp

(
−
∫ λ

0

dλ′

λ′
βλ(λ

′, ε)

βλ(λ′, ε)− pελ′
)
. (3.8)

The lower integration limit is �xed by demanding Zλ(0, ε) = 1, sine in the

free-�eld limit the renormalization onstants are equal to one.

Anomalous dimension

Let us study the total derivative of ϕB. Using (3.4) with Φ→ ϕ we �nd

0 = µ
dϕB

dµ
= µ

d

dµ

(
Z1/2
ϕ ϕ

)
= µ

dZ
1/2
ϕ

dµ
ϕ+ Z1/2

ϕ µ
dϕ

dµ
,

that is to say

µ
dϕ

dµ
= −γϕϕ,

where

γϕ ≡
1

2
µ
d lnZϕ
dµ

=
1

2
µ
dλ

dµ

d lnZϕ
dλ

=
1

2
β̂λ

d lnZϕ
dλ

. (3.9)

The quantity γϕ is alled anomalous dimension of the �eld ϕ, and depends

on λ and ε. Sine Φ = 〈ϕ〉 we also have

µ
dΦ

dµ
= −γϕΦ.

From (3.9) we �nd the inverse formula

Zϕ(λ, ε) = exp

(
2

∫ λ

0
dλ′

γϕ(λ
′, ε)

βλ(λ′, ε)− pελ′
)
.
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When the renormalization is multipliative, we have

∫
JBϕB =

∫
Jϕ,

so the renormalization onstants of ϕ and J are the reiproals of eah other.

Then we also �nd

µ
dJ

dµ
= γϕJ. (3.10)

Exerise 16 Calulate the beta funtions and the anomalous dimensions

of the ϕ4
4 theory and the ϕ3

6 theory at one loop in the minimal subtration

sheme.

Solution. In the minimal subtration sheme, the onstants c1 and c2 of

formula (2.44) are equal to zero. Applying the formulas (3.7) and (3.9) to

(2.44), (2.47) and (2.48), we get

ϕ4
4 : βλ =

3λ2

16π2
+O(λ3), γϕ = O(λ2), (3.11)

ϕ3
6 : βλ = − 3λ3

4(4π)3
+O(λ5), γϕ =

λ2

12(4π)3
+O(λ4), (3.12)

Exerise 17 Calulate the beta funtion and the anomalous dimension of

the ϕ4
4 theory at two loops.

Solution. Applying the formulas (3.7) and (3.9) to (2.64) and (2.65) we

get

βλ =
3λ2

(4π)2
− 17λ3

3(4π)4
+O(λ4), γϕ =

λ2

12(4π)4
+O(λ3).

Note that the divergenes have aneled out. Later we will prove that this is

a general fat.

Exerise 18 Calulate �rst nonvanishing ontributions to the beta funtion

and the anomalous dimension of the massless ϕ6
3 theory.

Solution. Applying the formulas (3.7) and (3.9) to (2.66) and (2.68), and

realling that here p = 2, we get

βλ =
5λ2

3(4π)2
+O(λ3), γϕ =

λ2

90(8π)4
+O(λ3).
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Composite �elds

Similarly, taking the total derivative µd/dµ of LB we get

0 = µ
dLB

dµ
= µ

dZL
dµ

L+ ZL µ
dL

dµ
,

whene

µ
dL

dµ
= −µd lnZL

dµ
L = −β̂λ

d lnZL
dλ

L.

Realling that LBOB = LO, and ZL = Z−1
O , we have

µ
dO
dµ

= −γOO, γO = −γL = µ
d lnZO

dµ
= −µd lnZL

dµ
.

The inverse formula reads

ZO(λ, ε) = exp

(∫ λ

0
dλ′

γO(λ
′, ε)

βλ(λ′, ε) − pλ′ε

)
. (3.13)

For example, onsider the mass operator ϕ2
. Its renormalization oinides

with the renormalization of the integrated mass term

∫
dDxϕ2. (3.14)

Indeed, the integral determines the integrand up to loal total derivatives,

whih in this ase must also have dimension 2 (for D = 4). Sine there exist

no loal Lorentz invariant objets with these features, ϕ2
and (3.14) renor-

malize in exatly the same way. Correspondingly, the soure Lϕ2 oupled to

ϕ2
renormalizes exatly as m2

, and Zϕ2 = Z−1
m2 . By dimensional analysis,

µdm2/dµ must be equal to m2
times a funtion of λ and ε. We have

µ
dm2

dµ
= m2η(λ, ε), η = −µd lnZm2

dµ
= µ

d lnZϕ2

dµ
= γϕ2 .

More generally, the omposite �elds mix with one another. As explained

in Chapter 2, it is onvenient to ollet all of them into a huge vetor OI ,
where the omposite �elds of the same dimension are lose to one another and

the omposite �elds of higher dimensions follow those of lower dimensions.

Then, we have

OIB = ZIJ [OJ ],

14B1 Renorm



134 CHAPTER 3. RENORMALIZATION GROUP

where the matrix ZIJ of renormalization onstants is blok lower triangular.

We �nd

µ
d[OI ]
dµ

= −γIJ [OJ ], γIJ ≡ Z−1
IKµ

dZKJ

dµ
. (3.15)

Due to (2.102), the soures LI oupled to the OIs satisfy

µ
dLI

dµ
= LJγJI . (3.16)

3.1 The Callan-Symanzik equation

Let us apply (3.4) to Γ(Φ). We obtain

0 = µ
dΓB

dµ
= µ

∂Γ

∂µ
+ β̂λ

∂Γ

∂λ
+ ηm2 ∂Γ

∂m2
− γϕ

∫
dDx Φ(x)

δΓ

δΦ(x)
. (3.17)

On W we have, instead,

0 = µ
dWB

dµ
= µ

∂W

∂µ
+ β̂λ

∂W

∂λ
+ ηm2 ∂W

∂m2
+ γϕ

∫
dDx J(x)

δW

δJ(x)
. (3.18)

Let us take two funtional derivatives of (3.17) with respet to Φ and set

Φ = 0 afterwards, or, equivalently, two derivatives of (3.18) with respet to

J and then set J = 0. We obtain the Callan-Symanzik equations for the

onneted-irreduible two-point funtions Γ2 and the onneted two-point

funtion W2 = 〈ϕ(x)ϕ(y)〉c:

0=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηm2 ∂

∂m2
− 2γϕ

)
Γ2, (3.19)

0=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηm2 ∂

∂m2
+ 2γϕ

)
W2. (3.20)

The two equations are indeed equivalent, beause Γ2W2 = 1.

For the moment let us work in the massless theory. We do not make the

ε dependene expliit, beause it is not important for the present disussion.

Sine W2 has dimension D − 2 it is onvenient to write

W2(|x− y|, λ, µ) =
G2r(t, λ)

|x− y|D−2
, t ≡ − ln(|x− y|µ). (3.21)

Then (3.20) at m = 0 beomes

0 =

(
− ∂

∂t
+ β̂λ

∂

∂λ
+ 2γϕ

)
G2r(t, λ). (3.22)
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We want to solve this equation. To this purpose, we de�ne the �running

oupling� λ̃(t, λ), whih is the solution of the �rst-order di�erential equation

dλ̃

dt
= β̂λ(λ̃), λ̃(0, λ) = λ. (3.23)

We have dt = dλ̃/β̂λ(λ̃), hene

t =

∫ λ̃(t,λ)

λ

dλ̃

β̂λ(λ̃)
. (3.24)

It is onvenient to onsider λ̃ as a funtion of both t and the initial ondition

λ. If so, the t derivative appearing in (3.23) must be written as a partial

derivative ∂λ̃(t, λ)/∂t. Di�erentiating eah side of (3.24) with respet to λ,

we an work out the derivative of the solution with respet to its initial

ondition, whih is

∂λ̃(t, λ)

∂λ
=
β̂λ(λ̃(t, λ))

β̂λ(λ)
. (3.25)

The solution of the Callan-Symanzik equation (3.22) reads

G2r(t, λ) = z−1(λ, t)G2r(0, λ̃(t, λ)), (3.26)

with

z(λ, t) = exp

(
−2
∫ t

0
γϕ(λ̃(s, λ))ds

)
. (3.27)

We prove this statement by heking that (3.26) satis�es the equation and the

initial ondition. Given a funtion f of many variables, we write f (n1,n2,...)

to denote its n1th partial derivative with respet to its �rst variable, n2th

partial derivative with respet to its seond variable, and so on.

The initial ondition is ertainly satis�ed, sine at t = 0 we have the

identity G2r(0, λ) = G2r(0, λ). Moreover, we an easily alulate the partial

derivatives of G2r with respet to t and λ. We �nd

G
(1,0)
2r (t, λ) = 2γϕ(λ̃(t, λ))G2r(t, λ) + z−1(λ, t)β̂λ(λ̃(t, λ))G

(0,1)
2r (0, λ̃(t, λ)),

G
(0,1)
2r (t, λ) = 2G2r(t, λ)

∫ t

0

∂λ̃(s, λ)

∂λ
γ′ϕ(λ̃(s, λ))ds

+z−1(λ, t)
∂λ̃(t, λ)

∂λ
G

(0,1)
2r (0, λ̃(t, λ)).
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Now, using (3.25) we also have

β̂λ(λ)

∫ t

0

∂λ̃(s, λ)

∂λ
γ′ϕ(λ̃(s, λ))ds =

∫ t

0
β̂λ(λ̃(s, λ))γ

′
ϕ(λ̃(s, λ))ds (3.28)

=

∫ t

0

∂λ̃(s, λ)

∂s
γ′ϕ(λ̃(s, λ))ds =

∫ t

0

∂γϕ(λ̃(s, λ))

∂s
ds = γϕ(λ̃(t, λ))− γϕ(λ).

Summing, we �nd immediately that (3.22) is satis�ed.

When the theory ontains more parameters λi (whih an inlude also

the masses), equation (3.22) beomes

0 =

(
− ∂

∂t
+ β̂

i

λ

∂

∂λi
+ 2γϕ

)
G2r(t, λ). (3.29)

De�ne the running parameters λ̃i(t, λ) as the solutions of the following system

of �rst-order di�erential equations:

dλ̃i
dt

= β̂
i
λ(λ̃), λ̃i(0, λ) = λi. (3.30)

The solution (3.26) and formula (3.27) remain the same. However, formulas

(3.24) and (3.25) do not hold. De�ne

fi(t, λ) ≡ β̂
j
λ(λ)

∂λ̃i(t, λ)

∂λj
,

where the sum over j is understood. We have fi(0, λ) = β̂
i
λ(λ). Moreover, if

β̂
i

λ,k(λ) ≡ ∂β̂
i

λ(λ)/∂λk , we get

∂fi
∂t

= β̂
j

λ(λ)
∂β̂

i
λ(λ̃(t, λ))

∂λj
= β̂

j

λ(λ)
∂λ̃k(t, λ)

∂λj
β̂
i

λ,k(λ̃(t, λ)) = fkβ̂
i

λ,k(λ̃(t, λ)).

We obtain the system of �rst-order equations and initial onditions

∂fi(t, λ)

∂t
= fk(t, λ)β̂

i
λ,k(λ̃(t, λ)), fi(0, λ) = β̂

i
λ(λ).

It is easy to hek that

Fi(t, λ) ≡ β̂
i

λ(λ̃(t, λ))

satis�es the equations and the initial onditions. In partiular,

∂Fi(t, λ)

∂t
= β̂

k

λ(λ̃(t, λ))β̂
i

λ,k(λ̃(t, λ)) = Fk(t, λ)β̂
i

λ,k(λ̃(t, λ)).
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Therefore, we onlude that Fi(t, λ) = fi(t, λ), that is to say

β̂
j
λ(λ)

∂λ̃i(t, λ)

∂λj
= β̂

i
λ(λ̃(t, λ)). (3.31)

This formula is a generalization of (3.25). Going through the proof of (3.26)

we realize that (3.25) was neessary only to derive (3.28). Extending the

proof of (3.26) to the theories that ontain more parameters, we see that

(3.31) is just su�ient to derive the desired generalization of (3.28).

In the end, we �nd that (3.26) satis�es (3.29), as wanted.

General solution of the Callan-Symanzik equation

So far, we have studied the two-point funtion. However, the results an be

extended to a generi orrelation funtion

W I1···Im
α1···αn

(x, y, λ, µ) = 〈ϕα1(x1) · · ·ϕαn(xn)OI1(y1) · · · OIm(ym)〉c (3.32)

that ontains both insertions of elementary and omposite �elds. The sub-

sript α in ϕα is used to distinguish the di�erent types of elementary �elds,

inluding the ghosts and the Lagrange multipliers. We denote the ϕα anoma-

lous dimensions with γα(λ). Finally, λi ollets the ouplings and any other

parameters, inluding the masses and the gauge-�xing parameters.

The Callan-Symanzik equation for (3.32) an be derived by applying (3.4)

(with Φ→ J) to W (J,L) and using (3.10) and (3.16). We �nd

0=

(
µ
∂

∂µ
+
∑

i

β̂
i
λ
∂

∂λi
+ 2

n∑

i=1

γαi

)
W I1···Im
α1···αn

+

m∑

j=1

γIjKjW
I1···Ij−1KjIj+1···Im
α1···αn . (3.33)

Repeating the proof of the previous setion it is easy to show that the solution

reads

W Ii···Im
α1···αn

(x, y, λ, µ) =

n∏

i=1

z−1/2
αi

(t)

m∏

j=1

Z−1
IjKj

(t) WK1···Km
α1···αn

(x, y, λ̃(t), µ̃),

(3.34)

where now t = ln(µ̃/µ), λ̃(t) are the solutions of (3.30) and

zαi(t) = exp

(
−2
∫ t

0
dsγαi(s)

)
, Z(t) = T exp

(
−
∫ t

0
dsγ(s)

)
, (3.35)
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where Z and γ are the matries with entries ZIJ and γIJ , γ(t) stands for

γ(λ̃(t)) and T denotes the T-ordered produt. Preisely,

Z(t) = 1 +

∞∑

k=1

(−1)k
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtkγ(t1) · · · γ(tk−1)γ(tk),

(3.36)

Thus, formula (3.34) tells us how the orrelation funtion depends on the

sale µ.

3.2 Finiteness of the beta funtion and the anoma-

lous dimensions

Formulas (3.11) and (3.49) show that the poles in ε anel out in the one-

loop beta funtions and the anomalous dimensions. This is a very general

fat: the beta funtions and the anomalous dimensions are �nite quantities.

Consider the Callan-Symanzik equation (3.17) for Γ(Φ, λ,m2, µ). Restore ~

and expand eah quantity perturbatively,

Γ =

∞∑

i=0

~
iΓi, β̂λ =

∞∑

i=0

~
iβ̂λi, η =

∞∑

i=0

~
iηi, γϕ =

∞∑

i=0

~
iγϕi.

(3.37)

Assume indutively that β̂λ, η and γϕ are �nite up to and inluding the order

n− 1, that is to say

β̂λi, ηi, γϕi <∞ for i 6 n− 1. (3.38)

The assumption is obviously true for i = 0, sine β̂λ0 = −ελ, η0 = γϕ0 = 0.

Consider the ontribution to (3.17) of order n. We have

0 = µ
∂Γn
∂µ

+

n∑

i=0

(
β̂λi

∂Γn−i
∂λ

+ ηim
2 ∂Γn−i
∂m2

− γϕi
∫

Φ
δΓn−i
δΦ

)
.

Reall that every Γi is onvergent, and so are its derivatives with respet to

the renormalized parameters. Using (3.38) we onlude

β̂λn
∂Γ0

∂λ
+ ηnm

2 ∂Γ0

∂m2
− γϕn

∫
Φ
δΓ0

δΦ
= �nite. (3.39)

Now, Γ0 is just the lassial ation, and ∂Γ0/∂λ, ∂Γ0/∂m
2
and Φ(δΓ0/δΦ)

are independent terms, beause they are the vertex, the mass term and the

14B1 Renorm



3.3 Fixed points of the RG �ow 139

�eld equation (whih ontains the vertex, the mass term and the kineti

term), respetively. Therefore, eah oe�ient of the linear ombination

(3.39) must be �nite, whih proves

β̂λn <∞, ηn <∞, γϕn <∞.

The indutive assumption (3.38) is thus promoted to n =∞.

We have set LI = 0, but learly the argument an be repeated in the

presene of soures for omposite �elds OI , whih proves that the γIJs are

also �nite.

3.3 Fixed points of the RG �ow

Consider the orrelation funtion W Ii···Im
α1···αn

of formula (3.32) and resale the

oordinates, the momenta and the parameters λ by powers of ζ equal to

their dimensions in units of mass. For example, resale the oordinates xµ

to ζ−1xµ, the momenta pµ to ζpµ, the masses m to ζm, and so on. If we also

resale µ to ζµ, we get

W Ii···Im
α1···αn

(ζ−1x, ζ−1y, ζdλλ, ζµ) = ζdWW Ii···Im
α1···αn

(x, y, λ, µ),

where dW and dλ are the dimensions of W Ii···Im
α1···αn

and λ, respetively. Repla-

ing µ by ζ−1µ, we obtain

W Ii···Im
α1···αn

(x, y, λ, ζ−1µ) = ζ−dWW Ii···Im
α1···αn

(ζ−1x, ζ−1y, ζdλλ, µ).

The left-hand side of this equation tells us that the limit µ→∞ in the or-

relation funtion is equivalent to let ζ tend to zero. The right-hand side tells

us that this operation is equivalent to let the distanes tend to in�nity (and

resale the parameters of the theory appropriately). Thus, the limit µ→∞
gives information about the infrared, or large-distane, limit of the orrela-

tion funtion. Similarly, the limit µ→ 0 is equivalent to take ζ (in partiular

the distanes) to in�nity, so it gives information about the ultraviolet limit.

The solution (3.34) of the renormalization-group equations gives

W Ii···Im
α1···αn

(x, y, λ, ζ−1µ) =
n∏

i=1

z−1/2
αi

(t)
m∏

j=1

Z−1
IjKj

(t) WK1···Km
α1···αn

(x, y, λ̃(t), µ),

(3.40)
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where now t = ln ζ. Thus, to understand the infrared and the ultraviolet

behaviors of the orrelation funtions, it is useful to work out the infrared and

the ultraviolet behaviors of the beta funtions and the anomalous dimensions.

For simpliity, we assume that the theory has a unique dimensionless

oupling, and keep alling it λ. We also assume that λ is de�ned to be

non-negative. Typially, as in the ase of the theory ϕ4
, this requirement is

neessary to ensure that the potential is bounded from below.

An alternative way of de�ning the running oupling is by viewing it as

a funtion λ(µ) of the energy sale µ. Start from formula (3.24), and set

ε = 0, t = ln(µ̃/µ), λ̃ = λ(µ̃) and λ = λ(µ). In a generi subtration sheme,

de�ne βλ(λ) ≡ β̂λ(λ, 0). Exponentiating (3.24), relabeling the integration

variable and splitting the integral into two symmetri parts with the help of

an arbitrary onstant λ̄, we an write

µ̃ exp

(
−
∫ λ(µ̃)

λ̄

dλ

βλ(λ)

)
= µ exp

(
−
∫ λ(µ)

λ̄

dλ

βλ(λ)

)
= onstant ≡ Λ

T

.

The sale Λ
T

(alled Λ
QCD

if the theory T is QCD and λ̄ is hosen appro-

priately) is RG invariant, i.e. independent of µ. We also have

∫ λ(µ)

λ̄

dλ

βλ(λ)
= ln

µ

Λ
T

(3.41)

Now, the infrared (ultraviolet) behavior of λ̃ is studied for t → −∞
(t → ∞), whih is equivalent to take the limit µ̃ → 0 (µ̃ → ∞) of the

funtion λ̃ = λ(µ̃). Then, it is also the limit µ→ 0 (µ→∞) of λ(µ). We see

that in both the infrared and ultraviolet limits, the right-hand side of (3.41)

diverges. On the other hand, the left-hand side an diverge in the following

two ases: (i) the running oupling tends to a zero of the beta funtion, i.e.

lim
µ→0

λ(µ) = λ
IR

, and/or lim
µ→∞

λ(µ) = λ
UV

,

where βλ(λIR) = βλ(λUV) = 0; or (ii) the running oupling tends to ±∞ and

the infrared and/or ultraviolet limits. In all the ases the integral of (3.41)

must diverge in the orret way.

The values of the ouplings for whih the beta funtions vanish at ε = 0,

i.e. the solutions λ∗ of βλ(λ∗) = 0, de�ne a partiular lass of quantum �eld

theories, whih are alled �xed points of the RG �ow. Clearly, λ = 0 is
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a trivial example of a �xed point, and orresponds to the free �eld theory

we have been expanding around. However, there may exist interating �xed

points, that is to say solutions with λ∗ 6= 0. This happens, for example, when

the beta funtions have the forms

(3.42)

In some ases the nontrivial �xed point an be reahed perturbatively from

the free �xed point. Then, the perturbative expansion allows us to follow

the entire renormalization group �ow in between the �xed points.

At any �xed point, the oupling does not run (at ε = 0), sine βλ ≡ 0

implies λ̃ ≡ λ∗. However, a theory behaves rather di�erently around the

free and the interating �xed points. Now we study the typial behaviors,

starting from the trivial �xed point.

Expand βλ perturbatively around λ = 0:

βλ(λ) = β1λ
2 + β2λ

3 + β3λ
4 +O(λ5). (3.43)

If the running oupling λ̃ is small, we an keep the �rst nontrivial ontribution

to β̂λ(λ̃) in the RG equation (3.23) and neglet any higher orders. We assume

here that β1 6= 0, so the �rst nontrivial ontribution is the one-loop one. The

running oupling reads

λ̃(t, λ) =
λ

1− β1tλ
(3.44)

up to two-loop orretions. Setting t = ln(µ̃/µ), λ̃ = λ(µ̃) and λ = λ(µ), we

an also write the running in the form (3.41), or

1

λ(µ)
+ β1 lnµ = onstant.

However, this result is just one loop, and an be trusted only if the running

oupling is small. This happens when µ → 0 (whih is the IR limit) for

β1 > 01, and when µ → ∞ (whih is the UV limit) for β1 < 0. Spei�ally,

1

Reall that λ is assumed to be non-negative.
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formula (3.44) gives

λ̃(t, λ) ∼ − 1

β1t
≪ 1 for |t| ≫ 1, (3.45)

The running oupling tends to zero, so the theory tends to the free �xed

point. Observe that the behavior (3.45) is λ independent.

The theory is said to be infrared free if β1 > 0, and asymptotially free

(or ultraviolet free) if β1 < 0. Nontrivial examples of asymptotially free

theories are provided by non-Abelian gauge �eld theories, as well as the two-

dimensional four-fermion model (1.102). In the latter ase, formula (2.93)

allows us to work out the one-loop beta funtion, whih reads

βλ = −(N − 1)λ2

2π
+O(λ3).

Now we study the behavior of the theory around an interating �xed

point. We expand by writing λ = λ∗ + η and taking η ≪ 1. The Taylor

expansion of the beta funtion gives, to the lowest order,

βλ(λ) = β′λ(λ∗)η +O(η2).

We assume that the slope β′λ(λ∗) of the beta funtion at the �xed point is

nonvanishing. If not, we would have to go to the �rst nontrivial order of

the Taylor expansion and modify the analysis aordingly. The RG equation

(3.23) beomes

dη̃

dt
= β′λ(λ∗)η̃ +O(η̃2), η̃(0) = η,

The running oupling reads

η̃(µ̃) = ηeβ
′

λ(λ∗)t.

Writing t = ln(µ̃/µ) to swith to the form (3.41), we obtain

η(µ)µ−β
′

λ(λ∗) = onstant. (3.46)

With the help of this formula, we an reah the �xed point. There, η(µ)

must tend to zero. This happens when µ → ∞ for β′λ(λ∗) < 0 and when

µ→ 0 for β′λ(λ∗) > 0. We learn that when the slope of the beta funtion is
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negative (positive) at the �xed point, the interating �xed point is reahed

in the ultraviolet (infrared) limit.

Reapitulating, in the �rst (seond) example of (3.42) the theory is free

in the infrared (ultraviolet) limit, and tends to the interating �xed point in

the ultraviolet (infrared) limit.

At an interating �xed point, the anomalous dimensions γϕ2(λ∗) ≡ γ∗ϕ2

(and γαi(λ∗) ≡ γ∗αi
, γIJ(λ∗) ≡ γ∗

IJ
, in general) are just onstants. Then,

formulas (3.35) with t = ln(µ̃/µ) give

zαi(t) =

(
µ

µ̃

)2γ∗αi

, Z(t) =

(
µ

µ̃

)γ∗
.

Finally, formula (3.34) gives

W Ii···Im
α1···αn

(x, y, λ, µ) =

(
µ̃

µ

)∑n
i=1 γ

∗
αi

m∏

j=1

(
µ̃

µ

)γ∗

IjKj

WK1···Km
α1···αn

(x, y, λ∗, µ̃).

(3.47)

In the partiular ase of the two-point funtion W2 = 〈ϕ(x)ϕ(y)〉c in the

massless four-dimensional ϕ4
theory, formulas (3.21), (3.26) and (3.27) give,

in D = 4,

〈ϕ(x)ϕ(y)〉c =
µ−2γ∗ϕCϕ

|x− y|2(1+γ∗ϕ)
,

where Cϕ is a onstant. If we ompare this result with the two-point funtion

of the free-�xed point, whih is

〈ϕ(x)ϕ(y)〉c =
1

4π2|x− y|2 ,

we see that the exponent is modi�ed to twie the �ritial exponent�

1 + γ∗ϕ.

In turn, this is the sum of the naïve ϕ dimension, whih is equal to one,

plus γ∗ϕ. Similarly, the two-point funtion of a omposite �eld O of naïve

dimension dO is

〈O(x)O(y)〉c =
µ−2γ∗

OCO

|x− y|2(dO+γ∗
O
)
.

These remarks justify the name �anomalous dimensions� for the quantities

γ.
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The solution (3.47) is simple at the �xed points, beause the Callan-

Symanzik equation (3.33) beomes simpler there. Dropping the terms pro-

portional to the beta funtions, we get

0 =

(
µ
∂

∂µ
+ 2

n∑

i=1

γαi

)
W I1···Im
α1···αn

+

m∑

j=1

γIjKjW
I1···Ij−1KjIj+1···Im
α1···αn ,

so the entire µ dependene of a orrelation funtion is enoded in an appro-

priate multipliative fator.

ϕ4
4 at one loop The RG �ow of the theory ϕ4

in four dimensions an be

worked out at one loop by means of the beta funtion (3.11). Formula (3.11)

is orret also at ε 6= 0 in the minimal subtration sheme, while it ontains

orretions of the form O(ελ2) in a generi sheme, where the onstants c1
and c2 of formula (2.44) an be nonzero. In either ase, the solution of (3.23)

at ε = 0 reads

λ̃(t, λ) =
λ

1− 3tλ
16π2

, (3.48)

whih is the running oupling in the one-loop approximation. Sine β1 > 0,

the theory is infrared free.

The anomalous dimension of the omposite operator ϕ2
is

η = γϕ2 = −µd lnZm
dµ

= −β̂λ
d lnZm

dλ
=

λ

16π2
+O(λ2). (3.49)

Let us study the ϕ2
two-point funtion in the massless ase. From (3.35) we

have

zϕ2(λ, t) = exp

(
−
∫ t

0
γϕ2(λ̃(s, λ))ds

)
=

(
1− 3tλ

16π2

)1/3

.

Applying the RG solution (3.34), we get (again at ε = 0)

〈ϕ2(x)ϕ2(y)〉c ≡
G

(2)
ϕ2r

(t, λ)

|x− y|4 ∼
λ
2/3
f

(x− y, µ)
λ2/3|x− y|4 G

(2)
ϕ2r

(0, λ
f

(x− y, µ)) (3.50)

at large distanes, where

λ
f

(x− y, µ) ≡ 16π2

3 ln(µ|x− y|) .

We annot de�ne a ritial exponent here, sine λ
f

has a logarithmi behavior.

The reason is that at the free �xed point the slope β′λ of the beta funtion

vanishes.
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3.4 Sheme (in)dependene

Now we work out other useful properties of the beta funtion. Observe that

in the minimal subtration sheme the λ renormalization onstant (whih we

denote with a bar) has the form Z̄λ = 1+poles. Thus, formula (3.7) gives

β̄λ = ε× poles = �nite+ poles, (3.51)

with no orders εn, n > 0. However, we just proved that βλ is �nite, so the

poles that appear on the right-hand side of (3.51) must anel out. Thus, β̄λ
depends only on λ and not on ε. In the minimal subtration sheme we an

write

̂̄βλ(λ, ε) = β̄λ(λ)− ελ.
We know that the oe�ients of the poles 1/ε are sheme independent at

one loop. For this reason, the one-loop oe�ients of beta funtions and the

anomalous dimensions are always sheme independent at ε = 0. Moreover,

if the theory ontains a unique dimensionless oupling λ, we an easily show

that both the one-loop and the two-loop oe�ients of the beta funtion are

sheme independent at ε = 0. Expand βλ(λ) as in (3.43). A sheme hange

amounts to a perturbative reparametrization of λ. Write

λ = λ′ + a2λ
′2 + a3λ

′3 +O(λ′4). (3.52)

We have

β′λ(λ
′) = µ

dλ′

dµ
= µ

dλ

dµ

dλ′

dλ
= βλ(λ(λ

′))

(
dλ

dλ′

)−1

=

= β1λ
′2 + β2λ

′3 +
(
β3 + a2β2 + (a22 − a3)β1

)
λ′4 +O(λ′5).

We see that the �rst two oe�ients, and only those, are sheme indepen-

dent. The result does not extend to ε 6= 0, sine then we have to inlude

reparametrizations of the form λ = c(ε)λ′ +O(λ′2), with c(ε) = 1 +O (ε).

With a suitable hoie of a2 and a3 the third oe�ient an be set to

zero, for example

a2 = 0, a3 =
β3
β1
. (3.53)

It is easy to prove that with a suitable hoie of the funtion λ(λ′) all the

oe�ients but the �rst two an be set to zero. However, this is just a u-

riosity. For example, the two-loop beta funtion annot be trusted as an
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exat formula, not even within the perturbative expansion. A warning that

there is a problem here is the β1 in the denominator of (3.53). Typially, β1
is proportional to the number N of �elds irulating in loops. Nowhere the

perturbative expansion an generate inverse powers of N . In Yang-Mills the-

ory, for example, β1 is equal to a numerial fator times 11C(G)− 4NfC(r),

where C(G) and C(r) are the Casimir elements of the representations. It is

obvious that, at the perturbative level, the Casimir elements annot appear

in the denominators.

Moreover, the reparametrization (3.52) an introdue spurious singulari-

ties at �nite values of λ. For example, fators suh as

λ2

βλ(λ)
=

1

β1
+O(λ) (3.54)

an easily be generated. If we ignore the awkward β1 in the denominator

(maybe beause we are working with a given number of �elds and are not

aware of the importane of this point), suh funtions appear to have a per-

fetly good perturbative expansion around the free-�xed point of the RG �ow.

Nevertheless, they do not have a good perturbative behavior around an inter-

ating �xed point, beause they are singular there. If we make reparametriza-

tions that involve expressions suh as (3.54), we may loose the possibility of

smoothly interpolating between two �xed points of the RG �ow.

Finally, the �uriosity� mentioned above does not extend to theories that

ontain more than one oupling. When we generalize the argument given

above, both λ and βλ beome vetors, while the oe�ients βi beome tensors

with i+ 2 indies, and the oe�ients ai beome tensors with i+ 1 indies.

The oe�ients of the transformed beta funtion an be set to zero by solving

linear reursive equations that have i + 2 indies, but their unknowns just

have i+ 1 indies. The solution does not exist, in general.

3.5 A deeper look into the renormalization group

If we insert the one-loop values (2.44) of the ϕ4
renormalization onstants into

the inverse formulas (3.8) and (3.13), we an reonstrut the renormalization

onstants Zλ and, for example, Zϕ2 . Then we �nd something interesting.
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Working in the minimal subtration sheme, we obtain

Z̄λ(λ, ε) =
1

1− 3λ
16π2ε

, Z̄ϕ2(λ, ε) =

(
1− 3λ

16π2ε

)1/3

. (3.55)

These results give the orret values (2.44) (at c1 = c2 = 0) at O(λ) and the

two-loop double poles agree with formula (2.65). However, they tell us muh

more.

Now we inlude the higher-order orretions to the beta funtion. We

insert them in (3.8)by writing β̄λ(λ) = λ
∑∞

i=1 β̄iλ
i
, and �nd

Z̄λ(λ, ε) = exp

(∫ λ

0

dλ′

λ′

∑∞
i=1 β̄i

λ′i

ε

1−∑∞
j=1 β̄j

λ′j

ε

)

= 1 + β̄1
λ

ε
f1

(
β̄1
λ

ε

)
+

∞∑

i=2

β̄i
λi

ε
fi

(
β̄1
λ

ε
, β̄2

λ2

ε
, · · · , β̄i

λi

ε

)
, (3.56)

where the funtions fi are power series of their arguments and reeive on-

tributions from the jth orders, j 6 i, of the beta funtion. We see that the

maximum poles λn/εn, n > 0, even those that are due to diagrams with

arbitrary many loops, are not a�eted by the higher-order orretions, but

depend only on the one-loop oe�ient of the beta funtion. Resumming

them, we �nd

Zλ(λ, ε) =
1

1− β1λ
ε

+
∞∑

i=2

λi

ε
fi.

The �rst two oe�ients of the beta funtion ontribute to the poles that

have the form (λ2/ε)n(λ/ε)m, with n > 0 and m > 0. However, they do not

determine all of them, beause the same powers of λ and ε an be obtained

in di�erent ways. For example, λ4/ε2 an be viewed as (λ2/ε)2, whih is

next-to-maximum, or (λ3/ε)(λ/ε). It is better to reorganize (3.56) as

Z̄λ(λ, ε) = 1 +

∞∑

i=1

λi

ε
gi

(
λ

ε

)
, (3.57)

where the funtions gi are power series that depend only on the �rst ith

oe�ients of the beta funtion. The next-to-maximum poles are those of

the form (λ2/ε)(λ/ε)m, m > 0, the next-to-next-to-maximum poles are those
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of the form (λ3/ε)(λ/ε)m , m > 0, et. Sine the power of λ oinides with

the power of ~, the poles are organized aording to the general sheme

L = 1 ~

ε

L = 2 ~2

ε2
~2

ε

L = 3 ~3

ε3
~3

ε2
~3

ε

L = 4 ~4

ε4
~4

ε3
~4

ε2
~4

ε

· · ·

(3.58)

The one-loop oe�ient of the beta funtion determine the �rst olumn (i.e.

the maximum poles), the one- and two-loop oe�ients determine the �rst

two olumns (i.e. the maximum and the next-to-maximum poles), and so

on: the j-loop oe�ients, j 6 i, of the beta funtion determine the �rst i

olumns. Some terms on the ith olumn reeive ontributions from the j-loop

oe�ients with j < i, but they an also reeive ontributions from the i-

loop oe�ient. Brand new information is ontained only along the diagonal.

Eah nondiagonal element orresponds to some type of subdivergene.

For example, if we inlude the two-loop orretions to the beta funtion,

βλ = β1λ
2+β2λ

3+O(λ4), we an determine Zλ up to the next-to-maximum

poles. We get

Z̄λ(λ, ε) =
1 + β2ε

β2
1
ln
(
1− β1λ

ε

)

1− β1λ
ε

+
β2λ

β1

(
1− β1λ

ε

)2 =
1

1− β1λ
ε

+
λ2

ε
g2

(
λ

ε

)
.

The poles of a generi orrelation funtion G have a similar struture,

where now the �rst i olumns reeive ontributions from the j-loop oe�-

ients, j 6 i, of the beta funtions and the anomalous dimensions. We have,

in the minimal subtration sheme,

G(~, ε) = Gc +

∞∑

i=1

~i

ε
Gi

(
~

ε

)
, (3.59)

where Gc is the lassial ontribution and Gi are power series in ~/ε. The

ith olumn of (3.58) is ~iGi/ε.

Now, assume that the �rst oe�ient β1 vanishes. Then (3.56) beomes

Z̄λ(λ, ε) = 1 +
∞∑

i=2

β̄i
λi

ε
fi

(
β̄2
λ2

ε
, · · · , β̄i

λi

ε

)
.
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The �rst olumn of sheme (3.58) disappears, the seond olumn is just made

of its top element, and the other olumn are made by their top elements and

sparse other elements. Again, the �rst i olumns are determined by the �rst

i oe�ients of the beta funtion. Similar restritions apply when the �rst

two oe�ients of the beta funtion vanish, and so on.

Another way to reah the onlusions derived above is to write

ln Z̄λ =

∞∑

i=1

ci(λ)

εi
,

where ci(λ) are power series in λ that begin with O(λi). Next, we insert this
expression into formula (3.7) (with p = 1). Equating eah order in ε we get

β̄λ = λ2
dc1(λ)

dλ
,

dci(λ)

dλ
=
β̄λ
λ

dci−1(λ)

dλ
for i > 1.

Knowing that ci(λ) = O(λi) we �nd

c1(λ) =

∫ λ

0

β̄λ(λ
′)

λ′2
dλ′, ci(λ) =

∫ λ

0

dci−1(λ
′)

dλ′
β̄λ(λ

′)

λ′
dλ′ for i > 1.

We see that the one-loop beta funtion determines the orders O(λi) of all

the ci(λ)s. Similarly, the two-loop beta funtion determines all the ci(λ)s up

to and inluding O(λi+1) and the k-loop beta funtion determines them to

and inluding O(λi+k−1).

To summarize, the power of the renormalization group is that it relates

in�nitely many quantities, suh as the entries of the olumns of (3.58), and

allows us to resum them. A onsequene is that omputing the entries of the

same olumn involves more or less the same level of di�ulty. As a hek,

we suggest the reader to ompute the two-loop double poles of the ϕ4
4 theory,

whih is part of exerise 6. It may be easily realized that if we just want

the poles 1/ε2, we an onsiderably redue the e�ort of the alulation. In

the end, the two-loop double poles do not involve the typial di�ulty of a

two-loop alulation, but the one of a one-loop alulation. The same ours

with the three-loop triple poles, and so on.

To further appreiate the meaning of these fats, onsider the formula

(3.48) of the one-loop running oupling and ompare it to the one-loop bare

oupling:

λ̃(t, λ) =
λ

1− 3tλ
16π2

, λBµ
−ε =

λ

1− 3λ
16π2ε

.
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We see that λBµ
−ε

is nothing but the running oupling λ̃(t, λ) at t = 1/ε.

In a uto� regularization framework, it would be the running oupling at an

energy sale equal to the uto� Λ (1/ε ∼ ln(Λ/µ)). The resummation of the

powers of (λ/ε) in λBµ
−ε

is just like the resummation of the powers of (tλ)

in λ̃(t, λ).

Atually, there is a muh loser relation between the two resummations.

For de�niteness, assume that the theory ontains a unique dimensionless

oupling λ and onsider the orrelation funtions

Wα1···αn(x, y, λ, µ) = 〈ϕα1(x1) · · ·ϕαn(xn)〉c

=

n∏

i=1

exp

(∫ λ̃(t)

λ
dλ′

γαi(λ
′)

βλ(λ′)

)
Wα1···αn(x, y, λ̃(t), µ), (3.60)

where we have used the solution (3.34) of the Callan-Symanzik equation,

and rewritten (3.35) by means of an integral on the oupling. Now, the

limit of integration λ that appears on the right-hand side of (3.60) has no

physial meaning, sine it an be absorbed into the normalization of the

�elds. Obviously, the ross setions and the other physial quantities do not

depend on suh normalizations. Thus, ignoring that limit of integration, the

right-hand side of (3.60) depends on the oupling just through the running

oupling λ̃(t). If λ̃ is small, the perturbative expansion of the right-hand

side does in powers of λ̃ makes sense. Formula (3.44) shows that when |t| is
large, the running oupling an be small even if λ is of order one. The point

is that if λ is of order one, the perturbative expansion of the left-hand side

of (3.60) does not make sense. In other words, the renormalization group

teahes us that, after resumming the powers of λ into λ̃, the perturbative

expansion an beome meaningful, if it is understood in the sense o�ered

by the right-hand side of (3.60) (apart from an overall onstant that is not

physially important).

We have already remarked that little is known about the resummation

of the perturbative expansion in quantum �eld theory, to the extent that

di�erent resummations may give di�erent results and orrespond to di�erent

physial theories. The renormalization group helps us on this, beause it

allows us to partially resum the perturbative expansion in powers of λ. Pre-

isely, although we started with the aim of de�ning a perturbative expansion

in powers of λ, and we ended by disovering that we may be able to de�ne

the perturbative theory even if λ is of order one, at least in a domain of
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energies where the running oupling λ̃ is small. Indeed, the renormalization

group equations tell us that, if we appropriately resum the powers of tλ, we

an reorganize the expansion as an expansion in powers of λ̃. So doing, we

are resumming the analogues of the olumns of (3.58).
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Chapter 4

Gauge symmetry

In this hapter we begin the study of Abelian and non-Abelian gauge sym-

metries in quantum �eld theory. After giving the basi notions and the main

properties, we disuss the problems raised by their quantization, suh as the

gauge �xing and unitarity. In the next hapter we upgrade the formalism to

make it suitable to prove the renormalizability of gauge theories to all orders.

Then we proeed by proving the renormalizability of quantum eletrodynam-

is (hapter 6) and the renormalizability of non-Abelian gauge �eld theories

(hapter 7). In this part of the book, we assume that the theory is parity

invariant, so no hiral fermions are present. The renormalization of parity

violating quantum �eld theories raises bigger issues.

4.1 Abelian gauge symmetry

The propagation of free massless vetor �elds Aµ is desribed by the massless

limit of the Proa ation (1.87),

S
free

(A) =

∫
dDx

1

4
F 2
µν , (4.1)

where Fµν = ∂µAν−∂νAµ is the �eld strength. This ation is invariant under

the gauge symmetry

A′
µ = Aµ + ∂µΛ, (4.2)

where Λ is an arbitrary funtion of the position. In in�nitesimal form, the

symmetry transformation reads

δΛAµ = ∂µΛ. (4.3)
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We have already written the ation (4.1) in omplex D dimensions, be-

ause one of the main virtues of the dimensional regularization is that it

is manifestly gauge invariant, as long as the theory does not ontain hiral

fermions. Gauge invariane looks formally the same in all (integer) dimen-

sions, so it is easy to generalize it to the formal objets Aµ, ∂µ, x
µ
, γµ, ψ,

et., that are used in the dimensional regularization. Instead, the notion of

hirality is dimension dependent, so gauge invariane is not manifest in D

dimensions when the Lagrangian expliitly ontains γ5.

A diret onsequene of the loal gauge symmetry is that the quadrati

part of the ation (4.1) is not invertible. Indeed, it is proportional to k2δµν−
kµkν in momentum spae, and has a null eigenvetor kν . Therefore, the

Green funtion 〈Aµ(k)Aν(−k)〉 is not well de�ned. This fat is also evident

by taking the massless limit of the Proa propagator (1.89), whih is singular.

The free fermion ation (1.100) is invariant under the global U(1) trans-

formation

ψ′ = e−ieΛψ, (4.4)

where Λ is onstant. The photon Aµ is the gauge �eld that promotes the

global U(1) invariane (4.4) to a loal symmetry

A′
µ = Aµ + ∂µΛ, ψ′ = e−ieΛψ, ψ̄

′
= eieΛψ̄, (4.5)

where now Λ is a funtion of the spaetime point.

Replaing the simple derivative ∂µ with the ovariant derivative ∂µ+ieAµ
and adding (4.1), we obtain the Lagrangian of quantum eletrodynamis

(QED)

L0 =
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ, (4.6)

whih is invariant under the gauge transformation (4.5). In in�nitesimal

form, (4.5) beomes

δΛAµ = ∂µΛ, δΛψ = −ieΛψ, δΛψ̄ = ieΛψ̄. (4.7)

4.2 Gauge �xing

To de�ne the funtional integral of a gauge theory, atually its perturbative

expansion, we �rst need to hoose a gauge, by imposing a ondition of the

form

G(A) = 0,
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where G(A) is a suitable loal funtion. Later we must show that the physial

quantities do not depend on the hoie we make. Among the most popular

gauge hoies we mention the Lorenz gauge �xing

G(A) = ∂µAµ,

and the Coulomb gauge �xing

GC(A) = −∇ ·A. (4.8)

Now we desribe how to implement the gauge �xing at the quantum level.

Start from the funtional integral

Z(J) =

∫
[dA] exp

(
−S(A) +

∫
JA

)

in the absene of matter. The funtional integration measure is ertainly

gauge invariant, sine the gauge transformation is just a translation. For

the moment, we assume that the urrent J is divergeneless, so the gener-

ating funtional Z(J) is formally gauge invariant. We know that Z(J) is ill

de�ned, beause we are integrating also on the longitudinal mode (4.3) and

the integrand is independent of it. For the moment, we ignore this fat and

proeed.

Let us insert �1�, written in the form

1 =

∫
[dΛ] (det�) δF (−∂µAµ +Q+�Λ), (4.9)

where Q is an arbitrary funtion. Here δF (Y ) denotes the �funtional delta

funtion�, whih means the produt of δ(Y (x)) over all spaetime points x,

where Y (x) is a funtion of the point. Formula (4.9) is the funtional version

of the ordinary formula

∫ n∏

i=1

dxiJ (x)
n∏

k=1

δ(fk(x)) =
∑

x̄

signJ (x̄). (4.10)

where

J (x) = det
∂fi(x)

∂xj
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and x̄ are the points where the funtions fk(x) simultaneously vanish. As

long as it does not vanish, the right-hand side of (4.10) is just a normalization

fator, whih an be omitted. In our ase it is preisely 1, so we get

Z(J) =

∫
[dAdΛ](det�)δF (−∂µAµ +Q+�Λ) exp

(
−S(A) +

∫
JA

)
.

Now, perform a hange of variables A′ = A − ∂Λ. Realling that J is di-

vergeneless and the funtional measure is invariant under translations, after

dropping the primes we obtain

Z(J) =

∫
[dΛ]

∫
[dA](det�)δF (−∂µAµ +Q) exp

(
−S(A) +

∫
JA

)
.

We see that the integral over the longitudinal mode Λ fatorizes. Sine the

normalization of Z is physially irrelevant, we an equivalently de�ne

Z(J) =

∫
[dA](det�)δF (−∂µAµ +Q) exp

(
−S(A) +

∫
JA

)
,

whih is gauge-�xed. At this point, introdue a �Lagrange multiplier� B1

and write the funtional delta funtion as

δF (−∂µAµ +Q) =

∫
[dB] exp

(
−i
∫

dDxB(∂µAµ −Q)

)
.

We prefer to work with Hermitian quantities in the exponent, so we replae

B with −iB. This operation fatorizes an irrelevant onstant in front of the

integral, whih we omit heneforth. Then

Z(J) =

∫
[dAdB](det�) exp

(
−
∫

dDx

(
1

4
F 2
µν +B∂µAµ −BQ− JA

))
.

(4.11)

We see that the funtion Q plays the role of an external soure for the

Lagrange multiplier B. We an easily work out the propagator of the pair

(Aµ, B), and �nd

(
〈Aµ(k)Aν(−k)〉 〈Aµ(k)B(−k)〉
〈B(k)Aν(−k)〉 〈B(k)B(−k)〉

)
=

1

k2


 δµν −

kµkν
k2

−ikµ
ikν 0


 .

(4.12)

1

Also known as Nakanishi-Lautrup auxiliary �eld, in this ontext.
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The funtional integral an be easily evaluated and gives

Z(J) = (det�)−1 exp

(
1

2

∫
dDxdDyJµ(x)GA(x− y)Jµ(y)

)
,

where the Green funtion GA(x− y) oinides with GB(x− y) at m = 0, and

we have used that J is divergeneless. We see that the result is independent

of Q, whih was expeted, sine Q is arbitrary in formula (4.9).

Formula (4.11) ontains a det� in the numerator, for whih it is not easy

to write Feynman rules. We ould ignore this fator, beause it is a just

onstant in QED. However, in more general gauge theories the analogue of

this fator depends on the �elds. If we introdue suitable antiommuting

�elds C and C̄, alled Faddeev-Popov ghosts and antighosts, respetively, we

an exponentiate the determinant. The omplete gauge-�xed funtional then

reads

Z(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +B∂µAµ − C̄�C −BQ− JA

))
,

(4.13)

where [dµ] ≡ [dAdCdC̄dB]. The ghost propagator is simply

〈C(k)C̄(−k)〉 = 1

k2
. (4.14)

We an also relax the assumption that J is divergeneless. Then the

funtional integral (4.13) does depend on Q, but is still well de�ned. If we

average over Q with the Gaussian measure

∫
[dQ] exp

(
− 1

2λ

∫
dDxQ(x)2

)
,

where λ is an arbitrary parameter, we obtain

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν −

λ

2
B2 +B ∂ ·A− C̄�C − JA

))
.

(4.15)

Sine B now appears quadratially, it an be easily integrated away, giving

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +

1

2λ
(∂ · A)2 − C̄�C − JA

))
,

(4.16)

where now [dµ] = [dAdCdC̄].
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In this framework, the ghost propagator (4.14) is unhanged, while the

gauge-�eld propagator reads

〈Aµ(k) Aν(−k)〉 =
1

k2

(
δµν + (λ− 1)

kµkν
k2

)
. (4.17)

A simple gauge hoie is the Feynman gauge, where λ = 1 and

〈Aµ(k) Aν(−k)〉 =
δµν
k2
. (4.18)

The hoie λ = 0 is also known as the Landau gauge.

Everything we said so far an be repeated by replaing ∂µAµ in (4.9) with

the Coulomb gauge �xing (4.8). Then we get

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν −

λ

2
B2 −B▽ ·A+ C̄△C − JA

))
,

(4.19)

and, after integrating B away,

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +

1

2λ
(▽ ·A)2 + C̄△C − JA

))
.

(4.20)

For the moment we ontent ourselves with these two hoies of gauge

�xing. However, in priniple the gauge-�xing funtion G(A) an be arbitrary,

as long as it properly �xes the gauge. Later we will see how to de�ne the

funtional integral with an arbitrary G(A).
The arguments given above are formal, however the �nal result is orret.

We an take the �nal result as the de�nition of the funtional integral for

gauge �elds and then prove that this de�nition satis�es the properties we

need.

Physial degrees of freedom

The physial degrees of freedom are more learly visible in the Coulomb

gauge. Indeed, formula (4.20) gives us the gauge-�eld propagators, whih in

Minkowski spaetime read

〈A0(k)A0(−k)〉M =
1

k2
− λE2

(k2)2
, 〈A0(k)Ai(−k)〉M = −λEki

(k2)2
,

〈Ai(k)Aj(−k)〉M =
1

E2 − k2

(
δij −

kikj
k2

)
− λkikj

(k2)2
. (4.21)
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To swith from the Eulidean framework to the Minkowskian one we have

written A = (iA0,A) and k = (iE,k), and then realled that the Fourier

transforms of the �elds get a further fator i. Studying the poles of (4.21),

we see that only 〈AiAj〉 has any, preisely two. They have positive residues

and their dispersion relations are E = |k|. The ghost propagator is now

〈C(k)C̄(−k)〉M =
1

k2
(4.22)

and has no pole. In total, the physial degrees of freedom are 2, as expeted.

In the Lorenz gauge the propagators have a more ompliated pole stru-

ture. For example, the ghost propagator (4.14) has poles and the gauge-�eld

propagators (4.17) and (4.18) have extra poles. We will show that the un-

physial degrees of freedom that appear with an arbitrary hoie of gauge

�xing ompensate one another. More preisely, we will prove that the phys-

ial quantities do not depend on the gauge �xing, and that property will

allow to freely swith to the Coulomb gauge, where no unphysial poles are

present.

When we add matter, the gauge-�xing proedure does not hange. For

example, in the Lorentz gauge the gauge-�xed Lagrangian of QED is

L
gf

=
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ − λ

2
B2 +B ∂ ·A− C̄�C,

before integrating B out. For ompleteness, we report the propagator of the

multiplet made of Aµ and B

(
〈Aµ(k)Aν(−k)〉 〈Aµ(k)B(−k)〉
〈B(k)Aν(−k)〉 〈B(k)B(−k)〉

)
=

1

k2


 δµν + (λ− 1)

kµkν
k2

−ikµ
ikν 0


 ,

(4.23)

whih oinides with (4.12) ad λ = 0.

The gauge-�xing proedure we have desribed breaks the loal symmetry

(4.3). Nevertheless, the symmetry is not truly lost, beause the funtional

integral aquires new properties. Thanks to those, we will be able to prove

that the physial quantities are gauge invariant and gauge independent, be-

fore and after renormalization. Suh properties are elegantly ombined in a

very pratial and ompat anonial formalism. That formalism is atually

more than we need for Abelian theories, but has the virtue of providing a
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uni�ed treatment that is also suitable to treat the non-Abelian gauge theo-

ries, as well as quantum gravity and every general gauge theory. Thus, before

introduing the anonial formalism for the gauge symmetry, we introdue

non-Abelian gauge symmetry.

4.3 Non-Abelian global symmetry

Consider a multiplet ψi of fermioni �elds. The free Lagrangian

∑

i

(
ψ̄
i /∂ψi +mψ̄

i
ψi
)

is invariant under the global transformation

ψi ′ = U ijψj , ψ̄
i ′
= ψ̄

j
U †ji, (4.24)

where U is a unitary matrix. More generally, given a non-Abelian group G,

we an onsider multiplets ψi of fermioni �elds that transform aording to

some representation of G, and theories that are symmetri with respet to

these global transformations.

We fous our attention on the ase G = SU(N), where U an be parame-

trized as

U = exp (−gΛaT a) , (4.25)

by using a basis of N ×N traeless anti-Hermitian matries T aij , where g and

Λa are real onstants and a is an index ranging from 1 to dimG = N2 − 1.

Consider the ommutator [T a, T b]: sine it is traeless and anti-Hermitian,

it an be expanded in the basis T a. We have

[T a, T b] = fabcT c, (4.26)

where fabc are real numbers suh that

fabc = −f bac, (4.27)

fabcf cde + fdacf cbe + f bdcf cae = 0. (4.28)

The seond line follows from the Jaobi identity of the antiommutator.

The matries T a an be normalized so that

tr[T aT b] = −1

2
δab, (4.29)
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where the sign is determined by the anti-Hermitiity, while the fator 1/2 is

onventional. In a basis where (4.29) holds, the onstants fabc are ompletely

antisymmetri, whih an be proved from

tr[T c[T a, T b]] = −1

2
fabc,

by using the yliity of the trae.

For example, in the ase G = SU(2) we have T a = −iσa/2, where σa are
the Pauli matries in the standard basis, and fabc = εabc.

Any real onstants fabc that satisfy the properties (4.27) and (4.28) de�ne

a Lie algebra. The fabcs are alled struture onstants of the algebra. We

an introdue abstrat generators T a that satisfy the formal ommutation

rules

[T a,T b] = fabcT c. (4.30)

When the generators T a are given an expliit form, as matries of some kind,

we have a representation of the Lie algebra.

The ommutation rules (4.30) de�ne the Lie algebra assoiated with the

group G. The set of N × N traeless anti-Hermitian matries T a form the

fundamental representation of the algebra, whih is the one of minimal di-

mension > 1. It is ommonly denoted with its dimension, whih is equal to

N . Taking the omplex onjugate of (4.26), we obtain a new representation

with T a = T̄ a, alled antifundamental, ommonly denoted with N̄ . The

trivial representation, whih has dimension 1, is alled singlet.

In a generi representation r, the matries T a an be normalized so that

tr[T aT b] = −C(r)δab, (4.31)

where C(r) is a onstant depending on r. We have C(N) = C(N̄) = 1/2.

Another important identity is

T aT a = −C2(r)1, (4.32)

where C2(r) is alled quadrati Casimir operator of the representation r. The

property (4.32) is proved below.

A onsequene of the Jaobi identity (4.28) is that the matries

(τa)bc = −fabc

14B1 Renorm



162 CHAPTER 4. GAUGE SYMMETRY

satisfy the ommutation rules (4.30), so they form another representation

of the Lie algebra, alled adjoint representation, normally denoted with G.

Contrating a and b in (4.31) and traing the equation (4.32), we get

C(r)d(G) = C2(r)d(r),

where d(r) is the dimension of the representation r. With r = N we �nd

C2(N) = (N2 − 1)/(2N). Choosing r = G we obtain that the two Casimirs

of the adjoint representation oinide: C(G) = C2(G). It an be shown that

C(G) = C2(G) = N . In partiular, using (4.31) for r = G, we get

facdf bcd = Nδab (4.33)

Observe that any N × N matrix an be written as a omplex linear

ombination of the identity matrix and the matries T a. Consider the tensor

δijδkl as a N ×N matrix in the indies j and k. It an be expanded as

δijδkl = αilδkj + αailT
a
jk, (4.34)

where αil and α
a
il are omplex numbers. Taking j = k we get

δil = Nαil. (4.35)

Moreover, we also have

T ali = T akjδijδkl = αbil tr[T
aT b] = −1

2
αail. (4.36)

Colleting (4.35) and (4.36), formula (4.34) an be rephrased as

T aijT
a
kl = −

1

2

(
δilδkj −

1

N
δijδkl

)
, (4.37)

an identity that is often handy.

We have started this disussion with �elds ψi and ψ̄
i
that, aording to

(4.24), transform in the fundamental and antifundamental representations,

respetively. It is onvenient to distinguish these two types of indies. We

introdue the following notation. We all

vi1···inj1···jm
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a tensor whose upper n indies transform in the fundamental representa-

tion and lower m indies transform in the antifundamental representation.

Globally and in�nitesimally, we have

v′i1···inj1···jm
= U †l1

j1
· · ·U †lm

jm
U i1k1 · · ·U

in
kn
vk1···knl1···lm

,

and

δΛv
i1···in
j1···jm

=−g
dimG∑

a=1

Λa
(
T ai1l1v

l1i2···in
j1···jm

+ · · · + T ainlnv
i1···in−1ln
j1···jm

)

+g
dimG∑

a=1

Λa
(
T ak1j1v

i1···in
k1j2···jm

+ · · · + T akmjmv
i1···in
j1···jm−1km

)
, (4.38)

respetively. We have written the matries T aij as T
ai
j to emphasize the roles

of their indies.

The tensors

δij , εi1···iN , εi1···iN , (4.39)

are learly invariant. Observe that δij an ontrat only di�erent types of

indies.

Let ui, vi, . . . and ui, vi,. . . denote vetors transforming in the funda-

mental and antifundamental representations, respetively. We an onstrut

new representations by onsidering the produts uivjw
k · · · . Using the ten-

sors (4.39), the produts of fundamental and antifundamental representations

an be deomposed into sums of irreduible representations. The deomposi-

tion is obtained by repeatedly subtrating ontributions proportional to the

invariant tensors, until what remains vanishes whenever it is ontrated with

invariant tensors.

For example, the produt uivj of a fundamental and an antifundamental

representation an be deomposed as the sum of two irreduible representa-

tions, as follows

uivj =
(
P il
1jk + P il

2jk

)
ukvl , (4.40)

by means of the projetors

P il
1jk = δikδ

l
j −

1

N
δijδ

l
k, P il

2jk =
1

N
δijδ

l
k. (4.41)

It an be shown that the traeless ombination given by P
1

is equivalent to

the adjoint representation. The term proportional to δij is obviously a singlet.
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We symbolially write the deomposition (4.40) as

N ⊗ N̄ = Adg⊕ 1.

The matries T ailjk of the representation ating on the produt ukvl are

T ai kδ
l
j − T al jδik. They do not need to be projeted with (4.41), sine they

at nontrivially only on the adjoint ombination.

Another example is the produt uivj of two fundamental representations.

It an be deomposed as the sum of the symmetri and antisymmetri om-

binations,

uivj =
1

2
(uivj + uivj)− 1

2(N − 2)!
εijk1···kN−2εk1···kN−2mnu

mvn,

whih are new representations of dimensions N(N + 1)/2 and N(N − 1)/2,

respetively. We have

T aij± kl =
1

2

(
T aikδ

j
l + δikT

aj
l ± T

aj
kδ
i
l ± δjkT ai l

)
,

or, symbolially,

T a± = P± (T a ⊗ 1+ 1⊗ T a)P±,

where P± are the projetors on the symmetri and antisymmetri ombina-

tions, respetively.

A theorem ensures that all the representations an be obtained by means

of a similar proedure.

Theorem 4 All the irreduible �nite dimensional representations an be ob-

tained from the produts of fundamental and antifundamental representa-

tions, deomposed by means of the invariant tensors (4.39).

Atually, even the antifundamental representation an be obtained from

the fundamental one. Indeed,

ui ≡
1

(N − 1)!
εik2···kNv

k2 · · · vkN

does transform in the antifundamental representation. Thus,

Theorem 5 All the irreduible �nite dimensional representations an be ob-

tained by deomposing produts of fundamental representations.
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The theorem just stated ensures that

Corollary 6 the generators T a of every representation an be written using

the matries T ai j and the invariant tensors (4.39).

Symbolially, we an write

T ar = Pr(T
a ⊗ 1 · · · ⊗ 1 + · · ·+ 1⊗ · · ·1⊗ T a)Pr, (4.42)

where Pr is the projetor on the representation r, onstruted with the ten-

sors (4.39).

The identity (4.32) an be proved as follows. Observe that T ar T ar is an

invariant tensor, sine T a, as well as any T ar , transforms in the adjoint rep-

resentation. Using (4.42) and (4.37) we know that it has the form Pr(Qr)Pr,

where Qr is onstruted by means of Kroneker symbols. Thus, T ar T ar is a

onstant times Pr itself, as wanted.

Expanding by means of the Kroneker tensor, ontrating in all possible

ways and using the identities already proved, we also �nd

fabcT ai jT
bk
lT
cm
n =

1

4
(δilδ

k
nδ
m
j − δinδkj δml ). (4.43)

4.4 Non-Abelian gauge symmetry

Now we want to gauge the non-Abelian global symmetry. We promote the

unitary matrix (4.25) to a family of spaetime-dependent unitary matries

U(x) = e−gΛ
a(x)Ta

. (4.44)

and introdue the non-Abelian gauge �elds Aµ, as well as the ovariant

derivative

(Dµψ)
i = ∂µψ

i + ig(Aµψ)
i, (4.45)

where g denotes the gauge oupling. Formula (4.45) shows that the Aµs

must be matries with indies ij. The gauge �eld Aµ is often alled gauge

onnetion.

We determine the transformation A′
µ of the gauge �eld by requiring that

(Dµψ)
i
transform exatly as ψi. We have

(Dµψ)
′i = ∂µψ

′i + ig(A′
µψ

′)i

= (∂µU
ij)ψj + ig(A′

µU − UAµ)ijψj + U ijDµψ
j = U ijDµψ

j ,
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hene

A′
µ =

i

g
(∂µU)U−1 + UAµU

−1, (4.46)

The transformation rule for Dµ is

D′
µ = UDµU

−1
. (4.47)

Sine the ovariant di�erential operator iDµ must be Hermitian, as is

i∂µ, the matries Aµ are also Hermitian, so they an be parametrized as

Aijµ (x) = −iAaµ(x)T aij , (4.48)

where Aaµ(x) are real funtions. We an write, in matrix and index notations,

Dµ = ∂µ+ igAµ and Dij
µ = δij∂µ+ igAijµ , respetively. Distinguishing upper

and lower indies, we have Aiµj = −iT ai jAaµ, whih emphasizes that Aµ is the

traeless produt of a fundamental and an antifundamental representation.

De�ne the �eld strength

Fµν =
1

g
[Dµ,Dν ] ≡ F aµνT a.

Clearly, (4.47) implies the transformation rule

F ′
µν = UFµνU

−1. (4.49)

We �nd

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν .

So far, we have taken matter �elds ψi in the fundamental representation.

For �elds χI in a generi representation r, desribed by matries T ar , we have
AIJµ = −iAaµT arIJ and still Dµ = ∂µ + igAµ, but D

IJ
µ = δIJ∂µ + igAIJµ .

The in�nitesimal forms of the transformations (4.24), (4.49) and (4.46)

read

δΛA
a
µ = ∂µΛ

a + gfabcAbµΛ
c ≡ DµΛ

a,

δΛF
a
µν = gfabcF bµνΛ

c, δΛχ
I = −gT arIJΛaχJ . (4.50)

We an state that the funtions Λa belong to the adjoint representation of

G, so δΛA
a
µ is just the ovariant derivative of Λa.
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The gauge-invariant ation of fermioni �elds χI an be onstruted by

means of the ovariant derivative, and reads

Sψ =

∫
dDxχ̄( /D +m)χ =

∫
dDxχ̄I(δIJ /∂ + gAaµT arIJ +mδIJ)χ

J . (4.51)

Similarly, if ϕ are (omplex) salar �elds transforming aording to some

representation of the gauge group, the salar ation is

Sϕ =

∫
dDx

(
|Dµϕ|2 +m2ϕ̄ϕ

)
, (4.52)

up to other interations. The invariant ation of the gauge �elds is

SA =
1

4

∫
dDxF a 2

µν = −1

2

∫
dDx tr[F 2

µν ], (4.53)

where Fµν is written using the matries T a of the fundamental representation.

The gauge invariane of SA is a onsequene of (4.49) and the yliity of

the trae. The theory (4.53) is alled non-Abelian Yang-Mills theory. Note

that (4.53) is an interating theory.

The free-�eld limit g → 0 of (4.53) desribes a set of N2−1 free photons.

For this reason, the propagator of non-Abelian Yang-Mills theory has the

same problems as the propagator of QED, and an be de�ned only after

a gauge �xing. Now, the gauge-�xing proedure is more involved than in

quantum eletrodynamis. It beomes relatively simple if we endow the

gauge symmetry with a suitable anonial formalism, whih is introdued

in the next hapter.
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Chapter 5

Canonial gauge formalism

Gauge symmetry an be treated e�iently by means of a anonial formalism

of new type, known as Batalin-Vilkovisky formalism. It is equipped with

suitable notions of parentheses, anonial transformations, and a number of

tools that allow us to make a number of ruial operation with a relatively

small e�ort. The �time� evolution assoiated with this formalism is just

the gauge transformation. We do not need to expliitly introdue a �time�

oordinate θ for this kind of evolution, beause this θ would be onstant

antiommuting parameter, so every funtion of θ has a Taylor expansion

that stops at the �rst order.

Brie�y, the Batalin-Vilkovisky formalism is a pratial tool to (i) gather

the key properties of the in�nitesimal symmetry transformations and their

algebra in a single equation, (ii) �x the gauge and have ontrol on the gauge

�xing with a straightforward proedure, (iii) prove that gauge theories an be

renormalized by preserving gauge invariane to all orders, (iv) prove that the

physial quantities are gauge independent, and (v) study the anomalies of the

global and gauge symmetries to all orders. Combined with the dimensional

regularization (or its modi�ations and upgrades, to be de�ned later on),

the Batalin-Vilkovisky formalism allows us to derive these and several other

properties in a systemati way.

We generially refer to the resulting formal appratus by alling it �anon-

ial gauge formalism� for quantum �eld theory. Its main virtue is that it

allows us to prove old and new results to all orders with muh less e�ort

than is required by the other approahes.

Although we mainly work with gauge (that is to say loal) symmetries,
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everything we say also works for global symmetries. At the same time, we

stress that the anonial formalism is well suited to study in�nitesimal sym-

metries. At present, there exists no equally ompat and elegant formalism

for �nite or disrete symmetries.

In the rest of this hapter we mostly work at the bare level, but drop the

subsripts B that we normally use to denote bare quantities. The properties

we are going to derive an be interpreted at the lassial level, if they onern

the ation S, and at the bare and tree levels, if they onern the generating

funtionals. The renormalization program will be arried out in detail in the

next setions. Among other things, we will have to prove that the properties

derived here are preserved by the subtration of divergenes.

We ollet the lassial �elds into a single row

φi = (Aaµ, ψ̄, ψ, ϕ)

and assume that a lassial ation Sc(φ) is given, whih is invariant under

some in�nitesimal transformations

δΛφ
i = Ric(φ,Λ), (5.1)

that is to say

δΛSc =

∫
δΛφ

i δlSc
δφi

=

∫
Ric(φ,Λ)

δlSc
δφi

= 0. (5.2)

Here Λ(x) denote the loal parameters of the symmetry.

5.1 General idea behind the anonial gauge for-

malism

We �rst introdue the basi ideas behind the anonial formalism, without

paying too muh attention to the details, suh as the statistis of the �elds,

the orret relative positions of �elds and soures and some ruial minus

signs that will be dealt with shortly after. It is useful to have a general idea

of what we want to do, before plunging into the tehnial aspets. Later, we

go through the systematis.

The funtions Ric(φ,Λ) are loal, and linear in Λ. Apart from this, they

an be arbitrary funtions, nonlinear in φ, and renormalize independently of
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the elementary �elds. In other words, they must be regarded as omposite

�elds. We know that omposite �elds an be treated by adding them to the

ation, oupled to external soures K. This de�nes the extended ation

SΛ
c (φ,K) = Sc(φ) +

∫
Ric(φ,Λ)Ki.

The identity (5.2) an be written in the form

δΛSc = (SΛ
c , Sc) =

∫
dDx

{
δSc
δφi(x)

δSΛ
c

δKi(x)
− δSΛ

c

δφi(x)

δSc
δKi(x)

}
= 0. (5.3)

This expression is appealing, beause it reminds us of a anonial formalism,

one the soures K are viewed as anonially onjugate to the elementary

�elds φ. The symmetry transformation of a funtional X(φ) an be expressed

as the parenthesis with SΛ
c :

δΛX = (SΛ
c ,X) =

∫
δX

δφi
Ric(φ,Λ).

The identity (5.3), however, just tells us about the symmetry transfor-

mations, but does not inorporate the algebra of the transformations, in

partiular their losure. Closure means that the ommutator [δΛ,δΣ] of two

transformations δΛ and δΣ, with parameters Λ and Σ, is a symmetry trans-

formation δ∆(Λ,Σ) of the same algebra, with ertain parameters ∆(Λ,Σ):

[δΛ,δΣ] = δ∆(Λ,Σ). (5.4)

A priori, renormalization may a�et both the ation Sc and the transfor-

mations Ric, as well as the losure relations (5.4). Thus, it is important to

ollet these three piees of information into a unique extended funtional.

So doing, we will be able build a powerful formalism that allows us to easily

understand how those piees of information renormalize and what role they

play inside the generating funtionals.

In formula (5.3) we have two di�erent funtionals, Sc and S
Λ
c . Moreover,

Sc, does not ontain the souresK. As said, we would like to ollet all piees

of information into a unique extended funtional, and �nd an identity that

involves only that funtional. Now, the parenthesis (SΛ
c , S

Λ
c ) = 0 is trivial,

beause it is the subtration of the term

∫
δSΛ

c

δφi
δSΛ

c

δKi
(5.5)
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with itself. Nevertheless, the expression (5.5) goes into the right diretion, as

we an see if we split it into two piees, the ontributions that do not ontain

K and the ontributions that are linear in K:

∫
Ric
δSc
δφi

,

∫
Ric
δRjc
δφi

Kj .

The former give the transformation of the ation Sc and the latter somehow

point to the transformation of the transformation, that is to say the losure

of the algebra.

A trik to make the terms (5.5) to sum up instead of anel out, is to

hange the relative statistis of φi and Ki, and distinguish left- and right-

derivatives. The resulting de�nition of parentheses and all other details are

given below. The formalism satis�es all the usual properties, appropriately

adapted, inluding a generalized Jaobi identity. For the moment, we just

antiipate that we get something like

(SΛ
c , S

Λ
c ) = 2

∫
dDx

δSΛ
c

δφi
δSΛ

c

δKi
. (5.6)

Again, this annot be the �nal answer, beause the �double� Λ transform-

ation ontained in (5.6) is not really a ommutator. However, it beomes the

ommutator one we also play with the statistis of Λ and provide suitable

transformation rules for the Λs themselves.

Now, losure demands two indipendent parameters, e.g. Λ and Σ, so SΛ
c

is ertainly inadequate to ontain the losure relations (5.4). On a funtional

X, we have

[δΛ,δΣ]X = (SΛ
c , (S

Σ
c ,X)) − (SΣ

c , (S
Λ
c ,X)) = δ∆(Λ,Σ)X = (S∆(Λ,Σ)

c ,X).

(5.7)

We may expet that the generalized Jaobi identity for the parentheses allows

us to replae the sum of terms that follows the �rst equal sign in (5.7) with

something like ((SΛ
c , S

Σ
c ),X). Thus, (5.7) gives

((SΛ
c , S

Σ
c )− S∆(Λ,Σ)

c ,X) = 0, (5.8)

for every X, so we an express losure by means of a relation of the form

(SΛ
c , S

Σ
c ) = S∆(Λ,Σ)

c .
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We have two funtionals instead of one here. We an ollet everything

into a single funtional, if we replae Λ(x) and Σ(x) by θC(x) and θ′C(x),

respetively, where θ and θ′ are antiommuting parameters (that we drop

after moving them to the right or left of eah identity) and C(x) is an anti-

ommuting �eld, to be identi�ed with the Fadeev-Popov ghosts. They main

virtue is that they an arry an antiommutator by themselves. For example,

if θa are also antiommuting quantities, we have

(θaCa)2 = −1

2
[θa, θb]CaCb.

This trik allows us to work with a unique, but antiommuting, C(x)

and a unique extended ation. Later we will show that, if done properly, the

operations enoded into the replaements Λ→ θC, Σ→ θ′C are ompletely

reversible, so they do not ause any loss of information. Finally, ∆(C,C) is

identi�ed with the transformation of C itself, apart from a proportionality

fator.

The new extended ation is something of the form

S′
c(φ,C,K) = Sc(φ) +

∫
dDx

(
KiR

i
c(φ,C)− 1

2
KC∆(C,C)

)
,

where KC are soures for the C transformations. Next, we have an identity

of the form

(S′
c, S

′
c) = 2

∫
dDx

δS′
c

δφi
δS′

c

δKi
+ 2

∫
dDx

δS′
c

δC

δS′
c

δKC
= 0. (5.9)

The terms proportional to Ki in this expression do give the losure of the

algebra. The terms proportional to KC anel out by themselves, beause

they are just the Jaobi identity of the Lie algebra.

Summarizing, one the ruial identity (S′
c, S

′
c) = 0 is satis�ed, the ex-

tended ation S′
c inorporates the invariant ation, the symmetry transfor-

mations of the �elds, the losure of the algebra and its Jaobi identity.

5.2 Systematis of the anonial gauge formalism

Without further premises, we are now ready to present the systematis of

the anonial gauge formalism. Make the substitution Λ(x)→ θC(x) in the
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identity (5.2), then move θ to the far left and drop it. Sine Ri is linear in

Λ, we get an identity of the form

∫
Ri(φ,C)

δlSc
δφi

= 0. (5.10)

The funtions Ri(φ,C) are suh that

Ric(φ, θC) = θRi(φ,C) (5.11)

and may di�er from Ric(φ,C) by a sign, depending on the statistis of φ.

The �elds C are alled this way, beause they oinide with the Faddeev-

Popov ghosts already met. For the moment, we do not need to introdue

antighosts C̄ and Lagrange multipliers B. They are useful to �x the gauge,

but they are not basi ingredients of the anonial formalism. We inlude

the �elds and the ghosts into the extended row

Φα = (Aaµ, C
a, ψ̄, ψ, ϕ).

The onjugate row made by the soures is

Kα = (Kµ
a ,K

a
C ,Kψ̄,Kψ,Kϕ).

We de�ne the statistis εΦ, εK , ελ, εX of a �eld Φ, a soure K, a parameter

λ or a funtional X to be zero if the �eld, soure, parameter or funtional

is bosoni, one if it is fermioni. We de�ne the statistis of the soures as

opposite to the statistis of the �elds that are onjugate to them:

εKα = εΦα + 1 mod 2. (5.12)

Given two funtionals X(Φ,K) and Y (Φ,K) of the �elds and soures, we

de�ne their antiparentheses as the funtional

(X,Y ) ≡
∫

dDx

{
δrX

δΦα(x)

δlY

δKα(x)
− δrX

δKα(x)

δlY

δΦα(x)

}
, (5.13)

where the sum over α is understood. Observe that if X and Y are loal

funtionals, then (X,Y ) is a loal funtional.

The antiparentheses satisfy the properties

(Y,X) = −(−1)(εX+1)(εY +1)(X,Y ),

(−1)(εX+1)(εZ+1)(X, (Y,Z)) + yli permutations = 0, (5.14)
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and ε(X,Y ) = εX + εY + 1, whih an be veri�ed straightforwardly. In par-

tiular, formula (5.14) is the Jaobi identity. Immediate onsequenes are

(F,F ) = 0, (B,B) = 2

∫
δrB

δΦα
δlB

δKα
= −2

∫
δrB

δKα

δlB

δΦα
, (5.15)

if the funtionals F and B have fermioni and bosoni statistis, respetively.

In (5.15), as often below, we understand integrations over spaetime points

assoiated with repeated indies α, β, . . .. Another important onsequene

is

(X, (X,X)) = 0 (5.16)

for every funtional X. This property follows from the Jaobi identity (5.14)

and is useful to study the anomalies.

The ation S(Φ,K) is de�ned as the solution of the master equation

(S, S) = 0, (5.17)

with the boundary onditions

S(Φ, 0) = Sc(φ), −δrS(Φ,K)

δKi

∣∣∣∣
K=0

= Ri(φ,C). (5.18)

In the naïve derivation given above, the extended ation S′
c was linear in

the soures K. This is atually true in all the appliations we have in mind,

at least at the tree level. Thus, we write the solution of the master equation

in the form

S(Φ,K) = Sc(φ) + SK(Φ,K), (5.19)

where

SK(Φ,K) = −
∫
Rα(Φ)Kα = Sc(φ)−

∫
Ri(φ,C)Ki−

∫
RaC(Φ)K

a
C , (5.20)

and RaC(Φ) are funtions to be determined, related somwhow to∆(Λ,Λ). The

signs have been adjusted to math the hoies of statistis we have made.

It an be shown that the linearity of S(Φ,K) in K means that the algebra

loses o� shell.

More expliitly, using the last expression of (5.15), we �nd the formula

0 = (S, S) = 2

∫
Rα(Φ)

δlS

δΦα
= 2

∫ [
Ri(φ,C)

δlS

δφi
+RaC(Φ)

δlS

δCa

]
.
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The terms of order 0 in K are twie the identity (5.10), while the terms of

order 1 in K give the formula

0 = −2
∫
Rα(Φ)

δl
δΦα

∫
Rβ(Φ)Kβ ,

whih implies

0 =

∫
Rα(Φ)

δlR
β(Φ)

δΦα
(5.21)

for every β. Taking β = i, we �nd

0 =

∫
Rj(φ,C)

δlR
i(φ,C)

δφj
+

∫
RaC(Φ)

δlR
i(φ,C)

δCa
. (5.22)

Sine Ri are linear in C, the last term is equals to Ric(φ,RC(Φ)). Setting

Ca = θΛa + θ′Σa in (5.22), where θ and θ′ are both antiommuting parame-

ters, we obtain

0 =

∫
Rj(φ, θΛa + θ′Σ)

δlR
i(φ, θΛa + θ′Σ)

δφj
+Ric(φ,RC(θΛ

a + θ′Σ)). (5.23)

Note that setting Ca = θΛa in formula (5.11), we also obtain

θRic(φ,Λ
a) = Ri(φ, θΛa). (5.24)

Using this formula and taking the terms proportional to θθ′ (all other terms

being zero), let us write

RaC(θΛ+ θ′Σ) = −θθ′∆(Λ,Σ). (5.25)

This formula an be taken as the de�nition of RC(Φ), where ∆(Λ,Σ) is

assumed to be known from the losure relation (5.4).

Then formula (5.23) gives

∫
θRjc(φ,Λ

a)
δlθ

′Ric(φ,Σ)

δφj
+

∫
θ′Rjc(φ,Σ)

δlθR
i
c(φ,Λ

a)

δφj
= θθ′Ric(φ,∆(Λ,Σ)).

Moving θ and θ′ to the left and using (5.1), we obtain

θθ′
∫ (

δΛφ
j δl(δΣφ

i)

δφj
− δΣφj

δl(δΛφ
i)

δφj

)
= θθ′Ric(φ,∆(Λ,Σ)),

or, �nally,

θθ′[δΛ, δΣ]φ
i = θθ′δ∆(Λ,Σ)φ

i,
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whih is equivalent to (5.4).

Finally, taking Rβ → RaC in (5.21), we get

0 =

∫
RbC(C)

δlR
a
C(C)

δCb
, (5.26)

having observed that RaC(Φ) in the end depends just on C. Formula (5.26),

whih is the losure of the losure, in some sense, is just the Jaobi identity

of the lie algebra.

For example, in non-Abelian Yang-Mills theories, we have (on fermions

ψ, for de�niteness) δΛψ
i = −gT aijΛaψj , so

[δΛ, δΣ]ψ
i = g2[T a, T b]ijψ

jΣaΛb = −g2T cijψjfabcΛaΣb = δ∆(Λ,Σ)ψ
i,

hene

∆a(Λ,Σ) = gfabcΛbΣc.

Using this expression in (5.25), we �nd

RaC(θΛ+ θ′Σ) = −θθ′gfabcΛbΣc = −g
2
gfabc(θΛ+ θ′Σ)b(θΛ+ θ′Σ)c,

whene

RaC(C) = −g
2
fabcCbCc.

Thus, the identity (5.26) gives

0 = fabcf bdeCcCdCe.

Sine the Cs are antiommuting, this equation is equivalent to (4.28).

In the Abelian ase, ∆(Λ,Σ) = 0, so RC(Φ) = 0.

Given a funtional Y , we an view the antiparentheses (Y,X) as a map

ating on the spae of funtionals X. Choosing Y = S, the map (S,X)

is nilpotent, beause of the Jaobi identity (5.14) and the master equation

(5.17). Indeed,

(S, (S,X)) =
1

2
((S, S),X) = 0.

On the �elds and soures, we have

(S,Φα) = Rα(Φ), (S,Kα) =
δrS

δΦα
.

Basially, (S,Kα) is the Φα �eld equation, plus O(K).
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The map (S,X) sends funtionals G(Φ) that depend only on the �elds

into funtionals that depend only on the �elds:

(S,G(Φ)) =
∫
Rα(Φ)

δlG(Φ)
δΦα

.

On the funtionals G(φ) that depend only on the physial �elds φ the map

is preisely the gauge transformation:

(S,G(φ)) =
∫
Ri(φ,C)

δlG(φ)
δφi

.

In partiular, (S, Sc(φ)) = 0, whih is nothing but the gauge invariane of

the lassial ation Sc(φ).

It is always possible to generate solutions S(Φ,K) of the master equa-

tion that are nonlinear in K by means of �eld and soure rede�nitions that

preserve the master equation (or the antiparentheses, in whih ase they are

anonial transformations, see below). However, not all the solutions that

are nonlinear in K an be obtained this way. To understand this issue better,

onsider again the relation

0 = (S, S) = −2
∫

dDx
δrS

δKα

δlS

δΦα
. (5.27)

The K-independent ontributions are always the identity (5.10), but when

S(Φ,K) is not linear in K, the terms of (5.27) that are linear in K (whih

enode the losure of the algebra) ontain extra ontributions proportional to

the �eld equations. If there exists no anonial transformation that absorbs

the extra terms away, it means that the gauge algebra does not lose o� shell,

but just on shell.

In most physial appliations the symmetry algebras that lose o� shell

play a major role. In this book we mainly fous on those. Nevertheless, it is

important to know that more general strutures exist. Still, we see that the

solution (5.19) does depend on the �eld variables we hoose.

The anonial formalism does not apply only to loal funtionals, suh as

the ation S, but also to the generating funtionals Z, W , Γ and Ω, whih

are nonloal. For this reason, it is neessary to prove some general properties

before proeeding. We have remarked above that the antiparentheses map

loal funtionals X and Y into a loal funtional (X,Y ). We now prove that
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they also map one-partile irreduible funtionalsX and Y into a one-partile

irreduible funtional (X,Y ). De�ne the operator

V ≡
∫

dDx

←−
δr

δΦi(x)

−→
δl

δKi(x)
.

We fous on the ontribution XVY to (X,Y ) in (5.13), sine the other on-

tribution an be treated in an analogous way. Note that if X and Y are

one-partile irreduible, a funtional derivative with respet to Φα(x) is an

amputated Φα leg and a funtional derivative with respet to Kα(x) is an

insertion of Rα(Φ(x)). In partiular, no propagators are attahed to suh

legs. The operator V produes a sort of new vertex, whose legs are the legs

attahed to Φ(x) in δrX/δΦ(x) plus the legs attahed to K(x) in δlY/δK(x).

Sine the diagrams of δrX/δΦ(x) and δlY/δK(x) are irreduible, the ontri-

bution XVY to (X,Y ) is also irreduible. Diagrammatially, we have

δrX
δΦ(x)

...

...

x

...
δlY

δK(x)

...
(5.28)

where the double lines are soures and the single lines are �elds.

The solution (5.19) to the master equation is alled minimal, beause it

ontains the minimal set of �elds. The minimal solution is not su�ient to

gauge-�x the theory and de�ne the propagators of the gauge �elds, beause

it does not ontain the antighosts and the Lagrange multipliers. We an

inlude them by enlarging the sets of �elds and soures to

Φα = (Aaµ, C
a, C̄a, Ba, ψ̄, ψ, ϕ), Kα = (Kµ

a ,K
a
C ,K

a
C̄ ,K

a
B ,Kψ̄,Kψ,Kϕ).

(5.29)

Again, the statistis of the soures are de�ned to be opposite of those of their

onjugate �elds.

It is easy to prove that if Smin(Φ,K) is a minimal solution to the master

equation the extended ation

Smin(Φ,K)−
∫
BaKa

C̄
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is also a solution. We all it extended solution to the master equation. This

extension is su�ient for the purposes of gauge �xing. From now we under-

stand that the sets of �elds and soures are (5.29) and the general solution

to the master equation is

S(Φ,K) = Sc(φ)−
∫ [

Ri(φ,C)Ki +RaC(Φ)K
a
C +BaKa

C̄

]
.

It is also useful to introdue the ghost number,

gh(A) = gh(ψ) = gh(ψ̄) = gh(ϕ) = gh(B) = 0, gh(C) = 1, gh(C̄) = −1.

Indeed, the global U(1) transformation

Φ→ Φeiσgh(Φ), (5.30)

σ being a onstant parameter, is a symmetry of the ations we are going to

work with, as well as the funtional integration measure. The ghost number

is trivially preserved by the Feynman rules and the diagrammatis, so also

by the radiative orretions and renormalization.

The fermioni number of a �eld or a soure is equal to zero or one,

depending on whether the �eld or soure is a boson or a fermion. The

statistis of a �eld or a soure is equal to the sum of its fermioni number

plus its ghost number, modulo 2. For example, the soures Kψ and Kψ̄

assoiated with the Dira fermions are ommuting objets, sine they are

fermions, but they also have odd ghost numbers. Thus, Kψ and Kψ̄ are

�fermions with bosoni statistis�, while C and C̄ are �bosons with fermioni

statistis�.

Now we are ready to derive the solutions of the master equation for

Abelian and non-Abelian gauge theories. In quantum eletrodynamis for-

mulas (4.7) give the funtions Ric(φ,Λ). Replaing Λ by θC and using

Ric(φ, θC) = θRi(φ,C), we obtain the funtions Ri(φ,C) for Aµ, ψ and

ψ̄, whih read

∂µC, −ieCψ, −ieψ̄C,
respetively. The funtions RaC assoiated with the ghosts an be derived

from the losure of the algebra. Sine it is trivial in the Abelian ase, we just

have RaC = 0. Thus, the extended solution of the master equation reads

S(Φ,K) = Sc(φ)−
∫

dDx
(
∂µCKµ − ieψ̄CKψ̄ − ieKψCψ +BKC̄

)
, (5.31)
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where the lassial ation is

Sc(φ) =

∫
dDx

[
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ

]
.

It is easy to hek that (5.17) is indeed satis�ed.

In non-Abelian Yang-Mills theory we start from (4.50) to read the fun-

tions Ric(φ,Λ), replae Λ by θC and use Ric(φ, θC) = θRi(φ,C) again. We

�nd that

∂µC
a + gfabcAbµC

c, −gT aijCaψj , −gψ̄jT aijCa, (5.32)

are the funtions Ri(φ,C) for the gauge potential Aaµ, the fermions ψi in the

fundamental representation and their onjugates, respetively.

The solution reads

S(Φ,K) =Sc(φ) + g

∫ (
ψ̄
i
T aijC

aKj
ψ̄
+Ki

ψT
a
ijC

aψj
)

−
∫ [

(∂µC
a + gfabcAbµC

c)Ka
µ −

g

2
fabcCbCcKa

C +BaKa
C̄

]
, (5.33)

where the lassial ation is

Sc(φ) =
1

4

∫
dDxF a 2

µν +

∫
dDxψ̄

i
(δij /∂ + gT aij /A+mδij)ψ

j . (5.34)

In the next hapters we prove the renormalizability of both theories.

From (5.33) and (5.34) we an read the dimensions [ ] of the �elds and

the soures, as well as their statistis εΦA , εKA
. The ghost numbers gh(K) of

the soures are obtained by demanding that (5.33) be invariant under (5.30)

ombined with K → Keiσgh(K)
. We have the tables

Aaµ Ca C̄a Ba ψ̄ ψ ϕ

[ ] D
2 − 1 D

2 − 1 D
2 − 1 D

2
D−1
2

D−1
2

D
2 − 1

gh 0 1 −1 0 0 0 0

(5.35)

Kµ
a Ka

C Ka
C̄

Ka
B Kψ̄ Kψ Kϕ

[ ] D
2

D
2

D
2

D
2 − 1 D−1

2
D−1
2

D
2

gh −1 −2 0 −1 −1 −1 −1
(5.36)

Now we stress a property that will be useful later, in the proof of the

renormalizability of non-Abelian Yang-Mills theories. Theorem (5) allows us
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to work without the matries T a or T a, just using the invariant tensors (4.39)
and the gauge-�eld variables (4.48). Distinguishing upper and lower indies,

we have Aiµj = −iT ai jAaµ. Using formula (4.29) the onverse formula reads

Aaµ = −2iT ajiAiµj . Similarly, the ghosts, antighosts and Lagrange multipliers

an be written as Cij = −iT ai jCa, C̄ij = −iT ai jC̄a, and Bi
j = −iT ai jBa

.

When the fermions are in the fundamental representation the solution of

the master equation is written as

S(Φ,K) =Sc(φ) + ig

∫
dDx

(
ψ̄iC

i
jK

j
ψ̄
+KψiC

i
jψ

j
)

−
∫

dDx
[(
∂µC

i
j + ig(AiµkC

k
j −AkµjCik)

)
Kj
µi (5.37)

−2igCikCkjKj
C i +Bi

jK
j
C̄ i

]
,

where

Sc(φ) =

∫
dDx

[
1

4
(F iµν j)

2 + ψ̄i(δ
i
j /∂ + gAaµT

ai
j +mδij)ψ

j

]
, (5.38)

and

F iµν j = ∂µA
i
ν j − ∂νAiµj + ig(AiµkA

k
ν j −Aiν kAkµj).

To derive these expressions we have also used formula (4.43).

A matter �eld ψI in an irreduible representation r an be denoted by

ψi1···inj1···jm
, if the indies have appropriate symmetry properties. From (4.38)

we derive that its ontribution to the solution S(Φ,K) proportional to the

soures K beomes

ig

∫
dDx

(
Ci1l1ψ

l1i2···in
j1···jm

+ · · · + Cinlnψ
i1···in−1ln
j1···jm

)
Kj1···jm
i1···in

−ig
∫

dDx
(
Ck1j1 ψ

i1···in
k1j2···jm

+ · · · + Ckmjm ψ
i1···in
j1···jm−1km

)
Kj1···jm
i1···in

, (5.39)

Finally, a generi vertex has the form

φi1···inj1···jm
ψ
k1···kp
l1···lq

χut···urv1···vs · · · (5.40)

with indies ontrated by means of the invariant tensors (4.39).

An important theorem states that Yang-Mills theory in pratie exhausts

the gauge theories of vetor �elds.
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Theorem 7 The most general loal, power ounting renormalizable quantum

�eld theory of vetor �elds is a Yang-Mills theory based on a Lie algebra.

Proof. To prove this theorem we an take advantage of the anonial

formalism, beause we know that it ollets the properties of the Lie algebra

in a ompat form. Let AIµ denote the set of gauge vetors ontained in

the theory. In the free-�eld limit, the theory must obey the Abelian gauge

symmetry δAIµ = ∂µΛ
I
. Writing ΛI = θCI , as usual, the ghosts CI an

always be de�ned so that the derivative term in RIµ(φ,C) is ∂µC
I
. By loality,

ghost number onservation and power ounting, the most general K setor

of the minimal solution to the master equation must have the form

−(∂µCI +AJµC
KκJKI)KI +

1

2
CJCKhJKIKI

C ,

where κIJK and hJKI are numerial onstants and hJKI are antisymmetri

in J and K. Now we study the onstraints imposed by the master equation

(S, S) = 0. It is easy to show that the terms proportional to KI
C in (S, S) = 0

imply that the onstants hJKI satisfy the Jaobi identity (4.28)

hIJKhKLM + hLIKhKJM + hJLKhKIM = 0.

Sine both assumptions (4.27) and (4.28) are satis�ed, the onstants hJKI

de�ne a Lie algebra. It is also straightforward to hek that the terms pro-

portional to KI
in (S, S) = 0 give κIJK = hIJK . Thus, the gauge transfor-

mations have the Yang-Mills form

δΛA
I
µ = ∂µΛ

I +AJµΛ
KhJKI ,

whih proves the theorem. �

We stress again that we have not proved the renormalizability, yet, but

this theorem antiipates that if Yang-Mills theory is renormalizable, it is

unique.

5.3 Canonial transformations

A anonial transformation C of the �elds and the soures is a transformation

Φα′(Φ,K), K ′
α(Φ,K),
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that preserves the antiparentheses, that is to say suh that

(X ′, Y ′)′ = (X,Y )

for every pairs of funtionals X and Y , where X ′
and Y ′

are de�ned as

X ′(Φ′,K ′) =X(Φ(Φ′,K ′),K(Φ′,K ′)),

Y ′(Φ′,K ′) = Y (Φ(Φ′,K ′),K(Φ′,K ′)),

and (., .)′ denotes the antiparentheses alulated with respet to Φ′
and K ′

.

Sometimes we simply write

X ′ = CX, Y ′ = CY.

By this we mean that X and Y are regarded as funtions of the new variables

Φ′,K ′
, obtained by expressing their arguments Φ,K in terms of Φ′,K ′

.

A anonial transformation is generated by a funtional F(Φ,K ′) and

an be expressed as

Φα′ =
δF
δK ′

α

, Kα =
δF
δΦα

. (5.41)

Formula (5.12) implies that F is a funtional of fermioni statistis. For this

reason, there is no need to speify whether the derivatives of (5.41) are left

or right.

The generating funtional of the identity transformation is

I(Φ,K ′) =

∫
dDxΦα(x)K ′

α(x).

Observe that if X is suh that (S,X) = 0, then X ′
is suh that (S′,X ′)′ =

0.

Let us inspet the most general anonial transformation, to understand

what it an be useful for. We an write the generating funtional as a sum

of a term independent of the soures plus the rest:

F(Φ,K ′) = Ψ(Φ) +

∫
K ′
αU

α(Φ,K ′). (5.42)

Then (5.41) gives

Φα′ = Uα(Φ,K ′) +

∫
K ′
β

δrU
β

δK ′
a

, Kα =
δΨ(Φ)

δΦα
+

∫
K ′
β

δrU
β

δΦA
. (5.43)
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Reall that at the end we must set the soures K to zero, sine they are

introdued just to have ontrol on the gauge symmetry. To illustrate the

meaning of (5.42), we set them to zero after the anonial transformation. If

we drop the terms proportional to K ′
in (5.43) we obtain

Φα′ = Uα(Φ, 0), Kα =
δΨ(Φ)

δΦα
. (5.44)

The Φ transformation is a �eld rede�nition. Instead, as we will explain later,

the K transformation is a gauge �xing, or a hange of gauge �xing. The

K-dependent terms ontained in (5.43) do not have a partiular meaning.

They are there to promote (5.44) to a anonial transformation, whih is

muh easier to manipulate, beause it preserves the antiparentheses. Thus,

Proposition 8 the most general anonial transformation (5.42) is the om-

bination of the most general �eld rede�nition and the most general gauge-

�xing.

Of ourse, the physis should not depend on the �eld variables we use.

5.4 Gauge �xing

We have gauge-�xed quantum eletrodynamis in hapter 4. Now we are

ready to gauge-�x non-Abelian Yang-Mills theory. Call Ga(A) the gauge-

�xing funtions, i.e. Ga(A) = ∂µA
a
µ in the Lorenz gauge, and Ga(A) = −▽·Aa

in the Coulomb gauge. De�ne the gauge fermion

Ψ(Φ) =

∫
dDxC̄a

(
−λ
2
Ba + Ga(A)

)
. (5.45)

The gauge fermion is a loal funtional of fermioni statistis that �xes the

gauge in the way explained below. Its typial form is (5.45), but more general

funtionals an be hosen.

Working in the Lorenz gauge, for de�niteness, de�ne the gauge-�xed a-

tion

SΨ(Φ,K) = S(Φ,K) + (S,Ψ). (5.46)

It is easy to prove that SΨ and S are related by the anonial transformation

generated by the funtional

F(Φ,K ′) =

∫
ΦαK ′

α +Ψ(Φ). (5.47)
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Indeed, (5.41) gives

Φα′ = Φα, K ′
α = Kα −

δΨ(Φ)

δΦα
.

Realling that the ation is linear in the soures, we have from (5.19)

S(Φ′,K ′) = S(Φ,K) +

∫
Rα(Φ)

δΨ(Φ)

δΦα
= S(Φ,K) + (S,Ψ) = SΨ(Φ,K).

Moreover,

Proposition 9 If S satis�es the master equation, then every SΨ = S +

(S,Ψ(Φ)) satis�es the master equation.

The reason is that the anonial transformations preserve the antiparen-

theses, so (S, S) = 0 if and only if (SΨ, SΨ) = 0. In partiular, the gauge-

�xing proedure preserves the master equation.

Working out SΨ expliitly, we �nd

SΨ(Φ,K) = Sc(φ) + S
gf

(Φ)−
∫
RαKα, (5.48)

where

Sc(φ) + S
gf

(Φ) =

∫
dDx

(
1

4
F a 2
µν −

λ

2
(Ba)2 +Ba∂ ·Aa − C̄a∂µDµC

a

)
.

(5.49)

Observe that the ghosts do not deouple in non-Abelian Yang-Mills theory.

The gauge-�eld propagator an be worked out from the free subsetor

of (5.49), after integrating Ba
out, whih gives the equivalent gauge-�xed

ation

S =

∫
dDx

(
1

4
F a 2
µν +

1

2λ
(∂µA

a
µ)

2 − C̄a∂µDµC
a

)
. (5.50)

The result is

〈Aaµ(k)Abν(−k)〉 =
δab

k2

(
δµν + (λ− 1)

kµkν
k2

)
, (5.51)

The ghost propagator is

〈Ca(k)C̄b(−k)〉 = δab

k2
. (5.52)
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Repeating the argument that leads to (4.21) we an hek, in the Coulomb

gauge, that the physial degrees of freedom are 2 dimG, as it must be.

The argument just given does not hange when we add matter �elds,

sine they are not interested by the gauge-�xing proedure. Clearly, in QED

we get bak (4.15) and (4.16).

Exerise 19 Show that the ation SΨ(Φ,K) ontinues to satisfy the master

equation after integrating the Lagrange multipliers Ba
out.

Solution. Integrating B out is equivalent to replae B with the solution

of its own �eld equation, that is to say make the replaement

Ba → 1

λ
(∂ ·Aa −Ka

C̄).

Then SΨ(Φ,K) beomes

S̄Ψ(Φ,K) =
1

4

∫
F a 2
µν −

∫
C̄a∂µDµC

a +
1

2λ

∫
(Ka

C̄ − ∂ ·Aa)2

−
∫

(DµC
a)Ka

µ +
g

2

∫
fabcCbCcKa

C .

At this point, it is straightforward to hek that the master equation (S̄Ψ, S̄Ψ) =

0 holds. Note that (S̄Ψ, C̄) = (∂ · Aa −Ka
C̄
)/λ.

Observe that the ation S̄Ψ(Φ,K) is no longer linear in the souresK, but

ontains a term that is quadrati in KC̄ . This means that after integrating

B out the Φ transformations do not lose o� shell anymore, whih the reader

an verify diretly. Working with the anonial formalism this problem is

ured by itself, sine the master equation is satis�ed both before and after

the integration over B.

Exerise 20 Derive the Feynman rules of (5.50) oupled to fermions.

14B1 Renorm



188 CHAPTER 5. CANONICAL GAUGE FORMALISM

Solution. The propagators have been given above. The verties are

a c

µb

= igfabcqµ,

q
i j

µa

= −gγµ(T a)ij,

= igfabc(δµν(k1ρ − k2ρ) + δµρ(k3ν − k1ν) + δνρ(k2µ − k3µ)),

µa νb

ρc

k1
k2

k3

(5.53)

= −g2
[
f eabf ecd(δµρδνσ − δµσδνρ)

+f eadf ebc(δµνδρσ − δµρδνσ)

+f eacf ebd(δµνδρσ − δµσδνρ)
]
.

µa νb

ρc σd

Exerise 21 Prove that the term

∫
RαKα an be written as (S, χ) for a loal

funtional χ.

Solution. Consider the anonial transformation generated by

F(Φ,K ′) =

∫
ΦαK ′

α + (eζ − 1)

∫
CaKa′

C +
(
e−ζ − 1

) ∫
C̄aKa′

C̄ . (5.54)

Let Sζ(Φ,K) denote the resaled ation. Expanding in ζ we obtain

Sζ(Φ,K) = S(Φ,K) + ζ

(
S,

∫
(CaKa

C − C̄aKa
C̄)

)
+O(ζ2). (5.55)

Now, the transformation resales the ghosts by a fator eζ , the antighosts

by the reiproal fator e−ζ , and their soures KC and KC̄ by e−ζ and eζ ,

respetively. Applied to (5.31) and (5.33), even after inluding the gauge

�xing (5.48), it is equivalent to resale all the soures K by eζ , whih gives

Sζ(Φ,K) = S(Φ, eζK). Di�erentiating this equation and (5.55) with respet

to ζ and setting ζ = 0 we get

∫
RαKα =

(
S,

∫
(C̄aKa

C̄ − CaKa
C)

)
.

The reader is invited to hek this formula expliitly in both QED and Yang-

Mills theory. This result teahes us that

∫
RαKα is exat in the ohomology

de�ned by the appliation X → (S,X), ating on the loal funtionals X. �
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From now on, we drop the subsript Ψ in SΨ(Φ,K) and when we write

S(Φ,K) we mean the gauge-�xed ation (5.48).

5.5 Generating funtionals

De�ne the generating funtionals as

Z(J,K) =

∫
[dΦ] exp

(
−S(Φ,K) +

∫
ΦαJα

)
= exp (W (J,K)) , (5.56)

and Γ(Φ,K) as the Legendre transform of W (J,K) with respet to J , the

soures K remaining inert:

Jα =
δlΓ(Φ,K)

δΦα
, Γ(Φ,K) = −W (J,K) +

∫
ΦαJα. (5.57)

Observe that Γ is the generating funtional of one-partile irreduible dia-

grams, inluding the diagrams that have ghosts, Lagrange multipliers and

soures K on their external legs. We are taitly assuming that the inte-

gral (5.56) makes sense, at least perturbatively. This means that the ation

S(Φ,K) should be gauge-�xed, so that the propagators are well de�ned. In

the next subsetion we show how the ation an be gauge-�xed preserving

the master equation. For the moment we study the anonial formalism for

the traditional funtionals Z, W and Γ. Later we introdue the master fun-

tional Ω for gauge theories and disuss the omposite �elds and the hanges

of �eld variables in detail.

It is apparent from (5.43) that the anonial transformations annot be

implemented as hanges of �eld variables inside the funtional integral. In-

deed, in general they mix the �elds Φ, over whih we integrate, with the

external soures K. While it is legitimate to make a hange of �eld vari-

ables Φ→ Φ′(Φ,K) in the funtional integral, it is not legitimate to rede�ne

the external soures as funtions of the integrated �elds. Thus, when we

use anonial transformations we means that we apply them to the ation

S(Φ,K), while the generating funtionals Z, W and Γ are just replaed with

the ones assoiated with the transformed ation. We will not be able to de-

sribe our operations, inluding the renormalization, as true hanges of �eld

variables until we introdue the master funtional for gauge theories.
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To some extent, we an study the omposite �elds already at the level of

Z, W and Γ. We an treat the orrelation funtions

〈OI1(x1) · · · OIn(xn)〉 (5.58)

of gauge-invariant omposite �elds OI(φ) by adding them to the ation, mul-

tiplied by suitable soures L. Thus, we onsider the generating funtionals

Z(J,K,L) =

∫
[dΦ] exp

(
−S(Φ,K) +

∫
LIOI(φ) +

∫
ΦαJα

)
= eW (J,K,L),

(5.59)

and the Lagrange transform Γ(Φ,K,L) of W (J,K,L) with respet to Φ. We

have

Jα =
δlΓ

δΦα
,

δrW

δKα
= − δrΓ

δKα
,

δlW

δLI
= − δlΓ

δLI
. (5.60)

Reall that in this hapter we are working at the bare level. Indeed, for-

mula (5.59) is the orret bare form for the generating funtionals, while the

renormalized struture is onsiderably more involved. Among other things,

the exponent of the integrand beomes nonpolynomial in the soures L and

K, when higher-dimensional omposite �elds are present. For the moment,

the orrelation funtions (5.58) that are gauge invariant and gauge indepen-

dent (see below), but still divergent.

Consider the hange of �eld variables

Φα′ = Φα + θRα = Φα + θ(S,Φα), (5.61)

in the funtional integral (5.56), where θ is a onstant antiommuting pa-

rameter. In a sense that we now explain, (5.61) is equivalent to a anonial

transformation generated by

F(Φ,K ′) =

∫ (
ΦαK ′

α + θRαK ′
α

)
.

Indeed, formulas (5.41) give

Φα′ = Φα + θRα, K ′
α = Kα −

∫
δlR

β

δΦα
Kβθ. (5.62)

We have inverted the seond relation using θ2 = 0, whih ensures that the

Taylor expansions in θ stops after the �rst order in θ. The K transformation
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appearing here does not a�et the ation, beause S depends on K only via

the ombination −
∫
Rα(Φ)Kα, whih gets an extra ontribution equal to

∫
Rα(Φ)

δlR
β

δΦα
Kβθ =

∫
(S,Rα)Kαθ =

∫
(S, (S,Φα))Kαθ = 0.

Thus, (5.62) is equivalent to just (5.61).

We know that, using the dimensional regularization the funtional inte-

gration measure is invariant under the loal hange of �eld variables (5.61),

by theorem 1. There atually exists a stronger argument to prove the same

result, whih an be applied to a more general lass of regularization teh-

niques. Thanks to (1.98) we have

J = sdet

δΦα′(x)

δΦβ(y)
= sdet

(
δαβδ(x − y) + δ[θRα(x)]

δΦβ(y)

)
= 1 + str

δ[θRα(x)]

δΦβ(y)
.

(5.63)

We have again used θ2 = 0. In QED the matrix

δ[θRα(x)]

δΦβ(y)
=
δ[θ(∂µC, 0, B, 0,−ieψ̄C,−ieCψ)]

δ(Aν , C, C̄, B, ψ̄, ψ)

has no diagonal elements exept for the blok

δ(ieψ̄θC,−ieθCψ)
δ(ψ̄, ψ)

= ie

(
θC 0

0 −θC

)
, (5.64)

but the trae vanishes. Clearly, this is due to the fat that ψ̄ and ψ have

opposite harges. Using (1.97) we see that the supertrae of (5.63) vanishes,

so J = 1.

In non-Abelian gauge theories formulas (5.32) and (5.33) give

δ(θRaµ)

δAbν
= gδµνf

abcθCc,
δ(θRaC)

δCb
= gfabcθCc,

δl(θR
i
ψ)

δψj
=−gT aijθCa ,

δl(θR
i
ψ̄
)

δψ̄
j = gT aijθC

a.

The salar ontribution is similar to the fermion one. When the representa-

tion is not the fundamental one it is su�ient to replae T a by the appro-

priate matries T a. The A and C ontributions to (5.63) are zero, beause

fabc is ompletely antisymmetri. If the gauge group has no Abelian fators,
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then tr[T a] = 0, so the traes of the ψ and ϕ ontributions are also zero.

If the gauge group has Abelian fators, the traes tr[T a] are given by the

U(1) harges. They anel out summing the ontributions of both ψ and ψ̄,

or both ϕ and ϕ̄, as in (5.64). Finally, the ontributions of C̄ and B are

obviously zero.

Now we prove that

Theorem 10 If the ation S satis�es the master equation, the generating

funtionals Z and W are invariant under the transformation

τKα = (−1)εα+1Jα, τJα = 0, τLI = 0.

Observe that the operator τ �ips the statistis. Beause of this, it pro-

dues a minus sign every time it rosses an objet with fermioni statistis.

This property an be proved by observing that δτ = θτ obeys the ordinary

Leibniz rule, where θ is an antiommuting onstant.

Proof. Apply the operator δτ to the Z funtional (5.59). Using (5.19),

we see that the exponent of the integrand is hanged into itself plus

θ

∫
Rα(Φ)Jα. (5.65)

Thus, we obtain the formula

τW =

〈∫
Rα(Φ)Jα

〉
. (5.66)

We an prove that this average vanishes by performing the hange of �eld

variables (5.61) in (5.59). Indeed, reall that the funtional measure is invari-

ant, the ation S satis�es the master equation and the omposite �elds OI
are gauge invariant. Then, (5.61) a�ets only

∫
ΦαJα, by an amount equal

to

θ

∫
(S,Φα)Jα = θ

∫
Rα(Φ)Jα, (5.67)

and W by an amount equal to the average of (5.67). Sine a hange of �eld

variables annot modify the result of the integral, we onlude that

τZ(J,K,L) = 0, τW (J,K,L) = 0. (5.68)

�
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Using (5.60), we an write

τW =

∫
τKα

δlW

δKα
= (−1)εα

∫
Jα

δlΓ

δKα
=

∫
δrΓ

δΦα
δlΓ

δKα
. (5.69)

Using (5.15) and (5.68), we obtain

τW =
1

2
(Γ,Γ) = 0, (5.70)

whih is the master equation for Γ. Later we will show that it enodes the

gauge invariane of physial orrelation funtions. We have thus proved that

Theorem 11 If S satis�es the master equation, then Γ satis�es the master

equation.

When the ation S is not assumed to satisfy the master equation, a more

general result tells us that the violation of the Γ master equation (Γ,Γ) = 0

is given by the average of (S, S). This gives a formula that, due to its

importane, we all master identity. It will be ruial in the proofs of renor-

malizability and in the study of anomalies and gauge independene to all

orders.

Theorem 12 The generating funtional Γ satis�es the master identity

(Γ,Γ) = 〈(S, S)〉.

Proof. It an be proved by going through the argument that lead to

(5.70), and making the neessary modi�ations. Formula (5.66) is una�eted.

Instead, the hange of variables (5.61) does not only a�et

∫
ΦJ , by an

amount equal to (5.67), but also −S, by an amount equal to −θ(S, S)/2.
Sine W annot hange under a hange of variables, we obtain

τW =

〈∫
Rα(Φ)Jα

〉
=

1

2
〈(S, S)〉

Formula (5.69) is also unmodi�ed, so in the end

1

2
〈(S, S)〉 = τW =

1

2
(Γ,Γ).
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5.6 Ward identities

Consider the hange of variables (5.61) in the funtional integral

∫
[dΦ]Q(Φ) exp

(
−S(Φ,K) +

∫
LIOI(φ)

)
, (5.71)

where now Q denotes a ompletely arbitrary funtion of the �elds. It an

inlude any string of insertions of elementary and omposite �elds, inluding

ghosts and Lagrange multipliers, as well as funtionals, and does not need to

be loal. However, for the derivation that we give below Q annot depend

on the soures K. The reason is that the funtional integral is only over Φ,

so the hange of variables annot transform K. Note that in (5.71) we have

set the soures J for the elementary �elds Φ to zero. The reason is that most

soures J are not gauge invariant. By means of (5.71), we an study the

orrelation funtions (5.58).

If S satis�es the master equation, then only Q(Φ) is a�eted by (5.61),

and we easily obtain

〈∫
Rα

δQ
δΦα

〉
= 〈(S,Q)〉0 = 0, (5.72)

where the subsript 0 reminds us that the soures J for the elementary �elds

are set to zero.

This identity is alled Ward identity. Its meaning is that an objet of the

form (S,Q) is zero for every physial purposes, that is to say a ompletely

unobservable quantity. Observe that (S,Q) is just a funtional of the �elds.

Replaing Q with Q(S,Q)n−1
in (5.72), it follows that

〈(S,Q)n〉0 = 0

for every n. Then, if we speialize Q to be a loal funtional Ψ of fermioni

statistis, we also have the identity

∫
[dΦ] e−SΨ(Φ,K)+

∫
LIO

I(φ) =

∫
[dΦ] e−S(Φ,K)+

∫
LIO

I(φ), (5.73)

where SΨ and S are related by formula (5.46), or, whih is the same, the

anonial transformation (5.47). Identity (5.73) tells us that we are free to

add an arbitrary funtional of the form (S,Ψ) to the ation, and no or-

relation funtion (5.58) will depend on it. We have already seen that this

freedom allows us to gauge-�x the theory, by hoosing a Ψ of the form (5.45).

This proves that
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Theorem 13 The orrelation funtions (5.58) are invariant under the anon-

ial transformations of the form (5.47), for an arbitrary loal Ψ(Φ).

Sine the most general anonial transformation is a ombination of a

anonial transformation of type (5.47) and a hange of variables for the

�elds Φ, we onlude that

Theorem 14 The physial quantities are invariant under the most general

anonial transformation.

Among the freedom we have, we an replae ∂µAµ in (5.45) by another

gauge-�xing funtion G(A). From the arbitrariness of Ψ(Φ) and theorem 13,

we onlude that

Theorem 15 The orrelation funtions (5.58) are gauge-independent,

that is to say they are independent of the gauge �xing. Even if we stik to

the same G(A), they are independent of the gauge-�xing parameter λ that

appears in (5.45).

Note that the notion of gauge independene does not oinide with the

notion of gauge invariane. A gauge invariant quantity is a quantity that

does not hange when a gauge transformation is applied to it. A gauge

independent quantity is a quantity that does not hange by modifying the

gauge-�xing funtion G(A) that is used to de�ne the funtional integral.

Gauge independene ensures that the value of the physial orrelation

funtions, suh as (5.58), is the same with any gauge hoie. In partiular, it

oinides with the value we would �nd, for example, in the Coulomb gauge

(4.8), where only the physial degrees of freedom propagate. For this reason,

gauge independene is ruial to prove unitarity.

We will have more to say about the independene of the physial quanti-

ties on anonial transformations later on. Moreover, we still have to prove

that the theory is renormalizable. So far, we have been working with physial

quantities that may be gauge invariant and gauge independent (see below),

but still divergent. We must show that the subtration of divergenes an be

organized so as to preserve the properties proved above.
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Chapter 6

Quantum eletrodynamis

In this hapter we study quantum eletrodynamis and prove its renormal-

izability to all orders. Sine the ation does not ontain hiral fermions

the properties we have derived in the previous hapter, suh as the master

equation (5.17), hold in arbitrary omplex D dimensions. In partiular, the

Lagrangian

L
0

=
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ (6.1)

is gauge invariant in D dimensions and the dimensionally regularized gauge-

�xed extended ation

S(Φ,K) =

∫
L
tot

+

∫
(Kµ∂µC + ieψ̄CKψ̄ + ieKψCψ −BKC̄), (6.2)

where

L
tot

= L
0

− λ

2
B2 +B∂ · A− C̄�C, (6.3)

satis�es (S, S) = 0 identially.

After integrating B out, the Feynman rules are

ν
= 1

k2

(

δµν + (λ− 1)kµkν
k2

)

µ

= 1
i/p+mp

= −ieγµ

µ

k

(6.4)

where the wiggled line denotes the photon. We do not need rules for the

ghosts, sine they deouple.
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The �rst thing to note is that (6.1) does not ontain all the terms that

are allowed by power ounting. The missing ones, suh as

1

2
m2
γA

2
µ,

1

3!
A2
µ∂νAν ,

1

4!
(A2

µ)
2, (6.5)

et., are forbidden by gauge invariane. We know that suh terms are ab-

sent at the tree level, beause the tree-level Lagrangian is gauge invariant.

In priniple, renormalization might generate them at one loop or higher or-

ders. More preisely, it might be neessary to introdue the verties (6.5) as

ounterterms, to remove divergenes proportional to them. However, if that

happened, renormalization would ruin the gauge invariane of the theory. We

need to prove that, instead, the divergent parts of the Feynman diagrams are

gauge invariant, and an be removed by by rede�ning the ingredients (�elds,

soures and parameters) of the tree-level ation S(Φ,K). Fortunately, in

most ases, whih inlude QED, renormalization and gauge invariane are

ompatible with eah other.

For the moment, we just assume that this ompatibility holds and work

out some onsequenes. The renormalizability of (6.3) is proven in setion

6.2.

Exerise 22 Using the dimensional regularization prove by expliit omputa-

tion that the photon four-point funtion 〈Aµ(x)Aν(y)Aρ(z)Aσ(w)〉 is one-loop
onvergent.

Solution. By power ounting and loality, the divergent part is just a

onstant, so it an alulated at vanishing external momenta. Although the

divergent part is also independent of the mass, we keep m nonzero, beause

the limit when both the external momenta and the masses tend to zero

annot be taken inside the integral in dimensional regularization. We have

the diagram

µ ν

ρσ
(6.6)

plus permutations of external legs, whih means exhanges of ν, ρ and σ.
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The integral orresponding to (6.6) is

−e4
∫

dDp

(2π)D
tr[(−i/p +m)γµ(−i/p+m)γν(−i/p +m)γρ(−i/p+m)γσ]

(p2 +m2)4
.

The masses in the numerator an be dropped, sine they ontribute only to

the �nite part. We get

− e4
∫

dDp

(2π)D
pαpβpγpδ
(p2 +m2)4

tr[γαγµγβγνγγγργδγσ]. (6.7)

By Lorentz ovariane, the integral an only be proportional to δαβδγδ +

δαγδβδ + δαδδβγ . The fator in front of this tensor an be alulated by

ontrating α with β and γ with δ. We an thus write

∫
dDp

(2π)D
pαpβpγpδ
(p2 +m2)4

=
δαβδγδ + δαγδβδ + δαδδβγ

D(D + 2)

∫
dDp

(2π)D
(p2)2

(p2 +m2)4
.

Evaluating the integral with the help of formula (A.5) and using (2.14) and

(2.15) to ompute the trae, we an easily �nd that the divergent part of

(6.7) is nontrivial, equal to

− 8e4

3ε(4π)2
(δµνδρσ − 2δµρδνσ + δµσδνρ) ,

where ε = 4 −D. However, the pole disappears by summing over the per-

mutations of the external legs. Without this anellation, there would be

a divergent part proportional to (A2
µ)

2
, whih would violate gauge invari-

ane. This exerise is an expliit hek that the dimensional regularization

is manifestly gauge invariant.

Exerise 23 Show that the three-point funtion 〈Aµ(x)Aν(y)Aρ(z)〉 is also
onvergent at one loop.

Solution. We leave the details to the reader. The fermion loop with

three external photons has a nontrivial divergent part, whih is linear in

the external momenta. As before, the pole anels when the permutations

of the external legs are inluded. Note that exhanging two photon legs is

equivalent to �ip the arrow of the fermion loop.

There exist more powerful methods, based on the invariane under harge

onjugation, to show that the n-photon orrelation funtions identially van-

ish when n is odd. However, it is not straightforward to use those arguments
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together with the dimensional regularization. The reason is that the harge-

onjugation matrix, like the matrix γ5, does not admit a simple extension

to D dimensions, and the dimensionally regularized QED Lagrangian is not

exatly invariant under harge onjugation. �

As usual, we have bare and renormalized versions of L0, whih read

L0B =
1

4
F 2
µνB + ψ̄B(/∂ + ieB /AB +mB)ψB =

L0R =
1

4
ZAF

2
µν + Zψψ̄(/∂ + ieµεZeZ

1/2
A

/A+mZm)ψ, (6.8)

having de�ned

AµB = Z
1/2
A Aµ, ψB = Z

1/2
ψ ψ, eB = eµεZe, mB = mZm.

We have replaed e by eµε at the tree level, to have the renormalized eletri

harge e dimensionless.

The renormalization of the gauge-�xing setor is rather simple. Sine C

and C̄ deouple, they are not renormalized, so CB = C, C̄B = C̄. Moreover,

sine B appears only quadratially in (6.3), no one-partile irreduible dia-

gram with external legs B an be onstruted. Therefore, the Lagrangian

terms involving B are not renormalized either. Writing

BB = Z
1/2
B B, λB = λZλ,

we have

−λ
2
B2+B∂ ·A = −λB

2
B2

B+BB∂ ·AB = −λZλ
2
ZBB

2+Z
1/2
B Z

1/2
A B∂ ·A, (6.9)

that is to say

ZB = Z−1
A , Zλ = ZA. (6.10)

We see that B an have a nontrivial renormalization onstant.

Now, let us onsider the terms proportional to the soures in (6.2). The

term BKC̄ is not renormalized by the argument just given. Moreover, sine

the ghosts deouple, no irreduible diagrams with soures Kψ, Kψ̄ and/or

Kµ on the external legs an be onstruted. This means that the entire K

setor of the solution (6.2) to the master equation is nonrenormalized and

Kψ̄B = Z−1
e Z

−1/2
ψ Kψ̄, KψB = Z−1

e Z
−1/2
ψ Kψ, KC̄B = Z

−1/2
B KC̄ .
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The renormalized solution of the master equation reads

SR(Φ,K) =

∫
(L0R + L

gf

+ LK) = SB(ΦB,KB),

where

L
gf

=−λ
2
B2 +B ∂ · A− C̄�C,

LK =Kµ∂µC + ieµεψ̄CKψ̄ + ieµεKψCψ −BKC̄ .

6.1 Ward identities

The Ward identities (5.72) allow us to derive relations among the orrela-

tion funtions and the renormalization onstants. Before deriving the main

formulas, let us mention two simple, but useful properties onerning the

funtional integral over the ghosts C, C̄ and the Lagrange multiplier B.

Sine B does not propagate and appears quadratially in the ation,

integrating over B is equivalent to replae it with the solution

B =
1

λ
∂ ·A (6.11)

of its own �eld equation. Preisely, let X(B) be a loal funtional of B (and

possibly other �elds). Making a translation we �nd

〈X〉B ≡
∫

[dB]X(B) exp

(
λB2

2
−B∂ ·A

)

=

∫
[dB]X

(
B +

∂ ·A
λ

)
exp

(
λB2

2
− (∂ · A)2

2λ

)
.

Now, expand X(B) in powers of B. Observe that eah odd power integrates

to zero. On the other hand, nonvanishing even powers give δ(0)s or deriva-

tives of δ(0)s, e.g.

∫
[dB]B(x)∂µB(x) exp

(
λB2

2

)
= ∂µδ(x − y)|y−x ,

whih, by formulas (2.12) and (2.13), vanish using the dimensional regular-

ization. We onlude that

〈X〉B = X

(
∂ ·A
λ

)
exp

(
−(∂ ·A)2

2λ

)
. (6.12)
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Another useful property is that, sine the ghosts deouple, the orrelation

funtions involving ghost insertions fatorize, i.e.

〈C(x1) · · ·C(xm)C̄(y1) · · · C̄(yn)χ〉
= 〈C(x1) · · ·C(xm)C̄(y1) · · · C̄(yn)〉〈χ〉, (6.13)

where χ is any string of elementary �elds other than the ghosts, e.g.

χ = Aµ1(x1) · · ·Aµn(xn)ψ̄(y1) · · · ψ̄(ym)ψ(z1) · · ·ψ(zm).

Formula (6.13) an be easily proved by writing down the expressions of the

averages as funtional integrals.

We obtain the �rst Ward identity by hoosing Ψ = C̄(x)∂ · AB(y) in

formula (5.72), whih gives

0 = 〈BB(x)∂ · AB(y)〉0 − 〈C̄(x)�C(y)〉0.

We reall that the subsript 0 reminds us that the soures J are set to zero.

Using (6.9) and (6.12) we an replae BB with (∂ · AB)/λB. Next, using

〈C(y)C̄(x)〉0 = G
free

(y − x) (6.14)

where G
free

(y − x) is the solution of −�G
free

(y − x) = δ(y − x), we �nd

〈∂ · AB(x)∂ · AB(y)〉0 = λBδ(x− y).

In terms of renormalized quantities, this identity beomes

〈∂ ·A(x)∂ ·A(y)〉0 =
λZλ
ZA

δ(x − y).

Sine the left-hand side is onvergent, by onstrution, the right-hand side

must also be onvergent, so we �nd

Zλ
ZA

= �nite. (6.15)

In the minimal subtration sheme every Z has the form 1+poles in ε, so

Z̄λ = Z̄A. (6.16)

The bar over the Zs is to remind us that the renormalization onstants are

evaluated in the MS sheme. The result (6.16) agrees with (6.10). When we
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derived (6.10), indeed, we impliitly used the minimal subtration sheme,

sine we onentrated on the form of divergenes. More generally, we know

that we an always �subtrat� arbitrary �nite loal ounterterms. If we do

this in the setor (6.9), we end up with (6.15).

As a seond example, take Ψ = C̄B(x)ψ̄B(y)ψB(z) in (5.72), whih gives

0= 〈BB(x)ψ̄B(y)ψB(z)〉0 + ieB〈C̄(x)ψ̄B(y)C(y)ψB(z)〉0
−ieB〈C̄(x)ψ̄B(y)C(z)ψB(z)〉0.

Using (6.14), (6.12) and (6.13) we �nd

1

λB
〈∂·AB(x)ψ̄B(y)ψB(z)〉0 = −ieB〈ψ̄B(y)ψB(z)〉0 [Gfree

(x− y)−G
free

(x− z)] .

In terms of the renormalized quantities, we have

Z
1/2
A

λZλ
〈∂·A(x)ψ̄(y)ψ(z)〉0 = −ieµεZe〈ψ̄(y)ψ(z)〉0 [Gfree

(x− y)−G
free

(x− z)] .

Sine the orrelation funtions appearing in this equation are �nite, we on-

lude

Z
1/2
A

ZλZe
= �nite. (6.17)

Summarizing, in the minimal subtration sheme

Z̄A = Z̄λ = Z̄−2
e . (6.18)

Exerise 24 Using the dimensional regularization, ompute the renormal-

ization of QED at one loop and hek (6.18).

Solution. We have already heked in exerises 22 and 23 that the photon

four- and three-point funtions are onvergent. The surviving diagrams are

(6.19)

The �rst diagram is alled �vauum polarization�. Its divergent part is

− e2

6π2ε
(k2δµν − kµkν), (6.20)
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where k is the external momentum, and gives

ZA = 1− e2

6π2ε
. (6.21)

Note that (6.20) is transverse, namely it vanishes if ontrated with kµ or kν .

This means that the gauge-�xing term (∂ · A)2/(2λ) is nonrenormalized, so

Zλ = 1− e2

6π2ε
= ZA,

in agreement with the �rst Ward identity (6.16).

The seond diagram of (6.19) is the eletron self-energy. Its divergent

part is

−ie2λ
8π2ε

/p−
me2

8π2ε
(λ+ 3), (6.22)

where p is the external momentum, oriented aording to the arrow. We �nd

Zψ = 1− λe2

8π2ε
, Zm = 1− 3e2

8π2ε
. (6.23)

Finally, by loality and power ounting the divergent part of the vertex-

diagram an be alulated at vanishing external momenta. Moreover, masses

in numerators an be dropped. We then easily �nd

− iλe3

8π2ε
γµ, (6.24)

whene

Ze = 1 +
e2

12π2ε
= Z

−1/2
A , (6.25)

in agreement with the seond Ward identity (6.18). Observe that only Zψ
is gauge dependent. Later we will appreiate why. We will be also able to

haraterize the gauge dependene more preisely. �

Two interesting onsequenes of the Ward identities in the minimal sub-

tration sheme an be derived very easily.

i) The ovariant derivative is not renormalized. Preisely,

Dµ ≡ ∂µ + ieBABµ = ∂µ + ieµε/2Z̄eZ̄
1/2
A Aµ = ∂µ + ieµε/2Aµ.

ii) The renormalization of the �elds and the soures an be expressed in the

form

ΦαB = (Z̄Φ)
1/2Φα, KαB = Z̄−1

e (Z̄Φ)
−1/2Kα, (6.26)
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where no sum over α is understood. Indeed, olleting all the piees of

information found so far, we have

AµB = Z̄−1
e Aµ, KµB = Kµ, ψB = Z̄

1/2
ψ ψ,

KψB = Z̄−1
e Z̄

−1/2
ψ Kψ, KCB = Z̄−1

e KC , CB = C, (6.27)

BB = Z̄eB, KBB = Z̄−2
e KB , KC̄B = Z̄−1

e KC̄ , C̄B = C̄,

eB = eµεZ̄e, mB = mZ̄m, λB = λZ̄−2
e .

The renormalizations ofKB andKC are ompletely arbitrary, sine the ation

does not depend on them. We have hosen them to enfore (6.26).

We see that only three renormalization onstants are independent. The

meaning of (6.26) is that the renormalization of the �elds and the soures

is Z̄−1
e times a anonial transformation. The omplete renormalization is

made of these two operations plus a rede�nition of the eletri harge e, the

eletron mass m and the gauge-�xing parameter λ.

Preisely, we have the anonial transformation (ΦB,KB) → (Φ′,K ′)

generated by

F(Φ′,KB) =

∫ (
Z̄−1
e A′

µK
µ
B + Z̄

1/2
ψ KψBψ

′ + Z̄
1/2
ψ ψ̄

′
Kψ̄B

+KCBC
′ + C̄ ′KC̄B + Z̄eB

′KBB

)
.

omposed with the soure rede�nition

Φ′ = Φ, K ′ = Z̄−1
e K,

and

eB = eµεZ̄e, mB = mZ̄m, λB = λZ̄−2
e .

We an write the relation between the bare and the renormalized antiparen-

theses as

Z̄−1
e (X,Y )B = (X,Y ). (6.28)

Details about nonminimal subtration shemes are given in the next se-

tion.

6.2 Renormalizability of QED to all orders

Now we prove that quantum eletrodynamis is renormalizable to all orders in

a gauge invariant way. We �rst work out the proof in the minimal subtration
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sheme and at the end extend the proof to a generi gauge invariant sheme.

Consider the bare generating funtional

ZB(JB,KB) =

∫
[dΦB] exp

(
−SB(ΦB,KB) +

∑

i

ΦiBJBi

)
= eWB(JB,KB),

(6.29)

written in terms of bare �elds and soures. The ation SB is the one of

formula (5.31) one the subsript B is inserted everywhere.

We know that SB satis�es the master equation, (SB, SB)B = 0 and then

theorem (11) ensures that the bare Γ funtional ΓB also satis�es (ΓB,ΓB)B =

0. This identity implies

0 = −
∫

δrΓB

δKαB

δlΓB

δΦαB
=

∫
〈RαB(Φ)〉

δlΓB

δΦαB
. (6.30)

Now, observe that 〈RAB(ΦB)〉 = RAB(ΦB). This is obvious for ΦB =

AB, CB, C̄B and BB, beause their funtions RAB(ΦB) vanish or are linear

in the �elds themselves. It is less obvious for ΦB = ψ̄B, ψB, yet true, be-

ause the ghosts deouple, so by (6.13) we have 〈CBψB〉 = 〈CB〉〈ψB〉 and
〈ψ̄BCB〉 = 〈ψ̄B〉〈CB〉. We onlude that the bare funtional ΓB satis�es

∫
RαB(ΦB)

δlΓB

δΦαB
= 0. (6.31)

More expliitly,

∫ (
∂µCB

δlΓB

δAµB
− ieBψ̄BCB

δlΓB

δψ̄B

+ ieB
δrΓB

δψB
CBψB +BB

δlΓB

δC̄B

)
= 0 (6.32)

Now we proeed indutively. Assume that the theory an be renormalized

up to and inluding the nth loop order by means of renormalization onstants

Z̄e,n, Z̄ψ,n and Z̄m,n and the renormalized ation

Sn(Φ,K) =

∫
1

4
Z̄−2
e,nF

2
µν +

∫
Z̄ψ,nψ̄(/∂ + ieµε /A+mZ̄m,n)ψ +

∫
(L

gf

+ LK),

in the minimal subtration sheme. The relations between the bare and

the renormalized quantities are (6.27) with Z̄e, Z̄ψ, Z̄m → Z̄e,n, Z̄ψ,n, Z̄m,n.

Let Γn(Φ,K, e, λ) = ΓB(ΦB,KB, eB, λB) denote the n-loop renormalized and

bare generating funtionals of one-partile irreduible diagrams.
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We must prove that the indutive hypotheses are promoted to the (n+1)-

th loop order. Swithing formula (6.32) to the renormalized quantities, we

�nd that all the renormalization onstants simplify apart from a ommon

fator Z̄e, whih we an drop. At the end, we have

∫ (
∂µC

δlΓn
δAµ

− ieµεψ̄C δlΓn
δψ̄

+ ieµε
δrΓn
δψ

Cψ +B
δlΓn
δC̄

)
= 0. (6.33)

We know that the gauge-�xing setor and the K setor do not renormalize.

Atually they do not reeive any radiative orretions, beause no diagrams

an be onstruted with those sets of external legs. Thus we have

Γn(Φ,K) = Γ̃n(A, ψ̄, ψ) +

∫
(L

gf

+ L).

Inserting this formula in (6.33), we get

∫ (
∂µC

δlΓ̃n
δAµ

− ieµεψ̄C δlΓ̃n
δψ̄

+ ieµε
δrΓ̃n
δψ

Cψ

)
= 0.

Multiplying by a onstant antiommuting parameter ξ to the left and identi-

fying ξC with a ommuting funtion Λ, we obtain that Γ̃n is gauge invariant,

that is to say

δΛΓ̃n = 0, (6.34)

where δΛ is given by (4.7).

To keep trak of the orders of the expansion, we reintrodue ~ for a

moment. De�ne

Γ̃n =

∞∑

k=0

~
kΓ̃(k)

n . (6.35)

Observe that δΛ is independent of ~. Taking the (n + 1)-th order of (6.34),

we obtain

δΛΓ̃
(n+1)
n = 0. (6.36)

By the indutive assumption, Γn and Γ̃n are onvergent up to and inluding

the nth order. Instead, Γ̃
(n+1)
n is the sum of a divergent part, whih we

denote by Γ̃
(n+1)
ndiv , and a �nite part. Sine all Γ̃

(k)
n , k 6 n, are onvergent by

the indutive assumption, all the subdivergenes of the Feynman diagrams of

order ~n+1
are subtrated by appropriate ounterterms. By the theorem of
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the loality of ounterterms, Γ̃
(n+1)
ndiv is a loal funtional. Taking the divergent

part of (6.36) (i.e. its poles in ε), we obtain

δΛΓ̃
(n+1)
ndiv = 0. (6.37)

Thus, we learn that Γ̃
(n+1)
ndiv is gauge invariant. Summarizing, Γ̃

(n+1)
ndiv (A, ψ̄, ψ)

is a loal, gauge-invariant funtional. Preisely, it is the integral of a loal

funtion ∆n+1L(A, ψ̄, ψ) of dimension four.

Now we use power ounting. With the Lorenz gauge-�xing, the photon

propagator behaves orretly for large momenta. Moreover, the theory does

not ontain parameters of negative dimensions. These fats ensure that the

funtion ∆n+1L(A,ψ, ψ̄) is a linear ombination of the loal terms of dimen-

sions 6 4 that are not total derivatives and an be built with the �elds A,

ψ and ψ̄ and their derivatives. Suh terms are F 2
, (∂ · A)2, ψ̄ /∂ψ, ψ̄ /Aψ and

ψ̄ψ. We annot use neither the tensor εµνρσ , nor the matrix γ5, sine the

Feynman rules do not ontain them. Finally, (6.37) redues the list to the

gauge-invariant ombinations F 2
, ψ̄ /Dψ and ψ̄ψ, so we an write

∆n+1L = an+1F
2
µν + bn+1ψ̄ /Dψ + cn+1mψ̄ψ, Γ̃

(n+1)
ndiv =

∫
dDx∆n+1L,

(6.38)

for suitable divergent oe�ients an+1, bn+1 and cn+1. These divergenes

an be subtrated by means of new renormalization onstants

Z̄e,n+1 = (Z̄−2
e,n − an+1)

−1/2, Z̄ψ,n+1 = Z̄ψ,n − bn+1,

Z̄m,n+1 = (Z̄ψ,n − bn+1)
−1(Z̄ψ,nZ̄m,n − cn+1).

The renormalized ation

Sn+1(Φ,K) =

∫
1

4
Z̄−2
e,n+1F

2
µν +

∫
Z̄ψ,n+1ψ̄(/∂ + ieµε /A+mZ̄m,n+1)ψ

+

∫
(L

gf

+ LK) = Sn(Φ,K)− Γ̃
(n+1)
ndiv ,

produes a generating funtional Γn+1 that is onvergent up to and inlud-

ing n + 1 loops. Indeed, sine the ations di�er by O(~n+1), the Feyn-

man diagrams with n loops or less are exatly the same, whih ensures

Γn+1 = Γn + O(~n+1). Moreover, at n + 1 loops we have exatly the same

diagrams plus the verties of −Γ̃(n+1)
ndiv , whih subtrat the overall divergent
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parts. In onlusion,

Γn+1 ≡
∞∑

k=0

~
kΓ̃

(k)
n+1 = Γn − Γ̃

(n+1)
ndiv +O(~n+2),

that is to say Γ̃
(k)
n+1 = Γ̃

(k)
n <∞ for k 6 n and Γ̃

(n+1)
n+1 = Γ̃

(n+1)
n − Γ̃

(n+1)
ndiv <∞.

This result extends the indutive hypotheses to n+1 loops, as we wanted.

Iterating the argument to n =∞, the map relating the bare and renormalized

quantities is (6.27) with Z̄e = Z̄e,∞, Z̄ψ = Z̄ψ,∞ and Z̄m = Z̄m,∞. The

renormalized ation is

SR = S∞ =

∫
1

4
Z̄−2
e F 2

µν+

∫
Z̄ψψ̄(/∂+ieµ

ε /A+mZ̄m)ψ+

∫
(L

gf

+LK) (6.39)

and the renormalized generating funtional of the one-partile irreduible

orrelation funtions is

ΓR(Φ,K) = Γ∞(Φ,K) = Γ̃∞(A, ψ̄, ψ) +

∫
(L

gf

+ LK). (6.40)

Moreover, we have

(i) Z̄−1
e (X,Y )B = (X,Y );

(ii) (SR, SR) = 0;

(iii) (ΓR,ΓR) = 0.

Point (i) follows from (6.27), as shown in (6.28). Point (ii) follows from

(SB, SB)B = 0 and point (i). It an also be veri�ed immediately by using

(6.39). Point (iii) follows from point (ii) and theorem 11.

So far, we have worked in the absene of omposite �elds, whih is enough

to derive the S matrix. When we inlude gauge-invariant omposite �elds,

built with the physial �elds A, ψ and ψ̄, both the gauge-�xing setor and

the K setor remain unorreted, beause no nontrivial diagrams a�eting

them an be onstruted. The derivation given above is unmodi�ed up to

and inluding (6.37).

Let OI(Φ, eµε) denote a basis of gauge-invariant omposite �elds, whih

inludes the identity. The OIs may depend on e by gauge invariane, but

there is no need to assume that they depend on m. The bare ation is

extended to

SB(ΦB,KB, LB) = SB(ΦB,KB) +

∫
LIBOI(ΦB, eB).
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Clearly, the master equation (SB, SB)B = 0 is still satis�ed. We write the

n-loop renormalized ation as

Sn(Φ,K,L) = Sn(Φ,K) +

∫
f In(L)OI(Φ, eµε), (6.41)

where f In(L) are loal funtions to be determined that have the form LIn+poles

in ε, with f I0 (L) = LI . Obviously, (Sn, Sn) = 0.

The soures L that multiply the omposite �elds of dimensions > 4 have

negative dimensions in units of mass. This means that the divergent part

Γ̃
(n+1)
ndiv is no longer restrited by power ounting. Nevertheless, we an write

Γ̃
(n+1)
ndiv (Φ,K,L) =

∫
∆n+1L+

∫
hIn(L)OI(Φ, eµε),

where the divergent funtions hIn(L) = O(L) are loal. As before, the di-

vergent terms of ∆n+1L an be reabsorbed in the onstants Z̄e, Z̄ψ and Z̄m.

Instead, the L-dependent divergent part an be reabsorbed by de�ning

f In+1(L) = f In(L)− hIn(L). (6.42)

The relations among the bare soures LIB and the renormalized soures

LI , and the solutions of (6.42), are

LIB ≡ fJn (L)(d−1
n )JI , f In(L) = LI −

n∑

k=1

hIk(L),

where the matries of onstants dIJn = δIJ+poles in ε are de�ned by

OI(ΦB, eB) = OI(Z̄1/2
Φ,nΦ, eµ

εZ̄e,n) ≡ dIJn OI(Φ, eµε).

The (n + 1)-renormalized ation Sn+1(Φ,K,L) has the form (6.41) with

n→ n+ 1. We still have

Sn+1(Φ,K,L) = Sn(Φ,K,L) − Γ̃
(n+1)
ndiv (Φ,K,L),

whih ensures that the Γ funtional Γn+1(Φ,K,L) is renormalized up to and

inluding n+1 loops. Iterating the argument to n =∞, we �nd the renormal-

ized ation SR(Φ,K,L) = S∞(Φ,K,L) and the renormalized Γ funtional

ΓR(Φ,K,L) = Γ∞(Φ,K,L), whih still satisfy the properties (i), (ii) and

(iii) listed above.
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Chapter 7

Non-Abelian gauge �eld

theories

In this hapter we use the Batalin-Vilkovisky formalism to prove the renor-

malizability of Yang-Mills theory to all orders in the perturbative expansion.

We onentrate on gauge theories with a simple gauge group, sine the gen-

eralization to produt groups is straightforward. We also assume that the

theories are parity invariant, whih ensures that the lassial Lagrangian does

not ontain the matrix γ5, the tensor ε
µνρσ

, or their d-dimensional analogues,

where d denotes the physial dimension of spaetime.

7.1 Renormalizability of non-Abelian gauge theo-

ries to all orders

Denote the bare �elds and the bare soures with ΦB and KB, respetively.

Denote the bare ation and the bare Γ funtional, de�ned aording to (5.59),

with SB(ΦB,KB, LB, ζB, ξB) and ΓB(ΦB,KB, ζB, LB, ζB, ξB), where ζ denote

the physial parameters, ξ are the gauge-�xing parameters and L are soures

for gauge-invariant omposite �elds. At L = 0 the bare ation an be read

from (5.34) and (5.33), or (5.38) and (5.37), if all the quantities that appear

in those formulas are interpreted as bare quantities.

From (5.17) we have the master equation

(SB, SB)B = 0, (7.1)

21114B1 Renorm



212 CHAPTER 7. NON-ABELIAN GAUGE FIELD THEORIES

whih implies, aording to theorem 11,

(ΓB,ΓB)B = 0. (7.2)

The subsript B attahed to the antiparentheses means that they are alu-

lated with respet to the bare �elds and soures, the other bare quantities

being kept �xed.

As usual, renormalizability is proved by proeeding indutively. We give

two proofs: a raw one and a more detailed one.

Raw subtration The simpler proof amounts to subtrat the ountert-

erms �as they ome� in the minimal subtration sheme. We will see in a

moment what this means. We do not need to preserve the master equation

at eah step of the subtration. Instead, higher-order violations are allowed.

Call Sn and Γn the ation and the Γ funtional renormalized up to and

inluding n loops. Assume the indutive hypotheses

Sn = S0 + poles, (Sn, Sn) = O(~n+1), Γ(k)
n <∞ ∀k 6 n, (7.3)

having used the expansion (6.35). The last requirement is just the statement

that Γn is onvergent up to and inluding n loops. Clearly, the indutive

assumptions are trivially satis�ed for n = 0. In partiular, S0 oinides with

the bare ation SB, and formula (7.1) ensures (S0, S0) = 0. Using the master

identity 12 we have

(Γn,Γn) = 〈(Sn, Sn)〉. (7.4)

Sine the antiparenthesis (Sn, Sn) is a loal funtional of order ~n+1
, the

ontributions to 〈(Sn, Sn)〉 of order ~n+1
are given by tree diagrams, so they

oinide with the order-~n+1
ontributions to (Sn, Sn), whih we denote by

(Sn, Sn)|n+1. Suh quantity is divergent, by (S0, S0) = 0 and the �rst as-

sumption of (7.3).

Use the expansion (6.35) and think of (7.4) diagrammatially, as shown

in (5.28). The order ~n+1
of (7.4) gives

n+1∑

k=0

(
Γ(k)
n ,Γ(n−k)

n

)
= (Sn, Sn)|n+1 . (7.5)

We know that Γ
(k)
n are onvergent for k 6 n, by the indutive assumption.

Taking the divergent part of (7.5), we obtain

2
(
Γ(0)
n ,Γ

(n+1)
n div

)
= (Sn, Sn)|n+1 . (7.6)
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where Γ
(n+1)
n div

is the order-~n+1
divergent part of Γn. By the third indutive

assumption (7.3), all the subdivergenes are subtrated away, so Γ
(n+1)
n div

is a

loal funtional. Now, Γ
(0)
n oinides with the lassial ation S0, so (7.6)

beomes

(S0,Γ
(n+1)
n div

) =
1

2
(Sn, Sn)|n+1 . (7.7)

At this point, de�ne

Sn+1 = Sn − Γ
(n+1)
n div

. (7.8)

The �rst indutive assumption of the list (7.3) is learly promoted to Sn+1.

Formulas (7.8) and (7.7) give

(Sn+1, Sn+1) = (Sn, Sn)− 2
(
Sn,Γ

(n+1)
n div

)
+
(
Γ
(n+1)
n div

,Γ
(n+1)
n div

)
= O(~n+2),

so the seond of (7.3) is also promoted to Sn+1. Finally, the diagrams on-

struted with the verties of Sn+1 oinide with the diagrams of Sn, plus new

diagrams ontaining the verties of −Γ(n+1)
n div

. However, the �rst ontributions

of the new diagrams have order ~n+1
, so

Γ(k)
n = Γ

(k)
n+1 ∀k 6 n.

Moreover, at n + 1 loops any vertex of −Γ(n+1)
n div

an be used only one and

alone, sine it is already of order ~n+1
. Thus,

Γ
(n+1)
n+1 = Γ(n+1)

n − Γ
(n+1)
n div

<∞,

whih promotes the third indutive assumption of (7.3) to Γn+1.

We onlude that formulas (7.3) and (7.4) also hold for the renormalized

ation SR ≡ S∞ and the renormalized generating funtional ΓR ≡ Γ∞, i.e.

(SR, SR) = 0, (ΓR,ΓR) = 0. (7.9)

The subtration algorithm just given is learly ompatible with proposi-

tions 16 and 17. In partiular, formula (7.8) ensures that those propositions

hold at every step of the subtration proedure.

We now study the renormalized ation.
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Proposition 16 The renormalized ation is independent of Ka
B and depends

on Ba
, Ka

C̄
only by means of the terms

∫ (
−λ
2
(Ba)2 +Ba∂ · Aa −BaKa

C̄

)
,

whih are nonrenormalized.

Proof. Clearly the lassial ation (5.37) satis�es these properties. Then,

no one-partile irreduible diagrams with external legs Ba
, Ka

B and Ka
C̄
an

be onstruted, so no ounterterms an depend on Ba
, Ka

B or Ka
C̄
. Note

that, in partiular, the absene of verties with B legs is due to the linearity

of the gauge �xing Ga in A.

Proposition 17 The renormalized ation depends on C̄ and Kµ
a only by

means of the ombination

Kµ
a + ∂µC̄a. (7.10)

Proof. Again, this property is satis�ed by the lassial ation (5.37).

Then, the verties that ontain an antighost leg always have a derivative ∂

ating on C̄. Moreover, the vertex ontaining ∂C̄ has an idential vertex-

partner with ∂C̄ replaed by Kµ
a . Therefore, given a diagram G with a Kµ

a

external leg, there exists an almost idential diagram G′
, whih di�ers from

G only beause the external Kµ
a leg is replaed by a ∂µC̄a leg, and vie versa.

Thus all the ounterterms satisfy the property, and so does the renormalized

ation.

Proposition 18 The renormalized ation is linear in K.

Proof. Indeed, from (5.35) and (5.36) it follows that in the absene of

omposite �elds any loal terms that are quadrati in K have either dimen-

sion greater than four or ghost number di�erent from zero. �

Propositions 16 and 17 also hold in the presene of soure for omposite

�elds, beause their proofs do not require arguments based on power ount-

ing. Instead, 18 does not hold at L 6= 0, in general, beause the soures L for

the omposite �elds an have arbitrarily large negative dimensions, as well

as vanishing ghost number. Then, loal Lagrangian terms with arbitrarily

large powers of K an be onstruted, provided we adjust their dimensions
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by means of powers of L and their ghost numbers by means of powers of C.

We know that, in renormalization, when a term annot be exluded a priori

by advoating power ounting, symmetries or other properties, it is typially

generated as the divergent part of some diagram. For this reason, we annot

guarantee that proposition 18 holds at L 6= 0. For a while we argue at L = 0,

then generalize our arguments to L 6= 0.

Sine the renormalized ation SR is linear in the soures K at L = 0, we

an write

SR(Φ,K) = S′
R(Φ)−

∫
dDxRα∞(Φ)Kα.

The funtions Rα∞(Φ) that multiply the soures inside SR are the renormal-

ized �eld transformations. By proposition 16, ghost number onservation,

loality and power ounting, we must have, in the notation of formulas (5.37)

and (5.39),

SR(Φ,K) = S′
R(Φ)−

∫
(a∂µC

i
j + bAiµkC

k
j − cAkµjCik)Kj

µi +

∫
hCikC

k
jK

j
C i

−
∫
Bi
jK

j
C̄ i

+

∫ [(
a1C

i1
l1
ψl1i2···inj1···jm

+ · · ·+ anC
in
ln
ψ
i1···in−1ln
j1···jm

)
Kj1···jm
i1···in

+ h..

]
,

where a, b, c, h, ak and bk are numerial onstants. Note that, out of the

three tensors of (4.39), we an only use δij . The ε tensors annot appear,

just beause they are not present in the Feynman rules. It is easy to hek

that the terms proportional to Kj
µi in the master equation (SR, SR) = 0 give

2b = 2c = h. Moreover, the terms proportional to Kj1···jm
i1···in

give 2ak = h for

every k, l. Writing h = 2iga′, we have

SR(Φ,K) =S′
R(Φ) + ga′

∫
dDx

(
ψ̄
IT aIJCaKJ

ψ +KI
ψT aIJCaψJ

)

−
∫
dDx

[(
a∂µC

a + ga′fabcAbµC
c
)
Ka
µ −

ga′

2
fabcCbCcKa

C +BaKa
C̄

]
,

Propositions 16 and 17 ensure that the B-dependent terms are nonrenor-

malized. Then, by loality, power ounting and ghost number onservation,

S′
R(Φ) has the form

S′
R(Φ)= ScR(φ)−

λ

2

∫
Bi
jB

j
i +

∫
Bj
i ∂ · Aij

−
∫
C̄ji ∂µ

(
ã∂µC

i
j + b̃AiµkC

k
j − c̃AkµjCik

)
,
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where ã, b̃ and c̃ are other onstants. Imposing (SR, SR) = 0, we get ã = a,

b̃ = c̃ = ga′ and (SR, ScR) = 0. Then, we an write

S′
R(Φ)=ScR(φ) + (SR,Ψ) = ScR(φ) + S

gf

(Φ) =

= ScR(φ) +

∫ [
−λ
2
(Ba)2 +Ba∂ · Aa − C̄a∂µ

(
a∂µC

a + ga′fabcAbµC
c
)]
.

Note that the gauge fermion

Ψ =

∫
C̄a
(
−λ
2
Ba + ∂ · Aa

)

is nonrenormalized.

Let us fous, for simpliity, on the pure gauge theory. Writing the most

general loal form of ScR(A), it is easy to hek, by expliit omputation,

that the most general solution to (SR, ScR) = 0 is

ScR(A) =
a′′

4

∫
dDx

(
a∂µA

a
ν − a∂νAaµ + ga′fabcAbµA

c
ν

)2
,

where a′′ is another onstant. Writing

a = ZC , a′′ = ZAZ
−2
C , a′ = µε/2ZgZ

1/2
A ZC ,

we �nally obtain

SR(Φ,K, g, λ) = SB(ΦB,KB, gB, λB), (7.11)

with

AaµB =Z
1/2
A Aaµ, CaB = Z

1/2
C Ca, gB = gµε/2Zg,

Ba
B =Z

−1/2
A Ba, C̄aB = Z

1/2
C C̄a, λB = λZA, (7.12)

Kµ
aB =Z

1/2
C Kµ

a , Ka
CB = Z

1/2
A Ka

C , Ka
C̄B = Z

1/2
A Ka

C̄ .

The inlusion of matter is straightforward: only ScR(φ) hanges, sine it

must inlude all the terms of dimensions 6 4 that are invariant with respet

to the renormalized gauge transformations.

At L 6= 0 the renormalized ation has a more involved struture, sine

higher-dimensional omposite �elds make it nonpolynomial in Φ,K and L. In

the setor L 6= 0, we just subtrat the ounterterms as they ome, aording
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to formula (7.8). We do not need to worry about rewriting the subtration as

a rede�nition of the �elds, the soures and the parameters. If we wanted to,

we would have nonpolynomial �eld rede�nitions. The gauge transformations

would also be a�eted, so the L setor would have to inlude nonpolynomial

orretions that are not invariant under the starting gauge transformations,

but invariant under suitably orreted gauge transformations. For the mo-

ment, we do not need to go through this, beause formula (7.8) is su�ient

for most pratial purposes.

Expressing renormalization as a rede�nition of the �elds, the soures and

the parameters (whih is the true meaning of the word �re-normalization�)

is more useful in the L = 0 setor, whih ontains, among other things,

the physial parameters. So doing, we an show that the renormalization

program an be arried out to the end by keeping the number of independent

physial parameters �nite. This is a neessary requirement to ensure that

preditivity is retained. The omposite �elds, on the other hand, do not

add physial parameters to the theory, sine the soures L are just tools to

simplify the derivations of various properties. Thus, we do not lose muh,

if we renormalize the divergenes belonging to the L-dependent setor by

subtrating them away just as they ome.
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Appendix A

Notation and useful formulas

The �at spae metri tensor reads

ηµν = ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 .

The Pauli matries are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

The γ matries in four dimensions read

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0

0 1

)
,

where σµ = (1, σ1, σ2, σ3) and σ̄µ = (1,−σ1,−σ2,−σ3). The ε tensor εµνρσ
is de�ned so that ε0123 = 1.

In Minkowski spaetime the Fourier transform is de�ned as

ϕ(x) =

∫
dDp

(2π)D
e−ip·xϕ̃(p), (A.1)

while in Eulidean spae it is

ϕ(x) =

∫
dDp

(2π)D
eip·xϕ̃(p).

21914B1 Renorm



220 APPENDIX A. NOTATION AND USEFUL FORMULAS

To manipulate the denominators of Feynman diagrams it is useful to

introdue Feynman parameters by means of the formula

∏

i

1

Aαi
=

Γ(
∑

i αi)∏
j Γ(αj)

∫ 1

0

∏

i

(
dxi x

αi−1
i

) δ(1 −∑k xk)

(
∑

m xmAm)
∑

n αn
.

Partiular ases are

1

AB
=

∫ 1

0
dx

1

[Ax+B(1− x)]2
, (A.2)

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1

[Ax+B(1− x)]α+β
,

1

ABC
=2

∫ 1

0
dx

∫ 1−x

0
dy

1

[Ax+By + C(1− x− y)]3
.

The integration over Feynman parameters often redues to the integral

∫ 1

0
dx xα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α+ β)
. (A.3)

The most frequently used D-dimensional integral is

∫
dDp

(2π)D
1

(p2 −m2)α
=
i(−1)αΓ

(
α− D

2

)

(4π)D/2Γ(α)
(m2)

D
2
−α. (A.4)

More generally,

∫
dDp

(2π)D
(p2)β

(p2 −m2)α
=
i(−1)α+βΓ

(
β + D

2

)
Γ
(
α− β − D

2

)

(4π)D/2Γ(α)Γ
(
D
2

) (m2)
D
2
−α+β ,

In Eulidean spae this result reads

∫
dDp

(2π)D
(p2)β

(p2 +m2)α
=

Γ
(
β + D

2

)
Γ
(
α− β − D

2

)

(4π)D/2Γ(α)Γ
(
D
2

) (m2)
D
2
−α+β. (A.5)

We also reall that ∫
dDp

(2π)D
(p2)α = 0, (A.6)

for every α.
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We have Γ(x+ 1) = xΓ(x), Γ(n+ 1) = n! and

Γ
(n
2

)
=
√
π
(n − 2)!!

2(n−1)/2
,

Γ(z) =
1

z
− γE +O(z), (A.7)

Γ(z) =
√
π

[
1 +

(
z − 1

2

)
ψ(0)(1/2) +O

((
z − 1

2

)2
)]

,

where γE = 0.5772... is the Euler-Masheroni onstant, while ψ(0)(1/2) =

−1.96351... and ψ(m)(z) are the polygamma funtions.
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