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Prefa
e

Most modern high-energy physi
s, in
luding the standard model of parti
le

physi
s, is formulated by means of perturbative quantum �eld theory.

When the perturbative expansion is performed in a naïve way, it gen-

erates �divergen
es�, that is to say quantities that appear to be �in�nite�,

instead of being small. Typi
ally, they are due to diverging improper in-

tegrals. The presen
e of divergen
es suggests that it should be possible to

de�ne the perturbative expansion in a smarter way.

With the help of a 
uto�, divergen
es be
ome temporarily �nite. Then

they 
an be 
lassi�ed and moved around. Clearly, if a divergen
e disappears

by 
hanging the parametrization of the theory, it is not a true divergen
e,

but just a blunder due to an unfortunate 
hoi
e of variables. If there exists a

reparametrization that makes all the divergen
es disappear, then the theory

is a
tually 
onvergent.

Divergen
es 
an be relo
ated by performing all sorts of operations that

in normal 
ir
umstan
es leave the physi
s un
hanged, su
h as 
hanges of

�eld variables, as well as rede�nitions of the parameters, in parti
ular the


oupling 
onstants. Renormalization is the reparametrization that moves

the divergen
es �to the right pla
es�, assuming that su
h pla
es do exist. In

simple theories, �elds and 
ouplings just get multiplied by 
onstants, when
e

the name re-normalization. In more 
ompli
ated situations the rede�nitions


an even be nonpolynomial. On
e the theory is renormalized, the 
uto� 
an

be safely removed, and the physi
al quantities be
ome meaningful.

The reparametrization solves the problem of divergen
es, and allows us to

de�ne the 
orre
t perturbative expansion. Under 
ertain, rather general, as-

sumptions it is always possible to absorb the divergen
es into reparametriza-

tions. However, the pri
e 
an be 
onsiderably high: the introdu
tion of

in�nitely many new independent parameters. If the divergen
es 
an be 
an-
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4 PREFACE


elled by keeping the number of independent parameters �nite the theory

is 
alled renormalizable. The renormalizable theories a
quire a very spe
ial

status among all theories.

Renormalizability provides a way to sele
t the theories. This sele
tion is

a
tually wel
ome, sin
e it gives us a reason to dis
ard a huge set of theories

that otherwise would have to be a priori in
luded. Among other things, no

physi
al theory in more than four spa
etime dimensions survives the sele
-

tion, whi
h makes renormalization a good 
andidate to explain why we live

in four dimensions. The set of renormalizable theories 
ontains the standard

model in �at spa
e. Therefore, it allows us to explain three intera
tions

of nature out of four. Unfortunately, there is no known way to formulate

quantum gravity so as to in
lude it in the set of renormalizable theories.

Inserting a parameter (the 
uto�) to remove it later is a mathemati
al

tri
k like many. In some sense, it is just a �te
hni
ality�, and most of renor-

malization appears to be a rather te
hni
al issue. However, te
hni
alities like

this may have extremely important and unforeseen 
onsequen
es, and 
on-

siderably a�e
t the physi
al predi
tions of the theory. Examples are given by

the renormalization-group �ow and the anomalies: s
ale invariant theories


an be
ome s
ale dependent, 
oupling �
onstants� 
an be
ome energy depen-

dent, strong intera
tions 
an be
ome weak, eternal parti
les 
an de
ay. The

reason why the reparametrizations used to eliminate the divergen
es do not

leave the physi
s 
ompletely un
hanged is pre
isely that they are divergent.

Ironi
ally, the �divergen
es� are the best known quantities of quantum

�eld theory, to the extent that 
ertain physi
al amplitudes 
an be 
al
ulated

exa
tly to all orders, be
ause of the intimate relation they have with diver-

gen
es. At present, perturbative quantum �eld theory is the most su

essful

theoreti
al a
hievement of elementary parti
le physi
s. Some of its aspe
ts

are so deep that most physi
ists need years and years to 
apture their true

meanings. In some sense, the 
on
eptual gap between quantum �eld the-

ory and quantum me
hani
s 
an be 
ompared to the one between quantum

me
hani
s and 
lassi
al me
hani
s. Several physi
ists have been puzzled by

the indetermina
y prin
iple, and have never a

epted that it 
ould be part

of the ultimate des
ription of nature. Nowadays, some physi
ists still view

divergen
es as �pathologies� and think that �renormalization is a way to hide

what we do not understand under the 
arpet�. More probably, they do not

understand what they are talking about.
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5

Removing divergen
es is just a more sophisti
ated way to de�ne improper

integrals. Following Riemann, we 
an insert a 
uto�, 
al
ulate an integral for

�nite values of the 
uto�, and remove the 
uto� at the end. If the pro
edure

works, the integral is 
alled 
onvergent. If the pro
edure does not work,

the integral is 
alled divergent. Di�erent pres
riptions may lead to di�erent

results. For example, it is well known that the Riemann and the Lebesgue

approa
hes are not equivalent.

Quantum �eld theory requires just one step more. There, we do not

have one integral at a time, but a whole theory, whi
h is a huge 
olle
tion of

integrals, related to one another. We insert a 
uto�, and make 
al
ulations for

�nite values of the 
uto�. However, before removing it, we have the freedom

to make a variety operations that normally do not 
hange the physi
s. If

the pro
edure is su

essful, the theory is a
tually 
onvergent, otherwise it

is divergent. In the end, we dis
over that the operations we make a�e
t

some physi
al predi
tions in 
ru
ial ways with respe
t to what we naïvely

expe
ted at the beginning. However, there is no sour
e of embarrassment

in that, be
ause the Riemann and the Lebesgue approa
hes may also give

results that di�er from what one naïvely expe
ts.

Ultimately, renormalization is one of the 
on
epts we understand better,

at present, in high-energy theoreti
al physi
s. We bet that all the future

developments of high-energy physi
s will emerge more or less dire
tly from

it. At the same time, there is no doubt that quantum �eld theory is still

formulated in a rather primitive way. A 
omplete reformulation is desirable.

One purpose of this book is to 
olle
t the present knowledge about renor-

malization and stimulate people to start from that point and make an e�ort

to upgrade the formulation of quantum �eld theory as mu
h as it takes to

a
hieve substantial progress and trigger a renaissan
e of the topi
.

We are aware that in the past de
ades several approa
hes alternative

to quantum �eld theory have been proposed, but we remain skepti
al about

their 
laimed virtues. Although they are often presented as �beyond quantum

�eld theory�, we do not see any justi�
ation to the arti�
ial enthusiasm that

has surrounded them for too long. For example, there is little doubt that,


on
eptually speaking, string theory is a huge step ba
kwards with respe
t

to quantum �eld theory. We 
an only wish good lu
k to those who still do

not see that all the alternatives to quantum �eld theory are doomed to sink

into anonymity.

14B1 Renorm



6 PREFACE

The book 
ontains the basi
 notions of renormalization. The main goals

are to 
onstru
t perturbative quantum �eld theory, study the 
onsequen
es

of renormalization, and show that the perturbative formulation of a wide


lass of quantum �eld theories, whi
h in
ludes the standard model 
oupled

to quantum gravity, is 
onsistent to all orders. Most issues are treated using

modern te
hniques, privileging the most e
onomi
al and powerful tools. On

the 
ontrary, not mu
h e�ort is devoted to explain how su
h a su

essful

theoreti
al framework has emerged histori
ally. Some aspe
ts of quantum

�eld theory are very involved, and those who study the matter for the �rst

time 
an greatly bene�t from the rational, non histori
al approa
h of this

book.

Although self-
onsistent, this book is not meant to repla
e the existing

books on quantum �eld theory. Sin
e its main fo
us is renormalization,

several basi
 notions of quantum �eld theory are just taken for granted.

Quantum �eld theory is formulated using the fun
tional integral and the

dimensional regularization te
hnique. Algebrai
 aspe
ts are 
overed to the

extent that is ne
essary to treat renormalization. In parti
ular, issues su
h

as the topologi
al properties of anomalies, the geometri
 aspe
ts of gauge

�elds, and so on, are not dis
ussed. A number of exer
ises, with solutions,

are distributed along the book to help the layman familiarize with the most

important tools of renormalization.
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Chapter 1

Fun
tional integral

The fun
tional integral is an integral over a spa
e of fun
tions. It is one of

the basi
 tools that 
an be used to formulate the perturbative expansion of

quantum �eld theory. It also provides an alternative formulation of quantum

me
hani
s, whi
h is equivalent to the S
hrödinger and the Heisenberg ones.

The fun
tional integral is de�ned as a limit of an ordinary multiple inte-

gral, when the number of integrated variables tends to in�nity. Imagine that

spa
etime is dis
retized, with elementary 
ubi
 
ells of size a, and put into a

box of �nite size L = Na. The dis
retized pattern is 
alled �latti
e� and the

distan
e a between two verti
es of the latti
e is 
alled �latti
e spa
e�. For

the moment, we work at �nite values of a and N , but at a se
ond stage we

take the limits a → 0 and N → ∞. At �nite a and N , the set of spa
etime

points xi is �nite and the dis
retized version of a fun
tion f(x) is a �nite set

of values fi = f(xi), with i = 1, 2, . . . N . The fi are the variables over whi
h

we integrate.

Consider the �nite-dimensional ordinary integral

c(a,N)

∫ N∏

i=1

dfi Ĝ(fi), (1.1)

where c(a,N) is a normalization fa
tor, whi
h 
an depend on a and N , and

Ĝ(fi) is the dis
retized version of a generi
 fun
tional G(f). When a tends

to zero and N tends to in�nity, the number of integrated variables tends to

in�nity. Assume that there exists a normalization fa
tor c(a,N) su
h that

the limits a→ 0, N →∞ exist. Then, the fun
tional integral over the spa
e

714B1 Renorm



8 CHAPTER 1. FUNCTIONAL INTEGRAL

of fun
tions f(x) is de�ned as

∫
[df ] G(f) = lim

a→0
N→∞

c(a,N)

∫ N∏

i=1

dfi Ĝ(fi).

The simplest integrals we need are Gaussian. The basi
 Gaussian multiple

integral reads

∫ +∞

−∞

N∏

i=1

dxi exp


−1

2

N∑

i,j=1

xiMijxj


 =

(2π)N/2√
detM

, (1.2)

where M is a positive-de�nite symmetri
 matrix. Formula (1.2) 
an be

proved by diagonalizing M with an orthogonal matrix N . Write M =

NDN t
, where D = diag(m1, · · · ,mn) and mi are the eigenvalues of M .

Perform the 
hange of variables x = N y and re
all that the integration mea-

sure is invariant, sin
e detN = 1. Then, the integral be
omes the produ
t

of the one-dimensional Gaussian integrals

∫ +∞

−∞
dyi exp

(
−1

2
miy

2
i

)
=

√
2π

mi
,

when
e (1.2) follows. We also have the formula

Z(a) =

∫ +∞

−∞

N∏

i=1

dxi exp


−1

2

N∑

i,j=1

xiMijxj +

N∑

i=1

xiai




=
(2π)N/2√
detM

exp


1

2

N∑

i,j=1

aiM
−1
ij aj


 , (1.3)

whi
h 
an be easily proved from (1.2) by means of the translation x = y +

M−1a.

We 
an de�ne 
orrelation fun
tions

〈xi1 · · · xin〉=
1

Z(0)

∫ +∞

−∞

N∏

i=1

dxi xi1 · · · xin exp


−1

2

N∑

i,j=1

xiMijxj




=
1

Z(a)

∂nZ(a)

∂ai1 · · · ∂ain

∣∣∣∣
a=0

. (1.4)
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For example, we �nd

〈xjxk〉=
1

Z(a)

∂2Z(a)

∂aj∂ak

∣∣∣∣
a=0

=M−1
jk ,

〈xjxkxmxn〉=M−1
jk M

−1
mn +M−1

jmM
−1
kn +M−1

jn M
−1
km. (1.5)

Every 
orrelation fun
tion that 
ontains an odd number of insertion van-

ishes: 〈xi1 · · · xi2n+1〉 = 0 ∀n. Instead, the 
orrelation fun
tions that 
ontain

even numbers of insertions are determined by a simple re
ursion relation,

whi
h reads

〈xi1 · · · xi2n〉 =
2n∑

k=2

M−1
i1ik
〈xi2 · · · x̂ik · · · xi2n〉. (1.6)

where the hat denotes a missing insertion. This formula is proved by noting

that

〈xi1 · · · xi2n〉=
1

n!

∂2n

∂ai1 · · · ∂ai2n

(
1

2
atM−1a

)n

=
1

2n−1(n− 1)!

∂2n−1

∂ai2 · · · ∂ai2n

[(
M−1a

)
i1

(
atM−1a

)n−1
]

=
1

2n−1(n− 1)!

2n∑

k=2

M−1
i1ik

∂2(n−1)

∂ai2 · · · ∂̂aik · · · ∂ai2n

(
atM−1a

)n−1

=

2n∑

k=2

M−1
i1ik
〈xi2 · · · x̂ik · · · xi2n〉.

In the third line the hat on ∂aik denotes a missing derivative. The re
urren
e

relation (1.6) gives

〈xi1 · · · xi2n〉 =
∑

P

M−1
P (i1)P (i2)

· · ·M−1
P (i2n−1)P (i2n)

, (1.7)

where the sum is over the inequivalent permutations P of {i1, · · · i2n}. By

this we mean that identi
al 
ontributions are 
ounted only on
e.

Our �rst goal is to de�ne the N → ∞ limits of the multiple integrals

just met, and others of similar types, and use them to formulate quantum

me
hani
s and perturbative quantum �eld theory. We begin with quantum

me
hani
s.
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10 CHAPTER 1. FUNCTIONAL INTEGRAL

1.1 Path integral

Consider a non relativisti
 parti
le of massm, potential V (q) and Lagrangian

L(q, q̇) = m

2
q̇2 − V (q). (1.8)

Suppose that the parti
le is observed in the lo
ations q
in

at time t
in

and

q
f

at time t
f

and that it is not observed in the time interval t
in

< t < t
f

.

Quantum me
hani
s tea
hes us that it is meaningless to tell �where� the

parti
le is while it is not observed, or even assume that it is somewhere.

More or less equivalently, we 
an imagine that it is anywhere, or everywhere.

In parti
ular, it does not make sense to say that the parti
le moves from q
in

to q
f

along a parti
ular traje
tory q(t), su
h as the 
lassi
al traje
tory that

extremizes the a
tion

S(q
f

, t
f

; q
in

, t
in

) =

∫ t
f

t
in

dt L(q(t), q̇(t)). (1.9)

A possible way out is to imagine that it moves from q
in

to q
f

along all possible

paths

q(t), t
in

6 t 6 t
f

, q(t
in

) = q
in

, q(t
f

) = q
f

,

at the same time. Then, ea
h path must 
ontribute to physi
al quantities,

with a suitable (
omplex) weight. Clearly, if this idea is right we have to

�integrate� over the paths.

In some sense, we repla
e the prin
iple of minimum a
tion with a new

prin
iple, whi
h is able to a

ount for the quantum e�e
ts. The semi
lassi
al

approximation suggests that ea
h path should be weighted by the fa
tor

exp

(
i

~
S(q

f

, t
f

; q
in

, t
in

)

)
. (1.10)

Indeed, in the limit ~ → 0 the strongly os
illating exponent singles out the

traje
tory of minimum a
tion as the only one that survives.

These 
onsiderations, although inspiring, are still vague. We do not know

how to de�ne the integral over the paths. As mentioned before, one possibility

is to dis
retize the problem and de�ne the path integral as the limit of an

ordinary multiple integral, when the number of integrated variables tends to

in�nity. Thus, let us dis
retize the time interval t
in

6 t 6 t
f

by dividing it in

N subintervals

ti−1 6 t 6 ti, ti = ti−1 + ε, ε =
t
f

− t
in

N
,

14B1 Renorm



1.1 Path integral 11

i = 1, ..., N , with t0 = t
in

and tN = t
f

. The path q(t) is then repla
ed by the

set of positions qi = q(ti) at times ti.

The traje
tory of the i-th subinterval 
an be taken to be the one that

extremizes the a
tion. However, in many 
ases simpler subtraje
tories are

equally good approximations. For example, we 
an take the straight lines

q̄(t) =
qi − qi−1

ε
(t− ti−1) + qi−1. (1.11)

This 
hoi
e produ
es a pi
ture like

q

t

qin

qf

tftin
ε

In the limit ε → 0 the approximate path 
an tend to any fun
tion q(t),

in
luding the ones that are not di�erentiable and not 
ontinuous. From the

physi
al point of view there is no reason why the unobservable traje
tory

q(t) should be 
ontinuous and/or di�erentiable, so the path integral should

sum over all fun
tions q(t).

In the i-th subinterval we have the 
onstant velo
ity

qi − qi−1

ε
,

so the a
tion (1.9) 
an be approximated by

N∑

i=1

S̄(qi, ti; qi−1, ti−1) =
N∑

i=1

{
m(qi − qi−1)

2

2ε
− εV (qi)

}
+O(ε3/2), (1.12)

where the bar over S is there to remember that we have 
hosen the spe
ial

subtraje
tories (1.11). Below we prove that |qi − qi−1| ∼ O(ε1/2) and that

14B1 Renorm



12 CHAPTER 1. FUNCTIONAL INTEGRAL

the 
orre
tions O(ε3/2) appearing in formula (1.12) 
an be negle
ted in the

limit ε→ 0.

Inspired by (1.10), we weigh ea
h in�nitesimal portion of the traje
tory

by the fa
tor

1

A
exp

(
i

~
S̄(qi, ti; qi−1, ti−1)

)
,

where A is some normalization 
onstant, to be determined. This means that

during a time subinterval the wave fun
tion ψ(q, t) evolves into

ψ(q, t+ ε) =
1

A

∫ +∞

−∞
dq′ exp

(
i

~
S̄(q, t+ ε; q′, t)

)
ψ(q′, t). (1.13)

Consequently, during the �nite interval t
in

6 t 6 t
f

the evolution of the wave

fun
tion ψ(q, t) is given by the formula

ψ(q, t) =

∫ +∞

−∞
dq′K(q, t; q′, t′)ψ(q′, t′), (1.14)

where K(q, t; q′, t′), 
alled kernel of the time evolution, has the path-integral

expression

K(q, t; q′, t′) = lim
N→∞

A−N

∫ N−1∏

i=1

dqi e
i
~

∑N
i=1 S̄(qi,ti;qi−1,ti−1)

(1.15)

≡
∫

[dq] exp

(
i

~
S(q)

)
,

and now t0 = t′, tN = t, q0 = q′, qN = q, ε = (t− t′)/N . The last line is the


ommon short-hand notation used to denote the fun
tional integral.

Observe that, in parti
ular, we must have

K(q, t; q′, t) = δ(q − q′). (1.16)

S
hrödinger equation

Now we prove that the time evolution en
oded in the path-integral formulas

(1.13) and (1.15) is equivalent to the one predi
ted by quantum me
hani
s.

In parti
ular, we show that the wave fun
tion (1.14), with the kernel de�ned

by (1.15), satis�es the S
hrödinger equation. We dis
retize time as explained

above, and 
ompare ψ(q, t+ ε) and ψ(q′, t) by means of (1.13). We have

ψ(q, t+ ε) =
1

A

∫ +∞

−∞
d∆ e

im∆2

2~ε
− iε

~
V (q)+O(ε3/2)ψ(q −∆, t), (1.17)
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1.1 Path integral 13

after a translation q′ = q −∆. Re
all that

lim
ε→0

√
m

2πi~ε
e

im∆2

2~ε = δ(∆).

This formula 
an be proved assuming that the mass has a small positive

imaginary part. Thus, the two sides of (1.17) mat
h in the limit ε→ 0 if we

take

1

A
=

√
m

2πi~ε
.

Observe that this 
hoi
e also ensures that (1.16) holds. We are still assuming

that |∆| ∼ ε1/2, whi
h allows us to negle
t the∆ dependen
e 
ontained inside

O(ε3/2). This assumption is justi�ed by the 
al
ulations that follow.

Expanding the integrand of (1.17) in powers of ∆, we obtain

√
m

2πi~ε

∫ +∞

−∞
d∆ e

im∆2

2~ε

(
1−∆

∂

∂q
+

∆2

2

∂2

∂q2
+O(∆3)

− iε
~
V (q) +O(ε3/2)

)
ψ(q, t). (1.18)

De�ning the integrals

In =

∫ +∞

−∞
d∆ ∆ne

im∆2

2~ε ,

we �nd I2k+1 = 0 and

I2k = −2iε~
∂I2k−2

∂m
, I0 =

√
2πi~ε

m
,

whi
h gives

I2k = Γ

(
k +

1

2

)(
2i~ε

m

)k+ 1
2

.

We �nd I2k/I0 ∼ εk, whi
h also proves |∆| ∼ ε1/2, as 
laimed before. Finally,

rearranging (1.17), dividing by ε and taking the limit ε → 0, we �nd the

S
hrödinger equation

i~
∂ψ

∂t
= − ~2

2m

∂2ψ

∂q2
+ V ψ.

The out
ome is independent of the approximation we have used to expand

S̄(qi, ti; qi−1, ti−1). For example, we 
ould have written V (qi−1) in (1.12),
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14 CHAPTER 1. FUNCTIONAL INTEGRAL

instead of V (qi), or (V (qi) + V (qi−1))/2. The di�eren
e is always made of

terms that are O(ε3/2) in the integrand of (1.18), whi
h are negligible in the

limit ε→ 0.

Thus, we have proved that the path integral provides a formulation of

quantum me
hani
s that is equivalent to the S
hrödinger and the Heisenberg

ones.

Free parti
le

We expli
itly 
al
ulate the kernel in the 
ase of the free parti
le. There,

S̄(qi, ti; qi−1, ti−1) =
m(qi − qi−1)

2

2ε
,

so we have

K
free

(q, t; q′, t′) = lim
N→∞

( m

2πi~ε

)N/2 ∫ N−1∏

i=1

dqi e
im
2~ε

∑N
i=1(qi−qi−1)

2
.

Changing variables to q̃i = qi − q, we 
an rewrite the integral as

e
im
2~ε

(q−q′)2
∫ N−1∏

i=1

dq̃i e
im
2~ε(q̃

tM̃q̃+2q̃1(q−q′)),

where

M̃ =




2 −1 0 0 · · ·
−1 2 −1 · · · 0

0 −1 · · · −1 0

0 · · · −1 2 −1
· · · 0 0 −1 2




(1.19)

is an (N − 1) × (N − 1) matrix. Now the integral is of the Gaussian form

(1.3) with

M = − im
~ε
M̃, a =

im(q − q′)
~ε

(0, . . . 0, 1)

and N → N − 1. Again, we assume that the mass has a small positive

imaginary part. We have

det M̃ = N, (M̃−1)N−1,N−1 =
N − 1

N
. (1.20)
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1.2 Free �eld theory 15

The �rst formula 
an be proved re
ursively. Indeed, denoting the I×I matrix

M̃ of (1.19) with M̃I , we have

det M̃N−1 = 2det M̃N−2 − det M̃N−3, det M̃1 = 2 det M̃2 = 3.

The se
ond formula of (1.20) gives the last entry of the inverse matrix M̃−1
N−1,

and is just the determinant of the asso
iated minor (whi
h 
oin
ides with

M̃N−2), divided by the determinant of M̃N−1.

Finally, using formula (1.3), with the appropriate substitutions, and re-


alling that εN = t− t′, we �nd

K
free

(q, t; q′, t′) =

√
m

2πi~(t− t′) e
im(q−q′)2

2~(t−t′) ,

whi
h is the known result.

1.2 Free �eld theory

Given a 
lassi
al �eld theory, des
ribed by the a
tion S(ϕ), we want to de�ne

the fun
tional integral

∫
[dϕ] exp

(
i

~
S(ϕ)

)
. (1.21)

At present, we 
an do this only perturbatively, by expanding around the

free-�eld limit.

From now on, we work in Eu
lidean spa
e, where some 
ompli
ations are

avoided. For simpli
ity, we also set ~ = 1.

Free �eld theories are des
ribed by Gaussian fun
tional integrals. We

start from the s
alar �eld in four dimensions. Its a
tion in Eu
lidean spa
e

is

S(ϕ) =
1

2

∫
d4x

(
(∂µϕ)

2 +m2ϕ2
)
. (1.22)

We want to de�ne the generating fun
tional

Z(J) ≡ eW (J) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
ϕJ

)
(1.23)

where J are external sour
es,

∫
ϕJ ≡

∫
d4xϕ(x)J(x) andW is the logarithm

of Z. First, we dis
retize the Eu
lidean spa
e. Ea
h 
oordinate xµ is repla
ed

14B1 Renorm



16 CHAPTER 1. FUNCTIONAL INTEGRAL

by an index iµ, and the �eld ϕ(x) be
omes ϕ{iµ}. The dis
retized form of

the a
tion reads

S
dis
r

(ϕ{iµ}) =
1

2

∑

{iµ},{jν}

ϕ{iµ}M{iµ}{jν}ϕ{jν}, (1.24)

for some matrix M{iµ}{jν} that we do not need to spe
ify here. It su�
es to

re
all that M is the dis
retized version of the kineti
 operator −�+m2
:

M{iµ}{jν} = (−�+m2)
∣∣
dis
r

. (1.25)

The dis
retized version of the fun
tional integral reads

Z(J{iµ}) =

∫ ∏

{iµ}

[dϕ{iµ}] exp


−S

dis
r

(ϕ{iµ}) +
∑

{iµ}

ϕ{iµ}J{iµ}


 .

Using formula (1.3), we �nd

W (J{iµ}) = lnZ(J{iµ}) =
1

2

∑

{iµ},{jν}

J{iµ}M
−1
{iµ}{jν}

J{jν} −
1

2
ln detM + C,

(1.26)

where C is a 
onstant that 
olle
ts also the normalization fa
tor c(a, L) of

formula (1.1).

To de�ne the 
ontinuum limit, we basi
ally need to de�ne the inverse of

M and its determinant. However, note that the determinant, as well as the


onstant C, appear only in Z and W , but not in the 
orrelation fun
tions

(1.4). Therefore, we a
tually just need to de�ne M−1
. This is not di�
ult,

be
ause the inverse of −�+m2
is by de�nition the Green fun
tion GB(x, y),

that is to say the solution of the equation

(−�x +m2)GB(x, y) = δ(4)(x− y). (1.27)

Normalizing the fun
tional integral 
onveniently and using (1.3) and

(1.26), we 
an write

Z(J) = eW (J), W (J) =
1

2

∫
d4xJ(x)GB(x, y)J(y)d

4y. (1.28)

We 
an de�ne the J-dependent 
orrelation fun
tions

〈ϕ(x1) · · ·ϕ(xn)〉J =
∫
[dϕ]ϕ(x1) · · ·ϕ(xn) exp

(
−S(ϕ) +

∫
ϕJ
)

∫
[dϕ] exp

(
−S(ϕ) +

∫
ϕJ
)

=
1

Z(J)

δnZ(J)

δJ(x1) · · · δJ(xn)
, (1.29)
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1.2 Free �eld theory 17

where the subs
ript J means that sour
es are non-vanishing. In parti
ular,

formulas (1.5) give

〈ϕ(x)ϕ(y)〉 =
1

Z(J)

∂2Z(J)

∂J(x)∂J(y)

∣∣∣∣
J=0

= GB(x, y), (1.30)

〈ϕ(x)ϕ(y)ϕ(z)ϕ(w)〉 = GB(x, y)GB(z, w) +GB(x, z)GB(y,w)

+GB(x,w)GB(y, z), (1.31)

and so on. We see that, in pra
ti
e, the free theory 
ontains just one pie
e

of information, whi
h is the Green fun
tion.

Formulas (1.6) and (1.7) 
an be generalized following the same steps. We

have

〈ϕ(x1) · · ·ϕ(x2n)〉=
2n∑

k=2

GB(x1, xk)〈ϕ(x2) · · · ϕ̂(xk) · · ·ϕ(x2n)〉 (1.32)

=
∑

P

GB(xP (1), xP (2)) · · ·GB(xP (2n−1), xP (2n)), (1.33)

while the 
orrelation fun
tions that 
ontain an odd number of insertions

vanish.

Equation (1.33) is known as Wi
k's theorem. It says that i) the external

points x1 · · · x2n must be 
onne
ted pairwise in all inequivalent ways, ii) ea
h


onne
tion is a Green fun
tion and iii) ea
h inequivalent set of 
onne
tions

is multiplied by the 
oe�
ient 1.

It is natural express Wi
k's theorem graphi
ally. A Green fun
tion is

drawn as a double line 
onne
ting a pair of points. Then formula (1.32)

reads

= Σ
2n

k=2

...

x1

x2 x2n

x1

xk

...
x2 ...

x̂k

x2n

(1.34)

where the legs atta
hed to the dis
s denote the insertions of the 
orrelation

fun
tions.
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18 CHAPTER 1. FUNCTIONAL INTEGRAL

The Eu
lidean Green fun
tions 
an be 
omputed by swit
hing to momen-

tum spa
e. We de�ne the Fourier transform as

ϕ(x) =

∫
d4p

(2π)4
eip·xϕ̃(p). (1.35)

Then we �nd

GB(x, y) = 〈ϕ(x)ϕ(y)〉 =
∫

d4p

(2π)4
eip·(x−y)

p2 +m2
=

m

4π2|x− y|K1(m|x− y|),
(1.36)

where K1 denotes the modi�ed Bessel fun
tion of the se
ond kind.

This result is proved as follows. We must assume that x and y do not


oin
ide, and use a tri
k to dump the os
illating behavior at in�nity. Let us

start from the massless limit. To 
al
ulate the integral at m = 0, we multiply

the integrand by e−δ|p|, where δ > 0, and take the limit δ → 0 at the end.

Swit
hing to spheri
al 
oordinates, we �rst integrate over |p| and later over

the angles. The basi
 steps are

GB(x, 0)|m=0 = lim
δ→0+

∫
d4p

(2π)4
eip·x−δ|p|

p2
= lim

δ→0+

1

4π3

∫ π

0

dθ sin2 θ

(δ − i|x| cos θ)2

= lim
δ→0+

1

4π2x2

(
1− δ√

δ2 + x2

)
=

1

4π2x2
. (1.37)

To 
al
ulate the integral at m 6= 0, we make it 
onvergent in a di�erent

way, at x 6= 0, that is to say by di�erentiating with respe
t to m. Then,

after swit
hing to spheri
al 
oordinates, we �rst integrate over the angles,

and later over |p|. We �nd

∂

∂m
GB(x, 0) =−

∫
d4p

(2π)4
2meip·x

(p2 +m2)2

=− m

2π2|x|

∫ ∞

0

p2J1(p|x|)dp
(p2 +m2)2

= − m

4π2
K0(m|x|),

where J1(x) is the Bessel fun
tion of the �rst kind. Integrating over m and

requiring (1.37) at m = 0, we obtain (1.36).

The 
orrelations fun
tions 
an be mathemati
ally interpreted as distri-

butions. Then, the sour
es J should be viewed as test fun
tions. Indeed, the

Green fun
tion GB(x, y), whi
h appears to be singular at x = y, is a
tually
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1.3 Perturbative expansion 19

regular as a distribution. To see this, it is su�
ient to observe that when

GB(x, y) a
ts on a test fun
tion J(y), the behavior of the integral

∫

|x−y|∼0
d4yGB(x, y)J(y) ∼

1

4π2

∫
d4y

J(y)

(x− y)2 ,

around x ∼ y shows no singularity. We have used the result (1.37), sin
e the

behavior of (1.36) at x ∼ y 
oin
ides with the behavior at m→∞.

1.3 Perturbative expansion

Intera
ting theories are de�ned by expanding perturbatively around their

free �eld limits. Although this sounds like a straightforward pro
ess, the

perturbative expansion of quantum �eld theory a
tually underlies a huge


on
eptual advan
ement with respe
t to the notions we are a

ustomed to.

To 
larify this point, it is worth to pay attention to what we do when we

normally approximate. We have, say, di�
ult di�erential equations, whi
h

we want to solve. We know some 
lasses of exa
t solutions, whi
h typi
ally

do not 
over the 
ases of physi
al interest. We realize that some physi
al

situations are only slightly di�erent from those des
ribed by the exa
t so-

lutions, so we work out other solutions by expanding perturbatively around

the exa
t ones. What is important for our present dis
ussion, is that we are

talking about a well de�ned problem, des
ribed by di�
ult, but well de�ned,

equations. Then, we approximate. We approximate something that does

exist, something that exists before the approximation.

In quantum �eld theory, instead, we must really start from nothing, apart

from the free �eld limit. There are no equations, and no theory, before we

make approximations. Thus, when we say that we perturbatively expand

around the free �eld theory, we are a
tually lying: we are not expanding at all.

The truth is that we are perturbatively building the intera
tive theory, pie
e

by pie
e, out of the free �eld one. The enterprise we are going to undertake

is a 
reative one, not just a dedu
tive pro
ess. Therefore, if something goes

wrong along the way, it will be no real surprise. To solve the problems that

emerge, we have to be more and more 
reative. In parti
ular, we have to build

the mathemati
s that we need by ourselves. Moreover, every time we �nd a

di�
ulty, and guess a possible solution, we must start over, implement the

proposed solution from the very beginning, and rederive everything up to the
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20 CHAPTER 1. FUNCTIONAL INTEGRAL

point where we found the problem, 
he
k that the problem does disappear

as expe
ted and ensure that no 
ollateral di�
ulties emerge.

Another 
ru
ial point is that the perturbative expansion should be 
on-

sidered as a formal power series. In mathemati
s, a formal power series is a

power series that is just viewed as a list of addends, disregarding 
ompletely

whether the sum 
onverges or not. Perturbative quantum �eld theory in-

vestigates the 
onsisten
y of the perturbative expansion as a formal power

series. It studies the properties of the addends (e.g. their 
onsisten
y with

gauge invarian
e, unitarity, 
ausality, et
.) and the relations among them.

Proving that, for example, the Standard Model is 
onsistent to all orders,

as a perturbative quantum �eld theory, whi
h is one of the main obje
tives

of this book, is already a nontrivial task. The great advantage of working

with formal power series is that it allows us to freely ex
hange the sum with

derivative operations, as well as integral operations. Only at the very end we

will inquire whether the sum 
onverges or not. Indeed, it is meaningless to

demand that a power series be 
onvergent before having shown that it obeys

all the desirable physi
al and mathemati
al requirements as a formal powers

series. The renormalization group and the anomalies of quantum �eld theory

provide well-known 
ases where the power series is in the end 
onvergent.

Having to build some of the mathemati
s anew is not surprising either.

If we take for granted that the mathemati
s we already have is good enough

to formulate the physi
al laws of so far unexplored resear
h domains, we

may be making a too restri
tive assumption. More reasonably, our mathe-

mati
s is a produ
t of our intera
tion with the environment in whi
h we are

pla
ed as human beings. When we explore energy domains that are very far

from those we are a

ustomed to, the mathemati
s we have previously de-

veloped may be unsatisfa
tory. In the study of 
osmologi
 and astrophysi
al

phenomena, for example, it has so far proved to be exhaustive. However,

in some 
ases, su
h as in the study of mi
ros
opi
 phenomena, it has al-

ready shown its limitations. In the 
ase of quantum me
hani
s, we 
ould

�ll the gap by means of a �
orresponden
e prin
iple�. The idea was that,

although there was a huge di�eren
e between the 
lassi
al and the quantum

phenomena, at least there was a sort of 
orresponden
e between the two.

Clearly, we 
annot expe
t to go on forever relying on lu
ky 
orresponden
es,

to the extent that quantum �eld theory for
es us to abandon that idea. For

example, the �
lassi
al� Lagrangian of quantum 
hromodynami
s, whi
h is
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the theory that des
ribes what the strong intera
tions be
ome at high en-

ergies, has no 
orresponden
e with 
lassi
al phenomena. Exploring smaller

and smaller distan
es, the problem be
omes harder and harder, and we may

be for
ed to give up every 
orresponden
e with what we know, and even

renoun
e 
ommon sense and intuition, to develop a 
ompletely new mathe-

mati
s by plunging into pure abstra
tion and te
hni
alism. Quantum �eld

theory, renormalization, with all the problems we �nd along the way and the

partial solutions we work out, give us hints of what the new mathemati
s

will have to be.

That said, the only thing we 
an do in this moment is pretend there

is nothing to worry about, and make a step forward along the pro
ess of

�
reative approximation�.

Consider a theory of intera
ting s
alar �elds with a
tion S(ϕ) = S0(ϕ)+

SI(ϕ), where S0(ϕ) is (1.22). For 
on
reteness, we 
an take the ϕ4
theory in

four dimensions, whi
h has

S(ϕ) =

∫
d4x

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

λ

4!
ϕ4

)
. (1.38)

De�ning Z(J) as in (1.23) we 
an write

Z(J) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ

)

=

∫
[dϕ] exp (−SI(ϕ)) exp

(
−S0(ϕ) +

∫
Jϕ

)

=

∞∑

n=0

(−1)n
n!

∫
[dϕ] SnI (ϕ) exp

(
−S0(ϕ) +

∫
Jϕ

)

=Z0(J)
∞∑

n=0

(−1)n
n!
〈SnI (ϕ)〉0,J , (1.39)

where Z0(J) is given by (1.28). We use the subs
ript 0 to denotes quanti-

ties at λ = 0. In parti
ular, 〈· · · 〉0,J are free-�eld 
orrelation fun
tions at

nonvanishing sour
es. We have

〈SnI (ϕ)〉0,J =

(
λ

4!

)n ∫ n∏

i=1

d4xi〈ϕ4(x1) · · ·ϕ4(xn)〉0,J .

Now, by (1.29) every ϕ-insertion 
an be expressed as a fun
tional derivative
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with respe
t to J . Therefore,

〈SnI (ϕ)〉0,J =

(
λ

4!

)n 1

Z0(J)

∫ n∏

i=1

d4xi
δ4nZ0(J)

δJ4(x1) · · · δJ4(xn)
.

Inserting this formula into (1.39), we get

Z(J) =

∞∑

n=0

1

n!

(
− λ
4!

)n n∏

i=1

(∫
d4xi

δ4

δJ4(xi)

)
Z0(J)

= exp

(
− λ
4!

∫
d4x

δ4

δJ4(x)

)
Z0(J).

More generally, we have

Z(J) = eW (J) = exp

(
−SI

(
δ

δJ

))
Z0(J). (1.40)

The s
alar �eld inside SI is formally repla
ed by the fun
tional derivative

δ/δJ , whi
h a
ts on the free-�eld generating fun
tional Z0(J).

Formula (1.40) expresses the generating fun
tional of the intera
ting the-

ory as an in�nite sum of terms, ea
h of whi
h involves just fun
tional deriva-

tives of the generating fun
tional of the free theory (whi
h, as we know,


ontains only the Green fun
tion) and integrals over 
oordinates. Some

fun
tional derivatives are taken at the same point, whi
h is 
alled �vertex�.

Moreover, the Green fun
tions 
onne
t pairs of points, as we see from the

Wi
k theorem (1.34). Formula (1.40) 
an be e�
iently expressed diagram-

mati
ally. Diagrams are made of verti
es and lines, and are drawn following

a simple set of rules, whi
h we now derive.

Feynman rules

The 
orrelation fun
tions 
an be de�ned from the expansion of the generating

fun
tional Z(J) in powers of J :

Z(J) = Z(0)

∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉J(x1) · · · J(xn).

For some pra
ti
al purposes, it is also useful to de�ne 
orrelation fun
tions

that have a di�erent normalization. At J 6= 0 we de�ne

〈ϕ(x1) · · ·ϕ(xn)〉′J =
1

Z0(0)

δnZ(J)

δJ(x1) · · · δJ(xn)
, (1.41)
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while at J = 0 we write them as 〈ϕ(x1) · · ·ϕ(xn)〉′. In parti
ular, we have

〈ϕ(x1) · · ·ϕ(xn)〉 =
Z0(0)

Z(0)
〈ϕ(x1) · · ·ϕ(xn)〉′ =

〈ϕ(x1) · · ·ϕ(xn)〉′
〈1〉′ . (1.42)

Sin
e we have normalized Z0(0) to 1, we 
ould omit this fa
tor. However,

the formulas are more expli
it if we keep it, whi
h also emphasizes that Z(0)

is not equal to one.

Observe that Z(J) 
an be viewed as the generating fun
tional Z ′(J) of

the 
orrelation fun
tions (1.41):

Z ′(J) = Z0(0)
∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉′J(x1) · · · J(xn) = Z(J).

(1.43)

Consider a generi
 
orrelation fun
tion (1.41) in the ϕ4
theory. Writing

〈ϕ(x1) · · ·ϕ(xn)〉′ =
1

Z0(0)

∫
[dϕ]ϕ(x1) · · ·ϕ(xn)e−S0(ϕ)−

λ
4!

∫
d4xϕ4(x)

=

∞∑

k=0

(−λ)k
(4!)kk!

∫ 


k∏

j=1

d4yj


 〈ϕ(x1) · · ·ϕ(xn)

k∏

j=1

ϕ4(yj)〉0, (1.44)

we obtain a sum of 
ontributions that are due to free-�eld 
orrelation fun
-

tions with n + 4k insertions. We 
all the points x1, · · · , xn �external� and

the points y1, · · · , yk �internal�. Ea
h internal point 
arries four ϕ insertions.

We refer to it as a vertex with four legs.

The free-�eld 
orrelation fun
tions of (1.44) 
an be worked out by means

of Wi
k's theorem. Let us 
onsider the graphi
al version (1.34) of that

theorem. We see that ea
h point is 
onne
ted on
e to every other point.

Moreover, ea
h 
ontribution is multiplied by the 
oe�
ient one. Thus, the

intera
ting 
orrelation fun
tion (1.44) is expressed as a sum of diagrams that

are 
onstru
ted by applying the following rules:

1) the diagrams have n external points x1, · · · , xn and an arbitrary number

k of internal points y1, · · · , yk; the latter are 
alled verti
es;

2) lines 
onne
t pairs of points; a line is 
alled internal if it 
onne
ts two

internal points, otherwise it is 
alled external;

3) the line that 
onne
ts two points z and w is asso
iated with the Green

fun
tion GB(z, w);

4) four legs are atta
hed to ea
h internal point, one leg to ea
h external point;
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24 CHAPTER 1. FUNCTIONAL INTEGRAL

5) ea
h diagram with k verti
es is multiplied by the fa
tor

1

k!

(−λ
4!

)k
; (1.45)

6) the positions y of the verti
es are integrated with measure d4y.

For example, 
onsider the 
ase n = 2, k = 0, 1. We have

〈ϕ(x1)ϕ(x2)〉′ =GB(x1, x2)−
λ

4!

∫
d4y〈ϕ(x1)ϕ(x2)ϕ4(y)〉0 +O(λ2)

=GB(x1, x2)−
λ

2

∫
d4yGB(x1, y)GB(y, y)GB(y, x2)

−λ
8
GB(x1, x2)

∫
d4yG2

B(y, y) +O(λ2),

whi
h graphi
ally reads

=
x1 x2

−λ
2x2x1 yx1 x2

−λ
8

x2x1

y

(1.46)

plusO(λ2). Di�erent 
ontributions originated by the right-hand side of (1.34)

an give the same diagram, that is to say the same integral. For example,

the se
ond diagram on the right-hand side of (1.46) appears 12 times, whi
h

is why its 
oe�
ient is in the end 1/2. Instead, the third diagram appears 3

times, so its 
oe�
ient is 1/8.

We 
an 
olle
t the arrangements that give the same diagram into a single


ontribution, provided that we multiply it by a suitable 
ombinatorial fa
tor.

Then, the perturbative expansion is organized as a sum over inequivalent

diagrams G, whi
h are multiplied by (1.45) and an extra fa
tor sG that


ounts how many 
ontributions of Wi
k's theorem give the same G.

It is also 
onvenient to move to momentum spa
e, where some further

simpli�
ations o

ur. For example, 
onsider the last-but-one diagram of

(1.46). We �nd

∫
d4u GB(x, u)GB(u, u)GB(u, y)

=

∫
d4u

∫
d4p

(2π)4
d4k

(2π)4
d4q

(2π)4
eip(x−u)+iq(u−y)

(p2 +m2)(k2 +m2)(q2 +m2)
. (1.47)
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The u-integral 
an be evaluated immediately, and gives (2π)4δ(4)(p − q).

Thus, (1.47) is the Fourier transform of

(2π)4δ(4)(p − q) 1

p2 +m2

(∫
d4k

(2π)4
1

k2 +m2

)
1

q2 +m2
(1.48)

on p and q. This formula illustrates some properties that are a
tually valid

for all graphs. First, we learn that it is mu
h more 
onvenient to work in mo-

mentum spa
e, rather than in 
oordinate spa
e. Indeed, (1.48) looks mu
h

simpler than the left-hand side of (1.47). Se
ond, the theory is invariant

under translations, so the total momentum is 
onserved. As a 
onsequen
e,

ea
h 
orrelation fun
tion is multiplied by a delta fun
tion like the one ap-

pearing in (1.48), whi
h ensures that the momentum that enters the graph

equals the momentum that exits from it, or, equivalently, that the total mo-

mentum that enters the graph vanishes. We do not need to write this delta

fun
tion down every time, and from now on we will simply omit it. Third,

the fa
tors 1/(p2 + m2) and 1/(q2 + m2) are just the Green fun
tions at-

ta
hed to the external legs: they do not enter the surviving integral. Thus,

in momentum spa
e we 
an �amputate� the diagram, whi
h means omit the

Green fun
tions atta
hed to the external legs. Note that the fa
torization

(1.48) does not o

ur in 
oordinate spa
e.

What remains is the �
ore� of our diagram, that is to say its truly non-

trivial part, whi
h is, in the 
ase at hand,

∫
d4k

(2π)4
1

k2 +m2
. (1.49)

Unfortunately, the integral (1.49) is in�nite, as are many integrals that we are

going to work with. However, this kind of problem, whi
h is the main topi


of this book, does not 
on
ern us right now. What is important here is that

we have identi�ed a few tri
ks that 
an help us save a lot of e�ort, by working

in momentum spa
e and 
on
entrating on what o

urs inside the diagram,

sin
e what happens outside is not new. From a 
ertain point onwards, we

will not need to use double lines to denote Green fun
tions anymore, apart

from the situations where it is really ne
essary: it will be understood that

internal lines 
arry Green fun
tions, while external lines do not.

Fo
using on the 
ores of diagrams, we 
an now formulate the Feynman

rules in momentum spa
e, in arbitrary d dimensions, for the 
orrelation fun
-

tions (1.41) of a s
alar �eld theory with arbitrary intera
tions.
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The Fourier transform G̃B(p) of the two-point fun
tion 〈ϕ(x)ϕ(y)〉′ is

alled propagator. We have

〈ϕ(x)ϕ(y)〉′ =
∫

ddp

(2π)d
eip(x−y)G̃B(p).

The propagator is graphi
ally denoted with a line that 
onne
ts two points.

We asso
iate a vertex with ea
h intera
tion term of the Lagrangian. A vertex

is graphi
ally denoted with lines ending at the same point, also 
alled legs.

Ea
h leg is a �eld ϕ. The value of the vertex is equal to minus the 
oe�
ient of

the asso
iated Lagrangian term, summed over the permutations of identi
al

legs. In momentum spa
e, the momentum p of the Fourier transform ϕ̃(p) is


onventionally oriented towards the vertex.

For example, in the ϕ4
theory we have (in arbitrary dimensions)

= 1
p2 +m2

= −λ
p

(1.50)

Consider a 
orrelation fun
tion (1.41) at J = 0 with n = E external legs

and assume that we want to 
al
ulate its O(λk)-
orre
tions. To a
hieve this

goal,

1) assign a momentum p to every external leg, imposing overall momentum


onservation;

2) draw all di�erent diagrams G that have k verti
es and E external legs;

3) assign a momentum q to every internal leg, imposing momentum 
onser-

vation at every vertex.

Next, asso
iate an integral IG with ea
h diagram G as follows:

a) write the propagator asso
iated with every internal leg;

b) multiply by the value of every vertex;

c) multiply by the 
ombinatorial fa
tor cG explained below;

d) integrate over the surviving independent internal momenta q, with the

measures ddq/(2π)d.

The 
ombinatorial fa
tor is given by the formula

cG =
sG∏
i ni! c

ni
i

. (1.51)

Here, ni is the number of verti
es of type i 
ontained in G, and c−1
i is the


ombinatorial fa
tor that multiplies the vertex of type i. For example, ci =
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N !, if the ith vertex has N identi
al legs, su
h as ϕN . Instead, ci = N1!N2!,

if the vertex is ϕN1ϕN2
, and so on. Finally, the numerator sG in the number

of 
ontributions of Wi
k's theorem that lead to the same diagram G.

The safest way to 
ompute sG is by drawing the verti
es of G on a pie
e

of paper, together with E points asso
iated with the external legs. Then,


ount how many ways to 
onne
t the external legs to the legs atta
hed to

the verti
es give the diagram G. The result of this 
ounting is sG. It is

not advisable to avoid the 
ounting and 
ompute sG by means of short
uts

(typi
ally based on the symmetry properties of the diagram, whi
h may be

very di�
ult to spot), although some textbooks suggest to do so.

Normally, sG is a huge number, to the extent that it almost simpli�es

the fa
tors appearing in the denominator of (1.51). This is one reason why

it is 
onvenient to arrange the expansion in terms of diagrams. Nevertheless,

sometimes it 
an be better, for theoreti
al purposes, to forget about diagrams

and write the expansion as a sum over the sets of 
ontributions 
oming from

Wi
k's theorem, ea
h of whi
h has s = 1. So doing, it is mu
h easier to have


ontrol over the 
ombinatorial fa
tors. We will use this kind of expansion in

some proofs later on.

Diagrams 
an also be 
lassi�ed a

ording to the number L of their �loops�.

The pre
ise de�nition of L is the number of independent internal momenta q,

those on whi
h we must integrate. Thus, formula (1.46) 
ontains a one-loop

diagram and a two-loop one. We will see later that the expansion in powers

of λ 
oin
ides with the expansion in the number of loops. Graphi
ally, loops

appear as 
losed internal lines. However, it is not always easy to 
ount them

as su
h.

Basi
ally, the 
ombinatorial fa
tors are due to identi
al legs. This is

the reason why, to simplify some formulas, it is 
ommon to divide ea
h

Lagrangian term by the permutations of its identi
al legs. For example, in

the ϕ4
theory we have multiplied the quadrati
 part of the Lagrangian by 1/2!

and the vertex by 1/4!. With a di�erent normalization, the propagators and

the verti
es get multiplied by extra 
oe�
ients. Apart from that, the rules

to 
onstru
t graphs and the formula for the 
ombinatorial fa
tors remain the

same.

Finally, observe that the fa
tors 1/(
∏
i ni!) in cG are brought by the
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expansion of the exponential in power series, e.g.

exp

(
−λ4

4!

∫
ϕ4 − λ6

6!

∫
ϕ6

)
=

∞∑

n,m=0

(−λ4)n(−λ6)m
n!m!(4!)n(6!)m

(∫
ϕ4

)n(∫
ϕ6

)m
,

and 
orrespond to the permutations of identi
al verti
es.

We illustrate the 
al
ulation of 
ombinatorial fa
tors with a 
ouple of

examples. Consider the one-loop diagram of (1.46). It 
ontains just one

vertex with c = 4!. Moreover, we 
an easily verify that s = 4 ·3, sin
e the left
external leg 
an be 
onne
ted to the vertex in four ways, and then the right

external leg 
an be 
onne
ted to the vertex in three ways. In this parti
ular


ase, the diagram in uniquely determined on
e the external legs are assigned.

Thus, cG = (4 · 3)/4! = 1/2, whi
h is indeed the fa
tor that multiplies the

diagram in formula (1.46), together with the value of the vertex, whi
h is

−λ.
Next, 
onsider the diagram

(1.52)

It is made of three identi
al verti
es, so we have a fa
tor 1/(4!)3 and a fa
tor

1/3!. The 
oe�
ient s is equal to 3(4!)3. To 
al
ulate it, let us �rst draw

three verti
es with four legs ea
h, and four external points. Then we 
onne
t

the points in all the ways that lead to the graph we want. We begin from

the up-left external leg, whi
h 
an be arranged in 4 · 3 ways, where 3 is the

number of verti
es we 
an 
hoose, and 4 is the number of legs of ea
h vertex.

On
e that is done, the down-left external leg 
an be 
hosen in just 3 ways,

be
ause its vertex is already determined. Next, the up-right external leg 
an

be arranged in 4 · 2 ways, after whi
h the down-right external leg 
an be


onne
ted in 4 ways. Then, 
onsider an internal leg of the left vertex: it


an be atta
hed to other internal legs in 6 ways. When this is done, the

remaining internal leg of the left vertex 
an be atta
hed to 3 internal legs.

Finally, the remaining internal legs 
an be 
onne
ted in 2 ways. In total

cG =
4 · 3 · 3 · 4 · 2 · 4 · 6 · 3 · 2

3!(4!)3
=

3(4!)3

3!(4!)3
=

1

2
.

Be
ause of (1.42), the information just given is also su�
ient to determine

the 
orrelation fun
tions (1.29) at J = 0. In parti
ular, Z(0) = 〈1〉′Z0(0)
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is a sum over diagrams with no external legs. There is a simple way to


hara
terize the 
orrelation fun
tions without primes. Indeed, they di�er

from the 
orrelation fun
tions with primes just be
ause they do not re
eive


ontributions from the diagrams that 
ontain subdiagrams with no external

legs. This statement will be proved at the end of the next se
tion. Here we

just give a simple example: the two-point fun
tion without primes at O(λ)
simply looses the last term of (1.46), so

〈ϕ(x1)ϕ(x2)〉 = GB(x1, x2)−
λ

2

∫
d4yGB(x1, y)GB(y, y)GB(y, x2) +O(λ2).

1.4 Generating fun
tionals, S
hwinger-Dyson equa-

tions

The rules given in the previous se
tion determine the 
orrelation fun
tions

with primes and the generating fun
tional Z(J). It turns out that Z(J)


ontains redundant information. For example, working with W (J), instead,

of Z(J), it is possible to redu
e a lot of e�ort. A third fun
tional, whi
h is the

Legendre transform of W (J) and is denoted with Γ(Φ), allows us to further

simplify the 
al
ulations. In this se
tion we study the generating fun
tionals

and their properties. We start by deriving a fun
tional equation for Z(J),


alled S
hwinger-Dyson equation.

We begin by noting that the fun
tional integral of a total fun
tional

derivative is zero. We have

0=

∫
[dϕ]

δ

δϕ(x)
exp

(
−S(ϕ) +

∫
Jϕ

)

=

∫
[dϕ]

(
− δS

δϕ(x)
+ J(x)

)
exp

(
−S(ϕ) +

∫
Jϕ

)
. (1.53)

Using the perturbative expansion, it is su�
ient to prove this formula for

the free �eld theory, but with an arbitrary set of ϕ-insertions. Consider a

massive �eld. In the dis
retized version of the fun
tional integral, where we

have a �nite number of ordinary integrals, we obviously have the identity

0 =

∫ +∞

−∞

∏

{iµ}

[dϕ{iµ}]
∂

∂ϕ{kρ}






 ∏

{nσ}⊂I

ϕ{nσ}


 exp

(
−S

dis
r

(ϕ{iµ})
)


 ,

(1.54)
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for every {kρ} and every set I of insertions ϕ{nσ}, where Sdis
r(ϕ{iµ}) is

the free dis
retized a
tion (1.24). Indeed, one integral, the one over ϕ{kρ},

vanishes, be
ause the exponential 
ontains

exp

(
−m

2

2
ϕ2
{kρ}

)
,

whi
h su�
ient to kill all 
ontributions of the boundary ϕ{kρ} → ±∞. Sin
e

(1.54) holds for every latti
e spa
e a and size L, it also holds in the 
ontinuum

limit.

The result is a
tually mu
h more general, to the extent that it also holds

when the mass vanishes and the free-�eld a
tion is not positive de�nite in

the Eu
lidean framework (whi
h is the 
ase, among others, of gravity). In-

deed, we should not forget that, although we are temporarily working in the

Eu
lidean framework, the 
orre
t theory is the one in Minkowski spa
etime.

There, the fun
tional integral (1.21) 
ontains an os
illating integrand, whi
h


an be always damped at in�nity by assuming that the �eld has a mass with

a small positive imaginary part +iε, whi
h is later sent to zero. So doing,

we 
an prove that the identity (1.53) is always true in perturbative quantum

�eld theory. The reader who is familiar with the operatorial formulation of

quantum �eld theory will noti
e that this pres
ription is also the one that

de�nes the 
orrelation fun
tions as T-ordered produ
ts. In other words, the

fun
tional integral automati
ally sele
ts the T-ordered 
orrelation fun
tions.

Then, formula (1.53) gives

J(x)Z(J) =

∫
[dϕ]

[
(−�+m2)ϕ(x) +

λ

3!
ϕ3(x)

]
exp

(
−S(ϕ) +

∫
Jϕ

)
,

(1.55)

whi
h 
an be graphi
ally represented as

x
= (−✷ +m2) + λ

3!

(1.56)

Here the dis
 stands for Z(J) and the dot for J . A leg atta
hed to the dis


is a fun
tional derivative with respe
t to J , i.e. a ϕ-insertion. Three legs

meeting at the same point x denote three fun
tional derivatives with respe
t

to J(x). To write (1.55), we have ex
hanged the fun
tional integral with the

derivatives 
ontained in �. In general, we have the identity ∂µ〈ϕ(x) · · · 〉 =
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〈∂µϕ(x) · · · 〉, where the dots stand for any insertions at points di�erent from

x. We 
an prove this identity as follows. Consider the generating fun
tional

Z(J) (1.23) and (for de�niteness) the two-point fun
tion

〈ϕ(x)ϕ(y)〉J = Z(J)−1 δ2Z(J)

δJ(x)δJ(y)
.

If we write J(x) = J1(x) − ∂µJ
µ
2 (x) inside (1.23), where J1 and Jµ2 are

arbitrary, the fun
tional derivative with respe
t to Jµ2 originates an insertion

of ∂µϕ(y). To see this, we must use

∫
ϕ(J1 − ∂µJµ2 ) =

∫
ϕJ1 +

∫
Jµ2 (∂µϕ),

where the integration by parts 
an be justi�ed by assuming that Jµ2 de
reases

rapidly enough at in�nity. Indeed, sin
e the sour
es J are test fun
tions, we


an 
hoose them as smooth as we want and, if needed, with 
ompa
t support.

Thus, we �nd

〈ϕ(x)∂µϕ(y)〉J =Z(J)−1 δ2Z(J)

δJ1(x)δJ
µ
2 (y)

= Z(J)−1 δ
2Z(J1 − ∂ρJρ2 )
δJ1(x)δJ

µ
2 (y)

=Z(J)−1∂(y)ρ

δ2Z(J)

δJ(x)δJ(y)
= ∂(y)ρ 〈ϕ(x)ϕ(y)〉J .

Multiplying both sides of (1.55) by GB(y, x), integrating over x and re-

labeling y → x we obtain

x
=

x
− λ

3!

(1.57)

where, as before, the double line stands for the Green fun
tion.

We 
an derive an alternative equation,

(−�+m2)〈ϕ(x)〉J = J(x)− λ

3!
〈ϕ3(x)〉J , (1.58)

if we divide both sides of (1.55) by Z(J). Again, if we insert the Green

fun
tion in (1.58), we get

〈ϕ(x)〉J =

∫
d4y GB(x, y)J(y)−

λ

3!

∫
d4yGB(x, y)〈ϕ3(y)〉J . (1.59)
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Now, re
alling that Z = exp(W ), observe that

〈ϕ3〉J = e−W (J) δ
3

δJ3
eW (J) =W ′′′ + 3W ′W ′′ +W ′3, (1.60)

ea
h apex denoting a J derivative. Then equation (1.59) 
an be graphi
ally

represented as

x

W =

W

W

W

W

W

W

x

−

λ

3!

−

λ

2
−

λ

3!

(1.61)

where now the dis
 denotes W . Again, the legs atta
hed to the dis
 denote

fun
tional derivatives with respe
t to J .

The third generating fun
tional Γ(Φ) is the Legendre transform of W .

De�ne the fun
tional Φ(J) as

Φ(J)x =
δW (J)

δJ(x)
= 〈ϕ(x)〉J . (1.62)

From (1.28) we have

Φ(J)x =

∫
d4yGB(x, y)J(y) +O(λ).

We 
an perturbatively invert Φ(J) and de�ne the fun
tional J(Φ)(x) su
h

that J(Φ(J))x = 1. We have

J(Φ)x = (−�+m2)Φ(x) +O(λ). (1.63)

Now, the fun
tional Γ(Φ) is de�ned as

Γ(Φ) = −W (J(Φ)) +

∫
d4x J(Φ)xΦ(x). (1.64)

We easily �nd

Γ(Φ) =
1

2

∫
d4x

(
(∂µΦ)

2 +m2Φ2
)
+O(λ),
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so Γ looks like a sort of �quantum a
tion�. In the literature it is often 
alled

e�e
tive a
tion. Note, however, that in Minkowski spa
etime Γ is not even

real. The Γ fun
tional 
olle
ts the amplitudes that are ne
essary to 
al
ulate

the S matrix.

Let us work out the S
hwinger-Dyson equation satis�ed by Γ. First,

observe that sin
e Γ is a Legendre transform we have

δΓ(Φ)

δΦ(x)
= J(Φ)x. (1.65)

This relation 
an be easily veri�ed by expli
it di�erentiation. Se
ond, using

the formula for the derivative of the inverse fun
tion, we also have

δ2W

δJ(x)δJ(y)
=
δΦ(J)y
δJ(x)

=

(
δJ(Φ)x
δΦ(y)

)−1

=

(
δ2Γ(Φ)

δΦ(x)δΦ(y)

)−1

. (1.66)

We write this formula symboli
ally as Wxy = 1/Γxy, where the subs
ripts

denote derivatives with respe
t to the arguments (J for W , Φ for Γ) at the

spe
i�ed points. Third,

Wxyz = −
∫

1

Γxs

1

Γyt

1

Γzu
Γstu, (1.67)

where the integral is over the repeated subs
ripts. Using (1.60)-(1.67), equa-

tion (1.58) be
omes

− δΓ(Φ)
δΦ(x)

= −(−�+m2)Φ(x)− λ
3!

(
Φ3(x)−

∫
1

Γxs

1

Γxt

1

Γxu
Γstu +

3

Γxx
Φ(x)

)
.

(1.68)

Graphi
ally, this formula reads

x
= −

(
−✷ +m2

)
Φ(x)− λ

3! Φ
3(x)−Γ

+ λ
2!−Γ

x

−Γ

Φ(x)

− λ
3!

(1.69)

where the line with a 
ut denotes 1/Γ′′
.
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We know that the 
orrelation fun
tions 〈ϕ · · ·ϕ〉 
an be expressed as

fun
tional derivatives of Z(J) with respe
t to J , 
al
ulated at J = 0, and

divided by Z(0). Similarly, the fun
tional derivatives of W with respe
t to

J , 
al
ulated at J = 0, and the fun
tional derivatives of Γ with respe
t to

Φ, 
al
ulated at Φ = 0, de�ne W and Γ 
orrelation fun
tions, respe
tively.

Our purpose is to 
hara
terize the 
orrelation fun
tions of Z, W and Γ more

pre
isely and �nd the relations among them.

The fun
tional Z is the generator of all 
orrelation fun
tions. We prove

that W is the generating fun
tional of the 
onne
ted 
orrelation fun
tions.

That is to say, W 
ontains pre
isely the 
ontributions to Z originated by


onne
ted diagrams. We then write

W (J) =

∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉cJ(x1) · · · J(xn),

where the subs
ript c stands for �
onne
ted�.

Moreover, we prove that Γ is the generating fun
tional of the 
onne
ted,

amputated (whi
h means that the external legs 
arry no Green fun
tions GB)

one-parti
le irredu
ible (
ommonly abbreviated as 1PI) 
orrelation fun
tions,

whi
h we simply 
all �irredu
ible�. Irredu
ible diagrams are those that do

not be
ome dis
onne
ted by 
utting one internal line. Pre
isely, we prove

that −Γ exa
tly 
ontains the (amputated) 
ontributions to Z and W that

are due to irredu
ible diagrams, with only one ex
eption: the free two-point

fun
tion, whi
h has an extra minus sign. We then write

−Γ(Φ) =
∞∑

n=0

1

n!

∫ ( n∏

i=1

d4xi

)
〈ϕ(x1) · · ·ϕ(xn)〉1PIΦ(x1) · · ·Φ(xn).

To prove that the W and Γ 
orrelation fun
tions are 
onne
ted and irre-

du
ible, respe
tively, it is su�
ient to note that

i) W and Γ are 
onne
ted and irredu
ible, respe
tively, at the free-�eld level;

ii) the W equation (1.61) and the Γ equation (1.69) are 
onne
ted and irre-

du
ible, respe
tively;

iii) equations (1.61) and (1.69) 
an be solved algorithmi
ally from the free-

�eld theory.

Property i) is obvious. We now prove that equations (1.61) and (1.69)

are 
onne
ted and irredu
ible, respe
tively. Observe that equation (1.57),

instead, is neither of the two. Indeed, (1.57) 
ontains the produ
t J(x)Z(J),
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and generates dis
onne
ted 
ontributions when we di�erentiate with respe
t

to J . Equation (1.61) 
ontains no produ
ts of fun
tionals, whi
h means that

it is 
onne
ted. On the other hand, it is 
learly redu
ible. Finally, equation

(1.69) is 
onne
ted and irredu
ible. Indeed, the �rst three terms of (1.69)

are the 
lassi
al �eld equations. Being lo
al, they are just verti
es, rather

than diagrams, so they are irredu
ible. The other terms of (1.69) are 
learly

irredu
ible.

Next, we prove that equations (1.57), (1.61) and (1.69) 
an be solved al-

gorithmi
ally starting from the free-�eld theory. Observe that by repeatedly

di�erentiating those equations with respe
t to the sour
es, J or Φ, and later

setting J or Φ to zero, we obtain relations among the 
orrelation fun
tions

of Z, W and Γ. Ea
h di�erentiation amounts to add a leg to a dis
 and sum

appropriately. The right-hand sides of equations (1.57), (1.61) and (1.69) are

the sums of two sets of 
ontributions, whi
h we 
all U1 and U2. The set U1 is

the one that does not 
arry a fa
tor of λ. It 
ontains no dis
, or a dis
 with

no leg. The set U2 is the one that 
arries a fa
tor of λ and 
ontains dis
s with

at most three legs. An analogous de
omposition holds for the di�erentiated

equations and is the 
ru
ial property to prove our 
onstru
tion. If we take

n fun
tional derivatives, the left-hand sides be
ome dis
s with n + 1 legs,

whi
h stand for the (n+1)-point 
orrelation fun
tions. The right-hand sides

are, again, the sums of two types of 
ontributions, U1 and U2. The set U1


ontains no fa
tor of λ and dis
s with at most n legs. In the 
ases of W and

Γ su
h a set vanishes after a su�
ient number of fun
tional derivatives. The

set U2 
ontains a fa
tor of λ and dis
s with at most n+ 3 legs.

Equations (1.57), (1.61) and (1.69) ensure that to determine the (n+1)-

point fun
tion to the order λk, it is su�
ient to know the m-point fun
tions,

m 6 n, up to the order λk and the m′
-point fun
tions m′ 6 n + 3, up to

the order λk−1
. Iterating the argument r times, we �nd that to determine

the (n+ 1)-point fun
tion up to the order λk, we need to know the m-point

fun
tions, m 6 n−r+3h, to the orders λk−h, with h = 0, 1, . . . r+1. Taking

r = n+3k, we need to know the m-point fun
tions, m 6 3(h− k), up to the

order λk−h: if H 6= K we have zero, if H = K we have Z0(0), whi
h 
an be

normalized to 1. This proves that equations (1.57), (1.61) and (1.69) 
an be

solved algorithmi
ally, as 
laimed.

We have 
onsidered, for simpli
ity, the ϕ4
theory, but the results 
learly

extend to any polynomial theory in arbitrary spa
etime dimensions.

14B1 Renorm



36 CHAPTER 1. FUNCTIONAL INTEGRAL

Clearly, dis
onne
ted diagrams are produ
ts of 
onne
ted ones, so W (J)

and Z(J) 
ontain the same amount of information. However, working with

W (J) instead of Z(J) saves us some e�ort. In the free-�eld limit, for example,

only the two-point fun
tion is 
onne
ted, soW (J) 
ontains just one term [see

(1.28)℄, while Z(J) 
ontains in�nitely many, be
ause it is the exponential of

W (J).

The simpli�
ation due to Γ is more 
learly visible in momentum spa
e,

rather than in 
oordinate spa
e. Observe that a 
onvolution be
omes a prod-

u
t after Fourier transform. The redu
ible diagrams are those that 
an be

split into two parts, 
onne
ted by a single leg. In momentum spa
e they

fa
torize, so they �dis
onne
t�. Clearly, we loose no information if we 
on-


entrate on the �minimal� fa
tors of su
h produ
ts. Working with Γ we take

advantage of this simpli�
ation.

So far, we have proved that all the diagrams that 
ontribute toW (respe
-

tively, Γ) are 
onne
ted (irredu
ible). We still have to prove the 
onverse,

i.e. that all the 
onne
ted (irredu
ible) diagrams do 
ontribute to W (Γ).

To show this, we pro
eed as follows.

Let us begin with W . Write

Z(J) = 1 +W (J) +
1

2!
W 2(J) +

1

3!
W 3(J) · · · . (1.70)

Sin
e Z(J) 
ontains all the diagrams, and W (J) 
ontains only 
onne
ted

diagrams, W (J) 
ontains all the 
onne
ted diagrams of Z(J). Now, take the


onne
ted part of equation (1.70), and note that the powers W n(J), n > 1,


an give only dis
onne
ted 
ontributions. Using (1.43), we get

Z ′(J)
∣∣
c
= Z(J)|c = 1 + W (J)|c = 1 +W (J). (1.71)

Thus, the 
onne
ted diagrams 
ontained in Z ′(J) = Z(J) and W (J)


oin
ide. Moreover, in these two fun
tionals they appear with the same 
o-

e�
ients. This property ensures that the Feynman rules we have determined

for Z 
an be used also for W : we just have to dis
ard the diagrams that are

dis
onne
ted.

Comparing the two sides of (1.70), we get, in the �rst few 
ases,

〈ϕ(x)〉c = 〈ϕ(x)〉, 〈ϕ(x)ϕ(y)〉c = 〈ϕ(x)ϕ(y)〉 − 〈ϕ(x)〉〈ϕ(y)〉,
〈ϕ(x)ϕ(y)ϕ(z)〉c = 〈ϕ(x)ϕ(y)ϕ(z)〉 − 〈ϕ(x)ϕ(y)〉〈ϕ(z)〉 − 〈ϕ(y)ϕ(z)〉〈ϕ(x)〉

−〈ϕ(z)ϕ(x)〉〈ϕ(y)〉 + 2〈ϕ(x)〉〈ϕ(y)〉〈ϕ(z)〉.
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Observe that W (0) is the sum of 
onne
ted diagrams that have no ex-

ternal legs. Consider a 
orrelation fun
tion 〈ϕ(x1) · · ·ϕ(xn)〉 and write it

in terms of W derivatives [see (1.60) for an example℄. It is easy to 
he
k

that W (0) never appears: only the derivatives W (n)
with n > 0 are in-

volved. Thus, the 
orrelation fun
tion 〈ϕ(x1) · · ·ϕ(xn)〉 
an be expressed as

the sum of produ
ts of 
onne
ted diagrams that have a nonvanishing num-

ber of external legs. This statement was left without proof at the end of

the previous se
tion. Instead, the 
orrelation fun
tion 〈ϕ(x1) · · ·ϕ(xn)〉′ =
〈ϕ(x1) · · ·ϕ(xn)〉eW (0)−W0(0)


ontains produ
ts of all the 
onne
ted diagrams,

in
luding those that have no external legs. The diagrams that appear in both


orrelations fun
tions are multiplied by the same 
oe�
ients.

It remains to study the 
orrelation fun
tions of −Γ. From (1.65) and

(1.69) we see that J(Φ) is a sum of irredu
ible diagrams. Consider (1.64)

and restri
t it to the irredu
ible diagrams. We have

− Γ(Φ) = −Γ(Φ)|
1PI

= W (J(Φ))|
1PI

−
∫
J(Φ)Φ|

1PI

. (1.72)

To manipulate this formula, it is 
onvenient to write J = (−�+m2)Φ+∆J

and expand in powers of ∆J , where ∆J = O(λ) 
an be read from the right-

hand sides of (1.68) and (1.69). We �nd

W ((−�+m2)Φ) =W (J−∆J) =W (J)−
∫

∆J
δW

δJ
+
1

2

∫
∆J

δ2W

δJδJ
∆J+· · ·

Turning this expansion around, we 
an also write

W (J)−
∫
JΦ =W ((−�+m2)Φ) +

∫
(∆J − J)δW

δJ
− 1

2

∫
∆J

δ2W

δJδJ
∆J

+ · · · =W ((−�+m2)Φ)−
∫

Φ(−�+m2)Φ− 1

2

∫
∆J

δ2W

δJδJ
∆J + · · ·

Now we take the one-parti
le irredu
ible 
ontributions of both sides of this

equation. Note that the last term, as well as the higher-order 
orre
tions


olle
ted inside the dots, always give redu
ible diagrams, sin
e ∆J 
ontains

verti
es. Thus, we get

− Γ(Φ) = W ((−�+m2)Φ)
∣∣
1PI

−
∫

Φ(−�+m2)Φ. (1.73)

Repla
ing J by (−� + m2)Φ inside W (J) is equivalent to amputate the

external legs and atta
h a �eld Φ to them. Formula (1.73) tells us that −Γ
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ontains the amputated irredu
ible diagrams of W , with exa
tly the same


oe�
ient they have in W , apart from the free two-point fun
tion, whi
h

has an extra minus sign be
ause of the last term of (1.73). Indeed, at the

free-�eld level we have

Γ0 =
1

2

∫
Φ(−�+m2)Φ =

1

2

∫
J(−� +m2)−1J =W0,

so +Γ is the amputated W (instead of −Γ). Finally, the Feynman rules

worked out for Z and W also work for −Γ (apart from the free two-point

fun
tion), provided we dis
ard the redu
ible diagrams.

It is easy to see that the results of this se
tion do not depend on the

form of the vertex, nor on the free-�eld a
tion around whi
h we perturb,

nor on the type of the �elds. For example, if we repla
e the intera
tion

∼
∫
ϕ4

by ∼
∫
ϕ6

, or by the sum of

∫
ϕ4

and

∫
ϕ6

, or even by intera
tions

that 
ontain derivatives, su
h as ∼
∫
ϕ2(∂µϕ)

2
, et
., all the arguments given

above 
an be generalized with obvious modi�
ations. The only assumption

that is 
ru
ial for the derivation is that the intera
tions be lo
al, whi
h

means that ea
h vertex should be the integral of a monomial 
onstru
ted

with the �elds and their derivatives. In the end, we �nd that in every lo
al

perturbative quantum �eld theory the generating fun
tional Z 
ontains all

the 
orrelation fun
tions, while W and Γ 
ontain only the 
onne
ted and

one-parti
le irredu
ible 
orrelation fun
tions, respe
tively. Moreover, the


orrelation fun
tions appear in Z, W and Γ with the same 
oe�
ients, apart

from the Γ free-�eld two-point fun
tion.

Exer
ise 1 Integrating (1.69), 
al
ulate Γ(Φ) at the tree level and at one

loop.

Solution. The �rst line of (1.69) 
an be integrated straightforwardly, and

gives S(Φ). The se
ond line is made of two terms. The �rst of them 
an

generate only two-loop diagrams, so we 
an negle
t it. The se
ond term

gives diagrams that 
ontain at least one loop. Thus, at the tree level the Γ

fun
tional 
oin
ides with the 
lassi
al a
tion: Γ(Φ) = S(Φ).

To 
al
ulate the one-loop 
orre
tions it is su�
ient to 
al
ulate Γxx at

the tree level, whi
h is just

Sxy ≡
δ2S(Φ)

δΦ(x)δΦ(y)
= (−�+m2 +

λ

2
Φ2(x))δ(x − y),
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in the limit y → x. Then we insert it into the last term of equation (1.69),

whi
h be
omes

λ

2
Φ(x)

1

Γxx
=
λ

2
Φ(x)

1

Sxx
=

1

2

δ

Φ(x)

∫
d4y lnSyz|z→y , (1.74)

having used λΦ = S′′′
. Finally, the Γ fun
tional reads

Γ(Φ) = S(Φ) +
1

2

∫
d4x lnSxy|y→x ≡ S(Φ) +

1

2
tr

[
ln

δ2S(Φ)

δΦ(x)δΦ(y)

]
, (1.75)

plus two-loop 
orre
tions, plus unimportant 
onstants. Although for 
larity

we have used the ϕ4
theory to derive this result, it 
an be easily 
he
ked that

formula (1.75) holds for an arbitrary a
tion S(Φ), be
ause the spe
i�
 form

of the a
tion is a
tually not ne
essary for the derivation. �

The 
lassi
al a
tion S(ϕ) and the fun
tional −W (J) satisfy an interesting

duality relation. Consider iJ as the ��elds�, SJ(iJ) ≡ −W (−iJ) as their


lassi
al a
tion and ϕ as the sour
es 
oupled to iJ . Then, the W fun
tional

is equal to −S(ϕ) itself. Pre
isely,
∫

[dJ ] exp

(
W (−iJ) +

∫
iJϕ

)
= exp (−S(ϕ)) . (1.76)

Indeed, using (1.23) the left-hand side 
an be written as

∫
[dJdϕ′] exp

(
−S(ϕ′) + i

∫
ϕJ − i

∫
ϕ′J

)
.

Integrating over J we get the �fun
tional δ fun
tion�

δF (ϕ− ϕ′) =
∏

x

δ(ϕ(x) − ϕ′(x)),

whose meaning 
an be easily understood from the dis
retized version of the

fun
tional integral. Finally, integrating over ϕ′
we get the right-hand side of

(1.76).

From the perturbative point of view, it does not really matter whether J

is multiplied by i or not. Thus, we 
an also write

∫
[dJ ] exp

(
W (J)−

∫
Jϕ

)
= exp (−S(ϕ)) .

The meaning of this identity is that if we take the diagrams that 
ontribute

to the 
onne
ted 
orrelation fun
tions, repla
e their verti
es by minus the


onne
ted diagrams themselves, and the propagators by minus their inverses,

the results we obtain are minus the verti
es again.
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1.5 Advan
ed generating fun
tionals

We 
an also de�ne generating fun
tionals for n-parti
le irredu
ible 
onne
ted

Green fun
tions, that is to say 
onne
ted Green fun
tions that be
ome dis-


onne
ted when n or fewer internal lines are 
ut into two. In this se
tion we

explain how. Although the new fun
tionals are rarely met in the literature,

they 
an help us gain a more 
omplete pi
ture of what we are doing. More-

over, some generalizations of these fun
tionals are useful treat some topi
 of

the next 
hapters.

We �rst study the generating fun
tional of two-parti
le irredu
ible Green

fun
tions. We introdu
e a new sour
eK(x, y) 
oupled to the bilinear ϕ(x)ϕ(y)

and de�ne

Z(J,K) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ+

1

2

∫
ϕKϕ

)
= eW (J,K),

where

∫
ϕKϕ =

∫
dxϕ(x)K(x, y)ϕ(y)dy. Then, de�ne

Φ(x) =
δW

δJ(x)
= 〈ϕ(x)〉, N(x, y) =

δ2W

δJ(x)δJ(y)
= 〈ϕ(x)ϕ(y)〉c, (1.77)

at nonzero J and K. Observe that

δW

δK(x, y)
=

1

2
(N(x, y) + Φ(x)Φ(y)) =

1

2

δ2W

δJ(x)δJ(y)
+

1

2

δW

δJ(x)

δW

δJ(y)
.

(1.78)

This is a fun
tional di�erential equation for W (J,K). It shows that the K

dependen
e is not unrelated to the J dependen
e, so the advan
ed fun
tional

W (J,K) does not 
ontain new information, but just the information already

known, expressed in a di�erent way.

Now, 
all Γ2(Φ, N) the Legendre transform of W (J,K) with respe
t to

both J and K, that is to say

Γ2(Φ, N) =−W (J,K) +

∫
δW

δJ
J +

∫
δW

δK
K

=−W (J,K) +

∫
JΦ+

1

2

∫
(NK +ΦKΦ),

where NK stands for N(x, y)K(x, y) and J and K are meant to be fun
tions

of Φ and N , obtained by inverting (1.77). That this transform is well de�ned

will be
ome evident soon. Di�erentiating Γ2 we get

δΓ2

δΦ(x)
= J(x) +

∫
K(x, y)Φ(y)dy,

δΓ2

δN(x, y)
=

1

2
K(x, y). (1.79)
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To retrieve Γ(Φ) from Γ2(Φ, N) it is su�
ient to set K = 0, be
ause

then W (J,K) be
omes pre
isely the fun
tional W (J) en
ountered before.

Inverting (1.79) we obtain Φ and N as fun
tions of J and K. On
e K is set

to zero, the relations Φ = Φ(J, 0) and N = N(J, 0) allow us to express J as a

fun
tion J(Φ) of Φ, whi
h 
oin
ides with the relation found in the previous

se
tions, but also N as a fun
tion N(Φ) of Φ. Finally,

Γ(Φ) = Γ2(Φ, N(Φ)).

At J = K = 0 we have that Φ is the expe
tation value of the �eld and N is

the propagator.

The fun
tional Γ2(Φ, N) 
an also be seen as the Legendre transform

Γ2(Φ, N) = Γ(Φ,K) +
1

2

∫
K(N +ΦΦ) (1.80)

of Γ(Φ,K), whi
h is the usual Γ fun
tional for the modi�ed 
lassi
al a
tion

S(ϕ,K) = S(ϕ)− 1

2

∫
ϕKϕ. (1.81)

Exer
ise 2 Cal
ulate Γ2(Φ, N) for a free s
alar �eld and rederive Γ(Φ).

Solution. The sour
e K(x, y) is like a non-lo
al squared mass, soW (J,K)


an be obtained from the usual fun
tional, repla
ing the mass m2
with m2−

K. From (1.26) we get

W (J,K) =
1

2

∫
J(−�+m2 −K)−1J − 1

2
tr ln

[
−�+m2 −K

]
.

We immediately �nd

Φ = (−�+m2 −K)−1J, N = (−�+m2 −K)−1,

thus

Γ2(Φ, N) =
1

2

∫ [
(∂µΦ)

2 +m2Φ2
]
− 1

2
tr lnN +

1

2
tr

[
(−�+m2)N − 1

]
.

Observe that obje
ts su
h as lnN and N−1
and meaningful, sin
e by (1.77)

N−1
is just the s
alar propagator. Setting K = 0 we �nd N = (−�+m2)−1

and the usual free-�eld Γ-fun
tional

Γ2(Φ, (−�+m2)−1) =
1

2

∫ [
(∂µΦ)

2 +m2Φ2
]
+

1

2
tr ln(−�+m2) = Γ(Φ),
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whi
h agrees with (1.75). In an intera
ting theory we obtain this expres-

sion plus 
orre
tions proportional to the 
ouplings. As said before, all su
h


orre
tions are made of tree-level expressions plus two-parti
le irredu
ible

diagrams.

Exer
ise 3 Cal
ulate Γ2(Φ, N) at one loop for a generi
 theory S(ϕ).

Solution. We start from formula (1.75), whi
h gives the most general

one-loop Γ-fun
tional, and apply it to a 
lassi
al theory with modi�ed a
tion

(1.81). We obtain the one-loop Γ-fun
tional

Γ(Φ,K) = S(Φ)− 1

2

∫
ΦKΦ+

1

2
tr ln(S′′ −K),

where S′′
stands for Sxy. Now we further Legendre-transform with respe
t

to K. Di�erentiating we get

δΓ

δK
= −1

2

1

S′′ −K −
1

2
ΦΦ = −δW

δK
,

whi
h gives

N =
1

S′′ −K .

Finally, using (1.80) the one-loop fun
tional Γ2 is

Γ2(Φ, N) = S(Φ)− 1

2
tr lnN +

1

2
tr

[
NS′′(Φ)− 1

]
. (1.82)

�

Now we study the diagrammati
s of Γ2(Φ, N). Sin
e every one-loop di-

agrams are two-parti
le redu
ible, unless they 
ontain just one vertex (in

whi
h 
ase they are 
alled �tadpoles�), it is useful to 
onsider the di�eren
e

Γ̃2(Φ, N) between Γ2(Φ, N) and its one-loop expression (1.82):

Γ̃2(Φ, N) = Γ2(Φ, N)− S(Φ) + 1

2
tr lnN − 1

2
tr

[
NS′′(Φ)− 1

]
. (1.83)

Now, the fun
tional Γ(Φ,K) is the set of one-parti
le irredu
ible diagrams

of the theory S(ϕ,K), namely the set of one-parti
le irredu
ible diagrams of

S(ϕ) with inverse propagator shifted by −K. Separate the tree-level 
ontri-

bution S(Φ,K) of Γ(Φ,K) from the rest, by writing

Γ(Φ,K) = S(Φ)− 1

2

∫
ΦKΦ+ Γ̃(Φ,K). (1.84)
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The two-point fun
tion of Γ(Φ,K) is

δ2Γ(Φ,K)

δΦδΦ
= S′′(Φ)−K − δ2Γ̃(Φ,K)

δΦδΦ
=

(
δ2W (J,K)

δJδJ

)−1

=
1

N
. (1.85)

The last two equalities follow from (1.66) and the se
ond of (1.77).

Take formula (1.80). Using (1.84) and (1.85) we have

Γ2(Φ, N) = S(Φ) + Γ̃(Φ,K) +
1

2
tr

[
NS′′(Φ)−N δ2Γ̃(Φ,K)

δΦδΦ
− 1

]
.

Now we must re-express K as a fun
tion of Φ and N on the left-hand side.

Formula (1.85) tells us that all propagators just be
ome N . Then we just

have to repla
e the sour
es K that appear in the verti
es. Observe that ea
h

K is atta
hed to two ϕ legs, so also two propagators N . Thus, we have to


onsider the produ
t NKN . Using (1.85) we see that

NKN → NS′′(Φ)N −N −N δ2Γ̃(Φ,K)

δΦδΦ
N.

The sour
es K on the right-hand side 
an be treated re
ursively. Then it is

easy to see that the diagrams of Γ2(Φ, N), and also those of Γ̃2(Φ, N), are

one-parti
le irredu
ible.

Working out the N derivative of Γ̃2 and using (1.85), we get

δΓ̃2

δN
=
δΓ2

δN
+

1

2N
− 1

2
S′′(Φ) = −1

2

δ2Γ̃(Φ,K)

δΦδΦ
.

Repeating the argument above, we �nd that the diagrams of δΓ̃2/δN are also

one-parti
le irredu
ible. Then the diagrams of Γ̃2 are two-parti
le irredu
ible,

be
ause taking an N derivative is equivalent to 
utting one internal line.

The fun
tional Γ∞ is de�ned by 
oupling sour
es Kn(x1, . . . , xn) to arbi-

trary strings ϕ(x1) · · ·ϕ(xn) of ϕ-insertions:

Z(J,K) =

∫
[dϕ] exp

(
−S(ϕ) +

∫
Jϕ+

∞∑

n=2

1

n!

∫
Kn

n︷ ︸︸ ︷
ϕ · · ·ϕ

)
.

Then W (J,K) = lnZ(J,K) as usual and

Φ =
δW

δJ
= 〈ϕ〉, Nn =

δnW

δJ · · · δJ︸ ︷︷ ︸
n

= 〈
n︷ ︸︸ ︷

ϕ · · ·ϕ〉c. (1.86)
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We have, in 
ompa
t notation,

δW

δKn
=

1

n!
〈

n︷ ︸︸ ︷
ϕ · · ·ϕ〉 = 1

n!
e−W

δn

δJn
eW
∣∣∣∣
W ′→Φ,W (k)→Nk

.

Performing the Legendre transform with respe
t to all the sour
es, we obtain

the fun
tional

Γ∞(Φ, N) = −W (J,K) +

∫
δW

δJ
J +

∞∑

n=2

∫
δW

δKn
Kn,

where J and the sour
esKn need to be expressed as fun
tions of Φ and Nk by

inverting (1.86). The fun
tional Γ(Φ) is retrieved by setting all the sour
es

Kn to zero. The fun
tional Γ2(Φ, N) is obtained by setting all of them to

zero but K2, and so on.

1.6 Massive ve
tor �elds

So far, we have just 
onsidered s
alar �elds. Massive ve
tor �elds 
an be

treated in a similar way, while fermions of spin 1/2 require that we extend

the de�nition of fun
tional integral to anti
ommuting variables. Finally,

gauge �elds need a separate treatment, sin
e the de�nition of the fun
tional

integral in the presen
e of gauge symmetries is not obvious, even in the

Gaussian limit.

In the 
ase of massive ve
tor �elds, we start from the free Pro
a a
tion

S
free

(W ) =

∫
d4x

(
1

4
W 2
µν +

m2

2
W 2
µ

)
, (1.87)

where Wµν ≡ ∂µWν − ∂νWµ. The �eld equations

−�Wµ + ∂µ∂νWν +m2Wµ = 0 (1.88)

ensure that the theory propagates only three degrees of freedom at the 
las-

si
al level, sin
e the divergen
e of (1.88) gives m2∂µWµ = 0. The propagator

Gµν(x, y) = 〈Wµ(x)Wν(y)〉 is the solution of the di�erential equation

(−�δµν + ∂µ∂ν +m2δµν)Gνρ(x, y) = δµρδ
(4)(x− y)
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and 
an be easily expressed by means of the Green fun
tion GB of the s
alar

�eld. Indeed, re
alling (1.27), we �nd

Gµν(x, y) =

(
δµν −

∂µ∂ν
m2

)
GB(x, y) =

∫
d4p

(2π)4
eip·(x−y)

δµν +
pµpν
m2

p2 +m2
. (1.89)

At the quantum level the degrees of freedom 
an be 
ounted by 
ount-

ing the poles of the propagator in momentum spa
e, after swit
hing to the

Minkowskian framework. Basi
ally, on the pole, whi
h 
an be rea
hed from

the Eu
lidean notation by writing p = (±im, 0, 0, 0) in the rest frame, the

numerator is the matrix diag(0, 1, 1, 1). The three positive eigenvalues are

the propagating degrees of freedom, while the eigenvalue zero 
orresponds to

the nonpropagating degree of freedom ∂µWµ.

When we add intera
tions, the Feynman rules and the diagrammati
s fol-

low straightforwardly, as well as the de�nitions of the generating fun
tionals.

Massless ve
tors are the �elds of gauge theories. It is 
lear that the mass-

less limit of (1.89) is singular. Thus, gauge �elds need a separate dis
ussion.

For the same reason, the ultraviolet limit of a theory that 
ontains massive

ve
tor �elds is singular, be
ause there the mass be
omes negligible. An-

other way to see the problem of massive ve
tor �elds at high-energies is that

the propagator in momentum spa
e behaves like ∼ pµpν/(m
2p2) for large,

p instead of ∼ 1/p2. We will see that this behavior does not de
rease fast

enough to have renormalizability. In general, an intera
ting quantum �eld

theory that 
ontains massive ve
tor �elds is nonrenormalizable. The same


on
lusion applies to the theories that 
ontain massive �elds of higher spins,

whi
h we do not treat here.

1.7 Fermions

The fun
tional integral provides a formulation of quantum me
hani
s that is

equivalent to the orthodox ones. Its main virtue is that it allows us to work

with fun
tions, instead of operators. In pra
ti
e, summing over all paths that


onne
t the initial point to the �nal one has the same e�e
t as working with

obje
ts that have nontrivial 
ommutators. In some sense, the right-hand

sides of the 
ommutators [q̂, p̂] = i, [â, â†] = 1, where [A,B] = AB−BA, are
repla
ed by the fun
tional integration.

We know that, to be 
onsisten
y with the Fermi statisti
s, the se
ond

quantization of fermions is done, in the operator approa
h, by assuming that
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there exist annihilation and 
reation operators âf and â†f that satisfy the

anti
ommutation relation {âf , â†f} = 1, where {A,B} = AB + BA. We

expe
t that a fun
tional integral over fermions 
an repla
e the right-hand

side of this anti
ommutator. We do not expe
t, however, that it 
an do more

than that, for example allow us to work with 
ommuting obje
ts, instead

of anti
ommuting ones. Indeed, the Pauli ex
lusion prin
iple, whi
h is the

origin of anti
ommutators, survives the 
lassi
al limit ~→ 0. The right-hand

sides of 
ommutators and anti
ommutators vanish when ~ tends to zero, but

the left-hand sides remain un
hanged. Thus, to des
ribe fermions we need to

work with anti
ommuting obje
ts, and de�ne a suitable integral over them.

Su
h obje
ts are 
alled Grassmann variables, and for the time being we

denote them with θi, θ̄i. They satisfy

{θi, θj} = {θi, θ̄j} = {θ̄i, θ̄j} = 0.

We also need to de�ne fun
tions of su
h variables, then the �ordinary� in-

tegral over them and �nally the fun
tional integral. These 
on
epts will

sound a bit formal, however we know that we must be prepared to upgrade

the mathemati
s and in
lude notions that may not sound familiar at �rst.

Quantum me
hani
s already thought us a lot on this. In the derivations of

physi
al predi
tions we may need to work with quantities, su
h as the wave

fun
tion, whi
h do not have a dire
t 
onne
tion with reality. Ultimately, we

just need to retrieve ordinary real numbers at the very end, when we work

out 
ross se
tions or any other physi
al quantity. In the intermediate steps,

we are free to introdu
e any obje
ts we want, not matter how awkward they

may look at �rst sight, as long as they are equipped with a set of 
onsistent

axioms that allow us to manipulate them, and are su
h that the physi
al

quantities we get at the end are real.

Consider a generi
 fun
tion of a single Grassmann variable θ. Making a

Taylor expansion around θ = 0, we just have

f(θ) = a+ θb, a = f(0), b = f ′(0). (1.90)

Here a and b are 
onstants. Every other term of the Taylor expansion disap-

pears, sin
e θ2 = (1/2){θ, θ} = 0.

Similarly, a fun
tion of two variables θ, θ̄ reads

g(θ, θ̄) = c+ θd+ θ̄e+ θθ̄f,
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c, d, e and f being other 
onstants.

Ordinary 
ommuting variables are normally 
alled �c-numbers�, to dis-

tinguish them from the Grassmann variables. If the fun
tion f of formula

(1.90) is a c-number, then a is also a c-number, while b is an anti
ommut-

ing 
onstant. If f is anti
ommuting, then a also is anti
ommuting, while

b is a c-number. We also say that c-numbers have bosoni
 statisti
s, while

anti
ommuting obje
ts have fermioni
 statisti
s.

Now we de�ne the integral of f(θ) in dθ. We introdu
e di�erentials dθ,

whi
h are also anti
ommuting obje
ts, and assume that the integral is linear

and translational invariant. By linearity

∫
dθ f(θ) =

(∫
dθ 1

)
a+

(∫
dθ θ

)
b,

so it is su�
ient to de�ne the integrals of 1 and θ. Let us perform the 
hange

of variables θ = θ′ + ξ, where ξ is 
onstant and anti
ommuting. Then, by

translational invarian
e dθ = dθ′, so

∫
dθ θ =

∫
dθ′ (θ′ + ξ) =

∫
dθ′ θ′ +

(∫
dθ′ 1

)
ξ =

∫
dθ θ +

(∫
dθ 1

)
ξ.

We 
on
lude that the integral of 1 in dθ must vanish. Then, the integral of

θ must not be zero, otherwise our integral would identi
ally vanish. Normal-

izing the integral of θ to 1, we have the formal rules

∫
dθ 1 = 0,

∫
dθ θ = 1,

whi
h de�ne the Berezin integral .

In pra
ti
e, the Berezin integral behaves like a derivative. For example,

under a res
aling θ′ = cθ we have

1 =

∫
dθ′ θ′ = c

∫
d(cθ) θ =

∫
dθ θ,

when
e, di�erently from usual,

d(cθ) =
1

c
dθ.

This rule 
oin
ides with the one of the derivative with respe
t to θ.
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The basi
 Gaussian integral reads

∫
dθ̄dθ e−mθ̄θ =

∫
dθ̄dθ

(
1−mθ̄θ

)
= m. (1.91)

The minus sign disappears when we anti
ommute θ̄ with dθ.

With more variables it is easy to prove that

∫ N∏

i=1

dθ̄idθi θ̄i1θj1 · · · θ̄iN θjN = (−1)Nεi1···iN εj1···jN . (1.92)

Indeed, the result must be 
ompletely antisymmetri
 in i1 · · · iN and j1 · · · jN .
Taking ik = jk = k and using (1.91) we 
orre
tly get (−1)N .

Then, de�ning the a
tion

S(θ̄, θ) =

N∑

i,j=1

θ̄iMijθj ,

where Mij is some matrix, we get

∫ N∏

i=1

dθ̄idθi e
−S(θ̄,θ) =

(−1)N
N !

∫ N∏

i=1

dθ̄idθi S
N (θ̄, θ)

=
1

N !
εi1···iN εj1···jNMi1j1 · · ·MiN jN = detM.

Every other 
ontribution 
oming from the exponential integrates to zero,

be
ause it 
annot saturate the Grassmann variables θ and θ̄. We 
an easily

generalize this formula to

Z(ξ̄, ξ)≡
∫ N∏

i=1

dθ̄idθi exp

(
−S(θ̄, θ) +

N∑

i=1

(ξ̄iθi + θ̄iξi)

)

=exp




N∑

i,j=1

ξ̄iM
−1
ij ξj


 detM, (1.93)

with the help of the translation θ = θ′ +M−1ξ, θ̄ = θ̄
′
+ ξ̄M−1

.

Finally, a generi
 
hange of variables θ = θ(θ′) produ
es the re
ipro
al of

the usual Ja
obian determinant,

N∏

i=1

dθi =

(
det

∂θ

∂θ′

)−1 N∏

i=1

dθ′i. (1.94)

14B1 Renorm



1.7 Fermions 49

The derivative with respe
t to Grassmann variables 
an be pla
ed at the

left of the di�erentials dθ̄, dθ, or at the right of them, so we de�ne left-

and right-derivatives ∂l and ∂r, whi
h 
an at most di�er by a minus sign.

Pre
isely, the di�erential of a fun
tion reads

df(θ̄, θ) =
∂rf

∂θ̄i
dθ̄i +

∂rf

∂θi
dθi = dθ̄i

∂lf

∂θ̄i
+ dθi

∂lf

∂θi
.

Of 
ourse, ∂l/∂θ̄ and ∂l/∂θ are anti
ommuting obje
ts, as well as ∂r/∂θ̄ and

∂r/∂θ. However, observe that

∂r
∂θ̄i

∂l
∂θj

=
∂l
∂θj

∂r
∂θ̄i

.

We 
an de�ne averages

〈θi1 · · · θin θ̄j1 · · · θ̄jn〉 =
1

Z(ξ̄, ξ)

∂l
∂ξ̄i1

· · · ∂l
∂ξ̄in

∂r
∂ξjn

· · · ∂r
∂ξj1

Z(ξ̄, ξ)

∣∣∣∣
ξ=ξ̄=0

.

In parti
ular,

〈θiθ̄j〉 =M−1
ij , 〈θiθj θ̄kθ̄l〉 =M−1

il M
−1
jk −M−1

ik M
−1
jl . (1.95)

We 
an also have integrals over both 
ommuting variables x and anti-


ommuting variables θ. Writing z̄ = (x̄, θ̄) and z = (x, θ), we de�ne the

superdeterminant as

(sdetM)−1≡ 1

(2π)N

∫
dz̄dz exp(−z̄tMz)

=
1

(2π)N

∫
dx̄dxdθ̄dθ exp(−x̄tAx− x̄tBθ − θ̄Cx− θ̄Dθ),

where the normalization fa
tor is 
hosen so that sdet1 = 1,

M =

(
A B

C D

)

and ea
h blo
k A, B, C and D is a N × N matrix, where A, D 
ontain


ommuting entries and B, C 
ontain anti
ommuting entries. To 
ompute

the superdeterminant, we perform the translations ȳt = x̄t + θ̄CA−1
and

y = x + A−1Bθ and observe that in the variables ζ̄ = (ȳ, θ̄), ζ = (y, θ), we
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have z̄tMz = ȳtAy + θ̄(D −CA−1B)θ, so the integrals over 
ommuting and

anti
ommuting variables fa
torize. At the end, we �nd

sdetM =
detA

det(D −CA−1B)
. (1.96)

A useful property, whi
h we do not prove here, is

ln sdet(expM) = strM ≡ trA− trD, (1.97)

where �str� denotes the so-
alled supertra
e. Moreover, the in�nitesimal

variation is

δsdetM = δ exp(str lnM) = (sdetM)str(M−1δM). (1.98)

In this book we just need a spe
ial 
ase of this formula, when M = 1 + δM

and δM is small. Then

sdet(1 + δM) ∼ 1 + tr[δA] − tr[δD] = 1 + str[δM ].

This result 
an also be proved by expanding formula (1.96) to the �rst order

in δM .

Finally, for a generi
 
hange of variables (z̄, z)→ (ζ̄ , ζ) we have

dz̄dz = dζ̄dζ sdet

∂(z̄, z)

∂(ζ̄ , ζ)
.

Again, we leave this formula without proof, but it is easy to derive the

in�nitesimal version that we need later. For (z̄, z) = (ζ̄+ δζ̄, ζ+ δζ) we have,

to the �rst order,

dz̄dz ∼ dζ̄dζ

(
1 + str

∂(δζ̄, δζ)

∂(ζ̄ , ζ)

)
. (1.99)

The minus sign inside the supertra
e is due to the exponent −1 of the Ja
o-

bian determinant in (1.94).

The 
ontinuum limit is now straightforward. Consider for example free

Dira
 fermions, whi
h have the a
tion

S(ψ̄, ψ) =

∫
d4x ψ̄(/∂ +m)ψ. (1.100)
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Here

/∂ = γµ∂µ and γµ are the γ matri
es in Eu
lidean spa
e, whi
h satisfy

{γµ, γν} = 2δµν and (γµ)† = γµ. The Green fun
tion GF (x, y) = 〈ψ(x)ψ̄(y)〉
is the solution of the equation

(/∂x +m)GF (x, y) = δ(4)(x− y).

We have

GF (x, y) = (−/∂x +m)GB(x, y) =

∫
d4p

(2π)4
−i/p+m

p2 +m2
eip·(x−y). (1.101)

De�ne the generating fun
tionals

Z(ξ̄, ξ) =

∫
[dψ̄dψ] exp

(
−S(ψ̄, ψ) +

∫
ξ̄ψ +

∫
ψ̄ξ

)
= eW [ξ̄,ξ],

where

∫
ξ̄ψ and

∫
ψ̄ξ stand for

∫
d4xξ̄(x)ψ(x) and

∫
d4xψ̄(x)ξ(x), respe
-

tively. Using (1.93) we �nd

W (ξ̄, ξ) =

∫
d4xξ̄(x)GF (x, y)ξ(y)d

4y

plus an irrelevant 
onstant.

Wi
k's theorem reads

〈χ1 · · ·χ2n〉 =
∑

P

εP 〈χP (1)χP (2)〉 · · · 〈χP (2n−1)χP (2n)〉,

where χi 
an either be ψ(xi) or ψ̄(xi), while εP is the signature of the

permutation P . Pre
isely, εP is equal to 1 or −1, depending on whether

{P (1), P (2), · · · , P (2n)} is obtained from {1, 2, · · · , 2n} by means of an even

or odd number of permutations of two nearby elements. The free 
orrelation

fun
tions with an odd number of insertions still vanish.

The perturbative expansion around the free theory is de�ned by following

the guideline of s
alar �elds. We 
an 
onsider, for example, the four-fermion

model

S4(ψ̄, ψ) =

∫
d4x

(
ψ̄(/∂ +m)ψ − λ

4
(ψ̄ψ)2

)
(1.102)
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The Feynman rules are

δγ

α β

=
λ
2 (δ

αβδγδ − δαδδγβ)
βα
=
(

1
i/p+m

)
αβp

(1.103)

where α, β, et
. are spinor indi
es. Observe that:

1) the vertex and the Lagrangian term have opposite signs;

2) ea
h in
oming line of the vertex is a ψ and ea
h outgoing line is a ψ̄;

3) fermion lines are drawn with arrows pointing from the right to the left;

then their Lorentz indi
es are ordered from the left to the right;

4) if the Lagrangian term is ordered by putting ea
h ψ̄ to the left and ea
h

ψ to the right, the vertex is drawn by putting the ψ̄ legs to the left, and the

ψ legs to the right;

5) if we order the �elds ψ̄ (respe
tively, ψ) from the left to the right, the legs

asso
iated with them are ordered from the top to the bottom (resp., from

the bottom to the top);

6) the ex
hange of two identi
al fermion lines �ips the overall sign;

7) the verti
es must in
lude all the permutations of identi
al lines.

Point 1) is due to the minus sign that appears in front of the a
tion in

the exponential fa
tor e−S . Point 7) is why the fa
tor 4 of λ/4 drops out.

Diagrams are 
onstru
ted with the previous rules, plus the following one:

8) every fermion loop must be multiplied by a fa
tor (−1).
Finally, in evaluating the diagram it must be remembered that, be
ause

of 3),

9) fermion lines must be followed in the sense opposite to the arrow.

The minus sign in front of fermion loops is due to the Berezin integral.

Consider for example

∫ ∏

i

dθ̄idθi(θ̄V1θ)(θ̄V2θ) exp
(
−θ̄tMθ

)
,

where the Vi's are the matri
es that appear in the verti
es, possibly depending

on other �elds. Using (1.95) we obtain

−tr[V1M−1V2M
−1] + (−tr[V1M−1])(−tr[V2M−1]).
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The �rst 
ontribution 
orresponds to a one-loop diagram that 
ontains both

verti
es, and is indeed multiplied by −1. The se
ond 
ontribution is instead

the produ
t of two diagrams, ea
h of whi
h has one loop and 
ontains a single

vertex.

The result is easily generalized to diagrams with an arbitrary number of

loops. The minus sign appears when we move the �rst θ̄ to the far right:

N∏

i=1

(θ̄Viθ)→ −tr[V1〈θθ̄〉V2〈θθ̄〉V3〈θθ̄〉V4θ · · ·VN 〈θθ̄〉].

The simplest example of s
alar-fermion theory is the (massless) Yukawa

model

S(ϕ,ψ) =

∫
d4x

(
1

2
(∂µϕ)

2 + ψ̄(/∂ + gϕ)ψ +
λ

4!
ϕ4

)
(1.104)

with Feynman rules

= 1
k2 α βpk

= −λ = −g

=

 1
i/p




αβ

(1.105)

The rules to 
onstru
t the diagrams are the same as before.

The fun
tional Γ is de�ned as the Legendre transform

Γ(Φ, Ψ̄,Ψ) = −W (J, ξ̄, ξ) +

∫
JΦ+

∫
ξ̄Ψ+

∫
Ψ̄ξ,

where

Φ =
δW

δJ
, Ψ =

δlW

δξ̄
, Ψ̄ =

δrW

δξ
.

All the arguments applied before to prove that W and Γ are the generating

fun
tionals of the 
onne
ted and one-parti
le irredu
ible diagrams, respe
-

tively, 
an be repeated here with obvious modi�
ations. A
tually, we have

already remarked that the derivation 
an be extended to the most general

lo
al perturbative quantum �eld theory. The Feynman rules for Z, W and

Γ are the same, sin
e the diagrams appear in ea
h fun
tional with the same


oe�
ients (apart from the free two-point fun
tion of Γ).
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Working on Γ makes the study of renormalization mu
h simpler. For this

reason, from now on we mostly 
on
entrate on the irredu
ible diagrams.

The lo
ality assumption, whi
h is 
ru
ial for perturbative quantum �eld

theory, has intriguing aspe
ts. It requires that the a
tion S(ϕ, ψ̄, ψ, Vµ, . . .)

be a lo
al fun
tional of the �elds. It should be noted, however, that the

a
tion S does not 
ontain the true intera
tions, whi
h are en
oded in the


orrelation fun
tions. As we will see, the 
orrelation fun
tions are most of

the times nonlo
al. So, why should we require that the 
lassi
al a
tion be

lo
al? Even more, why should we require that there exist a 
lassi
al a
tion,

and the theory be built on it? Why not investigate all the 
on
eivable Γ

fun
tionals dire
tly?

An attempt like this has been made, a few de
ades ago, but did not lead

to substantial progress. The point is that if we do not have a su�
iently


onstrained starting point, su
h as a lo
al (and renormalizable, as we will

see) 
lassi
al a
tion, what we 
an say is so arbitrary that making predi
tions

be
omes almost impossible. We have to remember that when we explore

the quantum world, we are not in the same situation as when we explore the


lassi
al world. We 
an make only sporadi
 experiments, and just 
olle
t data

here and there. Instead, when we observe the world around us, the observed

obje
t emits a pra
ti
ally in�nite number of photons, whi
h are 
olle
ted by

our eyes, or instruments, in a �nite amount of time, and ea
h photon is like

an individual experiment. Be
ause of this, we do not worry so mu
h about


onstraining the physi
al laws a priori, be
ause the experimental observation

is so powerful that it 
onstrains them for us a posteriori. On the other hand,

if we did not have a way to sele
t 
lasses of theories and intera
tions a priori

in quantum �eld theory, we would not be able to get anywhere.

All this is �ne, but prompts a dilemma: why should nature arrange itself

so as to make us 
apable of investigating it? And isn't it a really twisted

assumption to require that the observable intera
tion be built starting from

a lo
al �
lassi
al� a
tion that may have no dire
t 
onne
tion with the exper-

imental observation of the 
lassi
al world?

Well, su
h an involved prin
iple is all that remains of the 
orresponden
e

prin
iple. We 
all S the �
lassi
al a
tion� not be
ause it has something to do

with 
lassi
al phenomena, but be
ause it is the starting point of a pro
ess of

quantization. Sin
e we 
annot have a dire
t intuition of the quantum world,

the best we 
an hope is to be able to quant-ize a phantom of the 
lassi
al
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world. If we did not even have this 
han
e, we would probably have no way

to make progress in high-energy physi
s.

After properly formulating lo
al, perturbative, renormalizable quantum

�eld theory, we will be ready to explore more general quantum �eld theories,

in
luding the nonrenormalizable and the nonlo
al ones. What we stress here

is that if we make a too long 
on
eptual jump at the beginning, we risk to

plunge into the domain of absolute arbitrariness. We have to start from what

is working for sure, or has most 
han
es to work, and depart from that little

by little.
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Chapter 2

Renormalization

We have seen that the perturbative expansion produ
es ill de�ned integrals,

su
h as (1.49). This is the �rst serious problem of the �
reative approxima-

tion� we undertook in the previous 
hapter. Despite what may appear at �rst

sight, it is not so di�
ult to over
ome this di�
ulty. It is useful to 
ompare

this situation to the situation of a mathemati
ian in front of an integral over

the real line, ∫ +∞

−∞
dx f(x). (2.1)

Written like this, this expression has no intrinsi
 meaning, and needs to be

de�ned. Riemann gives us a natural attempt to de�ne it by means of the

improper integral

lim
Λ→∞

∫ +Λ

−Λ
dx f(x). (2.2)

Pre
isely, a �
uto�� Λ is inserted, to repla
e the original integral (2.1) into

a de�nite one. After 
al
ulating the de�nite integral, the limit Λ → ∞ is

studied. If the limit exists, the integral is 
onvergent. If the limit does not

exist, the integral is divergent.

In quantum �eld theory we do not have to de�ne one integral, but a

theory, whi
h 
ontains an in�nite number of integrals, one for ea
h diagram.

Di�erent diagrams may be related to one another by 
ertain identities. Phys-

i
al quantities involve, in general, sums, produ
ts and 
onvolutions of inte-

grals. If a single integral does not 
onverge, the reason may simply be that

we have isolated that integral from the rest of the theory in an in
onvenient
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way. This happens, for example, when the �divergen
e� disappears by 
hang-

ing variables (�elds, spa
etime 
oordinates or momenta, 
ouplings and any

other parameter of the theory), i.e. by performing all sorts of operations that

normally do not 
hange the physi
s. When that is the 
ase, the divergen
e

is not a problem, but just a blunder due to an unfortunate parametrization

of the theory.

Instead of taking the limit Λ→∞ integral by integral, right after insert-

ing the 
uto�, we postpone this operation till the physi
al quantities have

been fully worked out. In the meantime, we take the liberty to perform a

number of �almost inno
uous� operations, whi
h means move the Λ diver-

gen
es around, from one quantity to another, by performing 
hanges of �eld

variables and reparametrizations. Before 
laiming that our theory is ill de-

�ned, we want to take full advantage of the freedom we have. It is not 
orre
t

to view the single integral as an improper integral: it is 
orre
t to view the

whole theory as an �improper theory�.

Thus, we have to answer the following question: is there a rearrangement

based on reparametrizations and �eld rede�nitions after whi
h the theory

admits the Λ→∞ limit?

The insertion of a 
uto� is 
alled regularization, the rearrangement of the

Λ divergen
es that allows us to a
hieve our goal is 
alled renormalization. Of


ourse, we will have to prove that the physi
al results do not depend on the

way we regularize and renormalize our theory.

The 
uto� is a useful tool to 
lassify the divergen
es. In prin
iple, it may

not be stri
tly ne
essary to introdu
e it, and in the literature there exist

several regularization-independent approa
hes that do not make expli
it use

of a 
uto�. On the other hand, working with a 
uto� is very 
onvenient,

be
ause it helps us keep tra
k of what we do when we move the divergen
es

around. The goal of the rearrangement is to identify the right pla
es of the

divergen
es, so that, after moving those �in�nities� to their right destinations,

the limit Λ→∞makes sense in all the physi
al quantities, but not ne
essarily

in the single integrals and the quantities that are physi
ally meaningless. If

this program works, we obtain a 
onsistent (perturbative) de�nition of the

lo
al quantum �eld theory.

De�nition 1 A theory is 
alled 
onvergent if, possibly after a reparametriza-

tion, all the physi
al quantities admit the limit Λ→∞. Otherwise it is 
alled

divergent.
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The de�nition of 
onvergent theory is not equivalent to the de�nition of

�renormalizable� theory. We will appre
iate the di�eren
e later.

The 
uto� (2.2) is the simplest and most intuitive way to smooth out the

singularities. It amounts to state that the domain of integration is bounded

to momenta that have a modulus smaller than Λ. Clearly, this tri
k makes

every integral 
onvergent at �nite Λ. For example, the two-point fun
tion

GB(x, y) is divergent at 
oin
iding points. At �nite Λ we �nd

GB(x, x) =

∫

|p|≤Λ

d4p

(2π)4
1

p2 +m2
=

1

16π2

[
Λ2 −m2 ln

(
1 +

Λ2

m2

)]

=
1

16π2

[
Λ2 −m2 ln

Λ2

m2
+m2O

(
m2

Λ2

)]
. (2.3)

When Λ is sent to in�nity, we have a quadrati
 divergen
e, whi
h is the

term proportional to Λ2
, plus a logarithmi
 divergen
e, whi
h is the term

proportional to ln Λ, plus �nite 
ontributions.

Divergen
es o

ur at large momenta, or, equivalently, at 
oin
iding points.

They are basi
ally due to the lo
ality of our theories. If we were satis�ed with

nonlo
al, rather than pointlike, intera
tions, then we 
ould easily 
onstru
t

theories with no divergen
es. However, that is not our purpose, be
ause, as

we have remarked at the end of the previous 
hapter, nonlo
alities may open

that door to a huge arbitrariness. It is better to �rst deal with divergen
es

in lo
al theories, then investigate nonlo
al theories. Besides, we have already

said that the divergen
es of isolated integrals are not the true problem: it

would be a mistake to throw away theories just be
ause they look divergent

at �rst sight.

De�nition 2 Given a theory having Feynman rules F , a regularization is

any deformation FΛ of the Feynman rules that gives sense to all the individual

integrals generated by the perturbative expansion, and is su
h that FΛ gives

ba
k F when the deformation is swit
hed o�.

We stress that the regularization does not need to be physi
al, be
ause

the 
uto� must be eventually removed. A
tually, the most 
ommon regu-

larization te
hniques are unphysi
al, in the sense that regularized theories

are not physi
ally a

eptable as quantum �eld theories per se, be
ause they

violate some physi
al prin
iple. The 
uto� is an example of unphysi
al reg-

ularization, sin
e it violates unitarity. Indeed, it ex
ludes the 
ontributions
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of high frequen
ies from the integrals, while unitarity says (loosely speaking)

that the set of parti
les that 
ir
ulate in the loop must 
oin
ide with the set

of ingoing and outgoing parti
les.

On the other hand, the violation of lo
ality does not sound like the viola-

tion of a physi
al prin
iple, so a theory regularized in a nonlo
al way might

well be physi
al in its own right. Yet, we stress again that the intrinsi
 ar-

bitrariness of nonlo
al theories makes us postpone their investigation to the

very end. For the moment, the problems we �nd in lo
al theories are rather

wel
ome, be
ause they give us hope to sele
t the set of theories that are

admitted a priori. If the sele
tion is powerful enough we might be able to

make predi
tions that 
an be su

essfully 
ompared with experiments.

It may be obje
ted that inserting a 
uto� à la Riemann may not be the

smartest 
hoi
e. The Lebesgue integral is known to be an ex
ellent gener-

alization of the Riemann integral, and supersedes it in many way. So, the

natural question is: 
an we regularize quantum �eld theory à la Lebesgue?

Unfortunately, nobody has pursued this dire
tion, so far. Nevertheless, there

exists a regularization te
hnique that very well �ts the needs of perturbative

quantum �eld theory. This is the dimensional regularization.

2.1 Dimensional regularization

The dimensional regularization is a regularization te
hnique based on the


ontinuation of the dimension of spa
etime to 
omplex values. We re
all

that, as awkward as this 
on
ept may sound at �rst, we just need to provide

a 
onsistent formal 
onstru
tion, and equip it with a set of axioms that

allow us to make manipulations and get ba
k to real numbers in the physi
al

predi
tions.

Consider an integral I4 in four dimensions, in momentum spa
e. Call

the integrated momentum p and the external momenta k. Assume that the

integrand is Lorentz invariant in Minkowski spa
etime, and a rational fun
-

tion. To dodge a number of nuisan
es that are not important for the present

dis
ussion, we still 
hoose to work in the Eu
lidean framework. There, the

integrand is invariant under rotations, and 
an be expressed as a fun
tion f

of p2 and the s
alar produ
ts p · k:

I4(k) =
∫

d4p

(2π)4
f(p2, p · k).
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An analyti
 integral ID(k) in 
omplex D dimensions 
an be asso
iated with

I4 as follows. Repla
e the four-dimensional integration measure d4p with

a formal D-dimensional measure dDp, and in
lude a (2π)D in the denom-

inator for 
onvenien
e, instead of (2π)4. Repla
e pµ and kµ with formal

D-dimensional ve
tors inside the integrand. This gives

ID(k) =
∫

dDp

(2π)D
f(p2, p · k). (2.4)

We want to de�ne the analyti
 integral in D dimensions so that it 
oin
ides

with the ordinary integral Id(k) when D takes integer values d and Id(k) is

onvergent. When Id(k) is not 
onvergent, we want to use ID(k) to 
lassify

its divergen
e.

To a
hieve this goal, we start by writing the analyti
 integral ID(k) in
spheri
al 
oordinates. The measure reads

∫
dDp=

∫ ∞

0
pD−1dp×

×
∫ 2π

0
dθ1

∫ π

0
dθ2 sin θ2 · · ·

∫ π

0
dθD−1 sin

D−2 θD−1,

any time D is integer. When L is integer and greater than one, we also have

∫ 2π

0
dθ1

∫ π

0
dθ2 sin θ2 · · ·

∫ π

0
dθL−1 sin

L−2 θL−1 1 =
2πL/2

Γ
(
L
2

) ,

whi
h is the total solid angle in L dimensions.

Sin
e the external momenta k are �nitely many, be
ause a Feynman dia-

gram has a �nite number of external legs, the integrand of (2.4) depends on

�nitely many angles θD−L, · · · , θD−1. The number D is still unspe
i�ed and

for the time being we 
an imagine that it is integer and su�
iently large, in

any 
ase larger than L. Then we 
an write

ID(k) =
1

2D−1π(D+L)/2Γ
(
D−L
2

)
∫ ∞

0
dp×

×
∫ π

0
dθD−L

∫ π

0
dθ2 · · ·

∫ π

0
dθD−1p

D−1f̄(p, θ1 · · · θL,D). (2.5)

The fun
tion f̄ also in
ludes the fa
tors sini−1 θi, i = D − L, . . . D − 1.

Now, the expression on the right-hand side of (2.5) is meaningful for

generi
 
omplex D. Assume that there is an open domain D in the 
omplex
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plane where the integral ID(k), written as in (2.5), is well-de�ned. Evaluate

ID(k) in D. Then, analyti
ally 
ontinue the fun
tion ID(k) from D to the

rest of the 
omplex plane. The value of this fun
tion at D = 4, if it exists,

is the physi
al value of the integral I4(k). If it does not exist, the fun
tion

ID(k) has poles around D = 4. Su
h poles 
lassify its divergen
es.

For example,

ID(m) ≡
∫

dDp

(2π)D
1

p2 +m2
=

1

2D−1πD/2Γ
(
D
2

)
∫ ∞

0
dp

pD−1

p2 +m2
. (2.6)

The integral is well-de�ned in the strip 0 < ReD < 2. The analyti
 
ontin-

uation gives (see Appendix A, formula (A.5))

Γ
(
1− D

2

)
mD−2

(4π)D/2
=

1

16π2

[
−2m2

ε
+m2

(
ln
m2

4π
− 1 + γE

)
+O(ε)

]
, (2.7)

where γE = 0.5772... is the Euler-Mas
heroni 
onstant. The right-hand side

of formula (2.7) is the expansion around four dimensions, having written

D = 4− ε and used formula (A.8).

Observe that the term m2 lnm2

oin
ides with the one of (2.3). The

logarithmi
 divergen
es of (2.3) and (2.7) 
oin
ide after identifying lnΛ with

1/ε. Indeed, for large momenta we have

∫

|p|>δ

dDp

(2π)D(p2)2
∼ 1

8π2ε
+ �nite,

∫

δ6|p|6Λ

d4p

(2π)4(p2)2
∼ 1

8π2
ln Λ,

where δ is an infrared 
uto�. The other 
ontributions to (2.3) and (2.7) di�er

from ea
h other. In parti
ular, (2.7) 
ontains no analogue of the quadrati


divergen
e Λ2
. Di�eren
es and similarities will be
ome 
learer later.

What happens when the integral, expressed in the form (2.5) does not

admit a domain of 
onvergen
e D? Or when it admits more dis
onne
ted

domains of 
onvergen
e?

First, observe that the Feynman rules of a lo
al quantum �eld theory


an only give rational integrands. Then, if the domain of 
onvergen
e D
exists, it is always unique (a strip X < ReD < Y ), whi
h ensures that

the analyti
 
ontinuation is also unique, as well as the value of the integral

in D dimensions. The situation where an integral admits two dis
onne
ted


onvergen
e domains 
annot o

ur.

If an integral does not admit a 
onvergen
e domain, assume that we 
an

de
ompose the integrand f into a �nite sum of integrands fi, su
h that ea
h of

14B1 Renorm



2.1 Dimensional regularization 63

them admits its own domain of 
onvergen
e Di. Then we de�ne the integral

of f as the sum of the integrals of ea
h fi. For example, the integrand f ≡ 1

does not admit a domain of 
onvergen
e. However, writing

1 =
p2 +m2

p2 +m2
= f1 + f2, f1 =

p2

p2 +m2
, f2 =

m2

p2 +m2
,

we see that f1 and f2 admit the domains of 
onvergen
e −2 < ReD < 0 and

0 < ReD < 2, respe
tively. We thus �nd

∫
dDp

(2π)D
f1 =

DmDΓ
(
−D

2

)

2D+1πD/2
,

∫
dDp

(2π)D
f2 = m2ID(m).

Summing the two 
ontributions, we dis
over that the analyti
 integral of one

is a
tually zero. The same integral, treated with the 
uto� method, behaves

like Λ4
. We learn that the dimensional regularization kills every powerlike

divergen
e. It is sensitive only to the logarithmi
 divergen
es, whi
h manifest

themselves as poles in 1/ε.

With exa
tly the same pro
edure we 
an 
al
ulate the analyti
 integral

of (p2)α, for every 
omplex α: we �nd again 0. More generally, let f(p) be a

rational fun
tion of p. Let αIR and αUV denote the exponents su
h that

f(p) ∼ (p2)αIR , f(p) ∼ (p2)αUV ,

for p→ 0 and p→∞, respe
tively. De
ompose the integrand as

f(p)

(
p2 +m2

p2 +m2

)n
=

n∑

k=0

(
n

k

)
(m2)n−k

f(p)(p2)k

(p2 +m2)n
.

The integral of the k-th term of the sum is 
onvergent in the strip −2αIR −
2k < ReD < 2n−2αUV−2k, whi
h is non-trivial if its width 2n−2αUV+2αIR

is stri
tly positive. Note that the width is k independent. Thus, if we 
hoose

n su�
iently large, in parti
ular larger than αUV − αIR, all the terms of the

sum 
an be integrated.

Con
luding, we 
an always de
ompose the analyti
 integral of a rational

fun
tion as a �nite sum of integrals admitting nontrivial 
onvergen
e do-

mains. The 
onstru
tion easily extends to multiple integrals. Sin
e a lo
al

quantum �eld theory 
an only generate rational integrands, our arguments

prove that the dimensional-regularization te
hnique is able to de�ne every

integral we need.
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It remains to prove that our de�nition is 
onsistent. We do not provide

a 
omplete proof here, but 
olle
t the basi
 arguments and mention the key

properties of the integral.

First, the analyti
 integral is linear, and invariant under translations and

rotations. In parti
ular, the result does not depend on the 
enter of the

polar 
oordinates used to write (2.5). Moreover, the usual formulas for the

multiple integration and the 
hange of variables hold.

The rules of multiple integration deserve some 
omment. It is always safe

to split an analyti
 integral in D dimensions as the sequen
e of two analyti


integrals in D1 and D2 dimensions, with D = D1 +D2, whi
h are de�ned as

explained above: ∫
dDp

(2π)D
=

∫
dD1p1
(2π)D2

∫
dD2p2
(2π)D2

.

Sometimes, however, it is 
onvenient to split the integral as an analyti
 in-

tegral followed by an ordinary integral. For example,

∫
dp1
2π

∫
dD−1p2
(2π)D−1

,

∫
d4p1
(2π)2

∫
d−εp2
(2π)−ε

, (2.8)

and so on. This kind of de
omposition also works. However, the outside

integral is still to be meant in the analyti
 sense. Pre
isely, after evaluat-

ing the inside integral, we obtain the ordinary integral of a fun
tion f that

depends on D. That integral must be evaluated in a domain D where it


onverges, and analyti
ally 
ontinued to the rest of the 
omplex plane, as

explained above. If a domain D does not exist, it must be written as a �nite

linear 
ombination of ordinary integrals that separately admit domains of


onvergen
e Di. For example, if we use the se
ond split of (2.8) on ID(m),

we 
an represent it as a four-dimensional integral:

ID(m) =
Γ (1 + ε/2)

(4π)−ε/2

∫
d4p1
(2π)2

1

(p21 +m2)1+ε/2
.

Negle
ting the prefa
tor, whi
h tends to 1 when ε tends to zero, this formula


an be viewed as an alternative regularization of the integral. It does not


hange the integration per se and does not introdu
e a 
uto� for the large

momenta. Instead, it repla
es the propagator by

1

(p2 +m2)1+ε/2
,
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where ε is a 
omplex number. The integrals have to be 
al
ulated in a 
om-

plex domain of ε-values where they 
onverge, and then analyti
ally 
ontinued

to the rest of the 
omplex plane. In the literature, this pro
edure is known

as analyti
 regularization. The good feature of the analyti
 regularization is

that it deals with ordinary integrals all the time, so its 
onsisten
y is easier

to prove. We anti
ipate that, however, it breaks gauge invarian
e, while the

dimensional regularization manifestly preserves it. Using the analyti
 regu-

larization (or the 
uto� one), gauge invarian
e has to be re
overed by hand,

whi
h is possible, but requires a lot of e�ort. The dimensional regularization

is a sort of rationalized analyti
 regularization, whi
h knows how to rearrange

itself so as to preserve gauge invarian
e at no 
ost.

Finally, it is normally not safe to split an analyti
 integral as an ordinary

integral followed by an analyti
 integral, e.g.

∫
d−εp1
(2π)−ε

∫
d4p2
(2π)2

be
ause the ordinary integral might not 
onverge. Che
k it on ID(m).

2.1.1 Limits and other operations in D dimensions

Limits 
an be taken applying similar steps. Consider a fun
tion f(D,x). Its

limit f(D,x0) for x→ x0 is de�ned by applying the following two rules:

a) sear
h for an open set D of the 
omplex plane where the limit exists,


al
ulate it there, and analyti
ally 
ontinue the result to the 
omplex plane;

b) if f(D,x) admits no su
h D, sear
h for a de
omposition of f(D,x) into

a �nite sum

∑
i fi(D,x), su
h that ea
h fi(D,x) admits a 
omplex domain

Di where the limit exists, pro
eed as in point a) for ea
h fi(D,x) and sum

the analyti
 
ontinuations fi(D,x0).

As an example, 
onsider the integral

∫
dDp

(2π)D
Λ2

(p2 +m2)(p2 +m2 + Λ2)
. (2.9)

It 
an be evaluated by means of formula (A.2) of Appendix A, whi
h allows

us to express it as

∫ 1

0
dx

∫
dDp

(2π)D
Λ2

(p2 +m2 + xΛ2)2
.
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Then formula (A.4) gives

Λ2Γ
(
2− D

2

)

(4π)D/2

∫ 1

0
dx (m2 + xΛ2)D/2−2

=
Γ
(
1− D

2

)
mD−2

(4π)D/2

[
1−

(
1 +

Λ2

m2

)D/2−1
]
. (2.10)

If we take Λ to in�nity in the integrand of (2.9) we get (2.7). Now, 
onsider

the �nal result (2.10). It admits a regular limit only in the domain ReD < 2.

The analyti
 
ontinuation of the limit in su
h a domain gives again (2.7).

To inter
hange derivatives and integrals, derivatives and limits, and per-

form all sorts of similar operations, we must follow the same guideline, namely

a) de
ompose the fun
tion f into a �nite sum of fun
tions fi ea
h of whi
h

admits a domain Di of the 
omplex plane where the operation 
an be per-

formed ordinarily, on
e the integral is expressed in the form (2.5), b) ana-

lyti
ally 
ontinue ea
h result to the 
omplex plane, and c) sum the analyti



ontinuations.

2.1.2 Fun
tional integration measure

Now we prove an important property that is going to be useful in many


ontexts. We say that a fun
tion of the �elds and their derivatives, evaluated

at the same spa
etime point, is ultralo
al if it depends polynomially on the

derivatives of the �elds. It does not need to be polynomial in the �elds

themselves. We prove that

Theorem 1 In dimensional regularization, the fun
tional integration mea-

sure is invariant under every ultralo
al 
hange of �eld variables.

Proof. Let ϕi denote the �elds and ϕi → ϕi ′ the 
hange of �eld variables.

If the �eld rede�nition is ultralo
al, then there exists a �nite number of lo
al

fun
tions Fµ1···µnij su
h that

δϕi ′(x)

δϕj(y)
=

N∑

n=0

Fµ1···µnij (ϕ(x))∂µ1 · · · ∂µnδ(D)(x− y) (2.11)
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and the Ja
obian determinant 
an be written as

J = det

δϕi ′(x)

δϕj(y)
= exp

(
tr

δϕi ′(x)

δϕj(y)

)
= exp

(∫
dDx

δϕi ′(x)

δϕi(x)

)

= exp

(
N∑

n=0

∂µ1 · · · ∂µnδ(D)(0)

∫
dDxFµ1···µnij (ϕ(x))

)

Be
ause of (2.11), the exponent is a �nite sum of lo
al fun
tionals multi-

plied by δ(D)(0) or derivatives of δ(D)(0). Su
h expressions vanish using the

dimensional regularization, be
ause in momentum spa
e they read

∂µ1 · · · ∂µnδ(D)(0) = in
∫

dDp

(2π)D
pµ1 · · · pµn . (2.12)

Re
alling that the analyti
 integral is invariant under rotations, we obtain

zero when n is odd, but also zero when n is even. Indeed,

∫
dDp

(2π)D
pµ1 · · · pµ2k ∝ (δµ1µ2 · · · δµ2k−1µ2k + perms.)

∫
dDp

(2π)D
(p2)k = 0.

(2.13)

�

The theorem we just proved is very general. It also holds when the


hange of variables is not polynomial in the derivatives of the �elds, but 
an

be treated as a perturbative series of ultralo
al terms. Moreover, it holds

for all types of �elds: s
alars, fermions, ve
tors, tensors, as well as �elds

of higher spins. To in
lude �elds of di�erent statisti
s in the proof, it is

su�
ient to repla
e the determinant by the superdeterminant and the tra
e

by the supertra
e.

We say that a fun
tional is perturbatively lo
al if it 
an be perturba-

tively expanded as a series of terms that are polynomial in the �elds and

their derivatives, evaluated at the same spa
etime point. It is perturbatively

ultralo
al if it 
an be perturbatively expanded in a series of terms that are ul-

tralo
al. In some situations we may just use the terms �lo
al� and �ultralo
al�

in this extended sense.

2.1.3 Dimensional regularization for ve
tors and fermions

In the dimensional regularization the 
oordinates xµ, the momenta pµ, the

Krone
ker tensor δµν , and so on, have to be viewed as purely formal obje
ts.
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We need to give a 
onsistent set of operations to manipulate su
h obje
ts, so

that the four dimensional results are retrieved when D = 4. Similarly, ve
tor

�elds Aµ, the gamma matri
es γµ and spinors ψα also have to be 
onsidered

as formal obje
ts. In parti
ular, the gamma �matri
es� should not be viewed

as true matri
es, although we keep 
alling them with their usual name.

We de�ne the D-dimensional Dira
 algebra as a set of formal obje
ts γµ
that are equipped with a formal tra
e operation and satisfy the following

axioms:

{γµ, γν}=2δµν1, γ†µ = γµ, tr[γµ1 · · · γµ2n+1 ] = 0,

tr[AB] = tr[BA], tr[1] = f(D), f(4) = 4. (2.14)

In parti
ular, the formal tra
e is 
y
li
 and vanishes on an odd produ
t of

gamma matri
es. Using the formal Dira
 algebra, that is to say the �rst

axiom of (2.14), we 
an redu
e every tra
e to the tra
e of the identity, whi
h

we 
all f(D). The fun
tion f(D) must be equal to 4 in four dimensions, but

is otherwise arbitrary.

Spe
i�
ally, the axioms (2.14) imply

tr[γµ1 · · · γµ2n ] =
2n∑

i=2

(−1)iδµ1µitr[γµ2 · · · γ̂µi · · · γµ2n ], (2.15)

where γ̂µi means that the matrix γµi is dropped. The proof is identi
al to

the one in four dimensions. In parti
ular,

tr[γµγν ] = f(D)δµν ,

tr[γµγνγργσ] = f(D) (δµνδρσ − δµρδνσ + δµσδνρ) .

We also have the identities

γµγµ = D1, γµγργµ = (2−D)γρ.

It seems that in D dimensions everything pro
eeds smoothly, with minor

modi�
ations with respe
t to the usual formulas, but it is a
tually not true.

In four dimensions we 
an de�ne also a matrix γ5 that satis�es {γµ, γ5} =
0. A matrix with su
h properties does not exist in 
omplex D dimensions.

Another obje
t that 
annot be extended to D dimensions is the tensor εµνρσ ,

be
ause it would have a 
omplex number of indi
es! For the moment we
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ignore these problems and limit ourselves to non
hiral theories, where γ5 and

εµνρσ do not appear in the Lagrangian and the Feynman diagrams. Later,

we will see that the problem is related to the appearan
e of an important

�anomaly�. Another fa
t that is worth mentioning is that in odd dimensions

it 
an be in
onsistent to assume that the tra
e of an odd produ
t of gamma

matri
es vanishes. For example, in three dimensions the tra
e tr[σiσjσk℄,

where σi are the Pauli matri
es, is not zero, but proportional to the tensor

εijk. There exist modi�ed versions of the dimensional regularization that

bypass these di�
ulties. We will introdu
e them when needed.

The dimensionally regularized versions of the models studied so far have

formally identi
al Feynman rules (1.50), (1.103) and (1.105). However, for

D 6= 4 the 
ouplings are dimensionful even when they are dimensionless in

D = 4. It is 
onvenient to rede�ne them in a dimensionless way, by isolating

suitable powers of an energy s
ale µ. For example, the Lagrangians (1.38)

and (1.104) be
ome

S(ϕ) =

∫
dDx

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

λµε

4!
ϕ4

)
(2.16)

and

S(ϕ,ψ) =

∫
dDx

(
1

2
(∂µϕ)

2 + ψ̄
(
/∂ + gµε/2ϕ

)
ψ +

λµε

4!
ϕ4

)
, (2.17)

respe
tively. In the new parametrization, both g and λ are dimensionless in

arbitrary D, and the Feynman rules are (1.50) and (1.105) with the repla
e-

ments g → gµε/2 and λ→ λµε.

2.2 Divergen
es and 
ounterterms

Now that we know that ea
h diagram is asso
iated with a well regularized

integral, we 
an study the general properties of the diagrammati
s.

Consider a diagram G with V verti
es, E external legs and I internal legs.

Assign an independent momentum to ea
h leg, internal and external. In total,

this gives I + E momenta. On
e we impose the momentum 
onservation at

ea
h vertex, we remain with I+E−V independent momenta. Now, observe

that the external legs 
ontain E− 1 independent momenta, be
ause the Eth

momentum is determined by the global momentum 
onservation. Therefore,
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the diagram G 
ontains I + E − V − (E − 1) = I − V + 1 = L independent

internal momenta, and the integral asso
iated with G is performed over them.

We 
all L the number of loops of the diagram. It satis�es topologi
al formula

L− I + V = 1, (2.18)

whi
h holds for every diagram, in every theory. It is 
alled topologi
al,

be
ause it 
oin
ides with Euler's formula for simple polyhedra, namely

v − e+ f = 2

where v is the number of verti
es, e is the number of edges and f is the

number of fa
es of the polyhedron. The 
orresponden
e with (2.18) is v = V ,

e = I and f = L + 1. Indeed, dropping the external legs and adding the

�loop at in�nity�, whi
h is the (L+1)-th fa
e, a graph be
omes a generalized

polyhedron, namely a polyhedron whose fa
es are not ne
essarily �at (whi
h

still satis�es Euler's formula).

Another very general fa
t is that the expansion in the number of loops


oin
ides with the expansion in powers of ~. Although we have set ~ = 1

so far, we 
an easily restore the ~ dependen
e by writing the generating

fun
tionals Z(J) and W (J) as

Z(J) =

∫
[dϕ] exp

(
−1

~
S(ϕ) +

∫
Jϕ

)
= exp

(
1

~
W (J)

)
,

while Γ(Φ) is de�ned as before. In the new Feynman rules a propagator gets

a fa
tor ~ and a vertex gets gets a fa
tor 1/~. Therefore, ea
h diagram is

multiplied by a fa
tor

~
I−V =

~L

~
,

having used (2.18). Diagrams 
ontribute to Z in the usual way. If they are


onne
ted they 
ontribute to W/~, be
ause Z = exp(W/~). If they are irre-

du
ible they 
ontribute to −Γ/~. We thus see that the L-loop 
ontributions

to W and Γ are multiplied by ~L.

Consider the �ϕNd theory�, whi
h is the d-dimensional s
alar �eld theory

with intera
tion ϕN , whi
h has the a
tion

S(ϕ) =

∫
ddx

(
1

2
(∂µϕ)

2 +
m2

2
ϕ2 + λ

ϕN

N !

)
.
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For the moment we do not need to 
ontinue the physi
al dimension to 
om-

plex values. Let [O] denote the dimension of an obje
t O in units of mass.

Coordinates have dimension −1, while momenta have dimension 1. Sin
e the

a
tion is dimensionless, the Lagrangian must have dimension d. From the

kineti
 term, or the mass term, we 
an read the dimension of ϕ. Then, we


an read the dimension of λ from the vertex. We �nd

[x] = −1, [∂] = 1, [ϕ] =
d

2
− 1, [λ] = N

(
1− d

2

)
+ d. (2.19)

Consider again a diagram G with V verti
es, E external legs and I in-

ternal legs. Sin
e N legs are atta
hed to ea
h vertex, we have NV legs in

total. Of these, E exit the diagram and 2I, 
onne
ted in pairs, build the

internal legs, ea
h of whi
h is atta
hed to two verti
es. Therefore, we have

the identity

E + 2I = NV. (2.20)

Calling the loop momenta pi, the integral asso
iated with the Feynman dia-

gram has the form

IG(k,m) =

∫ L∏

i=1

ddpi
(2π)d

L∏

i=1

1

(pi + ki)2 +m2

V−1∏

j=1

1

(∆pj + k′j)
2 +m2

, (2.21)

where k and k′ are linear 
ombinations of external momenta, with 
oe�
ients

±1. Moreover, the ∆pjs are nontrivial linear 
ombinations of the integrated

momenta p with 
oe�
ients ±1. We have used (2.18) to organize the inte-

grand in the way shown.

We need to 
he
k the 
onvergen
e of the integral in all regions of inte-

gration. Sin
e we are in the Eu
lidean framework, the integral is regular for

�nite values of the momenta p. We just need to study its behavior when the

momenta tend to in�nity in all possible ways. It is su�
ient to 
onsider the

following situations: i) let the momenta of all internal legs tend to in�nity

with the same velo
ity, or ii) keep the momenta of some internal legs �xed.

A singularity that o

urs in 
ase i) is 
alled ultraviolet overall divergen
e. A

singularity that o

urs in 
ase ii) is 
alled ultraviolet subdivergen
e. Sin
e

in this book we treat only ultraviolet divergen
es, we omit to spe
ify it from

now on.

Overall divergen
es are studied by res
aling the integrated momenta p

with a fa
tor λ,

pi → λpi, (2.22)
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and then sending λ to in�nity. Subdivergen
es are studied by performing

the res
aling (2.22) with the 
onstraint that the momenta of some internal

legs are kept �xed. It 
an be shown that on
e the divergen
es due to the two

types of limits i) and ii) are 
ured, the integral be
omes 
onvergent. In other

words, all other ways to send the momenta to in�nity are then automati
ally


ured, be
ause they amount to some 
ombinations of the limits i) and ii).

For example, if some momenta p′i are res
aled by a fa
tor λ, and the other

momenta p′′i by a fa
tor λ2, then sending λ to in�nity is like �rst res
aling

the p′′i s at �xed p
′
is, then res
aling the p′is.

The subdivergen
es are the overall divergen
es of a suitable subdiagram

G
sub

of G. Pre
isely, G
sub

is the irredu
ible part of the diagram obtained

by 
utting the G internal legs whose momenta are kept �xed. Clearly, if

G is irredu
ible, as we are going to assume from now on, the subdiagrams

G
sub

have fewer loops, be
ause when we 
ut one or more G internal lines

we ne
essarily break some loop. Moreover, sin
e the perturbative expansion,

namely the expansion in powers of ~, 
oin
ides with the loop expansion, the

divergen
es 
an be subtra
ted algorithmi
ally. In other words, when we deal

with an L-loop diagram, we 
an assume to be already equipped with the set

of 
ounterterms that take 
are of its subdiagrams G
sub

. For the moment, we

ignore the subdivergen
es and 
on
entrate on the overall divergen
es.

Let us 
ompute the dimension of IG(k,m). The momentum integration

measure ddp has dimension d, while the propagators have dimension −2.
Using (2.18) and (2.20), we have

[IG(k,m)] = Ld− 2I = V

[
N

(
d

2
− 1

)
− d
]
− E

(
d

2
− 1

)
+ d. (2.23)

Make the res
aling (2.22) and 
onsider the behavior of the integral when λ

tends to in�nity. Let ω(IG) denote the power of λ in this limit. In our present


ase, given the form of the integral (2.21), we have ω(IG) = [IG]. However,
if some external momentum or a mass fa
torizes, we may have ω(IG) < [IG].
In general, we have the inequality ω(IG) ≤ [IG]. We 
all ω(IG) the degree of
divergen
e of the diagram G. If ω(IG) < 0 and there are no subdivergen
es,

then the integral is ultraviolet 
onvergent, be
ause it is 
onvergent in all the

regions of integration. Instead, if ω(IG) ≥ 0, or ω(IG) < 0 but there are

subdivergen
es, the diagram is potentially ultraviolet divergent.

To begin with, 
onsider a one-loop diagram. Sin
e it has no subdiagrams,

there 
an be only an overall divergen
e, but no subdivergen
es. Di�erentiate
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the diagram one time with respe
t to an external momentum k or a mass m,

and observe that

∂

∂kµ

1

(p+ k)2 +m2
=− 2(p+ k)µ

[(p+ k)2 +m2]2
,

∂

∂m

1

(p+ k)2 +m2
=− 2m

[(p+ k)2 +m2]2
.

The di�erentiated diagram has a smaller degree of divergen
e:

ω

(
∂IG
∂K

)
≤
[
∂IG
∂K

]
= [IG]− 1,

where K is kµ or m. Repeating the argument, we obtain

ω

(
∂n+rIG

∂kµ1 · · · ∂kµn∂mr

)
≤
[

∂n+rIG
∂kµ1 · · · ∂kµn∂mr

]
= [IG]− n− r.

If n + r is su�
iently large, [IG] − n − r be
omes negative. Thus, if we

di�erentiate the integral a su�
ient number of times with respe
t to its ex-

ternal momenta and/or the masses, the integral be
omes overall 
onvergent.

Said in equivalent words, the di�erentiation kills the overall divergent part.

When we integrate ba
k the result, we dis
over that the divergent part must

be polynomial in the masses and the external momenta. This is the 
ru
ial

property of renormalization, and is 
alled lo
ality of the 
ounterterms, be-


ause the Fourier transform of a polynomial of the momenta is a �nite sum

of delta fun
tions and derivatives of delta fun
tions, whi
h are distributions

lo
alized at a single point.

Now we des
ribe how to subtra
t the divergent part of a diagram. Call

the integrand f(p, k,m) and 
onsider

IGR
(k,m) =

∫
ddp

(2π)d

(
f(p, k,m)−

ω̄∑

n=0

1

n!
kµ1 · · · kµn

∂n0 f(p, k,m)

∂kµ1 · · · ∂kµn

)
,

(2.24)

where ω̄ is to be determined, and the subs
ript 0 in ∂n0 means that after

taking the n derivatives with respe
t to k, k is set to zero. The sum in (2.24)


olle
ts the �
ounterterms�. They remove the divergen
es from the integral.

In pra
ti
e, we subtra
t the �rst ω̄ terms of the Taylor expansion of the

integrand around vanishing external momenta. The integrand of IGR
is still
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a rational fun
tion, and it is proportional to ω̄ + 1 powers of the external

momenta. Thus, we 
an write

IGR
(k,m) = kµ1 · · · kµω̄+1

∫
ddp

(2π)d
fµ1···µω̄+1(p, k,m),

for some other rational fun
tions fµ1···µω̄+1 . Now,

ω(IGR
) ≤ [IGR

]− ω̄ − 1 = [IG]− ω̄ − 1.

If we 
hoose ω̄ = [IG], we obtain ω(IGR
) < 0, whi
h means that IGR

is

overall 
onvergent.

For example, 
onsider the one-loop 
orre
tion to the four-point fun
tion

in the theory ϕ4
4. We have the sum of the three diagrams

1
2 +1

2 +1
2

(2.25)

ea
h of whi
h has the form (λ2/2)I(k,m), where

I(k,m) =

∫
d4p

(2π)4
1

p2 +m2

1

(p+ k)2 +m2
, (2.26)

with di�erent 
ombinations k of the external momenta. The integral (2.26)

has ω = 0 and a logarithmi
 divergen
e. The subtra
ted integral reads

IR(k,m) = −kµ
∫

d4p

(2π)4
2pµ + kµ

(p2 +m2)2((p + k)2 +m2)
,

whi
h is 
learly 
onvergent.

We have su

essfully subtra
ted the one-loop integrals, but does our pro-


edure make physi
al sense? Or did we just arbitrarily 
hange the theory we

started with? Here enters the 
ru
ial property of 
ounterterms, their lo
ality.

Formula (2.24) shows that in momentum spa
e the 
ounterterms are poly-

nomial in the external momenta. For example, the 
ounterterm for (2.26)

is

R(k,m) ≡ IR(k,m)− I(k,m) = −
∫

d4p

(2π)4
1

(p2 +m2)2
, (2.27)
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whi
h is k independent, i.e. just a (divergent) 
onstant.

While a diagram is a nonlo
al fun
tion of the external momenta, its

divergent part is lo
al. Thanks to this property, it looks like a vertex, or

an inverse propagator. For this reason, it 
an be subtra
ted by adding ad

ho
 lo
al terms to the a
tion. To do this, however, we have to use a spe
i�


regularization, be
ause the integral (2.27) is meaningless without a 
uto�. If

we use a spe
i�
 regularization, for example the dimensional one, then we


an 
onsistently separate I and R, and move the 
ounterterms around at

will. We stress that the use of an expli
it regularization is not ne
essary to

de�ne perturbative quantum �eld theory. It is however very 
onvenient to

keep tra
k of what we are doing.

So, let us swit
h to the dimensional regularization. The integral of (2.26)

is promoted to D dimensions as

ID(k,m) =

∫
dDp

(2π)D
1

p2 +m2

1

(p+ k)2 +m2
. (2.28)

and ea
h λ gets multiplied by µε. Using Feynman parameters, namely for-

mula (A.2), we 
an rewrite the integral as

∫ 1

0
dx

∫
dDp

(2π)D
1

((p+ kx)2 +m2 + k2x(1− x))2
. (2.29)

Then, we 
an make a translation p→ p− kx and use (A.4). We get

λ2µ2ε

2
ID(k,m) =

λ2µ2εΓ
(
2− D

2

)

2(4π)D/2

∫ 1

0
dx
(
k2x(1− x) +m2

)D/2−2

=
λ2µε

16π2ε
+
λ2µε

32π2

(
2− γE + ln

4πµ2

m2
(2.30)

−2
√

1 +
4m2

k2
ar
sinh

√
k2

4m2

)
+O(ε).

The 
ounterterm (2.27) be
omes

−λ
2µ2ε

2

∫
dDp

(2π)D
1

(p2 +m2)2
=−λ

2

2

Γ
(
2− D

2

)

(4π)D/2
µε
( µ
m

)ε

=−λ2µε
(

1

16π2ε
+ c1

)
, (2.31)
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where the 
onstant c1 is �nite in the limit ε→ 0. We see that the divergent

part does not depend on the external momenta. Sin
e the diagrams of (2.25)

are three, and all of them have the same divergent part, we have to modify

the a
tion so as to subtra
t three times the divergent part of (2.31). This

result 
an be a
hieved by adding

∆L = 3λ2µε
(

1

16π2ε
+ c1

)
ϕ4

4!
(2.32)

to the Lagrangian. Note that the power µ2ε provided by the diagram, shown

in the �rst line of (2.30), has be
ome µε in the 
ounterterm (2.32), to mat
h

to dimensions 
orre
tly. The other fa
tor µε gets expanded in ε. As a 
onse-

quen
e, µ 
an enter logarithms in the right pla
es to make their arguments

dimensionless, su
h as in the se
ond line of (2.30).

Now we note that the 
onstant c1 appearing in (2.32) does not a
tually

need to be the one of (2.31), be
ause what is important is to subtra
t the

divergent part. Thus, the c1 of formula (2.32) 
an be arbitrary. Roughly

speaking, when we subtra
t in�nity, we 
an as well subtra
t in�nity plus

any �nite 
onstant. Later on we will see that the physi
al quantities do not

depend on this arbitrariness.

The 
orre
tion (2.32) produ
es an extra vertex

= −3λ2µε

 1
16π2ε

+ c1



(2.33)

that must be added to the Feynman rules. The vertex (2.33) 
arries an

additional (hidden) power of ~, sin
e it is of order λ2. Diagrammati
ally, it


ounts like a one-loop diagram, so it appears in the right pla
e to subtra
t

the divergen
es of (2.25). The �nite value of a single subtra
ted diagram of

(2.25) is thus

− λ2µε

16π2

(√
1 +

4m2

k2
ar
sinh

√
k2

4m2
− 1

2
ln

4πµ2

m2
+ c

)
, (2.34)

where c is an arbitrary �nite, k-independent 
onstant. We may as well assume

that c is independent of µ and m. The result admits a smooth massless limit

λ2µε

32π2

(
ln

4πµ2

k2
− 2c

)
, (2.35)
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whi
h 
an also be easily 
omputed from (2.28). Indeed, using (A.3) to do

the integral over x, the �rst line of (2.30) gives at m = 0

λ2µ2ε

2
ID(k, 0) =

λ2µ2εΓ
(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)D/2Γ(D − 2)

(
k2
)D/2−2

. (2.36)

Note again that the fa
tor in front of expression (2.35) is µε instead of µ2ε,

and that the argument of the logarithm 
ontains appropriate fa
tors of µ

that make it dimensionless.

The modi�
ation (2.32), whi
h subtra
ts the divergen
e away, does not

look so serious after all. In the end, it just amounts to rede�ning the 
oupling


onstant in front of ϕ4
. We are 
ertainly allowed to do that, sin
e we have

not atta
hed any physi
al meaning to λ, so far. This is the idea of renormal-

ization, and justi�es its name. It is the removal of the divergen
es by means

of rede�nitions of �elds and parameters. Note that it would not be possible

to a
hieve this goal if the 
ounterterms were not lo
al, sin
e the a
tion is

lo
al by assumption. At the same time, lo
ality alone is not su�
ient to

ensure that the divergen
es 
an be renormalized.

Consider for example the theory ϕ6
4. We write the intera
ting Lagrangian

as

LI = λ6µ
2εϕ

6

6!
,

where λ6 is a 
oupling 
onstant of dimension −2. At one loop we have

divergent diagrams su
h as

(2.37)

The 
orresponding integral is again proportional to ID(k,m). However, to

subtra
t this kind of divergen
e we need to modify the Lagrangian with a


ounterterm of the form

∆L = 35λ26µ
3ε

(
1

16π2ε
+ c1

)
ϕ8

8!
, (2.38)

where 35= 8!/(2!4!4!) is the number of nontrivial permutations of the exter-

nal legs. The modi�ed a
tion 
ontains an intera
tion, ϕ8
, that is not present

in the a
tion of the theory ϕ6
4. Therefore, (2.38 ) 
annot be absorbed into
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a simple rede�nition of the �elds and the 
ouplings, but demands a radi
al

modi�
ation of the theory, from ϕ6
4 to ϕ6

4 + ϕ8
4. Moreover, that modi�
a-

tion is not even su�
ient. Using two verti
es ϕ8
we 
an easily 
onstru
t

a one-loop diagram similar to (2.37), with 6+6 external legs. Again, it is

logarithmi
ally divergent and its divergent part 
an be subtra
ted only at

the pri
e of introdu
ing a vertex ϕ12
. We 
an go on like this inde�nitely: we

dis
over that the renormalization of divergen
es is possible only at the pri
e

of introdu
ing in�nitely many new verti
es and new independent 
ouplings.

Con
luding, the lo
ality of 
ounterterms is ne
essary, but not su�
ient,

to have 
ontrol on the divergen
es. We need to 
he
k that all the 
ountert-

erms have the form of the terms that are already 
ontained in the initial La-

grangian. When that happens, the divergen
es 
an be removed by rede�ning

the �elds and the 
ouplings, the subtra
tion of divergen
es is a stable pro-


edure and the �nal Lagrangian is a simple rede�nition of the initial one.

Otherwise, we 
an attempt to stabilize the Lagrangian, by adding new ad

ho
 lo
al terms. Next, we must 
he
k that a �nite number of su
h new terms

is su�
ient to stabilize the subtra
tion of divergen
es to all orders. If that

does not happen, the �nal Lagrangian 
ontains in�nitely many independent


ouplings and intera
tions.

The theories that 
ontain �nitely many verti
es and are stable under

renormalization are 
alled renormalizable. The theories that are not stable

under renormalization, be
ause they end up 
ontaining in�nitely many inde-

pendent terms, are 
alled nonrenormalizable. As we will prove, the theory

ϕ4
4 is renormalizable. We have already proved that the theory ϕ6

4 
annot be

stabilized, so it is nonrenormalizable.

Nonrenormalizable theories are des
ribed by nonpolynomial Lagrangians,

whi
h are the sums of lo
al terms with arbitrarily high powers of the �elds

and their derivatives. We have

L
nonren

=
1

2
(∂µϕ)

2 +
m2

2
ϕ2 +

∑

{m,n}

λ{m,n}

MX(m,n)

∏

i

(∂miϕni), (2.39)

where M is some energy s
ale and

X(m,n) =
∑

i

(
mi + ni

d− 2

2

)
− d

is 
hosen to make the 
ouplings λ{m,n} dimensionless. Nonrenormalizable

theories are problemati
 from the physi
al point of view. Their 
orrelation
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fun
tions depend on in�nitely many parameters, whi
h means, at the pra
ti-


al level, that in�nitely many measurements are ne
essary to determine the

theory 
ompletely, and make predi
tions that are valid at arbitrarily high

energies.

On the other hand, in most 
ases nonrenormalizable theories 
an be used

to make predi
tions at low energies. If a monomial O in the �elds and their

derivatives has dimension dO, then its insertion into a 
orrelation fun
tion

behaves like EdO at low energies, so the intera
ting Lagrangian behaves like

LI ∼ Ed
∑

{m,n}

λ{m,n}

(
E

M

)X(m,n)

.

We 
an have three typi
al 
ases.

1) If all the dimensionless 
ouplings λ{m,n} are of 
omparable orders at en-

ergies E ≪ M , only a �nite number of intera
tions is important. We then

say that almost all intera
tions be
ome negligible at low energies. However,

the number of intera
tions that are important grows with the energy and

be
omes in�nite at E ∼M .

2) A behavior like λ{m,n} ∼ X(m,n)−X(m,n)
for large m,n, ensures that

almost all the 
ouplings 
an be negle
ted in every energy range bounded

from above. The number of important 
ouplings grows with the energy and

be
omes in�nite only at E =∞.

3) A behavior like λ{m,n} ∼ X(m,n)X(m,n)
for large m,n, ensures that the

parameter λ{m,n} is negligible for energies

E ≪ M

X(m,n)
.

There exists no energy range where almost all 
ouplings 
an be negle
ted.

Intermediate types of behaviors 
an be tra
ed ba
k to these three 
ases.

The behaviors of the 
ouplings λ{m,n} are a priori unknown, but 
omparison

with experiments 
an suggest whether we are in the situations 1), 2) or 3).

Even in the worst 
ase, a nonrenormalizable theory may still have a non-

trivial predi
tive 
ontent. Indeed, even if the Lagrangian 
ontains in�nitely

many independent unknown parameters, there might still exist physi
al quan-

tities that just depend on a �nite subset of them. The hard part is to work out

those physi
al quantities and make experiments that are suitable for them.
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Stri
tly speaking, the di�eren
e between renormalizable and nonrenormal-

izable theories is that the former are always predi
tive, in an obvious way,

while the latter 
an be predi
tive, but only in a rather nontrivial way.

It is worth to stress that the nonrenormalizable theories are mu
h less

problemati
 from the mathemati
al point of view, where it does not really

matter whether the number of independent 
ouplings is �nite or in�nite.

Indeed, most renormalization theorems we are going to prove hold both for

renormalizable and nonrenormalizable theories

ϕ4
4 at one loop

Let us 
omplete the one-loop renormalization of the ϕ4
4 theory. Formula

(2.23) gives

ωG 6 4− E,
so the potentially divergent diagrams are those with ωG ≥ 0, i.e. E 6 4.

The renormalization of the four-point fun
tion has been dis
ussed above.

Sin
e the ϕ4
4 theory has a Z2 symmetry ϕ → −ϕ, the 
orrelation fun
tions

that 
ontain an odd number of insertions are identi
ally zero. Moreover,

the diagrams with zero external legs need not be 
onsidered, sin
e they 
an

always be subtra
ted by adding a 
onstant to the Lagrangian. We remain

with the one-loop 
orre
tion to the two-point fun
tion, whi
h is the se
ond

term on the right-hand side of (1.46) and gives the integral

− λµε

2

∫
dDp

(2π)D
1

p2 +m2
= λm2

(
1

16π2ε
− c2

)
, (2.40)

where the 
onstant c2 is regular for ε → 0. To subtra
t this divergen
e we

modify the a
tion by adding

∆′L = λm2

(
1

16π2ε
− c2

)
ϕ2

2
. (2.41)

Again, we 
an take an arbitrary �nite c2 here, di�erent from the one appear-

ing in (2.40). Colle
ting (2.32) and (2.41), the full one-loop renormalized

a
tion reads

S1(ϕ) =

∫
dDx

(
1

2
(∂µϕ)

2 +m2

(
1 +

λ

16π2ε
− λc2

)
ϕ2

2

+λµε
(
1 +

3λ

16π2ε
+ 3λc1

)
ϕ4

4!

)
. (2.42)
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More generally, the renormalized a
tion 
an be written as

SR(ϕ, λ,m, µ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 +m2Zm2
Zϕϕ

2

2
+ λµεZλ

Z2
ϕϕ

4

4!

)
,

(2.43)

where the 
oe�
ients

Zϕ=1 +O(λ2), Zm2 = 1 +
λ

16π2ε
− λc2 +O(λ2),

Zλ=1 +
3λ

16π2ε
+ 3λc1 +O(λ2), (2.44)

whi
h depend on λ and ε, are 
alled �renormalization 
onstants�. At one loop,

SR 
oin
ides with S1. If we 
olle
t the �eld and parameter rede�nitions into

the �bare� quantities

ϕB = Z1/2
ϕ ϕ, m2

B = m2Zm2 , λB = λµεZλ, (2.45)

then SR(ϕ, λ,m, µ) 
an be rewritten in bare form

SB(ϕB, λB,mB) ≡
∫

dDx

(
1

2
(∂µϕB)

2 +m2
B

ϕ2
B

2
+ λB

ϕ4
B

4!

)
. (2.46)

We see that the bare a
tion is exa
tly the 
lassi
al a
tion.

We have already observed that the 
onstants c1 and c2 of formula (2.42)

are arbitrary. Any time we subtra
t a pole 1/ε, we 
an equivalently subtra
t

1/ε plus a �nite 
onstant. This arbitrariness amounts to a �nite rede�nition

of the �elds and the parameters, whi
h has no physi
al signi�
an
e.

A spe
i�
 pres
ription to 
hoose su
h arbitrary 
onstants is 
alled sub-

tra
tion s
heme. For example, subtra
ting the �rst terms of the Taylor ex-

pansion around vanishing external momenta is a s
heme pres
ription. In

massless theories this pres
ription is not 
onvenient, be
ause it 
an originate

spurious infrared divergen
es. Then it is better, for example, to subtra
t the

�rst terms of the Taylor expansion around some nontrivial 
on�gurations of

the external momenta. We 
an even 
hoose di�erent 
on�gurations for dif-

ferent diagrams. A very popular s
heme, 
alled minimal subtra
tion s
heme,

amounts to subtra
t just the poles in ε, with no �nite parts atta
hed.

The 
onstants c1 and c2 parametrize the s
heme arbitrariness at one loop.

The residues of the poles 1/ε, on the other hand, are s
heme independent. For

example, 
omparing (2.3) and (2.7), we have remarked that the 
oe�
ients

14B1 Renorm



82 CHAPTER 2. RENORMALIZATION

of ln Λ and 1/ε 
oin
ide, as well as the term m2 lnm2
. Instead, the quadrati


divergen
es Λ2
end into the arbitrary 
onstant c2.

A few tri
ks 
an allow us to 
ompute the divergent parts quite easily,

taking advantage of their lo
ality. Consider for example the integral ID(k,m)

of formula (2.28). We know that its divergent part is a polynomial of degree

zero in k and m. Therefore, it just a 
onstant, and 
an be 
al
ulated by

setting k and m to the values we like. We 
annot put k = m = 0, however,

be
ause this a�e
ts the domain of integration in a nontrivial way: the rules

of the dimensional regularization do not allow us to ex
hange the integral

and the limits k → 0, m→ 0 in this 
ase. A better 
hoi
e is to keep m 6= 0

and put k = 0: sin
e the domain of integration is una�e
ted, the limit k → 0


an be safely taken inside the integral. We 
ould also keep k 6= 0 and put

m = 0, but the �rst 
hoi
e is more 
onvenient. Then, (2.28) be
omes a

standard integral (see Appendix A) and its divergent part 
an be worked out

immediately.

More generally, sin
e the divergent part of a diagram is a polynomial of

the external momenta k and the masses m, if we di�erentiate the integral

with respe
t to k and m, we 
an redu
e the degree of the polynomial to zero,

and then pro
eed as above. If we di�erentiate in all possible ways, we 
an

fully re
onstru
t the polynomial, i.e. the divergent part of the diagram.

Using these tri
ks,

Exer
ise 4 Compute the one-loop renormalization of the ϕ3
6 theory.

Solution. The renormalized a
tion reads

S(ϕ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 +
m2

2
Zm2Zϕϕ

2 + λµεZλZ
3/2
ϕ

ϕ3

3!
+m4µ−ε∆1ϕ

)
,

where ε = 3−D/2. At one loop the divergent diagrams are those with one,

two and three external legs. The tadpole is

−λµεΓ
(
1− D

2

)
mD−2

(4π)D/2
= −λm

4µ−ε

2(4π)3ε
+ �nite,

when
e

∆1 = −
λ

2(4π)3ε
.
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The self-energy is equal to the �rst line of (2.30). The di�eren
e is that

now we have to expand it around D = 6 instead of D = 4. We obtain the

divergent part

− λ2

12ε(4π)3
(
k2 + 6m2

)
,

whi
h gives

Zϕ = 1− λ2

12ε(4π)3
+O(λ4), Zm2 = 1− 5λ2

12ε(4π)3
+O(λ4). (2.47)

The divergent part of the 
orre
tion to the vertex 
an be 
al
ulated at

vanishing external momenta. We have

−
∫

dDp

(2π)D
λ3µ3ε

(p2 +m2)3
= −λ3µ3εΓ(3−D/2)

2(4π)D/2
(m2)D/2−3 = − λ3µε

2ε(4π)3
+�nite,

so the vertex renormalization 
onstant is

Zλ = 1− 3λ2

8ε(4π)3
+O(λ4). (2.48)

�

Most of the properties of the renormalization at one loop generalize to all

orders. Now we make some remarks about the renormalization at two loops,

whi
h help us introdu
e the proofs of all-order statements.

ϕ4
4 at two loops

We denote the verti
es provided by the one-loop 
ounterterms (2.32) and

(2.41) with a dot, as in (2.33). At two loops, we have diagrams that 
ontain,

in general, both subdivergen
es and overall divergen
es. For example, 
on-

sider the following two-loop 
orre
tions to the four-point fun
tion, given by

the diagrams

(b)

1
2

(c)

1
2

1
4

(a) (d)

1
2

(2.49)
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plus two permutations of ea
h. We begin by 
on
entrating on the �rst three

diagrams, sin
e the forth one is mu
h simpler t o deal with. The subdiver-

gen
es of the diagrams (a), (b) and (c) are subtra
ted by

1
2

(e)

1
2

(f )
(2.50)

The subdivergen
es of ea
h subdiagram of (a), (b) and (c) are given by one

third of (2.33). Moreover, (2.33) absorbs also a 
ombinatorial fa
tor 1/2,

whi
h is the 
ombinatorial fa
tor of the diagrams (2.25). It is 
onvenient to

de�ne separate 
ounterterms for the three diagrams (2.25), even if they are

equal in value. We do this by splitting the 
ounterterm (2.33) into the sum of

three equal 
ontributions, and using appropriate labels to remember whi
h

diagram they 
ure. So doing, we obtain

= + +
I X

(2.51)

Observe that the rules to 
ompute the 
ombinatorial fa
tors remain the

same after this splitting. If A is the value of a vertex with N external legs

and V is the number of times it appears in a diagram, its 
ontribution is

AV /(N !V V !). Now, if A is de
omposed as a sum

∑n
i=1 ai, the multinomial

formula ensures that ea
h �subvertex� 
ontributes with the same rule. Indeed

we have

AV

(N !)V V !
=

(
∑n

i=1 ai)
V

(N !)V V !
=
∑

{ni}

n∏

i=1

ani
i

(N !)nini!
, (2.52)

where the sum is taken over sets of non-negative nis su
h that

∑n
i=1 ni = V .

Note that it is not ne
essary that ea
h term ai of the sum be symmetrized

under the ex
hange of its external legs.

Now, 
onsider diagram (a) and its 
ounterterms:

1
4

+1
2 +1

2
(2.53)
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This sum is free of subdivergen
es. Indeed, the two subdiagrams of (a) are

of the �rst type of the list that appears on the right-hand side of (2.51).

Moreover, re
all that ea
h subdiagram 
arries a 
ombinatorial fa
tor 1/2,

whi
h explains why the 
ounterterms in (2.53) are 
orre
tly multiplied by

1/2 instead of 1/4.

Next, 
onsider diagram (b): the sum

+1
2 +1

2
1
2

I X

(2.54)

is also free of subdivergen
es. Observe that this time we use the se
ond and

third verti
es of (2.51), be
ause they both 
orrespond to the divergent sub-

diagram of (b). Again the 
ombinatorial fa
tors mat
h, taking into a

ount

the fa
tor 1/2 absorbed by the divergent subdiagram. Diagram (c) is treated

symmetri
ally to (b).

In 
on
lusion, the sums

s1 = (a) +
1

3
(e) +

1

3
(f), s2 = (b) +

2

3
(e), s3 = (c) +

2

3
(f). (2.55)

are all free of subdivergen
es. Therefore, so is the total t = s1 + s2 + s3 =

(a) + (b) + (c) + (e) + (f).

Sin
e s1, s2 and s3 are free of subdivergen
es, so are their derivatives

with respe
t to the external momenta and the masses. Now, a su�
ient

number of su
h derivatives does kill the overall divergen
es of s1, s2 and s3
and produ
es fully 
onvergent integrals. This proves that the divergent parts

of the subtra
ted integrals s1, s2 and s3 are polynomial in the masses and

the external momenta.

Let us expli
itly 
he
k this fa
t in s1. For simpli
ity, we work at m = 0.

Diagram (a) is very easy to 
al
ulate, sin
e it is basi
ally the square of any

diagram of (2.25). We have

(a) =
(−λ)3µε

4
(µεID(k, 0))2 .

Write

µεID(k, 0) =
a

ε
+ b ln

k2

µ2
+ c,
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where a, b and c are �nite for ε → 0. Their values 
an be read from the


al
ulations already made (in parti
ular, a = 1/(8π2)), but for what we are

going to say we do not need to do that. Ea
h 
ounterterm of (2.53) equals

−aλ2µε/(2ε), so

1

3
(e) =

1

3
(f) = − 1

2ε
aλ2µε

(−λµε
2

)
ID(k, 0).

Finally,

s1 = −
λ3µε

4

[(
a

ε
+ b ln

k2

µ2
+ c

)2

− 2
a

ε

(
a

ε
+ b ln

k2

µ2
+ c

)]
.

In the di�eren
e, the (nonlo
al) subdivergen
es

2
ab

ε
ln
k2

µ2
(2.56)

do subtra
t away and the surviving (overall) divergen
es are purely lo
al.

We �nd

s1 = −
λ3µε

4

(
−a

2

ε2
+ �nite part

)
, (2.57)

as expe
ted. This example, although very simple, is su�
ient to illustrate the

most general fa
ts. The subdivergen
es are in general nonlo
al, be
ause they

are �produ
ts� of a divergent part, originated by some subdiagram, times a

�nite (thus nonlo
al) part, due to the rest of the diagram. Subtra
ting some-

thing like (2.56) would really require to alter the original theory 
ompletely,

turning it into a nonlo
al theory. Fortunately, the subdivergen
es are auto-

mati
ally subtra
ted by the 
ounterterms asso
iated with the subdiagrams.

It remains to 
onsider the diagram (d) of (2.49). Its subdivergen
e is

subtra
ted by

(g)
(2.58)

where the dot denotes the 
ounterterm of (2.41). The sum s4 = (d) + (g) is


learly free of subdivergen
es.
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Consider now the two-loop 
orre
tions to the two-point fun
tion, whi
h

are given by the diagrams

1
3!

(k)

1
4

(h)
(2.59)

The 
ounterterms that subtra
t the subdivergen
es are

(c) (d)

1
2

1
2

(2.60)

whi
h vanish at vanishing masses, sin
e they are tadpoles. Diagram (h) has

two types of diverging subdiagrams, 
orresponding to both types of 
ontri-

butions (i) and (j). Instead, diagram (k) has a single type of subdiagram,

but it appears three times, sin
e freezing any internal line gives the same

result. The total t′ = (h) + (k) + (i) + (j) 
an be arranged as s5 + s6, where

s5 = (h) +
1

3
(i) + (j), s6 = (k) +

2

3
(i), (2.61)

are both free of subdivergen
es. Expli
itly, the (h) subdivergen
e due to the

bottom loop is subtra
ted by (i)/3, while the (h) subdivergen
e due to the

top loop is subtra
ted by (j). This (i)/3 is obtained using the middle vertex

of (2.53). Similarly, the (k) subdivergen
es obtained freezing any internal

line (whi
h gives a fa
tor 3) are subtra
ted by 2(i)/3. These two (i)/3's are

obtained using both the �rst and third verti
es of (2.53).

Again, this proves that the overall divergen
es of the sums s5 and s6 are

polynomial in the masses and the external momenta.

Exer
ise 5 Cal
ulate Zϕ at two loops in the massless ϕ4
4 theory.

Solution. The two-loop 
ontribution to the self-energy is

λ2µ2ε

3!

∫
dDp

(2π)D
dDq

(2π)D
1

p2q2(p+ q + k)2
, (2.62)
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where k is the external momentum. We �rst integrate over p by means of

formula (2.36). We get

λ2µ2ε

3!

Γ
(
2− D

2

) [
Γ
(
D
2 − 1

)]2

(4π)D/2Γ(D − 2)

∫
dDq

(2π)D
1

q2[(q + k)2]2−D/2
.

Now we use the Feynman parameters again to 
al
ulate the integral over q.

We obtain

λ2µ2ε

3!

Γ(3−D)
[
Γ
(
D
2 − 1

)]3

(4π)DΓ
(
3D
2 − 3

) (k2)D−3. (2.63)

Extra
ting the divergent part, we �nally obtain

Zϕ = 1− λ2

12ε(4π)4
+O(λ3). (2.64)

Exer
ise 6 Cal
ulate Zλ at two loops in the massless ϕ4
4 theory.

Solution. The diagrams we have to study are those of formula (2.49),

plus the 
ounterterms (2.50) and (2.58), plus two permutations of ea
h. The

diagram (d) and its 
ounterterm (g) vanish in at m = 0. Sin
e Zλ is indepen-

dent of the external momenta k, we 
an simplify the 
al
ulation by setting k

to zero and working with nonvanishing arti�
ial masses δ (to avoid infrared

problems). Alternatively, we 
an keep the masses equal to zero and 
hoose


onvenient 
on�gurations of the external momenta. We adopt the se
ond

option. The divergent 
ontributions sdiv3 and sdiv2 of s3 and s2 
oin
ide, so

the total divergent part 
an be written as 3(sdiv1 + 2sdiv2 ), where sdiv1 
an be

read from (2.57) and the overall fa
tor 3 takes the permutations into a

ount.

Now we evaluate the diagram (b). Let k denote the total in
oming mo-

mentum of the two external legs on the left-hand side. We 
an simplify the


al
ulation by setting the momentum k′ of the top-right external leg to zero.

Indeed, it is easy to see that the integral be
omes fully 
onvergent after one

derivative with respe
t to k′, whi
h means that the divergent part, although

nonlo
al, 
annot depend on k′. The same tri
k does not work for k, so we


annot set k = 0. The subdiagram 
an be repla
ed with its exa
t expression

(2.36). We get

(b) = −λ
3µ3εΓ

(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)D/2Γ(D − 2)

∫
dDp

(2π)D
1

(p2)3−D/2(p− k)2 .
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Now the 
al
ulation pro
eeds as usual. We get

(b) =
λ3µ3ε

[
Γ
(
D
2 − 1

)]3
Γ(3−D)

(4π)D(4−D)Γ
(
3D
2 − 4

)
(
k2
)D−4

=− λ3µε

(4π)4ε2
− λ3µε

(4π)4ε

(
5

2
− γE − ln

k2

(4π)µ2

)
+ �nite.

On the other hand, it is easy to evaluate (e), whi
h gives

(e) =
3λ3µ2εΓ

(
2− D

2

) [
Γ
(
D
2 − 1

)]2

2(4π)2ε(4π)D/2Γ(D − 2)

(
k2
)D/2−2

=
3λ3µε

(4π)4ε2
+

3λ3µε

2(4π)4ε

(
2− γE − ln

k2

(4π)µ2

)
+ �nite.

The total gives

s2 = (b) +
2

3
(e) =

λ3µε

(4π)4ε

(
1

ε
− 1

2

)
+ �nite.

Note that the nonlo
al subdivergen
es 
an
el out, as it must be. Finally,


olle
ting the 
ontributions of s1 and s2, we get

3(sdiv1 + 2sdiv2 ) =
3λ3µε

(4π)4ε

(
3

ε
− 1

)
.

Using (2.64) we obtain

Zλ(λ, ε) = 1 +
3λ

(4π)2ε
+

9λ2

(4π)4ε2
− 17λ2

6(4π)4ε
+O(λ3). (2.65)

Exer
ise 7 Compute the two-loop renormalization of the massless ϕ6
3 theory.

Solution. The renormalized a
tion is

S(ϕ) =

∫
dDx

(
Zϕ
2
(∂µϕ)

2 + λµ2εZλZ
3
ϕ

ϕ6

6!

)
,

where ε = 3−D. It 
an be easily 
he
ked that there is no one-loop divergen
e,

so we just have to 
onsider the two-loop diagrams. Moreover, there is no two-

loop 
ontribution to the wave-fun
tion renormalization 
onstant. Instead,

the vertex gets a 
ounterterm from the diagram
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The 
ombinatorial fa
tor is 1/6. The divergent part does not depend on

permutations of external legs, whi
h gives an extra fa
tor of 10. We just

have to 
al
ulate (2.62), multiplied by 10µ2ε. Using (2.63) and expanding

around D = 3 we get

Zλ = 1 +
5λ

6ε(4π)2
+O(λ2). (2.66)

Note that using the dimensional regularization no other 
ounterterm 
an be

generated. For example, a 
ounterterm of type ϕ4
is in prin
iple allowed

by power 
ounting, but it would have to be multiplied by a dimensionful

parameter, whi
h is absent in the massless 
ase. On the other hand, the

dimensional regularization kills the powerlike divergen
es, be
ause it has a

sort of dimensionless 
uto�.

Exer
ise 8 Compute the �rst 
ontribution to the self-energy 
ounterterm of

the massless ϕ6
3 theory.

Solution. The �rst 
orre
tion to the self-energy is of order λ2 and has

four loops. It 
an be 
omputed with the method used in exer
ise 5 to go from

(2.62) to (2.63). The di�eren
e is that now we have to iterate the integration

four times instead of two. The result is

λ2µ4ε

5!

Γ(5− 2D)
[
Γ
(
D
2 − 1

)]5

(4π)2DΓ
(
5D
2 − 5

) (k2)2D−5. (2.67)

Extra
ting the divergent part, we obtain

Zϕ = 1− 4λ2

45ε(16π)4
+O(λ3). (2.68)

2.3 Renormalization to all orders

In the renormalizable theories, whi
h we 
lassify in the next se
tions, formu-

las like (2.45) generalize to all orders. Now we des
ribe what happens, and

later prove the theorems that justify our 
laims. Let ϕ, λ and m 
olle
tively

denote the �elds, the 
ouplings and the masses, respe
tively. Start from the


lassi
al a
tion, and interpret it as the bare a
tion SB(ϕB, λB,mB) of the

quantum �eld theory, whi
h depends on the bare �elds and parameters, de-

noted by the subs
ript B. Then, there exist renormalization 
onstants Zϕ,
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Zm and Zλ, whi
h depend on λ and ε, and renormalized quantities ϕ, λ and

m, de�ned by the map

ϕB = Z1/2
ϕ ϕ, m2

B = m2Zm, λB = λµpεZλ, (2.69)

su
h that all the renormalized generating fun
tionals and the renormalized


orrelation fun
tions are 
onvergent in the limit ε → 0. The renormalized

generating fun
tionals 
oin
ide with the bare generating fun
tionals written

in terms of the renormalized �elds and parameters. The renormalized 
orre-

lation fun
tions are equal to the bare 
orrelation fun
tions, written in terms

of the renormalized �elds and parameters, apart from a multiplying fa
tor,

whi
h is spe
i�ed below. In formula (2.69) p denotes the di�eren
e between

the 
ontinued and the physi
al dimensions of λ, the physi
al dimension being

the one at ε = 0.

Pre
isely, de�ne the renormalized a
tion SR, su
h that

SB(ϕB, λB,mB) = SR(ϕ, λ,m, µ). (2.70)

Then, de�ne the bare and renormalized generating fun
tionals Z and W by

means of the formulas

ZB(JB, λB,mB) =

∫
[dϕB]e

−SB(ϕB,λB,mB)+
∫
ϕBJB = e

WB(JB,λB,mB)

=

∫
[dϕ]e−SR(ϕ,λ,m,µ)+

∫
ϕJ = ZR(J, λ,m, µ) = e

WR(J,λ,m,µ), (2.71)

with

JB = Z−1/2
ϕ J.

De�ne also bare and renormalized 
orrelation fun
tions, possibly 
onne
ted

and/or irredu
ible, as

GB(x1, ..., xn, λB,mB) = 〈ϕB(x1) · · ·ϕB(xn)〉
=Zn/2ϕ 〈ϕ(x1) · · ·ϕ(xn)〉 = Zn/2ϕ GR(x1, ..., xn, λ,m, µ).

Next, using

ΦB(JB)x =
δWB(JB)

δJB(x)
= 〈ϕB(x)〉J

=Z1/2
ϕ 〈ϕ(x)〉J = Z1/2

ϕ

δWR(J)

δJ(x)
= Z1/2

ϕ Φ(x),
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perform the Legendre transforms, and 
onstru
t the bare and renormalized

generating fun
tionals Γ. We �nd

ΓB(ΦB, λB,mB) =−WB(JB(ΦB)) +

∫
JB(ΦB)ΦB

=−WR(J(Φ)) +

∫
J(Φ)Φ = ΓR(Φ, λ,m, µ).

By de�nition, the map (2.69) must be su
h that

ΓR(Φ, λ,m, µ) <∞,

in the limit ε→ 0, that is to say all the irredu
ible diagrams are 
onvergent

on
e expressed in terms of the renormalized quantities. This fa
t also implies

ZR(J, λ,m, µ) <∞, WR(J, λ,m, µ) <∞, GR(x1, ..., xn, λ,m, µ) <∞.

Observe that the renormalized a
tion SR(ϕ, λ,m, µ), instead, is not 
onver-

gent for ε→ 0. Che
k for example, the one-loop renormalized a
tion (2.42).

However, the 
lassi
al a
tion does not have a dire
t physi
al meaning. It is

just a tool that allows us to implement what remains of the 
orresponden
e

prin
iple in quantum �eld theory. As promised, renormalization amounts to

a 
hange of �eld variables, 
ombined with a reparametrization, that is able to

move the divergen
es away from all the physi
al quantities. It does not 
are

if the nonphysi
al quantities, su
h as the 
lassi
al a
tion, remain or be
ome

meaningless.

Note that the renormalized sides of (2.69), (2.70), et
., depend on one

quantity more than the bare sides, that is to say the dynami
al s
ale µ. The

nontrivial µ dependen
e of the renormalized 
orrelation fun
tions is the root

of the renormalization-group �ow, whi
h will be studied later.

To prove the renormalizability to all orders, we need to prove two prop-

erties, to all orders, namely that the 
ounterterms are lo
al, and that they

have the form of the terms already 
ontained in the bare a
tion SB. We

begin with the lo
ality of the 
ounterterms.

2.4 Lo
ality of 
ounterterms

Now we are ready to prove the theorem that ensures the lo
ality of the


ounterterms.
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Theorem 2 On
e subdivergen
es are subtra
ted, the overall divergen
es of a

diagram are lo
al and polynomial in the masses.

Proof. Let V0 denote a vertex of the starting Lagrangian and VL an L-

loop 
ounterterm, L ≥ 1. Let VL denote the set of VLs, L > 0. Moreover, let

GL denote an L-loop diagram 
onstru
ted with the verti
es of V0, and GL the

set of su
h diagrams. Let CL denote an L-loop diagram 
onstru
ted with at

least one 
ounterterm VN , 0 < N < L, and CL the set of su
h diagrams. Note

that a CL 
annot be a VL. A 
ounterterm VL subtra
ts an overall divergen
e

of some diagram GL. Instead, a diagram CL subtra
ts some subdivergen
e

of a GL.

Pro
eeding indu
tively, assume that the theorem is true up to the nth

loop order in
luded, whi
h means that all Vm's with m 6 n are lo
al and

polynomial in the masses. Then, 
onsider a diagram Gn+1. It 
orresponds

to an integral over n+ 1 momenta pi, i = 1, . . . , n+ 1. The momenta of the

internal legs are linear 
ombinations ∆pi of the pi with 
oe�
ients ±1. The
potentially diverging 
ontributions to the integral 
an only 
ome from the

integration regions where the momenta pi are sent to in�nity. The overall

divergen
e 
orrespond to sending the pis to in�nity with the same velo
ity.

The subdivergen
es also 
orrespond to sending them to in�nity with the same

velo
ity, but with the 
onstraint that some ∆pi are kept �xed. On
e we 
ure

the behaviors in su
h integration regions, the integral is 
onvergent, be
ause

any other integration regions, su
h as the ones 
orresponding to sending some

∆pi to in�nity with di�erent velo
ities, are automati
ally 
overed.

From the diagrammati
 point of view, keeping the momenta of some

internal lines �xed while all other integrated momenta are sent to in�nity

amounts to 
ut those internal lines and single out a proper subdiagram.

Su
h a subdiagram is not ne
essarily 
onne
ted, nor irredu
ible. We do not

need to worry about that, sin
e the indu
tive assumption ensures that all

the diagrams of orders 6 n are appropriately subtra
ted. Indeed, on
e the

irredu
ible ones are 
ured to some order, the 
onne
ted and dis
onne
ted

diagrams are also 
ured to the same order.

Observe that the subdiagrams themselves have overall divergen
es and

subdivergen
es. Nevertheless, again, the indu
tive assumption ensures that

the ne
essary 
ounterterms are right there. This is a
tually a nontrivial

fa
t, sin
e we must 
onvin
e ourselves that the diagrams CL, whi
h are built

with at least one 
ounterterms, appear in the right pla
e and with the right
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oe�
ient. Now we show that this property follows from Wi
k's theorem.

The examples studied before suggest that there exists a dire
t mat
h

among the 
oe�
ients of �terms and 
ounterterms�, the Gs and the Cs. For-

mula (2.55) and (2.61) tell us that we need to multiply the subtra
tions C

by appropriate 
oe�
ients in order to mat
h the Gs. This is the nontrivial

part of the game: to distribute every C among various Gs, and 
he
k that

the total 
oe�
ient in front of C is still equal to one. For example, the sub-

tra
tion (e) had to be split as follows: one third for (a) and two thirds for

(b). In the end, everything worked perfe
tly, but what is not obvious is how

to promote those examples to a general proof to all orders. Fortunately, we

are making the problem harder than it a
tually is. It is su�
ient to 
hange

the viewpoint, to realize that all the 
oe�
ients mat
h in a rather natural

way.

To see this, we rearrange the perturbative expansion not as a sum over

diagrams G, but as a sum over sets of Wi
k 
ontra
tions that lead to the

diagrams. We anti
ipated that this tri
k was going to be useful for some the-

oreti
al proof (although it is de�nitely not 
onvenient at the pra
ti
al level).

Let us denote the Wi
k 
ontra
tions with Ḡ. We know that ea
h Wi
k


ontra
tion has a simple 
ombinatorial fa
tor (the numerator s of (1.51) is

always equal to one for bosons, and ±1 if fermions are present), while dia-

grams have 
ompli
ated 
ombinatorial fa
tors. It is 
onvenient to apply a

similar tri
k for 
ounterterms. Rather than 
olle
ting the identi
al 
ontri-

butions altogether into a single 
ounterterm, it is 
onvenient to �mark� ea
h


ounterterm, to keep tra
k of the Ḡ it 
omes from. To make this operation


learer, we 
an refer to (2.33) and its splitting (2.51). In (2.51) we marked

ea
h 
ontribution to keep tra
k of the diagram it 
ame from, rather than the

Wi
k 
ontra
tion. We stress that here we want to do even more, that is to say

mark ea
h 
ontribution so as to remember the Wi
k 
ontra
tion Ḡ it 
omes

from. Clearly, all su
h marked 
ounterterms have s = ±1. Moreover, after

the de
omposition, the 
ombinatorial fa
tors follow again the usual rules, as

shown in (2.52).

Now, express the 
orrelation fun
tion as a sum over the Ḡs. Ea
h Ḡ

has subdivergen
es, whi
h are just subsets of Wi
k 
ontra
tions. Ea
h su
h

subset is 
ertainly equipped with its own 
ounterterm, and the 
oe�
ient is


ertainly 
orre
t, be
ause in this expansion all the fa
tors s are equal to plus

or minus one.
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Therefore, the sum

t =
∑

Ḡn+1

Ḡn+1 +
∑

C̄n+1

C̄n+1 =
∑

Gn+1

Gn+1 +
∑

Cn+1

Cn+1

is free of subdivergen
es. Here the bars refer to the rearrangement of the

sums over sets of Wi
k 
ontra
tions and the asso
iated 
ounterterms.

The argument just given tea
hes us that, in pra
ti
e, we do not need

to worry about the 
ombinatorial fa
tors: they always turn out to be right,

simply be
ause there exists a rearrangement where the 
ombinatorial fa
tors

of �terms and 
ounterterms� naturally mat
h. We emphasize that, ultimately,

this fa
t is due to Wi
k's formula, stating that ea
h Ḡ appears on
e and only

on
e.

On
e we know that t is free of subdivergen
es, we also know that a

su�
ient number of derivatives with respe
t to the masses and the external

momenta kills the overall divergen
e and produ
es a fully 
onvergent integral.

Thus, the divergent part of t is polynomial in the external momenta and the

masses, whi
h ensures that the Vn+1s are lo
al and polynomial in the masses.

The indu
tive assumption is then promoted to the order n+ 1 and so to all

orders. �

The one have just 
onsidered is the �
olle
tive version� of the theorem

about the lo
ality of 
ounterterms, whi
h states that the sum of all the

(n + 1)-loop diagrams behaves 
orre
tly. A re�ned version of the theorem

holds diagram by diagram, whi
h states that every time the subdivergen
es

of a diagram are subtra
ted away its overall divergen
e is polynomial in

the external momenta and the masses. Pre
isely, there exist 
onvex linear


ombinations

GRn+1 = Gn+1 +
∑

Cn+1

aC,Gn+1Cn+1,
∑

Gn+1

aC,Gn+1 = 1, (2.72)

that are separately free of subdivergen
es. The aC,Gn+1 are appropriate 
on-

stants that 
an be worked out with the method des
ribed below. The di-

vergent part of ea
h GRn+1 is lo
al and polynomial in the masses. Examples

of (2.72) are (2.55) and (2.61). The 
olle
tive version of the theorem also

follows from its single-diagram version.

We illustrate the single-diagram version of the theorem by 
onsidering a

ϕ3
6 two-loop diagram together with the 
ounterterms that subtra
t its sub-
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divergen
es,

c

d

f

g

g

g
h

h

f

d d

d
e e

e

c

a

a
b

b

hb

a

e

(2.73)

The dot denotes the one-loop vertex 
ounterterm. Instead, the square de-

notes just one 
ontribution to the two-loop vertex 
ounterterm, the one that

subtra
ts the overall divergen
e of the subdiagram (sd) of the following pi
-

ture:

(c)(sd)
(2.74)

Note that (
) does not in
lude the 
ontributions asso
iated with the permu-

tations of the (sd) external legs. As above, we mark ea
h 
ounterterm to

remember whi
h Wi
k 
ontra
tion it 
omes from. Then, we sum the Wi
k


ontra
tions that give the same diagram. Thus, (
) is already equipped with

the appropriate 
oe�
ient to �t into the linear 
ombination (2.72).

Consider (2.73). Let R(u1, ...uk) denote the region where the momenta

u1, ...uk are sent to in�nity and the other ones are kept �xed. Observe

that the dot and the square �hide� 
ertain momenta. Now, a 
ounterterm

subtra
ts the overall divergen
e of a subdiagram, whi
h means that it 
or-

responds to the integration region where the hidden momenta are sent to

in�nity. For example, the dot of the se
ond diagram 
ontributes to the re-

gions R(a, b, c) and R(a, b, c, d, e, f), but does not 
ontribute to the region

R(a, b, d, e, g, h).

Now we study the subdivergen
es region by region. Region R(a, b, c):

the diagram is 
orre
ted by the �rst 
ounterterm. The other 
ounterterms

are not 
on
erned. Region R(a, b, c, d, e, f): the diagram is 
orre
ted by

the �rst and third 
ounterterms. Region R(a, b, c, f, g, h): the diagram is


orre
ted by the �rst, se
ond and �fth 
ounterterms. The regions R(f, g, h)

and R(d, e, f, g, h) are symmetri
 to the �rst two already 
onsidered. All
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other regions are trivial. We 
on
lude that the sum (2.73) has only overall

divergen
es, whi
h are lo
al. The argument we have illustrated in the 
ase

(2.73) generalizes to the most general diagram.

The lo
ality of 
ounterterms is a very general property. It does not de-

pend on the theory, i.e. the types of �elds, the forms of the propagators and

the stru
tures of the verti
es, as long as a su�
ient number of derivatives with

respe
t to the external momenta, or the masses, kills the overall divergen
es.

Any lo
al, Lorentz invariant theory satis�es this property and produ
es lo
al


ounterterms. For example, if the verti
es 
ontain derivatives, then the inte-

grand of (2.21) are multiplied by 
ertain polynomials of the momenta. Yet,

it is true that: (i) every derivative with respe
t to the external momenta or

the masses lowers the overall degree of divergen
e; and (ii) su�
ient numbers

of su
h derivatives kill the overall divergen
es. The subtra
tion of subdiver-

gen
es des
ribed above is a matter of mere diagrammati
s. In parti
ular, it

does not require to satisfy any 
onditions of renormalizability. Even more,

the lo
ality of 
ounterterms is so general that it holds in several types of

theories not 
onsidered so far, in
luding Lorentz violating and nonlo
al ones.

We mentioned before that a few tri
ks 
an simplify the 
al
ulation of the

divergent part of a diagram. Now we 
an upgrade one of those tri
ks. In

general, an L-loop diagram G 
orresponds to an integral of the form

IG(k,m) =

∫ L∏

i=1

dDpi
(2π)D

P (p, k,m)

Q(p, k,m)
, (2.75)

instead of (2.21), where P and Q are polynomials of p, k and m. Nontrivial

numerators P appear when the verti
es 
ontain derivatives. We know that

the axioms satis�ed by the analyti
 integral do not allow us to expand the

integrand in powers of k and m, and integrate term by term. Nevertheless,

it would be very 
onvenient to do so, be
ause it would allow us to e�
iently

isolate the overall divergent parts from the rest. We 
an make these opera-

tions legitimate by introdu
ing arti�
ial masses δ > 0 in the denominators of

propagators. Spe
i�
ally, let IRG(k,m) denote the subtra
ted integral, that

is to say the integral asso
iated with the sum GRL of formula (2.72). Write

IRG(k,m) = lim
δ→0
IRG(k,m+ δ).

Sin
e IRG is equipped with the 
ounterterms that subtra
t its own subdi-

vergen
es, the lo
ality of 
ounterterms ensures that IG(k,m + δ) only has
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overall divergen
es, and those depend polynomially on k, m and δ. Separate

IRG(k,m+ δ) into the sum of its divergent part IRGdiv(k,m + δ) and its 
on-

vergent part IRG
onv(k,m + δ). Sin
e IRGdiv(k,m + δ) in a polynomial in δ,

it admits a smooth limit IRGdiv(k,m) for δ → 0. Then, IRG
onv also admits

a smooth limit for δ → 0, be
ause the sum IRGdiv + IRG
onv must tend to

IRG(k,m). Thus, we 
an write

IRG(k,m) = IRGdiv(k,m) + lim
δ→0
IRG
onv(k,m+ δ).

The se
ond term on the right-hand side has no poles for ε → 0, so it is


onvergent even after taking the limit δ → 0. Finally, the divergent part of

the subtra
ted diagram GRL 
an be 
al
ulated as

IRGdiv(k,m) = lim
δ→0
IRGdiv(k,m+ δ). (2.76)

We stress again that it is not legitimate to expand the integrand of IG(k,m)

in powers of both k and m and then integrate term by term. However,

these operations are legitimate on IRG(k,m + δ), as long as δ is nonzero.

Formula (2.76) tells us that when we set δ ba
k to zero, we re
over the

full divergent part of IRG(k,m). The upgraded tri
k is parti
ularly useful

in massless theories, be
ause the arti�
ial mass allows us to 
ompute the

divergent parts by expanding in powers of the external momenta.

Exer
ise 9 Prove that, in dimensional regularization, an odd-dimensional

lo
al quantum �eld theory has no nontrivial L-loop divergen
es, if L is odd.

Solution. The integrals have the form (2.75). We insert arti�
ial masses

δ in the denominators, then expand in powers of the true masses m and the

external momenta k. In the end, all the overall divergen
es are given by

expressions of the form

∫ L∏

i=1

dDpi
(2π)D

pµ1 · · · pµn
Q′(p2)

, (2.77)

where the denominator is a polynomial in the squared momenta p2i and ∆p2j .

If both d and L are odd, then n must be odd, otherwise the integral is either


onvergent or powerlike divergent. We re
all that powerlike divergen
es are

fake divergen
es in dimensional regularization. If n is odd, the integral (2.77)

is odd under the transformation pi → −pi, so its overall divergent part

vanishes.
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2.5 Power 
ounting

The renormalizability of a theory 
an be established with a simple dimen-

sional analysis, 
alled power 
ounting.

Consider a d-dimensional theory of intera
ting bosoni
 �elds ϕ and fermioni


�elds ψ. We assume that the bosoni
 �elds have propagators PB(k) that be-

have like ∼ 1/k2 for large momenta k. By this we mean that also behaviors

su
h as

PB(k) ∼
∑

n

kµ1 · · · kµ2n
(k2)n+1

(2.78)

are allowed. Similarly, we assume that the fermioni
 �elds have propagators

PF (k) that behave like ∼ kµ/k2, or more generally

PF (k) ∼
∑

n

kµ1 · · · kµ2n+1

(k2)n+1
, (2.79)

for large momenta. Su
h behaviors tell us that the dimensions of the bosoni


and fermioni
 �elds are (d− 2)/2 and (d− 1)/2, respe
tively.

More generally, 
onsider �elds χa of dimensions d/2−a with propagators

that behave like

Pa(k) ∼
∑

n

kµ1 · · · kµn
(k2)n/2+a

at large momenta, where a is integer or half-integer, and n is even or odd,

respe
tively. We are not making assumptions about the sign of a, nor the

statisti
s of χa.

Letm 
olle
tively denote the masses of the �elds. Let niB, niF , nia denote

the numbers of legs of the types B, F and a of the ith vertex. Assume that

the vertex is a polynomial Vi(k) in the momenta, and that its dimension is

units of mass is δi.

Consider a diagram G with EB , EF , Ea external legs and IB, IF , Ia
internal legs of the various types, vi verti
es of the ith type and L loops. We

have, from (2.18)

L− IB − IF −
∑

a

Ia + V = 1, V =
∑

i

vi. (2.80)

We denote the external momenta with k and the loop momenta with p. The
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integral asso
iated with G has the form

IG(k,m) =

∫
dLdp

(2π)Ld

IB∏

j=1

PBj(p, k,m)

IF∏

l=1

PF l(p, k,m)×

×
∏

a

Ia∏

ja=1

Paja(p, k,m)
∏

i

vi∏

li=1

Vili(p, k,m), (2.81)

where the indi
es j, l, ja and li of PBj , PF l, Paja and Vili label the propagators

and the verti
es. Now, res
ale k and m to λk and λm. It is 
onvenient to

res
ale also the loop momenta, whi
h is just a 
hange of variables in the

integral. Then IG(k,m) res
ales with a fa
tor equal to its dimension in units

of mass, whi
h is

[IG] = Ld− 2IB − IF − 2
∑

a

aIa +
∑

i

viδi. (2.82)

Sin
e the overall divergen
es are lo
al, on
e the subdivergen
es have been

subtra
ted away, we infer that they are a polynomial of degree ωG 6 [IG] in
the external momenta and the masses. Now, 
ount the bosoni
 legs atta
hed

to the verti
es: they 
an exit the diagram or be 
onne
ted to other bosoni


internal legs, so

EB + 2IB =
∑

i

viniB.

Similarly, the 
ountings of fermioni
 legs and the legs of the type χa, we

obtain

EF + 2IF =
∑

i

viniF , Ea + 2Ia =
∑

i

vinia.

Using (2.80)-(2.82) and ωG 6 [IG] we get

ωG 6 d(EB , EF , Ea) +
∑

i

vi [δi − d(niB , niF , nia)] ,

where

d(x, y, za) ≡ d−
d− 2

2
x− d− 1

2
y −

∑

a

d− 2a

2
za.

We see that if all the verti
es satisfy

δi 6 d(niB , niF , nia) (2.83)
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then all the 
ounterterms satisfy the same inequality, namely

ωG 6 d(EB , EF , Ea). (2.84)

In other words, if the 
lassi
al Lagrangian in
ludes all the verti
es that satisfy

(2.83), then the divergent parts of all the diagrams 
an be subtra
ted by

renormalizing the 
ouplings, the �elds and the masses. The 
ondition (2.83)

de�nes a theory that is renormalizable by power 
ounting.

Instead, when the Lagrangian 
ontains some vertex v̄ that does not satisfy

(2.83), then the diagrams 
ontaining v̄s 
an have an arbitrarily large degree

of divergen
e. In general, in that 
ase, it is ne
essary to add in�nitely many

new verti
es and 
ouplings to the Lagrangian, if we want to subtra
t the

divergen
es by means of rede�nitions of the �elds and the parameters. This

kind of theory is 
alled nonrenormalizable.

The theories with all the δis equal to d(niB , niF , nia) are 
alled stri
tly

renormalizable, those with all the δis smaller than d(niB , niF , nia) super-re-

normalizable, and those with some δi greater than d(niB, niF , nia) nonrenor-

malizable.

It is easy to 
he
k that the requirement (2.83) is equivalent to demand

that all the Lagrangian terms have 
oe�
ients of nonnegative dimensions in

units of mass. Indeed, the dimension of the 
oupling λi that multiplies the

ith vertex is

[λi] = d− d− 2

2
niB−

d− 1

2
niF−

∑

a

d− 2a

2
nia−δi = d(niB , niF , nia)−δi > 0.

Thus, a theory is renormalizable by power 
ounting if it 
ontains no

parameters of negative dimension (and the propagators are well behaved).

This 
on
lusion 
an be derived more qui
kly as follows. At the level of the

Lagrangian, a 
ounterterm, being lo
al, must have the stru
ture

(∏
λ
)
∂pϕnBψnF

∏

a

χnia
a . (2.85)

The 
oe�
ient is a 
ertain produ
t of 
ouplings and masses. We do not need

to spe
ify where the derivatives a
t in (2.85), sin
e it is not important for our

dis
ussion. Now, the dimension of (2.85) must be equal to d. If the theory


ontains no parameters of negative dimensions, we must have

p+ niB
d− 2

2
+ niF

d− 1

2
+
∑

a

d− 2a

2
nia 6 d,
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whi
h is equivalent to (2.83). On the other hand, if the theory 
ontains a

parameter λ− of negative dimension, then an arbitrarily large power h of λ−

an multiply the 
ounterterm, and we just have an inequality of the form

p+ niB
d− 2

2
+ niF

d− 1

2
+
∑

a

d− 2a

2
nia 6 d− h[λ−], (2.86)

whi
h violates (2.83).

Now, it should be kept in mind that in general, in renormalization theory,

the following �no-mira
le� prin
iple applies:

all the 
ounterterms that are not a priori forbidden are generated by renor-

malization.

A 
ounterterm 
an be forbidden by power 
ounting, gauge symmetries,

external symmetries. If it is not forbidden, there is pra
ti
ally no hope

that it will not be generated as the divergent part of a diagram with an

appropriate set of external legs. In other words, no mira
ulous 
an
ellations

should be expe
ted. Then, the inequality (2.86) implies that in�nitely many

new types of 
ounterterms will be e�e
tively generated, so the theory is

nonrenormalizable.

It is important to stress that the propagators must have the right behavior

for large momenta. For example, the Pro
a ve
tors of formula (1.87) are

in general not renormalizable, when intera
tions are present. Indeed, the

propagator (1.89) 
ontains a term ∼ pµpν/(m
2p2) that prevails over δµν/p

2

at large momenta. This for
es us to treat the �eld as a χa-�eld with a = 0,

whi
h means that its dimension, from the viewpoint of the power 
ounting, is

equal to d/2. The �elds of su
h a dimension 
an appear at most quadrati
ally

in a lo
al �eld theory, so they 
annot have renormalizable self-intera
tions.

Thus, in general the Pro
a ve
tors 
annot be in
luded in a renormalizable

theory.

Gauge �elds 
an instead be in
luded 
onsistently, although their prop-

agators are naïvely not well behaved. For this reason the gauge theories

deserve a spe
ial treatment, and we devote 
hapters of this book to prove

their renormalizability.

Parti
ular (s
alar) �elds of dimension d/2 
an be useful as auxiliary �elds.

For example, in the massless ϕ4
4 theory we 
an introdu
e an auxiliary �eld σ

of dimension 2 and repla
e the ϕ4
-vertex by

L′I =
1

2
σ2 + iµε/2ασϕ2, (2.87)
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where α =
√
λ/12.The integral over σ 
an be performed exa
tly, by means

of a translation σ′ = σ + iµε/2αϕ2
, whi
h brings L′I to the form

L′I =
1

2
σ′2 +

λµε

4!
ϕ4.

The �eld σ′ de
ouples and 
an be dropped, so the modi�ed theory is equiv-

alent to the ϕ4
4 theory. However, sometimes it 
an be useful to work out the

Feynman rules and the diagrams from (2.87). In that 
ase, σ has a prop-

agator equal to 1, so it is a χa �eld with a = 0. The renormalizability by

power 
ounting still works. We just need to add an extra vertex ϕ4
to the

Lagrangian, be
ause it is allowed by power 
ounting. We multiply it by an

independent 
oupling λ′ and treat α as an independent 
oupling a swell. In

total, the renormalized Lagrangian L′I reads

L′IR =
Zσ
2
σ2 + iµε/2αZαZ

1/2
σ Zϕσϕ

2 +
λ′µεZ ′

λZ
2
ϕ

4!
ϕ4 =

1

2
σ′2 +

λµεZλ
4!

Z2
ϕϕ

4

where σ′ = Z
1/2
σ σ+ iµε/2αZαZϕϕ

2
and λZλ = λ′Z ′

λ+12α2Zα. The theory is

equivalent to the ordinary massless ϕ4
4 theory with the 
oupling λ = λ′+12α2

.

The no-mira
le prin
iple also implies that a renormalizable theory must


ontain all the Lagrangian terms that are not a priori forbidden. Indeed,

assume that for some reason we start with a Lagrangian with some missing

vertex v̄. A divergent 
ontribution c̄ of the same form will be generated by

renormalization. To subtra
t it, it is ne
essary to go ba
k to the 
lassi
al

Lagrangian and add v̄, multiplied by a new 
oupling λ̄. On
e that is done, it

is possible to remove c̄ by making a rede�nition of λ̄. We see that, be
ause of

renormalization, we are not free to 
hoose the theory we like. Most 
lassi
al

theories make no sense at the quantum level, either be
ause they do not


ontain enough verti
es, the renormalizable ones, or be
ause they 
ontain

nonrenormalizable verti
es. Renormalization either guides us towards the

right theory or blows up to (2.39). In this sense, it provides a way to sele
t

the theories.

Sometimes, the parameters of zero dimension are 
alled marginal, those

of positive dimensions relevant and those of negative dimensions irrelevant.

This terminology refers to the low-energy behavior of the theory. For ex-

ample, the parameters of negative dimensions multiply Lagrangian terms of

dimensions larger than d, whi
h are indeed negligible in the low-energy limit.
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Instead, the parameters of positive dimensions multiply the terms that are

more �relevant� at low energies. This terminology will be rarely used in this

book.

2.6 Renormalizable theories

The list of the renormalizable theories depends on the spa
etime dimension

d. We start from four dimensions, where

d(nB , nF ) = 4− nB −
3

2
nF .

By lo
ality, d(nB , nF ) must be non-negative, so nB 
an be at most 4 and nF

an be at most 2. We have the following possibilities

(nB, nF ) (1, 0) (2, 0) (3, 0)

d(nB , nF ) 3 2 1

Lagrangian terms ϕ ϕ2, ϕ∂ϕ, (∂ϕ)2 ϕ3, ϕ2∂ϕ

(nB, nF ) (4, 0) (0, 2) (1, 2)

d(nB , nF ) 0 1 0

Lagrangian terms ϕ4 ψ̄ψ, ψ̄ /∂ψ ϕψ̄ψ

The notation is symboli
, in the sense that we do not pay attention to

where derivatives a
t and how indi
es are 
ontra
ted. The most 
ompli
ated

bosoni
 intera
tion is ϕ4
and the most 
ompli
ated s
alar-fermion intera
tion

is the Yukawa vertex ϕψ̄ψ. No fermion self-intera
tion is allowed.

The most general four-dimensional Lorentz invariant Lagrangian of s
alar

�elds ϕ, ve
tors A and fermions ψ has the form

L4 =
1

2
(∂µAν)

2 − ξ

2
(∂µAµ)

2 +
m2
A

2
A2
µ +

1

2
(∂µϕ)

2 +
m2
s

2
ϕ2

+ψ̄ /∂ψ +mf ψ̄ψ + λ1sϕ+
λ3s
3!
ϕ3 +

λ4s
4!
ϕ4 +

g3
3!
A2
µ(∂νAv)

+
g′3
3!
AµAν∂νAµ +

g4
4!
(A2

µ)
2 + Ysϕψ̄ψ + YAAµψ̄γµψ +

g2s
2
ϕ(∂µAµ)

+
g3s
3!
ϕA2

µ +
g′3s
3!
ϕ2∂νAν +

g′′3v
3!
Aµϕ∂µϕ+

λ4sv
4!

ϕ2A2
µ,

where ξ 6= 1, plus fermioni
 terms equal to the listed ones with ψ → γ5ψ,

where γ5 is the produ
t of all the γ matri
es. At ξ 6= 1 the ve
tor propagator
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behaves 
orre
tly at large momenta, even when the massmA does not vanish.

However, we anti
ipate that at ξ 6= 1 the theory is not unitary, that is to say

it propagates unphysi
al degrees of freedom. At ξ = 1, mA 6= 0 the ve
tor Aµ
is of the Pro
a type, whi
h has a bad behavior for large momenta. Instead,

at ξ = 1, mA = 0, the propagator does not exist. This is the 
ase of the

gauge theories, whi
h will be treated in the next 
hapters. After a suitable

�gauge-�xing� the propagator be
omes well behaved and the theory 
an be

proved to be renormalizable by power 
ounting and unitary.

Simple examples of renormalizable theories in four dimensions are the ϕ4
4

theory (2.46), whi
h is renormalized by (2.45) in the form (2.43), and, more

generally, the Yukawa theory (2.17). Its bare a
tion

SB(ϕB, ψB) ≡
∫

dDx

(
1

2
(∂µϕB)

2 + λB
ϕ4
B

4!
+ ψ̄B/∂ψB + gBϕBψ̄BψB

)
(2.88)

is renormalized by the map

ϕB = Z1/2
ϕ ϕ, λB = λµεZλ, ψB = Z

1/2
ψ ψ, gB = gµε/2Zg,

whi
h gives the renormalized a
tion

SR(ϕ,ψ)≡
∫

dDx

(
Zϕ
2
(∂µϕ)

2 + λµεZλZ
2
ϕ

ϕ4

4!

+Zψψ̄ /∂ψ + gµε/2ZgZ
1/2
ϕ Zψϕψ̄ψ

)
. (2.89)

We 
an use this example to illustrate what happens when we start from

a theory with some missing verti
es. Assume that we �forget� the ϕ4
vertex

and start with the Lagrangian

L =
1

2
(∂µϕ)

2 + ψ̄ /∂ψ + gϕψ̄ψ. (2.90)

Then, 
onsider the one-loop diagram

(2.91)

and its permutations, where the dashed lines refer to the s
alars and the


ontinuous ones to the fermions. It is easy to 
he
k that the divergent part
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of (2.91) is nonvanishing. Thus, the theory is (2.90) is not renormalizable as

it stands. The missing ϕ4
vertex must be added to the 
lassi
al Lagrangian,

and (2.90) be
omes (2.17). Then, the rede�nition of the ϕ4

oupling 
an

remove the divergent part of diagram (2.91). Thus, the theory (2.90) makes

no sense at the quantum level, although it is a perfe
tly meaningful 
lassi
al

theory. Only (2.17) makes sense.

In three spa
etime dimensions, we have

d(nB , nF ) = 3− 1

2
nB − nF −

3− 2a

2
na,

so nB 6 6 and nF 6 2. The most 
ompli
ated bosoni
 intera
tion is ϕ6
and,

again, no fermioni
 self-intera
tion is admitted. We have in
luded a �eld χa,

be
ause in three dimensions there exist interesting bosoni
 ve
tor �elds with

a = 1/2 and propagators ∼ kµ/k
2
(Chern-Simons ve
tors). Their kineti


term reads

LCS =
i

2
Aµ∂ρAνεµνρ.

In this 
ase, we have n1/2 6 3, and there 
an be verti
es AµA
′
ρA

′′
νεµνρ (with

ve
tors of several types). Two boson-two fermion intera
tions ϕ2ψ̄ψ, A2
µψ̄ψ,

et
., are allowed. Apart from 
onstraints 
oming from the statisti
s, the

Chern-Simons �elds behave like the fermions ψ. Summarizing,

(nB , nF ) (2, 0) (4, 0) (6, 0) (2, 1)

d(nB, nF ) 2 1 0 1

Lagrangian terms (∂ϕ)2 ∂ϕ4 ϕ6 ∂ϕ2ψ

(nB , nF ) (4, 1) (0, 2) (2, 2) (0, 3)

d(nB, nF ) 0 1 0 0

Lagrangian terms ϕ4ψ ψ∂ψ ϕ2ψ2 ψ3

where ϕ 
an stand for s
alar �elds and ordinary ve
tor �elds, while ψ 
an

stand for fermions and Chern-Simons ve
tors. We have listed only the La-

grangian terms that have the largest powers of the �elds and the largest

numbers of derivatives. The missing terms are obtained from the listed ones

by suppressing some powers of the �elds and/or some derivatives.

In six dimensions

d(nB , nF ) = 6− 2nB −
5

2
nF ,
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whi
h implies nB 6 3, nF 6 2. Moreover, for nF = 2, nB must vanish, so the

fermions are free. It is said that they �de
ouple�, and so 
an be ignored for our

present purposes. Hen
e, the only allowed intera
tion is ϕ3
. However, the

theory ϕ3
6 is not physi
ally interesting, sin
e the potential ϕ3

is not bounded

from below. Ve
tors de
ouple also, by Lorentz invarian
e. In �ve dimensions

the situation is the same as in six. In dimensions greater than six all the

�elds are free.

We see that only in dimensions smaller than or equal to four there ex-

ist physi
ally a

eptable intera
ting renormalizable theories. Unfortunately,

gravity is not renormalizable in four dimensions. It is des
ribed by a spin-2

�eld, a symmetri
 tensor hµν , whi
h has derivative intera
tions of the form

∼ κnhn∂h∂h,

whi
h involve a 
oupling κ, the Newton 
onstant, of dimension −1 in units

of mass.

Newton's 
onstant is dimensionless in two dimensions, whi
h suggests

that gravity is power 
ounting renormalizable there. However, it 
an be

shown that general relativity in less than four dimensions 
ontains no prop-

agating graviton. In less than three dimensions gauge ve
tors have no prop-

agating degree of freedom either. We dis
over that the renormalizable in-

tera
tions are very few, whi
h means that renormalizability is an extremely

powerful 
riterion to sele
t the theories. It is so restri
tive that it almost

sele
ts the right dimension of spa
etime: we have learned that four is the

dimension with the largest variety of renormalizable theories. However, the

fa
t that gravity is not renormalizable by power 
ounting in d > 2 suggests

that power 
ounting renormalizability is not the �nal answer. A more pro-

found renormalization prin
iple must exist.

The renormalizable theories are those where the subtra
tion algorithm

a
hieves its goal of removing all the divergen
es by rede�ning the �elds and

a �nite number of independent parameters. Sometimes those theories are

just 
alled �renormalizable� in the literature. However, it should be kept in

mind that there exist theories that are renormalizable by 
riteria di�erent

from power 
ounting. Those theories will be studied the �nal 
hapters of this

book.

Exer
ise 10 Compute the one-loop renormalization of the massless s
alar-

fermion theory (2.17).
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Solution. The nontrivial divergent diagrams are

(2.92)

The 
al
ulation 
an be simpli�ed by means of the tri
ks explained in this


hapter. Note that the last diagram gives 6 identi
al 
ontributions: a fa
tor

2 
omes from the orientation of the loop and a fa
tor 3 
omes from the

permutations of the external legs. We �nd

Zϕ=1− 4g2

(4π)2ε
, Zψ = 1− g2

(4π)2ε
, Zg = 1 +

5g2

(4π)2ε
,

λZλ= λ+
1

(4π)2ε
(3λ2 + 8g2λ− 48g4).

There is no diagram of order g2λ, so λZλZ
2
ϕ does not 
ontain su
h type of


ontribution. Note that in general when the theory 
ontains more 
ouplings

it may be not 
onvenient to de�ne vertex renormalization 
onstants, su
h as

Zλ in this 
ase, be
ause they may 
ontain negative powers of the 
ouplings.

Sin
e λZλ is 
ertainly polynomial, it is better to rewrite λZλ as λ + ∆λ,

where ∆λ 
olle
ts the 
ounterterms and is also polynomial.

Exer
ise 11 Compute the one-loop renormalization of the four-fermion the-

ory (1.102) in two dimensions, where ψ is a multiplet made of N 
opies of

the basi
 spinor doublet.

Solution. This theory is, in some respe
ts, similar to the ϕ4
theory in

four dimensions. The Feynman rules are (1.103) with λ → λµε, where ε =

2 − D. There is no wave-fun
tion renormalization at one loop. The mass

renormalization is given by a tadpole diagram, whi
h turns out to be equal

to −λ(2N − 1)mµε/2 times (2.6), where 2N − 1 
omes from evaluating the

fermion loop. Expanding the left-hand side of (2.7) around two dimensions,

we get

Zm = 1− (2N − 1)λ

4πε
.
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The vertex renormalization is given by the diagrams

1
2

− +

where the 
ombinatorial fa
tors and the signs due to the fermion ex
hanges

are written expli
itly. Observe that the �rst diagram is not multiplied by

(−1), sin
e it does not 
ontain a 
losed fermion loop. Instead, the third

diagram has a plus sign, sin
e the fa
tor (−1) due to the 
losed fermion

loop is 
ompensated by another fa
tor (−1) due to the permutation of two

external identi
al fermions. Using the two-dimensional identity

(γµ)
αβ(γµ)

γδ − (γµ)
γβ(γµ)

αδ = −2(δαβδγδ − δαδδγβ),

where γµ are the �rst two Pauli matri
es, we obtain

Zλ = 1− (N − 1)λ

2πε
. (2.93)

Exer
ise 12 Write the Lagrangian of the previous exer
ise in the equivalent

form

L = ψ̄(/∂ +m)ψ +

√
λ

2
µε/2σψ̄ψ +

1

2
σ2,

having introdu
ed an auxiliary �eld σ. Renormalize the theory in this form

at one loop, and 
he
k the results already found.

Solution. The divergent one-loop diagrams are the �rst three of the list

(2.92), plus a tadpole (the fermion loop with one external leg σ). The 
al
u-

lation is straightforward and gives the renormalized Lagrangian

LR= ψ̄ /∂ψ +

(
1 +

λ

4πε

)(
m+

√
λ

2
µε/2σ

)
ψ̄ψ

+
1

2
σ2
(
1 +

λN

2πε

)
+

√
λ

2

mN

πε
µ−ε/2σ. (2.94)

Integrating σ away, we retrieve the results of the previous exer
ise. Note that

to have (2.94) real, the 
oupling λ must be positive. This is the reason why

we have put a minus sign in front of the four fermion vertex of the Lagrangian
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(1.102). If the �elds were bosoni
, that minus sign would be wrong. Instead,

for the reason just explained it is the right sign for fermioni
 �elds. �

The last two exer
ises tea
h us that, if we make a 
hange of �eld vari-

ables, the theory remains renormalizable, but the renormalization organizes

itself in a di�erent way. For example, the Lagrangian (1.102) has nontrivial

renormalization 
onstants for m and λ, at one loop, while (2.94) also has a

renormalization 
onstant for σ, and 
ontains a σ linear term. The two renor-

malized Lagrangians are mapped into ea
h other by a renormalized 
hange

of �eld variables. For the moment we 
ontent ourselves with these observa-

tions. We will say more later, where we investigate general 
hanges of �eld

variables in quantum �eld theory.

Exer
ise 13 Find the renormalized 
hange of �eld variables that maps (2.94)

into the renormalized version of (1.102).

Solution. It is

σ=

(
1− λN

4πε

)
σ′ −

(
1− (2N − 1)λ

4πε

)√
λ

2
µε/2ψ̄ψ

−
√
λ

2
µ−ε/2

(
1− λN

2πε

)
mN

πε
,

plus higher orders. Indeed, (2.94) be
omes

ψ̄ /∂ψ +mZmψ̄ψ −
λ

4
µεZλ(ψ̄ψ)

2 +
1

2
σ′2,

plus a 
onstant, plus higher orders. This is the renormalized version of

(1.102), plus a quadrati
 term that de
ouples (and is not renormalized).

2.7 Composite �elds

Composite �elds are de�ned as produ
ts of elementary �elds, and their deriva-

tives, in the same spa
etime point. Sometimes they are also 
alled �opera-

tors�, or �
omposite operators�, although stri
tly speaking no operator is

involved in the fun
tional-integral approa
h. Being just nontrivial monomi-

als of the �elds and their derivatives, 
omposite �elds are lo
al. Sometimes

it is useful to 
onsider also lo
al fun
tionals, that is to say the integrals of
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omposite �elds over spa
etime. Lo
al fun
tionals are also 
alled integrated

operators.

The renormalization of a 
omposite �eld is in general not related in an

obvious way to the renormalization of its 
omponent �elds, and has to be


al
ulated anew. The simplest example of a 
omposite �eld is ϕ2(x) in the

ϕ4
theory. The renormalization of ϕ2

is unrelated to the renormalization of

ϕ. Spe
i�
ally, the 
orrelation fun
tions that 
ontain insertions of ϕ2

an be

made 
onvergent with a new renormalization 
onstant, Zϕ2 , whi
h has no

relation with Zϕ.

Let us re
all that Zϕ renormalizes the divergen
es of the 
orrelation fun
-

tions where s
alar �elds are inserted at di�erent spa
etime points, e.g.

G4(x, y, z, w) = 〈ϕ(x)ϕ(y)ϕ(z)ϕ(w)〉, (2.95)

with x 6= y, z, w, et
. Instead, 
onsider the ϕ2
two-point fun
tion

〈ϕ2(x)ϕ2(y)〉. (2.96)

Re
all that the 
orrelation fun
tions have to be meant as distributions. In

a distribution it often makes no sense to take the limit of 
oin
iding points.

Therefore, (2.96) is not the z → x, w→ y limit of (2.95).

For a while, we write formulas assuming that we are dealing with a sin-

gle 
omposite �eld. Later we generalize our arguments by eliminating this

restri
tion.

We must distinguish bare and renormalized 
omposite �elds. The bare


omposite �elds are denoted by OB and are just the produ
ts of the bare

fa
tors. For example, the bare operator ϕ2(x) is just the produ
t of two bare

s
alar �elds in x, i.e. ϕ2
B(x). The renormalized 
omposite �elds are denoted

by OR, or by writing the 
omposite �eld between square bra
kets, su
h as

[ϕ2(x)], to distinguish it from ϕ2(x).

Bare and renormalized operators are related by new renormalization 
on-

stants ZO,

OB = ZOOR. (2.97)

For example, we have ϕ2
B = Zϕ2 [ϕ2]. On the other hand, we know that

ϕB = Z
1/2
ϕ ϕ, hen
e

[ϕ2] = Z−1
ϕ2 Zϕϕ

2. (2.98)
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This formula emphasizes that the renormalized operator ϕ2
does not 
oin
ide

with the square of the renormalized �eld ϕ, unless Zϕ2 = Zϕ, whi
h is in

general not true.

Thus, the renormalized two-point fun
tion (2.96) reads

GR(x, y) = 〈[ϕ2(x)] [ϕ2(y)]〉 = Z−2
ϕ2 Z

2
ϕ〈ϕ2(x)ϕ2(y)〉, (2.99)

at x 6= y. Here Z−2
ϕ2 
an
els the extra divergen
es due to the pairs of 
oin-


iding points.

A 
omposite �eld 
an be des
ribed as a vertex. Its stru
ture is visible

when it is written in terms of renormalized (elementary) �elds. Formula

(2.98) tells us that [ϕ2] is a vertex with two ϕ legs. To exhibit the vertex

asso
iated with a 
omposite �eld, we 
ouple the 
omposite �elds to appro-

priate sour
es, whi
h we denote by L, and add them to the a
tion. At the

bare level, we just need to add

− LBO(ϕB) (2.100)

to the bare Lagrangian. At the renormalized level, we have to add

− LO(ϕ) + f(ϕ,L), (2.101)

where f(ϕ,L) denotes 
ounterterms that are at least quadrati
 in L. They

renormalize the divergen
es of the 
orrelation fun
tions that 
ontain more

than one insertion of O(ϕ), su
h as those of (2.99) at y → x (see below).

The generating fun
tionals Z, W and Γ are de�ned as usual. Now, they

depend on the sour
es L, besides J or Φ. The 
orrelation fun
tions that 
arry

O insertions 
an be obtained by di�erentiating the generating fun
tionals

with respe
t to L.

Sin
e the bare and renormalized a
tions are the same quantity, written

in terms of di�erent variables, we also have

LBOB = LOR. (2.102)

Let ZL denote the renormalization 
onstant of L (LB = ZLL). We 
learly

have

ZL = Z−1
O .

In the 
ase of ϕ2
we have the new vertex −Lϕ2

, with one leg L and

two legs ϕ. On
e LO is written in terms of renormalized �elds, the new
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vertex 
an be treated as any other vertex, L being 
onsidered as an external,

nonpropagating �eld. The Feynman rules are supplemented with the verti
es

generated by (2.100) or (2.101). We add

− 1

2

∫
dDxLB(x)ϕ

2
B(x) = −

ZLZϕ
2

∫
dDxL(x)ϕ2(x) (2.103)

to the bare a
tion (2.46) and

L
= 1

(2.104)

to the Feynman rules. Observe that the sour
e L has dimension two in units

of mass, so by power 
ounting the a
tion must be 
ompleted with a term

that is quadrati
 in L. We write it as

− 1

2aB

∫
L2
B = −µ

−ε

2

(
1

a
+ δa

)∫
L2. (2.105)

We have written

aB =
aµεZ2

L

1 + aδa
≡ µεaZa.

The terms quadrati
 in L are important when we 
onsider multiple insertions

of 
omposite �elds, as in (2.99).

The generating fun
tional be
omes

Z(J,L) = eW (J,L) =

∫
[dϕ] exp

(
−S(ϕ,L) +

∫
Jϕ

)
, (2.106)

where in our example

S(ϕ,L) = S(ϕ)− ZLZϕ
2

∫
Lϕ2 − µ−ε

2

(
1

a
+ δa

)∫
L2

and S(ϕ) is given by (2.16). Sin
e L is an external �eld, the Feynman

diagrams 
an have external legs L, but no internal legs L. There are only

two overall divergent 
orrelation fun
tions that 
ontain ϕ2
insertions, namely

the �vertex�

〈ϕ2(x)ϕ(y)ϕ(z)〉 (2.107)

and the two-point fun
tion (2.96). The 
ounterterms asso
iated with them

give ZL and Za, whi
h we now 
al
ulate at one loop.
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In the 
ase (2.107) we have

L

1
2

(2.108)

It gives (−λµε/2)ID(k,m), where ID is given by (2.28). We �nd

ZL = Z−1
ϕ2 = 1 +

λ

16π2ε
+O(λ2).

The ϕ2
two-point fun
tion (2.96) is given at one loop by the diagram

LL

1
2

(2.109)

whi
h gives (1/2)ID(k,m), so

δa = −
1

16π2ε
+O(λ). (2.110)

Exer
ise 14 Cal
ulate the fun
tionals W (J,L) and and its Legendre trans-

form Γ(Φ, L) with respe
t to J for a free massless s
alar �eld in the presen
e

of the 
omposite �eld ϕ2
.

Solution. We have the renormalized generating fun
tional

eW (J,L) =

∫
[dϕ] exp

(
−1

2

∫ {
(∂µϕ)

2 − Lϕ2 − µ−ε

a
(1 + aδa)L

2

}
+

∫
Jϕ

)

(2.111)

where δa is given by (2.110) with λ = 0. The fun
tional integral is easy to

work out, sin
e it is Gaussian. The sour
e L plays the role of a spa
etime

dependent mass. We obtain

W (J,L) =
1

2

∫ [
J

1

−�− LJ + µ−ε
(
1

a
+ δa

)
L2

]
− 1

2
tr ln(−�− L),

Γ(Φ, L) =
1

2

∫ [
(∂µΦ)

2 − LΦ2 − µ−ε
(
1

a
+ δa

)
L2

]
+

1

2
tr ln(−�− L),

(2.112)
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where

Φ =

∫
1

−�− LJ. (2.113)

�

More generally, the renormalization of a 
omposite �eld is not just multi-

pli
ative, but involves other 
omposite �elds. It is then said that 
omposite

�elds �mix� under renormalization. Then, formulas (2.97), (2.100), (2.101)

and (2.102) must be interpreted in a ve
tor-matrix form.

Call OIB = OI(ϕB) the bare 
omposite �elds, OIR the renormalized ones,

LIB and LI their sour
es, and ZIJ the matrix of the renormalization 
onstants,

su
h that OIB = ZIJOJR. The linear terms in L that must be added to the

Lagrangian read

LIBOIB = LIOIR = LI(Z−1)IJOJB(Z1/2
ϕ ϕ). (2.114)

These terms are su�
ient to des
ribe the 
orrelation fun
tions that 
ontain

single insertions of the 
omposite �elds and arbitrary insertions of the ele-

mentary �elds. Multiple insertions of 
omposite �elds, su
h as (2.96), are

renormalized by terms that 
ontain higher powers of the sour
es L:

S(ϕ,L) = S(ϕ)− LI(Z−1)IJOJB(Z1/2
ϕ ϕ)− LI∆IJ(ϕ)L

J + · · ·

Organize the OIs in a row su
h that the 
omposite �elds of equal dimen-

sions are 
lose to one another and the 
omposite �elds of higher dimensions

follow those of lower dimensions. Sin
e the theory, by the renormalizability

assumption, 
ontains only parameters of non-negative dimensions, a 
ompos-

ite �eld 
an only mix with 
omposite �elds of equal or smaller dimensions.

For this reason, the matrix ZIJ is blo
k lower triangular. Ea
h diagonal

blo
k en
odes the renormalization mixing of the 
omposite �elds of equal di-

mensions. The o�-diagonal blo
ks en
ode the mixing among 
omposite �elds

of di�erent dimensions.

Let us 
omment on the multiple insertions of 
omposite �elds, i.e. the

terms of SL that 
ontain quadrati
 or higher powers of the sour
es LI . In

general, the renormalized a
tion SL is not polynomial in LI . Indeed, if

the dimension of OIB is large, the dimension of LIB is negative. Then, in-

�nitely many lo
al 
ounterterms with high powers of the sour
es LIB and

their derivatives 
an be 
onstru
ted. By the no-mira
le prin
iple of renor-

malization, SL must 
ontain all of them. This means, in parti
ular, that,
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stri
tly speaking, SL is not even lo
al, sin
e it 
ontains terms with arbitrar-

ily many derivatives. However, it is perturbatively lo
al, sin
e ea
h order of

the perturbative expansion is lo
al. At any rate, we do not need to worry,

be
ause we are not required to resum the LI powers. Every 
orrelation fun
-

tion 
ontains a given, �nite number of 
omposite-�eld insertions, so it 
an be


al
ulated by trun
ating SL to appropriate �nite powers of LI . Every trun-


ation is lo
al and polynomial. Thus, we 
an still 
all SL a lo
al fun
tional,

a

ording to the extended de�nition of lo
al fun
tionals introdu
ed before.

Exer
ise 15 Cal
ulate the one-loop renormalization of the 
omposite �eld

O(ϕ) = ϕ4
and the 
omposite �elds that mix with it, in the massless ϕ4

theory.

2.8 Maximum poles of diagrams

An L-loop diagram has at most poles 1/εL of order L. However, sometimes

the order of its maximum pole 
an be 
onsiderably smaller than L. For

example, exer
ise (5) shows that the diagram (k) of �gure (2.59) has two

loops, but it has only a simple pole at m = 0. Here we prove a general

theorem bounding the maximum pole of a diagram.

We are interested only in the UV divergen
es of the quantum theory,

and their renormalization. Then it is 
onsistent to treat the mass terms, if

present, as verti
es of two legs, the propagator being just the massless one.

Any other dimensionful parameter that multiplies a quadrati
 term must be

treated in a similar way. To avoid IR problems in the intermediate steps,

it is 
onvenient to 
al
ulate the UV divergen
es of the Feynman diagrams

by means of deformed propagators that are equipped with an arti�
ial mass

δ, and let δ tend to zero at the end, as explained in formula (2.76). The

tadpoles are loops with a single vertex, and vanish identi
ally. Instead, the

loops with at least two verti
es are not tadpoles (even if one of the verti
es

is a two-leg �mass� vertex) and may give nontrivial divergent 
ontributions.

Theorem 3 The maximum pole of a diagram with V verti
es and L loops

is at most

1

εm(V,L)
,

where

m(V,L) = min(V − 1, L).
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Proof. We prove the statement indu
tively in V and, for �xed V , indu
-

tively in L. The diagrams with V = 1 and arbitrary L are tadpoles, whi
h

vanish identi
ally and trivially satisfy the theorem. Suppose that the state-

ment is true for V < V̄ , V̄ > 1, and arbitrary L. Consider the diagrams

that have V̄ verti
es. For L = 1 the maximal divergen
e is 1/ε, so the the-

orem is satis�ed. Pro
eed indu
tively in L, i.e. suppose that the theorem

is also satis�ed by the diagrams that have V̄ verti
es and L < L̄ loops, and


onsider the diagrams GV̄ ,L̄ that have V̄ verti
es and L̄ loops. If GV̄ ,L̄ has

no subdivergen
e, its divergen
e is at most a simple pole, whi
h satis�es the

theorem. Higher-order poles are related to the subdivergen
es of GV̄ ,L̄ and


an be 
lassi�ed by repla
ing the subdiagrams by their 
ounterterms. Con-

sider the subdiagrams γv,l of GV̄ ,L̄ that have l loops and v verti
es. Clearly,

1 6 l < L̄ and 1 6 v 6 V̄ . By the indu
tive hypothesis, the maximal di-

vergen
e of γv,l is a pole of order m(v, l). Contra
t the subdiagram γv,l to

a point and multiply by 1/εm(v,l)
. A diagram with V̄ − v + 1 6 V̄ verti
es

and L̄− l < L̄ loops is obtained, whose maximal divergen
e is at most a pole

of order m(v, l) + m(V̄ − v + 1, L̄ − l), if we take the fa
tor 1/εm(v,l)
into

a

ount. The inequality

m(v, l) +m(V̄ − v + 1, L̄− l) 6 m(V̄ , L̄),

whi
h 
an be derived 
ase by 
ase, proves that the maximal divergen
e of

GV̄ ,L̄ asso
iated with γv,l satis�es the theorem. Sin
e this is true for every

subdiagram γv,l, the theorem follows for GV̄ ,L̄. By indu
tion, the theorem

follows for every diagram. �

Re
all that this theorem holds after expanding in powers of the dimen-

sionful parameters that are 
ontained in the propagators. The diagram (k)

of �gure (2.59) has V = 2 and L = 2, so m(V,L) = 1: indeed, its maximum

pole in the massless limit is a simple pole instead of a double pole. It 
an be

easily 
he
ked that at m 6= 0 the diagram has a double pole proportional to

the squared mass. If we view the mass term as a two-leg vertex, that pole

arizes from the diagram obtained from (k) by atta
hing the two-leg vertex

to one internal line. In that 
ase, we have V = 3 and L = 2, so m(V,L) = 2,

in agreement with the theorem.
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2.9 Subtra
tion pres
ription

When we subtra
t a simple pole 1/ε, we 
an equivalently subtra
t an arbi-

trary �nite 
onstant together with it, as shown in formula (2.32). Similarly,

when we subtra
t a multiple pole 1/εn, we 
an a�e
t the less singular poles:

1

εn
→ 1

εn
+

n∑

i=1

ci
εn−i

.

Sometimes, a pres
ription, 
alled subtra
tion s
heme, is adopted to asso
iate

�nite 
onstants ci to the subtra
tions of the poles, a

ording to a 
onvenient

rule. The minimal subtra
tion (MS) s
heme is the 
onvention a

ording to

whi
h the poles are subtra
ted with no �nite 
onstants atta
hed.

By lo
ality of 
ounterterms, the s
heme arbitrariness 
an only a�e
t the

lo
al terms. This means that it amounts to a �nite rede�nition of the 
on-

stants that multiply the verti
es and the kineti
 terms 
ontained in the La-

grangian. Sin
e those 
onstants, in
luding the �eld normalizations, are arbi-

trary anyway, the arbitrariness amounts to a �nite reparametrization of the

theory. In any 
ase, it does not a�e
t the physi
al quantities.

In other words, renormalization is an in�nite reparametrization of the

theory, while a 
hange of subtra
tion s
heme is a �nite reparametrization.

To be more expli
it, 
onsider the vertex ϕ4
and its one-loop 
ounterterm

(2.32):

λµε
ϕ4

4!
+ 3λ2µε

(
1

16π2ε
+ c1

)
ϕ4

4!
. (2.115)

Now, move the arbitrary 
onstant c1 from the 
ounterterm to the vertex ϕ4

and de�ne

λ′(λ) = λ+ 3λ2c1 +O(λ3). (2.116)

We 
an rewrite (2.115) as

µελ′
ϕ4

4!
+ µε

3λ′2

16π2ε

ϕ4

4!
+O(λ′ 3). (2.117)

We see that the �nite reparametrization (2.116) 
onverts the arbitrary sub-

tra
tion (2.115) to the minimal form (2.117). It is always possible to make a

similar rearrangement.

From the experimental point of view, the arbitrariness disappears when

enough physi
al quantities are measured, and the theory is uniquely deter-

mined. Spe
i�
ally, in the massive ϕ4
theory three independent quantities
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need to be measured. From them, the values ofm and λ and the ϕ normaliza-

tion 
an be derived, after whi
h the theory is uniquely determined. Observe

that the parameter m needs not be identi�ed with the physi
al mass, some-

times denoted with m
ph

. Sin
e m
ph


an only be a �nite fun
tion of m and

λ, it is determined on
e m and λ are.

In the minimally subtra
ted λ′ parametrization (2.117), the theory does

not depend on c1, so it is uniquely determined on
e λ′ is measured (to-

gether m and the normalization of the �eld). On the other hand, in the

nonminimally subtra
ted λ parametrization (2.115) there appears to be an

additional arbitrary 
onstant c1, so it seems that an extra measurement is

ne
essary. This is just a blunder, be
ause after the three measurements men-

tioned above, c1 disappears from all the physi
al quantities.

The matter 
an be better explained as follows. Consider some physi
al

quantity. Write it as a fun
tion f(λ) of λ in the �rst s
heme and a fun
tion

f ′(λ′) of λ′ in the se
ond s
heme. When we 
hange the s
heme, we do not


hange just λ, but also the form of the fun
tion f of λ. The two 
hanges


ompensate ea
h other, so that the physi
al results remain the same, that is

to say

f(λ) = f ′(λ′).

Che
k for example (2.115) and (2.117): the 
oupling 
hanges, but also the

fun
tion multiplying ϕ4

hanges, so that (2.115) and (2.117) 
oin
ide. So, if

an experimental measurement gives λ′ = ℓ in the se
ond s
heme, where ℓ is

some number that we assume to be small, a measurement in the �rst s
heme

must give the number

λ = ℓ− 3ℓ2c1 +O(ℓ3),

whatever the value of c1 is.

2.10 Regularization pres
ription

So far we have mostly worked using the dimensional regularization, but equiv-

alent results 
an be obtained using any regularization te
hnique we like. Now

we prove that 
hanging the regularization te
hnique is equivalent to 
hange

the subtra
tion s
heme, so it has no physi
al 
onsequen
e. To this purpose,

it is helpful to 
larify the de�nition of regularization te
hnique.
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De�nition 3 We 
all naïve (or formal) limit, the limit in whi
h the regu-

larization parameters are removed by keeping the bare �elds and parameters

�xed.

We emphasize that, in spite of its name, the naïve limit is a rigorous

notion. The naïve limit of the a
tion is the 
lassi
al a
tion. The naïve limit

of the 
orrelation fun
tions is in general ill de�ned, be
ause of the divergen
es.

De�nition 4 We 
all physi
al limit the limit in whi
h the regularization pa-

rameters are removed by keeping the renormalized �elds and parameters �xed.

The physi
al limit of the a
tion is ill de�ned, but the physi
al limit of

the 
orrelation fun
tions exists.

Consider a quantum �eld theory T , de�ned by an a
tion S(ϕ) and a

fun
tional measure [dϕ].

De�nition 5 A regularized theory for T is a deformed theory TR, de�ned
by a deformed a
tion SR(ϕ) and a deformed fun
tional measure [dRϕ], su
h

that: (i) all the regularized diagrams are 
onvergent; (ii) the propagators and

the verti
es tend to the ones of T in the naïve limit; and (iii) all the diagrams,

or derivatives of diagrams, that are 
onvergent at the unregularized level are

re
overed by taking the naïve limits of their regularized versions.

Now, 
onsider an integral

∫
f and de�ne two regularized versions of it,

∫
f1(Λ1) <∞,

∫
f2(Λ2) <∞,

Λ1 and Λ2 denoting some regularization parameters. We just 
all them 
ut-

o�s and assume that they are removed by sending them to in�nity. By

de�nition, we must have

lim
Λ1→∞

f1(Λ1) = lim
Λ2→∞

f2(Λ2) = f. (2.118)

Indeed, the integrands 
ontain verti
es and propagators, namely ingredients

inherited from the 
lassi
al a
tion, so must tend to f in the naïve limit.

However, we 
annot extend the naïve limit to the integrals, be
ause they

might be divergent (this is the reason why the limit is 
alled naïve or formal).
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Expanding for large Λ1,2, we 
an write

∫
fi(Λi) = Iidiv(Λi) + Ii�nite + Iiev(Λi), (2.119)

where i = 1, 2, while Iidiv 
olle
ts the terms that diverge, Iiev those that tend

to zero and Ii�nite those that have �nite limits.

We know that (assuming that the subdivergen
es have been subtra
ted

with the usual algorithmi
 pro
edure) if we take a su�
ient number of deriva-

tives with respe
t to the external momenta k, the integrals be
ome 
onver-

gent. This property is independent of the regularization te
hnique, to the

extent that is also holds for the unregularized integral, namely there exists

an n su
h that ∫
∂nf

∂kn
<∞.

Now, be
ause of (2.118), we also have

lim
Λ1→∞

∂n

∂kn
f1(Λ1) = lim

Λ2→∞

∂n

∂kn
f2(Λ2) =

∂nf

∂kn
.

Integrate ea
h side of this equation. The �rst two integrals 
an be inter-


hanged with the limits, whi
h gives

lim
Λ1→∞

∫
∂n

∂kn
f1(Λ1) = lim

Λ2→∞

∫
∂n

∂kn
f2(Λ2) =

∫
∂nf

∂kn
<∞.

In the �rst two expressions we 
an also inter
hange the integrals and the

derivatives. So doing, we obtain

lim
Λ1→∞

∂n

∂kn

∫
f1(Λ1)− lim

Λ2→∞

∂n

∂kn

∫
f2(Λ2) = 0.

Using (2.119), we get

∂n

∂kn
I1div(Λ1) =

∂n

∂kn
I2div(Λ2) = 0,

∂n

∂kn
(I1�nite − I2�nite) = 0.

The �rst formula is just the statement that 
ounterterms are lo
al with any

regularization te
hnique. The se
ond formula, instead, states that the �nite

parts, 
al
ulated using two di�erent regularizations, 
an di�er at most by

lo
al terms:

I1�nite = I2�nite + lo
al.
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If the theory is renormalizable, su
h lo
al terms are of the types already

present in the Lagrangian, so they amount to a s
heme 
hange, but the

physi
al quantities are una�e
ted. This 
on
ludes the proof.

Sometimes it is useful to regularize di�erent 
lasses of diagrams in di�er-

ent ways, or 
an be 
onvenient to introdu
e multiple 
uto�s Λi. Divergen
es

expressed in terms of di�erent 
uto�s 
an be identi�ed, up to lo
al terms.

The 
uto�s Λi 
an be removed in di�erent orders, e.g Λ1 → ∞ followed by

Λ2 → ∞, or Λ2 → ∞ followed by Λ1 → ∞. When the limits are inter-


hanged, the results 
an di�er at most by lo
al terms, i.e. again a s
heme


hange, but the physi
al quantities are always the same.

Ultimately, we have an enormous freedom. We 
an regularize a theory

as a whole, or diagram by diagram. We 
an use one 
uto� or many 
uto�s,

and we 
an remove the 
uto�s in the order we like. We 
an even use a

di�erent regularization te
hnique and a di�erent subtra
tion s
heme for ea
h

diagram. No matter how we regularize the theory, the physi
al results always


ome out right. The 
ore of quantum �eld theory is �nite and regularization

independent: the divergen
es are 
on�ned to the �super�
ial� parts of the

integrals, so to speak, sin
e they are killed by a �nite number of derivatives.

Di�erent regularization te
hniques 
an demand very di�erent amounts of

e�ort. If we want to better keep tra
k of what we do, it is 
onvenient to

use a simple regularization te
hnique, with one or two 
uto�s, de�ned on the

theory as a whole.

2.11 Comments about the dimensional regulariza-

tion

Some people use to say that the dimensional regularization �misses some-

thing� or �has problems of internal 
onsisten
y�, be
ause integrals su
h as

(2.12) are set to zero and the powerlike divergen
es disappear, or be
ause of

other 
aveats that we will mention later.

The truth is that the dimensional regularization does not miss anything

and has no problems of internal 
onsisten
y. A
tually, it is the most powerful

regularization te
hnique developed so far. It is very 
onvenient both to make


al
ulations (to the extent that the renormalization of QCD has been worked

out to four loops and the one of the standard model to three loops) and to
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prove theorems to all orders. Under both respe
ts, no other regularization

te
hnique is even 
omparable with the dimensional one.

One of its virtues is that it smartly 
hooses a subtra
tion s
heme where

the powerlike divergen
es are automati
ally absent. A
tually, it allows us to

prove that, no matter what regularization te
hnique we use, the powerlike di-

vergen
es 
an always be subtra
ted away just as they 
ome, without leaving

any remnants. Later we will better understand what this means, studying

the renormalization group. For the moment, it is su�
ient to say that the

powerlike divergen
es are 
ompletely s
heme dependent, and 
an be washed

away with a smart s
heme 
hoi
e, while the logarithmi
 divergen
es are only

partially s
heme dependent. The logarithmi
 divergen
es do 
ontain physi-


al information, while the powerlike divergen
es are devoid of any physi
al

meaning.

Two main kinds of assumptions inspire some people to take unreason-

able attitudes towards the dimensional regularization. One assumption is

that behind empty spa
e there should be a sort of latti
e, or aether. The

analyti
 way to regularize the integrals is not intuitive, they say, while a

latti
e spa
ing is supposed to be more �physi
al�. We leave to them to ex-

plain why a regularization should be intuitive, or �physi
al�, and what it is

supposed to mean. We just observe that sometimes hypotheti
al links with


ondensed matter physi
s may be inspiring, but other times they may put

us on the wrong tra
k. More generally, there is no reason to assume that

the human intuition (whi
h is always the produ
t of our intera
tion with

a 
lassi
al environment) should guide us. It may be helpful in some 
ases,

misleading in others. On
e we have given up the 
orresponden
e prin
iple

almost 
ompletely, we 
an live without intuition.

Another assumption is that the ultimate theory should be �nite, that is

to say a theory with no divergen
es. In that 
ase, the powerlike divergen
es

are not really divergen
es, but physi
al quantities that depend on a large

energy s
ale and grow polynomially with it. The assumption that the �nal

theory be �nite turns out to be appealing to some people (for quite sub-

je
tive and �human� reasons), but rather restri
tive. Having learned that

we 
an renormalize the divergen
es away, we no longer need to require that

they are absent from the start. If one insists that the �nal theory must be

�nite, he/she should explain why we 
an make sense of theories that are not

�nite, and why we should privilege a small subset of the theories we 
an
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work with, and ignore the other ones. Somebody expli
itly advo
ates aes-

theti
 
riteria to answer these questions. We do not feel ne
essary to stress

that su
h arguments are 
ompletely meaningless in physi
s. Other people

try to disguise their arbitrary requirements under suspi
ious 
onditions of

�simpli
ity�. Certainly, simpli
ity 
an be advo
ated for pra
ti
al purposes.

It 
annot, however, be advo
ated to dis
riminate what is physi
al from what

is not: that part pertains to nature.

A more serious point about the dimensional regularization is that it is

just perturbative. However, at present we do not know how to de�ne the

fun
tional integral nonperturbatively, so this problem goes beyond the di-

mensional regularization itself.

2.12 About the series resummation

We have stressed several times that our task is to de�ne the fun
tional inte-

gral as a perturbative expansion. We have 
onverted the fun
tional integral

of the intera
ting theory into an in�nite sum of fun
tional integrals of the

free-�eld theory, sin
e those are the only ones we 
an deal with. Ea
h prop-

erty we use must be understood in the same spirit. For example, when we use

that the integral of a fun
tional total-derivative vanishes, we mean that ea
h

term of the perturbative expansion vanishes. At this level, the perturbative

expansion must be regarded as a sequen
e, a list of terms, not as a series

that should be summed. Indeed, our primary obje
tive is to de�ne the terms

of the sequen
e and 
he
k that they are 
onsistent with the key physi
al

and mathemati
al requirements. As we have seen, this task already raises

nontrivial problems. Several other di�
ulties will appear in gauge theories

and dealing with anomalies. It makes no sense to investigate the summation

properties, before de�ning the terms of the sequen
e.

In various 
ases, the sum of the perturbative series might not exist, at

least naïvely. This, however, is not ne
essarily a limitation. It might just

mean that di�erent ways to organize the sum 
an give di�erent results. Then,

we must 
lassify the resummation pres
riptions that make physi
al sense.

There might be more meaningful resummation pres
riptions, ea
h of them

leading to a di�erent physi
al theory, with the same perturbative expansion.

Re
alling that, so far, we have not been s
ared away by the divergen
es (and

now we appre
iate what we would have missed if we had), there is no point
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in worrying about a problem that is not even there, yet.

We will a
tually see that whenever we have 
ontrol on the perturbative

expansion to arbitrarily high orders (su
h as in the 
ases of the anomalies, the

renormalization-group �ow and the 
onformal �xed points), the series does

make sense, or the theory itself provides a natural resummation pres
ription.

For example, there are anomalies that 
an be 
al
ulated exa
tly, sin
e they

re
eive no 
orre
tions beyond one loop (if we are 
areful enough, in a sense

that will be spe
i�ed, whi
h in
ludes 
hoosing an appropriate subtra
tion

s
heme).

In this book, we make no attempt to de�ne the fun
tional integral beyond

its perturbative expansion, unless that means sear
hing for the physi
al pre-

s
riptions that allow us to resum the perturbative expansion when possible.
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Chapter 3

Renormalization group

In this 
hapter we begin the exploration of the physi
al 
onsequen
es of

renormalization. Our 
onsiderations are very general, although we often

illustrate them using spe
i�
 models. We start by 
omparing the bare and

renormalized a
tions

SB(ϕB, λB,m
2
B, LB) = SR(ϕ, λ,m

2, L, µ) (3.1)

of a theory of �elds , where ϕ denote the �elds, λ and m the dimensionless

and the dimensionful parameters, respe
tively, and L are the sour
es for the


omposite �elds. We do not really need to keep λ and m distin
t, but for the

moment it is 
onvenient to do so. Similarly, the relation between the bare

and the renormalized Γ fun
tionals is

ΓB(ΦB, λB,m
2
B, LB) = ΓR(Φ, λ,m

2, L, µ). (3.2)

We re
all that in a theory with a single 
oupling λ, su
h as the ϕ4
4 theory,

we have relations of the form

ϕB =Z1/2
ϕ (λ, ε)ϕ, λB = µελZλ(λ, ε),

m2
B =m2Zm2(λ, ε), LB = ZL(λ, ε)L. (3.3)

Theories with more 
ouplings and �elds will have more 
ompli
ated relations,

but these details do not really 
on
ern our dis
ussion here. The key point is

that the renormalized sides of (3.1) and (3.2) depend on one quantity more

than the bare sides. Pre
isely, the renormalized sides depend on λ and µ

separately, while the bare sides 
ontains only λB, whi
h depends on λ and µ.
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Therefore, it must be possible to solve the µ dependen
e exa
tly in terms of

the renormalization 
onstants. The solution 
an be obtained by 
omparing

the bare version and the renormalized version of any equation. The µ depen-

den
e of the physi
al 
orrelation fun
tions is 
alled �renormalization-group

�ow�.

Let us see what originates the dependen
e on µ. At the tree level, the

a
tion depends on a unique 
ombination of λ and µ, su
h as λµε in the 
ase

(3.3). However, that 
ombination 
annot survive beyond the tree level, be-


ause the subtra
tion of divergen
es is an operation that separates µ from λ:

the 
ounterterms are multiplied by higher powers of λ, whi
h is dimension-

less, by by the same power of µ, whi
h is �xed by dimensional analysis (see

for example (2.33)). This produ
es the �nal relation λB = µελZλ(λ, ε).

The key quantities that are used to des
ribe the renormalization-group

�ow are the beta fun
tion and the anomalous dimensions. To introdu
e them,

we de�ne the total derivative µd/dµ, whi
h is the derivative 
al
ulated by

keeping the bare quantities �xed, and the partial derivative µ∂/∂µ , whi
h is

the derivative 
al
ulated by keeping the renormalized quantities �xed. When

we apply the total derivative to the fun
tional Γ we obtain, by the Leibniz

rule,

µ
d

dµ
=µ

∂

∂µ
+ µ

dλ

dµ

∂

∂λ
+ µ

dm2

dµ

∂

∂m2
+

∫
dDxµ

dΦ(x)

dµ

δ

δΦ(x)

+

∫
dDxµ

dLI(x)

dµ

δ

δLI(x)
. (3.4)

If we apply the total derivative to the a
tion, we obtain the same formula

with Φ repla
ed by ϕ. If we apply the total derivative to the fun
tional W ,

we obtain the same formula with Φ repla
ed by J .

Beta fun
tion

De�ne the �hat beta fun
tion� as

β̂λ = µ
dλ

dµ
.

At the tree level λB = µpελ, so β̂λ = −pελ+O(λ2). It is 
onvenient to de�ne
the beta fun
tion βλ su
h that

β̂λ(λ, ε) = βλ(λ, ε) − pελ. (3.5)
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Clearly, βλ = O(λ2). Now, we apply the identity (3.4) to λB and re
all that

Zλ depends only on λ and ε. We �nd

0 = µ
dλB
dµ

=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ

)
(µpελZλ) = pεµελZλ + µεβ̂λ

d(λZλ)

dλ
,

when
e

d lnZλ
dλ

= − βλ

λβ̂λ
. (3.6)

Using (3.5) we have

βλ =
pελ2 d lnZλ

dλ

1 + λd lnZλ
dλ

. (3.7)

We also �nd the inverse formula

Zλ(λ, ε) = exp

(
−
∫ λ

0

dλ′

λ′
βλ(λ

′, ε)

βλ(λ′, ε)− pελ′
)
. (3.8)

The lower integration limit is �xed by demanding Zλ(0, ε) = 1, sin
e in the

free-�eld limit the renormalization 
onstants are equal to one.

Anomalous dimension

Let us study the total derivative of ϕB. Using (3.4) with Φ→ ϕ we �nd

0 = µ
dϕB

dµ
= µ

d

dµ

(
Z1/2
ϕ ϕ

)
= µ

dZ
1/2
ϕ

dµ
ϕ+ Z1/2

ϕ µ
dϕ

dµ
,

that is to say

µ
dϕ

dµ
= −γϕϕ,

where

γϕ ≡
1

2
µ
d lnZϕ
dµ

=
1

2
µ
dλ

dµ

d lnZϕ
dλ

=
1

2
β̂λ

d lnZϕ
dλ

. (3.9)

The quantity γϕ is 
alled anomalous dimension of the �eld ϕ, and depends

on λ and ε. Sin
e Φ = 〈ϕ〉 we also have

µ
dΦ

dµ
= −γϕΦ.

From (3.9) we �nd the inverse formula

Zϕ(λ, ε) = exp

(
2

∫ λ

0
dλ′

γϕ(λ
′, ε)

βλ(λ′, ε)− pελ′
)
.
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When the renormalization is multipli
ative, we have

∫
JBϕB =

∫
Jϕ,

so the renormalization 
onstants of ϕ and J are the re
ipro
als of ea
h other.

Then we also �nd

µ
dJ

dµ
= γϕJ. (3.10)

Exer
ise 16 Cal
ulate the beta fun
tions and the anomalous dimensions

of the ϕ4
4 theory and the ϕ3

6 theory at one loop in the minimal subtra
tion

s
heme.

Solution. In the minimal subtra
tion s
heme, the 
onstants c1 and c2 of

formula (2.44) are equal to zero. Applying the formulas (3.7) and (3.9) to

(2.44), (2.47) and (2.48), we get

ϕ4
4 : βλ =

3λ2

16π2
+O(λ3), γϕ = O(λ2), (3.11)

ϕ3
6 : βλ = − 3λ3

4(4π)3
+O(λ5), γϕ =

λ2

12(4π)3
+O(λ4), (3.12)

Exer
ise 17 Cal
ulate the beta fun
tion and the anomalous dimension of

the ϕ4
4 theory at two loops.

Solution. Applying the formulas (3.7) and (3.9) to (2.64) and (2.65) we

get

βλ =
3λ2

(4π)2
− 17λ3

3(4π)4
+O(λ4), γϕ =

λ2

12(4π)4
+O(λ3).

Note that the divergen
es have 
an
eled out. Later we will prove that this is

a general fa
t.

Exer
ise 18 Cal
ulate �rst nonvanishing 
ontributions to the beta fun
tion

and the anomalous dimension of the massless ϕ6
3 theory.

Solution. Applying the formulas (3.7) and (3.9) to (2.66) and (2.68), and

re
alling that here p = 2, we get

βλ =
5λ2

3(4π)2
+O(λ3), γϕ =

λ2

90(8π)4
+O(λ3).
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Composite �elds

Similarly, taking the total derivative µd/dµ of LB we get

0 = µ
dLB

dµ
= µ

dZL
dµ

L+ ZL µ
dL

dµ
,

when
e

µ
dL

dµ
= −µd lnZL

dµ
L = −β̂λ

d lnZL
dλ

L.

Re
alling that LBOB = LO, and ZL = Z−1
O , we have

µ
dO
dµ

= −γOO, γO = −γL = µ
d lnZO

dµ
= −µd lnZL

dµ
.

The inverse formula reads

ZO(λ, ε) = exp

(∫ λ

0
dλ′

γO(λ
′, ε)

βλ(λ′, ε) − pλ′ε

)
. (3.13)

For example, 
onsider the mass operator ϕ2
. Its renormalization 
oin
ides

with the renormalization of the integrated mass term

∫
dDxϕ2. (3.14)

Indeed, the integral determines the integrand up to lo
al total derivatives,

whi
h in this 
ase must also have dimension 2 (for D = 4). Sin
e there exist

no lo
al Lorentz invariant obje
ts with these features, ϕ2
and (3.14) renor-

malize in exa
tly the same way. Correspondingly, the sour
e Lϕ2 
oupled to

ϕ2
renormalizes exa
tly as m2

, and Zϕ2 = Z−1
m2 . By dimensional analysis,

µdm2/dµ must be equal to m2
times a fun
tion of λ and ε. We have

µ
dm2

dµ
= m2η(λ, ε), η = −µd lnZm2

dµ
= µ

d lnZϕ2

dµ
= γϕ2 .

More generally, the 
omposite �elds mix with one another. As explained

in Chapter 2, it is 
onvenient to 
olle
t all of them into a huge ve
tor OI ,
where the 
omposite �elds of the same dimension are 
lose to one another and

the 
omposite �elds of higher dimensions follow those of lower dimensions.

Then, we have

OIB = ZIJ [OJ ],
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where the matrix ZIJ of renormalization 
onstants is blo
k lower triangular.

We �nd

µ
d[OI ]
dµ

= −γIJ [OJ ], γIJ ≡ Z−1
IKµ

dZKJ

dµ
. (3.15)

Due to (2.102), the sour
es LI 
oupled to the OIs satisfy

µ
dLI

dµ
= LJγJI . (3.16)

3.1 The Callan-Symanzik equation

Let us apply (3.4) to Γ(Φ). We obtain

0 = µ
dΓB

dµ
= µ

∂Γ

∂µ
+ β̂λ

∂Γ

∂λ
+ ηm2 ∂Γ

∂m2
− γϕ

∫
dDx Φ(x)

δΓ

δΦ(x)
. (3.17)

On W we have, instead,

0 = µ
dWB

dµ
= µ

∂W

∂µ
+ β̂λ

∂W

∂λ
+ ηm2 ∂W

∂m2
+ γϕ

∫
dDx J(x)

δW

δJ(x)
. (3.18)

Let us take two fun
tional derivatives of (3.17) with respe
t to Φ and set

Φ = 0 afterwards, or, equivalently, two derivatives of (3.18) with respe
t to

J and then set J = 0. We obtain the Callan-Symanzik equations for the


onne
ted-irredu
ible two-point fun
tions Γ2 and the 
onne
ted two-point

fun
tion W2 = 〈ϕ(x)ϕ(y)〉c:

0=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηm2 ∂

∂m2
− 2γϕ

)
Γ2, (3.19)

0=

(
µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηm2 ∂

∂m2
+ 2γϕ

)
W2. (3.20)

The two equations are indeed equivalent, be
ause Γ2W2 = 1.

For the moment let us work in the massless theory. We do not make the

ε dependen
e expli
it, be
ause it is not important for the present dis
ussion.

Sin
e W2 has dimension D − 2 it is 
onvenient to write

W2(|x− y|, λ, µ) =
G2r(t, λ)

|x− y|D−2
, t ≡ − ln(|x− y|µ). (3.21)

Then (3.20) at m = 0 be
omes

0 =

(
− ∂

∂t
+ β̂λ

∂

∂λ
+ 2γϕ

)
G2r(t, λ). (3.22)
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We want to solve this equation. To this purpose, we de�ne the �running


oupling� λ̃(t, λ), whi
h is the solution of the �rst-order di�erential equation

dλ̃

dt
= β̂λ(λ̃), λ̃(0, λ) = λ. (3.23)

We have dt = dλ̃/β̂λ(λ̃), hen
e

t =

∫ λ̃(t,λ)

λ

dλ̃

β̂λ(λ̃)
. (3.24)

It is 
onvenient to 
onsider λ̃ as a fun
tion of both t and the initial 
ondition

λ. If so, the t derivative appearing in (3.23) must be written as a partial

derivative ∂λ̃(t, λ)/∂t. Di�erentiating ea
h side of (3.24) with respe
t to λ,

we 
an work out the derivative of the solution with respe
t to its initial


ondition, whi
h is

∂λ̃(t, λ)

∂λ
=
β̂λ(λ̃(t, λ))

β̂λ(λ)
. (3.25)

The solution of the Callan-Symanzik equation (3.22) reads

G2r(t, λ) = z−1(λ, t)G2r(0, λ̃(t, λ)), (3.26)

with

z(λ, t) = exp

(
−2
∫ t

0
γϕ(λ̃(s, λ))ds

)
. (3.27)

We prove this statement by 
he
king that (3.26) satis�es the equation and the

initial 
ondition. Given a fun
tion f of many variables, we write f (n1,n2,...)

to denote its n1th partial derivative with respe
t to its �rst variable, n2th

partial derivative with respe
t to its se
ond variable, and so on.

The initial 
ondition is 
ertainly satis�ed, sin
e at t = 0 we have the

identity G2r(0, λ) = G2r(0, λ). Moreover, we 
an easily 
al
ulate the partial

derivatives of G2r with respe
t to t and λ. We �nd

G
(1,0)
2r (t, λ) = 2γϕ(λ̃(t, λ))G2r(t, λ) + z−1(λ, t)β̂λ(λ̃(t, λ))G

(0,1)
2r (0, λ̃(t, λ)),

G
(0,1)
2r (t, λ) = 2G2r(t, λ)

∫ t

0

∂λ̃(s, λ)

∂λ
γ′ϕ(λ̃(s, λ))ds

+z−1(λ, t)
∂λ̃(t, λ)

∂λ
G

(0,1)
2r (0, λ̃(t, λ)).
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Now, using (3.25) we also have

β̂λ(λ)

∫ t

0

∂λ̃(s, λ)

∂λ
γ′ϕ(λ̃(s, λ))ds =

∫ t

0
β̂λ(λ̃(s, λ))γ

′
ϕ(λ̃(s, λ))ds (3.28)

=

∫ t

0

∂λ̃(s, λ)

∂s
γ′ϕ(λ̃(s, λ))ds =

∫ t

0

∂γϕ(λ̃(s, λ))

∂s
ds = γϕ(λ̃(t, λ))− γϕ(λ).

Summing, we �nd immediately that (3.22) is satis�ed.

When the theory 
ontains more parameters λi (whi
h 
an in
lude also

the masses), equation (3.22) be
omes

0 =

(
− ∂

∂t
+ β̂

i

λ

∂

∂λi
+ 2γϕ

)
G2r(t, λ). (3.29)

De�ne the running parameters λ̃i(t, λ) as the solutions of the following system

of �rst-order di�erential equations:

dλ̃i
dt

= β̂
i
λ(λ̃), λ̃i(0, λ) = λi. (3.30)

The solution (3.26) and formula (3.27) remain the same. However, formulas

(3.24) and (3.25) do not hold. De�ne

fi(t, λ) ≡ β̂
j
λ(λ)

∂λ̃i(t, λ)

∂λj
,

where the sum over j is understood. We have fi(0, λ) = β̂
i
λ(λ). Moreover, if

β̂
i

λ,k(λ) ≡ ∂β̂
i

λ(λ)/∂λk , we get

∂fi
∂t

= β̂
j

λ(λ)
∂β̂

i
λ(λ̃(t, λ))

∂λj
= β̂

j

λ(λ)
∂λ̃k(t, λ)

∂λj
β̂
i

λ,k(λ̃(t, λ)) = fkβ̂
i

λ,k(λ̃(t, λ)).

We obtain the system of �rst-order equations and initial 
onditions

∂fi(t, λ)

∂t
= fk(t, λ)β̂

i
λ,k(λ̃(t, λ)), fi(0, λ) = β̂

i
λ(λ).

It is easy to 
he
k that

Fi(t, λ) ≡ β̂
i

λ(λ̃(t, λ))

satis�es the equations and the initial 
onditions. In parti
ular,

∂Fi(t, λ)

∂t
= β̂

k

λ(λ̃(t, λ))β̂
i

λ,k(λ̃(t, λ)) = Fk(t, λ)β̂
i

λ,k(λ̃(t, λ)).
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Therefore, we 
on
lude that Fi(t, λ) = fi(t, λ), that is to say

β̂
j
λ(λ)

∂λ̃i(t, λ)

∂λj
= β̂

i
λ(λ̃(t, λ)). (3.31)

This formula is a generalization of (3.25). Going through the proof of (3.26)

we realize that (3.25) was ne
essary only to derive (3.28). Extending the

proof of (3.26) to the theories that 
ontain more parameters, we see that

(3.31) is just su�
ient to derive the desired generalization of (3.28).

In the end, we �nd that (3.26) satis�es (3.29), as wanted.

General solution of the Callan-Symanzik equation

So far, we have studied the two-point fun
tion. However, the results 
an be

extended to a generi
 
orrelation fun
tion

W I1···Im
α1···αn

(x, y, λ, µ) = 〈ϕα1(x1) · · ·ϕαn(xn)OI1(y1) · · · OIm(ym)〉c (3.32)

that 
ontains both insertions of elementary and 
omposite �elds. The sub-

s
ript α in ϕα is used to distinguish the di�erent types of elementary �elds,

in
luding the ghosts and the Lagrange multipliers. We denote the ϕα anoma-

lous dimensions with γα(λ). Finally, λi 
olle
ts the 
ouplings and any other

parameters, in
luding the masses and the gauge-�xing parameters.

The Callan-Symanzik equation for (3.32) 
an be derived by applying (3.4)

(with Φ→ J) to W (J,L) and using (3.10) and (3.16). We �nd

0=

(
µ
∂

∂µ
+
∑

i

β̂
i
λ
∂

∂λi
+ 2

n∑

i=1

γαi

)
W I1···Im
α1···αn

+

m∑

j=1

γIjKjW
I1···Ij−1KjIj+1···Im
α1···αn . (3.33)

Repeating the proof of the previous se
tion it is easy to show that the solution

reads

W Ii···Im
α1···αn

(x, y, λ, µ) =

n∏

i=1

z−1/2
αi

(t)

m∏

j=1

Z−1
IjKj

(t) WK1···Km
α1···αn

(x, y, λ̃(t), µ̃),

(3.34)

where now t = ln(µ̃/µ), λ̃(t) are the solutions of (3.30) and

zαi(t) = exp

(
−2
∫ t

0
dsγαi(s)

)
, Z(t) = T exp

(
−
∫ t

0
dsγ(s)

)
, (3.35)
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where Z and γ are the matri
es with entries ZIJ and γIJ , γ(t) stands for

γ(λ̃(t)) and T denotes the T-ordered produ
t. Pre
isely,

Z(t) = 1 +

∞∑

k=1

(−1)k
∫ t

0
dt1

∫ t1

0
dt2 · · ·

∫ tk−1

0
dtkγ(t1) · · · γ(tk−1)γ(tk),

(3.36)

Thus, formula (3.34) tells us how the 
orrelation fun
tion depends on the

s
ale µ.

3.2 Finiteness of the beta fun
tion and the anoma-

lous dimensions

Formulas (3.11) and (3.49) show that the poles in ε 
an
el out in the one-

loop beta fun
tions and the anomalous dimensions. This is a very general

fa
t: the beta fun
tions and the anomalous dimensions are �nite quantities.

Consider the Callan-Symanzik equation (3.17) for Γ(Φ, λ,m2, µ). Restore ~

and expand ea
h quantity perturbatively,

Γ =

∞∑

i=0

~
iΓi, β̂λ =

∞∑

i=0

~
iβ̂λi, η =

∞∑

i=0

~
iηi, γϕ =

∞∑

i=0

~
iγϕi.

(3.37)

Assume indu
tively that β̂λ, η and γϕ are �nite up to and in
luding the order

n− 1, that is to say

β̂λi, ηi, γϕi <∞ for i 6 n− 1. (3.38)

The assumption is obviously true for i = 0, sin
e β̂λ0 = −ελ, η0 = γϕ0 = 0.

Consider the 
ontribution to (3.17) of order n. We have

0 = µ
∂Γn
∂µ

+

n∑

i=0

(
β̂λi

∂Γn−i
∂λ

+ ηim
2 ∂Γn−i
∂m2

− γϕi
∫

Φ
δΓn−i
δΦ

)
.

Re
all that every Γi is 
onvergent, and so are its derivatives with respe
t to

the renormalized parameters. Using (3.38) we 
on
lude

β̂λn
∂Γ0

∂λ
+ ηnm

2 ∂Γ0

∂m2
− γϕn

∫
Φ
δΓ0

δΦ
= �nite. (3.39)

Now, Γ0 is just the 
lassi
al a
tion, and ∂Γ0/∂λ, ∂Γ0/∂m
2
and Φ(δΓ0/δΦ)

are independent terms, be
ause they are the vertex, the mass term and the
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�eld equation (whi
h 
ontains the vertex, the mass term and the kineti


term), respe
tively. Therefore, ea
h 
oe�
ient of the linear 
ombination

(3.39) must be �nite, whi
h proves

β̂λn <∞, ηn <∞, γϕn <∞.

The indu
tive assumption (3.38) is thus promoted to n =∞.

We have set LI = 0, but 
learly the argument 
an be repeated in the

presen
e of sour
es for 
omposite �elds OI , whi
h proves that the γIJs are

also �nite.

3.3 Fixed points of the RG �ow

Consider the 
orrelation fun
tion W Ii···Im
α1···αn

of formula (3.32) and res
ale the


oordinates, the momenta and the parameters λ by powers of ζ equal to

their dimensions in units of mass. For example, res
ale the 
oordinates xµ

to ζ−1xµ, the momenta pµ to ζpµ, the masses m to ζm, and so on. If we also

res
ale µ to ζµ, we get

W Ii···Im
α1···αn

(ζ−1x, ζ−1y, ζdλλ, ζµ) = ζdWW Ii···Im
α1···αn

(x, y, λ, µ),

where dW and dλ are the dimensions of W Ii···Im
α1···αn

and λ, respe
tively. Repla
-

ing µ by ζ−1µ, we obtain

W Ii···Im
α1···αn

(x, y, λ, ζ−1µ) = ζ−dWW Ii···Im
α1···αn

(ζ−1x, ζ−1y, ζdλλ, µ).

The left-hand side of this equation tells us that the limit µ→∞ in the 
or-

relation fun
tion is equivalent to let ζ tend to zero. The right-hand side tells

us that this operation is equivalent to let the distan
es tend to in�nity (and

res
ale the parameters of the theory appropriately). Thus, the limit µ→∞
gives information about the infrared, or large-distan
e, limit of the 
orrela-

tion fun
tion. Similarly, the limit µ→ 0 is equivalent to take ζ (in parti
ular

the distan
es) to in�nity, so it gives information about the ultraviolet limit.

The solution (3.34) of the renormalization-group equations gives

W Ii···Im
α1···αn

(x, y, λ, ζ−1µ) =
n∏

i=1

z−1/2
αi

(t)
m∏

j=1

Z−1
IjKj

(t) WK1···Km
α1···αn

(x, y, λ̃(t), µ),

(3.40)
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where now t = ln ζ. Thus, to understand the infrared and the ultraviolet

behaviors of the 
orrelation fun
tions, it is useful to work out the infrared and

the ultraviolet behaviors of the beta fun
tions and the anomalous dimensions.

For simpli
ity, we assume that the theory has a unique dimensionless


oupling, and keep 
alling it λ. We also assume that λ is de�ned to be

non-negative. Typi
ally, as in the 
ase of the theory ϕ4
, this requirement is

ne
essary to ensure that the potential is bounded from below.

An alternative way of de�ning the running 
oupling is by viewing it as

a fun
tion λ(µ) of the energy s
ale µ. Start from formula (3.24), and set

ε = 0, t = ln(µ̃/µ), λ̃ = λ(µ̃) and λ = λ(µ). In a generi
 subtra
tion s
heme,

de�ne βλ(λ) ≡ β̂λ(λ, 0). Exponentiating (3.24), relabeling the integration

variable and splitting the integral into two symmetri
 parts with the help of

an arbitrary 
onstant λ̄, we 
an write

µ̃ exp

(
−
∫ λ(µ̃)

λ̄

dλ

βλ(λ)

)
= µ exp

(
−
∫ λ(µ)

λ̄

dλ

βλ(λ)

)
= 
onstant ≡ Λ

T

.

The s
ale Λ
T

(
alled Λ
QCD

if the theory T is QCD and λ̄ is 
hosen appro-

priately) is RG invariant, i.e. independent of µ. We also have

∫ λ(µ)

λ̄

dλ

βλ(λ)
= ln

µ

Λ
T

(3.41)

Now, the infrared (ultraviolet) behavior of λ̃ is studied for t → −∞
(t → ∞), whi
h is equivalent to take the limit µ̃ → 0 (µ̃ → ∞) of the

fun
tion λ̃ = λ(µ̃). Then, it is also the limit µ→ 0 (µ→∞) of λ(µ). We see

that in both the infrared and ultraviolet limits, the right-hand side of (3.41)

diverges. On the other hand, the left-hand side 
an diverge in the following

two 
ases: (i) the running 
oupling tends to a zero of the beta fun
tion, i.e.

lim
µ→0

λ(µ) = λ
IR

, and/or lim
µ→∞

λ(µ) = λ
UV

,

where βλ(λIR) = βλ(λUV) = 0; or (ii) the running 
oupling tends to ±∞ and

the infrared and/or ultraviolet limits. In all the 
ases the integral of (3.41)

must diverge in the 
orre
t way.

The values of the 
ouplings for whi
h the beta fun
tions vanish at ε = 0,

i.e. the solutions λ∗ of βλ(λ∗) = 0, de�ne a parti
ular 
lass of quantum �eld

theories, whi
h are 
alled �xed points of the RG �ow. Clearly, λ = 0 is
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a trivial example of a �xed point, and 
orresponds to the free �eld theory

we have been expanding around. However, there may exist intera
ting �xed

points, that is to say solutions with λ∗ 6= 0. This happens, for example, when

the beta fun
tions have the forms

(3.42)

In some 
ases the nontrivial �xed point 
an be rea
hed perturbatively from

the free �xed point. Then, the perturbative expansion allows us to follow

the entire renormalization group �ow in between the �xed points.

At any �xed point, the 
oupling does not run (at ε = 0), sin
e βλ ≡ 0

implies λ̃ ≡ λ∗. However, a theory behaves rather di�erently around the

free and the intera
ting �xed points. Now we study the typi
al behaviors,

starting from the trivial �xed point.

Expand βλ perturbatively around λ = 0:

βλ(λ) = β1λ
2 + β2λ

3 + β3λ
4 +O(λ5). (3.43)

If the running 
oupling λ̃ is small, we 
an keep the �rst nontrivial 
ontribution

to β̂λ(λ̃) in the RG equation (3.23) and negle
t any higher orders. We assume

here that β1 6= 0, so the �rst nontrivial 
ontribution is the one-loop one. The

running 
oupling reads

λ̃(t, λ) =
λ

1− β1tλ
(3.44)

up to two-loop 
orre
tions. Setting t = ln(µ̃/µ), λ̃ = λ(µ̃) and λ = λ(µ), we


an also write the running in the form (3.41), or

1

λ(µ)
+ β1 lnµ = 
onstant.

However, this result is just one loop, and 
an be trusted only if the running


oupling is small. This happens when µ → 0 (whi
h is the IR limit) for

β1 > 01, and when µ → ∞ (whi
h is the UV limit) for β1 < 0. Spe
i�
ally,

1

Re
all that λ is assumed to be non-negative.
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formula (3.44) gives

λ̃(t, λ) ∼ − 1

β1t
≪ 1 for |t| ≫ 1, (3.45)

The running 
oupling tends to zero, so the theory tends to the free �xed

point. Observe that the behavior (3.45) is λ independent.

The theory is said to be infrared free if β1 > 0, and asymptoti
ally free

(or ultraviolet free) if β1 < 0. Nontrivial examples of asymptoti
ally free

theories are provided by non-Abelian gauge �eld theories, as well as the two-

dimensional four-fermion model (1.102). In the latter 
ase, formula (2.93)

allows us to work out the one-loop beta fun
tion, whi
h reads

βλ = −(N − 1)λ2

2π
+O(λ3).

Now we study the behavior of the theory around an intera
ting �xed

point. We expand by writing λ = λ∗ + η and taking η ≪ 1. The Taylor

expansion of the beta fun
tion gives, to the lowest order,

βλ(λ) = β′λ(λ∗)η +O(η2).

We assume that the slope β′λ(λ∗) of the beta fun
tion at the �xed point is

nonvanishing. If not, we would have to go to the �rst nontrivial order of

the Taylor expansion and modify the analysis a

ordingly. The RG equation

(3.23) be
omes

dη̃

dt
= β′λ(λ∗)η̃ +O(η̃2), η̃(0) = η,

The running 
oupling reads

η̃(µ̃) = ηeβ
′

λ(λ∗)t.

Writing t = ln(µ̃/µ) to swit
h to the form (3.41), we obtain

η(µ)µ−β
′

λ(λ∗) = 
onstant. (3.46)

With the help of this formula, we 
an rea
h the �xed point. There, η(µ)

must tend to zero. This happens when µ → ∞ for β′λ(λ∗) < 0 and when

µ→ 0 for β′λ(λ∗) > 0. We learn that when the slope of the beta fun
tion is

14B1 Renorm



3.3 Fixed points of the RG �ow 143

negative (positive) at the �xed point, the intera
ting �xed point is rea
hed

in the ultraviolet (infrared) limit.

Re
apitulating, in the �rst (se
ond) example of (3.42) the theory is free

in the infrared (ultraviolet) limit, and tends to the intera
ting �xed point in

the ultraviolet (infrared) limit.

At an intera
ting �xed point, the anomalous dimensions γϕ2(λ∗) ≡ γ∗ϕ2

(and γαi(λ∗) ≡ γ∗αi
, γIJ(λ∗) ≡ γ∗

IJ
, in general) are just 
onstants. Then,

formulas (3.35) with t = ln(µ̃/µ) give

zαi(t) =

(
µ

µ̃

)2γ∗αi

, Z(t) =

(
µ

µ̃

)γ∗
.

Finally, formula (3.34) gives

W Ii···Im
α1···αn

(x, y, λ, µ) =

(
µ̃

µ

)∑n
i=1 γ

∗
αi

m∏

j=1

(
µ̃

µ

)γ∗

IjKj

WK1···Km
α1···αn

(x, y, λ∗, µ̃).

(3.47)

In the parti
ular 
ase of the two-point fun
tion W2 = 〈ϕ(x)ϕ(y)〉c in the

massless four-dimensional ϕ4
theory, formulas (3.21), (3.26) and (3.27) give,

in D = 4,

〈ϕ(x)ϕ(y)〉c =
µ−2γ∗ϕCϕ

|x− y|2(1+γ∗ϕ)
,

where Cϕ is a 
onstant. If we 
ompare this result with the two-point fun
tion

of the free-�xed point, whi
h is

〈ϕ(x)ϕ(y)〉c =
1

4π2|x− y|2 ,

we see that the exponent is modi�ed to twi
e the �
riti
al exponent�

1 + γ∗ϕ.

In turn, this is the sum of the naïve ϕ dimension, whi
h is equal to one,

plus γ∗ϕ. Similarly, the two-point fun
tion of a 
omposite �eld O of naïve

dimension dO is

〈O(x)O(y)〉c =
µ−2γ∗

OCO

|x− y|2(dO+γ∗
O
)
.

These remarks justify the name �anomalous dimensions� for the quantities

γ.
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The solution (3.47) is simple at the �xed points, be
ause the Callan-

Symanzik equation (3.33) be
omes simpler there. Dropping the terms pro-

portional to the beta fun
tions, we get

0 =

(
µ
∂

∂µ
+ 2

n∑

i=1

γαi

)
W I1···Im
α1···αn

+

m∑

j=1

γIjKjW
I1···Ij−1KjIj+1···Im
α1···αn ,

so the entire µ dependen
e of a 
orrelation fun
tion is en
oded in an appro-

priate multipli
ative fa
tor.

ϕ4
4 at one loop The RG �ow of the theory ϕ4

in four dimensions 
an be

worked out at one loop by means of the beta fun
tion (3.11). Formula (3.11)

is 
orre
t also at ε 6= 0 in the minimal subtra
tion s
heme, while it 
ontains


orre
tions of the form O(ελ2) in a generi
 s
heme, where the 
onstants c1
and c2 of formula (2.44) 
an be nonzero. In either 
ase, the solution of (3.23)

at ε = 0 reads

λ̃(t, λ) =
λ

1− 3tλ
16π2

, (3.48)

whi
h is the running 
oupling in the one-loop approximation. Sin
e β1 > 0,

the theory is infrared free.

The anomalous dimension of the 
omposite operator ϕ2
is

η = γϕ2 = −µd lnZm
dµ

= −β̂λ
d lnZm

dλ
=

λ

16π2
+O(λ2). (3.49)

Let us study the ϕ2
two-point fun
tion in the massless 
ase. From (3.35) we

have

zϕ2(λ, t) = exp

(
−
∫ t

0
γϕ2(λ̃(s, λ))ds

)
=

(
1− 3tλ

16π2

)1/3

.

Applying the RG solution (3.34), we get (again at ε = 0)

〈ϕ2(x)ϕ2(y)〉c ≡
G

(2)
ϕ2r

(t, λ)

|x− y|4 ∼
λ
2/3
f

(x− y, µ)
λ2/3|x− y|4 G

(2)
ϕ2r

(0, λ
f

(x− y, µ)) (3.50)

at large distan
es, where

λ
f

(x− y, µ) ≡ 16π2

3 ln(µ|x− y|) .

We 
annot de�ne a 
riti
al exponent here, sin
e λ
f

has a logarithmi
 behavior.

The reason is that at the free �xed point the slope β′λ of the beta fun
tion

vanishes.
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3.4 S
heme (in)dependen
e

Now we work out other useful properties of the beta fun
tion. Observe that

in the minimal subtra
tion s
heme the λ renormalization 
onstant (whi
h we

denote with a bar) has the form Z̄λ = 1+poles. Thus, formula (3.7) gives

β̄λ = ε× poles = �nite+ poles, (3.51)

with no orders εn, n > 0. However, we just proved that βλ is �nite, so the

poles that appear on the right-hand side of (3.51) must 
an
el out. Thus, β̄λ
depends only on λ and not on ε. In the minimal subtra
tion s
heme we 
an

write

̂̄βλ(λ, ε) = β̄λ(λ)− ελ.
We know that the 
oe�
ients of the poles 1/ε are s
heme independent at

one loop. For this reason, the one-loop 
oe�
ients of beta fun
tions and the

anomalous dimensions are always s
heme independent at ε = 0. Moreover,

if the theory 
ontains a unique dimensionless 
oupling λ, we 
an easily show

that both the one-loop and the two-loop 
oe�
ients of the beta fun
tion are

s
heme independent at ε = 0. Expand βλ(λ) as in (3.43). A s
heme 
hange

amounts to a perturbative reparametrization of λ. Write

λ = λ′ + a2λ
′2 + a3λ

′3 +O(λ′4). (3.52)

We have

β′λ(λ
′) = µ

dλ′

dµ
= µ

dλ

dµ

dλ′

dλ
= βλ(λ(λ

′))

(
dλ

dλ′

)−1

=

= β1λ
′2 + β2λ

′3 +
(
β3 + a2β2 + (a22 − a3)β1

)
λ′4 +O(λ′5).

We see that the �rst two 
oe�
ients, and only those, are s
heme indepen-

dent. The result does not extend to ε 6= 0, sin
e then we have to in
lude

reparametrizations of the form λ = c(ε)λ′ +O(λ′2), with c(ε) = 1 +O (ε).

With a suitable 
hoi
e of a2 and a3 the third 
oe�
ient 
an be set to

zero, for example

a2 = 0, a3 =
β3
β1
. (3.53)

It is easy to prove that with a suitable 
hoi
e of the fun
tion λ(λ′) all the


oe�
ients but the �rst two 
an be set to zero. However, this is just a 
u-

riosity. For example, the two-loop beta fun
tion 
annot be trusted as an
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exa
t formula, not even within the perturbative expansion. A warning that

there is a problem here is the β1 in the denominator of (3.53). Typi
ally, β1
is proportional to the number N of �elds 
ir
ulating in loops. Nowhere the

perturbative expansion 
an generate inverse powers of N . In Yang-Mills the-

ory, for example, β1 is equal to a numeri
al fa
tor times 11C(G)− 4NfC(r),

where C(G) and C(r) are the Casimir elements of the representations. It is

obvious that, at the perturbative level, the Casimir elements 
annot appear

in the denominators.

Moreover, the reparametrization (3.52) 
an introdu
e spurious singulari-

ties at �nite values of λ. For example, fa
tors su
h as

λ2

βλ(λ)
=

1

β1
+O(λ) (3.54)


an easily be generated. If we ignore the awkward β1 in the denominator

(maybe be
ause we are working with a given number of �elds and are not

aware of the importan
e of this point), su
h fun
tions appear to have a per-

fe
tly good perturbative expansion around the free-�xed point of the RG �ow.

Nevertheless, they do not have a good perturbative behavior around an inter-

a
ting �xed point, be
ause they are singular there. If we make reparametriza-

tions that involve expressions su
h as (3.54), we may loose the possibility of

smoothly interpolating between two �xed points of the RG �ow.

Finally, the �
uriosity� mentioned above does not extend to theories that


ontain more than one 
oupling. When we generalize the argument given

above, both λ and βλ be
ome ve
tors, while the 
oe�
ients βi be
ome tensors

with i+ 2 indi
es, and the 
oe�
ients ai be
ome tensors with i+ 1 indi
es.

The 
oe�
ients of the transformed beta fun
tion 
an be set to zero by solving

linear re
ursive equations that have i + 2 indi
es, but their unknowns just

have i+ 1 indi
es. The solution does not exist, in general.

3.5 A deeper look into the renormalization group

If we insert the one-loop values (2.44) of the ϕ4
renormalization 
onstants into

the inverse formulas (3.8) and (3.13), we 
an re
onstru
t the renormalization


onstants Zλ and, for example, Zϕ2 . Then we �nd something interesting.
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Working in the minimal subtra
tion s
heme, we obtain

Z̄λ(λ, ε) =
1

1− 3λ
16π2ε

, Z̄ϕ2(λ, ε) =

(
1− 3λ

16π2ε

)1/3

. (3.55)

These results give the 
orre
t values (2.44) (at c1 = c2 = 0) at O(λ) and the

two-loop double poles agree with formula (2.65). However, they tell us mu
h

more.

Now we in
lude the higher-order 
orre
tions to the beta fun
tion. We

insert them in (3.8)by writing β̄λ(λ) = λ
∑∞

i=1 β̄iλ
i
, and �nd

Z̄λ(λ, ε) = exp

(∫ λ

0

dλ′

λ′

∑∞
i=1 β̄i

λ′i

ε

1−∑∞
j=1 β̄j

λ′j

ε

)

= 1 + β̄1
λ

ε
f1

(
β̄1
λ

ε

)
+

∞∑

i=2

β̄i
λi

ε
fi

(
β̄1
λ

ε
, β̄2

λ2

ε
, · · · , β̄i

λi

ε

)
, (3.56)

where the fun
tions fi are power series of their arguments and re
eive 
on-

tributions from the jth orders, j 6 i, of the beta fun
tion. We see that the

maximum poles λn/εn, n > 0, even those that are due to diagrams with

arbitrary many loops, are not a�e
ted by the higher-order 
orre
tions, but

depend only on the one-loop 
oe�
ient of the beta fun
tion. Resumming

them, we �nd

Zλ(λ, ε) =
1

1− β1λ
ε

+
∞∑

i=2

λi

ε
fi.

The �rst two 
oe�
ients of the beta fun
tion 
ontribute to the poles that

have the form (λ2/ε)n(λ/ε)m, with n > 0 and m > 0. However, they do not

determine all of them, be
ause the same powers of λ and ε 
an be obtained

in di�erent ways. For example, λ4/ε2 
an be viewed as (λ2/ε)2, whi
h is

next-to-maximum, or (λ3/ε)(λ/ε). It is better to reorganize (3.56) as

Z̄λ(λ, ε) = 1 +

∞∑

i=1

λi

ε
gi

(
λ

ε

)
, (3.57)

where the fun
tions gi are power series that depend only on the �rst ith


oe�
ients of the beta fun
tion. The next-to-maximum poles are those of

the form (λ2/ε)(λ/ε)m, m > 0, the next-to-next-to-maximum poles are those
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of the form (λ3/ε)(λ/ε)m , m > 0, et
. Sin
e the power of λ 
oin
ides with

the power of ~, the poles are organized a

ording to the general s
heme

L = 1 ~

ε

L = 2 ~2

ε2
~2

ε

L = 3 ~3

ε3
~3

ε2
~3

ε

L = 4 ~4

ε4
~4

ε3
~4

ε2
~4

ε

· · ·

(3.58)

The one-loop 
oe�
ient of the beta fun
tion determine the �rst 
olumn (i.e.

the maximum poles), the one- and two-loop 
oe�
ients determine the �rst

two 
olumns (i.e. the maximum and the next-to-maximum poles), and so

on: the j-loop 
oe�
ients, j 6 i, of the beta fun
tion determine the �rst i


olumns. Some terms on the ith 
olumn re
eive 
ontributions from the j-loop


oe�
ients with j < i, but they 
an also re
eive 
ontributions from the i-

loop 
oe�
ient. Brand new information is 
ontained only along the diagonal.

Ea
h nondiagonal element 
orresponds to some type of subdivergen
e.

For example, if we in
lude the two-loop 
orre
tions to the beta fun
tion,

βλ = β1λ
2+β2λ

3+O(λ4), we 
an determine Zλ up to the next-to-maximum

poles. We get

Z̄λ(λ, ε) =
1 + β2ε

β2
1
ln
(
1− β1λ

ε

)

1− β1λ
ε

+
β2λ

β1

(
1− β1λ

ε

)2 =
1

1− β1λ
ε

+
λ2

ε
g2

(
λ

ε

)
.

The poles of a generi
 
orrelation fun
tion G have a similar stru
ture,

where now the �rst i 
olumns re
eive 
ontributions from the j-loop 
oe�-


ients, j 6 i, of the beta fun
tions and the anomalous dimensions. We have,

in the minimal subtra
tion s
heme,

G(~, ε) = Gc +

∞∑

i=1

~i

ε
Gi

(
~

ε

)
, (3.59)

where Gc is the 
lassi
al 
ontribution and Gi are power series in ~/ε. The

ith 
olumn of (3.58) is ~iGi/ε.

Now, assume that the �rst 
oe�
ient β1 vanishes. Then (3.56) be
omes

Z̄λ(λ, ε) = 1 +
∞∑

i=2

β̄i
λi

ε
fi

(
β̄2
λ2

ε
, · · · , β̄i

λi

ε

)
.
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The �rst 
olumn of s
heme (3.58) disappears, the se
ond 
olumn is just made

of its top element, and the other 
olumn are made by their top elements and

sparse other elements. Again, the �rst i 
olumns are determined by the �rst

i 
oe�
ients of the beta fun
tion. Similar restri
tions apply when the �rst

two 
oe�
ients of the beta fun
tion vanish, and so on.

Another way to rea
h the 
on
lusions derived above is to write

ln Z̄λ =

∞∑

i=1

ci(λ)

εi
,

where ci(λ) are power series in λ that begin with O(λi). Next, we insert this
expression into formula (3.7) (with p = 1). Equating ea
h order in ε we get

β̄λ = λ2
dc1(λ)

dλ
,

dci(λ)

dλ
=
β̄λ
λ

dci−1(λ)

dλ
for i > 1.

Knowing that ci(λ) = O(λi) we �nd

c1(λ) =

∫ λ

0

β̄λ(λ
′)

λ′2
dλ′, ci(λ) =

∫ λ

0

dci−1(λ
′)

dλ′
β̄λ(λ

′)

λ′
dλ′ for i > 1.

We see that the one-loop beta fun
tion determines the orders O(λi) of all

the ci(λ)s. Similarly, the two-loop beta fun
tion determines all the ci(λ)s up

to and in
luding O(λi+1) and the k-loop beta fun
tion determines them to

and in
luding O(λi+k−1).

To summarize, the power of the renormalization group is that it relates

in�nitely many quantities, su
h as the entries of the 
olumns of (3.58), and

allows us to resum them. A 
onsequen
e is that 
omputing the entries of the

same 
olumn involves more or less the same level of di�
ulty. As a 
he
k,

we suggest the reader to 
ompute the two-loop double poles of the ϕ4
4 theory,

whi
h is part of exer
ise 6. It may be easily realized that if we just want

the poles 1/ε2, we 
an 
onsiderably redu
e the e�ort of the 
al
ulation. In

the end, the two-loop double poles do not involve the typi
al di�
ulty of a

two-loop 
al
ulation, but the one of a one-loop 
al
ulation. The same o

urs

with the three-loop triple poles, and so on.

To further appre
iate the meaning of these fa
ts, 
onsider the formula

(3.48) of the one-loop running 
oupling and 
ompare it to the one-loop bare


oupling:

λ̃(t, λ) =
λ

1− 3tλ
16π2

, λBµ
−ε =

λ

1− 3λ
16π2ε

.
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We see that λBµ
−ε

is nothing but the running 
oupling λ̃(t, λ) at t = 1/ε.

In a 
uto� regularization framework, it would be the running 
oupling at an

energy s
ale equal to the 
uto� Λ (1/ε ∼ ln(Λ/µ)). The resummation of the

powers of (λ/ε) in λBµ
−ε

is just like the resummation of the powers of (tλ)

in λ̃(t, λ).

A
tually, there is a mu
h 
loser relation between the two resummations.

For de�niteness, assume that the theory 
ontains a unique dimensionless


oupling λ and 
onsider the 
orrelation fun
tions

Wα1···αn(x, y, λ, µ) = 〈ϕα1(x1) · · ·ϕαn(xn)〉c

=

n∏

i=1

exp

(∫ λ̃(t)

λ
dλ′

γαi(λ
′)

βλ(λ′)

)
Wα1···αn(x, y, λ̃(t), µ), (3.60)

where we have used the solution (3.34) of the Callan-Symanzik equation,

and rewritten (3.35) by means of an integral on the 
oupling. Now, the

limit of integration λ that appears on the right-hand side of (3.60) has no

physi
al meaning, sin
e it 
an be absorbed into the normalization of the

�elds. Obviously, the 
ross se
tions and the other physi
al quantities do not

depend on su
h normalizations. Thus, ignoring that limit of integration, the

right-hand side of (3.60) depends on the 
oupling just through the running


oupling λ̃(t). If λ̃ is small, the perturbative expansion of the right-hand

side does in powers of λ̃ makes sense. Formula (3.44) shows that when |t| is
large, the running 
oupling 
an be small even if λ is of order one. The point

is that if λ is of order one, the perturbative expansion of the left-hand side

of (3.60) does not make sense. In other words, the renormalization group

tea
hes us that, after resumming the powers of λ into λ̃, the perturbative

expansion 
an be
ome meaningful, if it is understood in the sense o�ered

by the right-hand side of (3.60) (apart from an overall 
onstant that is not

physi
ally important).

We have already remarked that little is known about the resummation

of the perturbative expansion in quantum �eld theory, to the extent that

di�erent resummations may give di�erent results and 
orrespond to di�erent

physi
al theories. The renormalization group helps us on this, be
ause it

allows us to partially resum the perturbative expansion in powers of λ. Pre-


isely, although we started with the aim of de�ning a perturbative expansion

in powers of λ, and we ended by dis
overing that we may be able to de�ne

the perturbative theory even if λ is of order one, at least in a domain of
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energies where the running 
oupling λ̃ is small. Indeed, the renormalization

group equations tell us that, if we appropriately resum the powers of tλ, we


an reorganize the expansion as an expansion in powers of λ̃. So doing, we

are resumming the analogues of the 
olumns of (3.58).
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Chapter 4

Gauge symmetry

In this 
hapter we begin the study of Abelian and non-Abelian gauge sym-

metries in quantum �eld theory. After giving the basi
 notions and the main

properties, we dis
uss the problems raised by their quantization, su
h as the

gauge �xing and unitarity. In the next 
hapter we upgrade the formalism to

make it suitable to prove the renormalizability of gauge theories to all orders.

Then we pro
eed by proving the renormalizability of quantum ele
trodynam-

i
s (
hapter 6) and the renormalizability of non-Abelian gauge �eld theories

(
hapter 7). In this part of the book, we assume that the theory is parity

invariant, so no 
hiral fermions are present. The renormalization of parity

violating quantum �eld theories raises bigger issues.

4.1 Abelian gauge symmetry

The propagation of free massless ve
tor �elds Aµ is des
ribed by the massless

limit of the Pro
a a
tion (1.87),

S
free

(A) =

∫
dDx

1

4
F 2
µν , (4.1)

where Fµν = ∂µAν−∂νAµ is the �eld strength. This a
tion is invariant under

the gauge symmetry

A′
µ = Aµ + ∂µΛ, (4.2)

where Λ is an arbitrary fun
tion of the position. In in�nitesimal form, the

symmetry transformation reads

δΛAµ = ∂µΛ. (4.3)
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We have already written the a
tion (4.1) in 
omplex D dimensions, be-


ause one of the main virtues of the dimensional regularization is that it

is manifestly gauge invariant, as long as the theory does not 
ontain 
hiral

fermions. Gauge invarian
e looks formally the same in all (integer) dimen-

sions, so it is easy to generalize it to the formal obje
ts Aµ, ∂µ, x
µ
, γµ, ψ,

et
., that are used in the dimensional regularization. Instead, the notion of


hirality is dimension dependent, so gauge invarian
e is not manifest in D

dimensions when the Lagrangian expli
itly 
ontains γ5.

A dire
t 
onsequen
e of the lo
al gauge symmetry is that the quadrati


part of the a
tion (4.1) is not invertible. Indeed, it is proportional to k2δµν−
kµkν in momentum spa
e, and has a null eigenve
tor kν . Therefore, the

Green fun
tion 〈Aµ(k)Aν(−k)〉 is not well de�ned. This fa
t is also evident

by taking the massless limit of the Pro
a propagator (1.89), whi
h is singular.

The free fermion a
tion (1.100) is invariant under the global U(1) trans-

formation

ψ′ = e−ieΛψ, (4.4)

where Λ is 
onstant. The photon Aµ is the gauge �eld that promotes the

global U(1) invarian
e (4.4) to a lo
al symmetry

A′
µ = Aµ + ∂µΛ, ψ′ = e−ieΛψ, ψ̄

′
= eieΛψ̄, (4.5)

where now Λ is a fun
tion of the spa
etime point.

Repla
ing the simple derivative ∂µ with the 
ovariant derivative ∂µ+ieAµ
and adding (4.1), we obtain the Lagrangian of quantum ele
trodynami
s

(QED)

L0 =
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ, (4.6)

whi
h is invariant under the gauge transformation (4.5). In in�nitesimal

form, (4.5) be
omes

δΛAµ = ∂µΛ, δΛψ = −ieΛψ, δΛψ̄ = ieΛψ̄. (4.7)

4.2 Gauge �xing

To de�ne the fun
tional integral of a gauge theory, a
tually its perturbative

expansion, we �rst need to 
hoose a gauge, by imposing a 
ondition of the

form

G(A) = 0,
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where G(A) is a suitable lo
al fun
tion. Later we must show that the physi
al

quantities do not depend on the 
hoi
e we make. Among the most popular

gauge 
hoi
es we mention the Lorenz gauge �xing

G(A) = ∂µAµ,

and the Coulomb gauge �xing

GC(A) = −∇ ·A. (4.8)

Now we des
ribe how to implement the gauge �xing at the quantum level.

Start from the fun
tional integral

Z(J) =

∫
[dA] exp

(
−S(A) +

∫
JA

)

in the absen
e of matter. The fun
tional integration measure is 
ertainly

gauge invariant, sin
e the gauge transformation is just a translation. For

the moment, we assume that the 
urrent J is divergen
eless, so the gener-

ating fun
tional Z(J) is formally gauge invariant. We know that Z(J) is ill

de�ned, be
ause we are integrating also on the longitudinal mode (4.3) and

the integrand is independent of it. For the moment, we ignore this fa
t and

pro
eed.

Let us insert �1�, written in the form

1 =

∫
[dΛ] (det�) δF (−∂µAµ +Q+�Λ), (4.9)

where Q is an arbitrary fun
tion. Here δF (Y ) denotes the �fun
tional delta

fun
tion�, whi
h means the produ
t of δ(Y (x)) over all spa
etime points x,

where Y (x) is a fun
tion of the point. Formula (4.9) is the fun
tional version

of the ordinary formula

∫ n∏

i=1

dxiJ (x)
n∏

k=1

δ(fk(x)) =
∑

x̄

signJ (x̄). (4.10)

where

J (x) = det
∂fi(x)

∂xj
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and x̄ are the points where the fun
tions fk(x) simultaneously vanish. As

long as it does not vanish, the right-hand side of (4.10) is just a normalization

fa
tor, whi
h 
an be omitted. In our 
ase it is pre
isely 1, so we get

Z(J) =

∫
[dAdΛ](det�)δF (−∂µAµ +Q+�Λ) exp

(
−S(A) +

∫
JA

)
.

Now, perform a 
hange of variables A′ = A − ∂Λ. Re
alling that J is di-

vergen
eless and the fun
tional measure is invariant under translations, after

dropping the primes we obtain

Z(J) =

∫
[dΛ]

∫
[dA](det�)δF (−∂µAµ +Q) exp

(
−S(A) +

∫
JA

)
.

We see that the integral over the longitudinal mode Λ fa
torizes. Sin
e the

normalization of Z is physi
ally irrelevant, we 
an equivalently de�ne

Z(J) =

∫
[dA](det�)δF (−∂µAµ +Q) exp

(
−S(A) +

∫
JA

)
,

whi
h is gauge-�xed. At this point, introdu
e a �Lagrange multiplier� B1

and write the fun
tional delta fun
tion as

δF (−∂µAµ +Q) =

∫
[dB] exp

(
−i
∫

dDxB(∂µAµ −Q)

)
.

We prefer to work with Hermitian quantities in the exponent, so we repla
e

B with −iB. This operation fa
torizes an irrelevant 
onstant in front of the

integral, whi
h we omit hen
eforth. Then

Z(J) =

∫
[dAdB](det�) exp

(
−
∫

dDx

(
1

4
F 2
µν +B∂µAµ −BQ− JA

))
.

(4.11)

We see that the fun
tion Q plays the role of an external sour
e for the

Lagrange multiplier B. We 
an easily work out the propagator of the pair

(Aµ, B), and �nd

(
〈Aµ(k)Aν(−k)〉 〈Aµ(k)B(−k)〉
〈B(k)Aν(−k)〉 〈B(k)B(−k)〉

)
=

1

k2


 δµν −

kµkν
k2

−ikµ
ikν 0


 .

(4.12)

1

Also known as Nakanishi-Lautrup auxiliary �eld, in this 
ontext.
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The fun
tional integral 
an be easily evaluated and gives

Z(J) = (det�)−1 exp

(
1

2

∫
dDxdDyJµ(x)GA(x− y)Jµ(y)

)
,

where the Green fun
tion GA(x− y) 
oin
ides with GB(x− y) at m = 0, and

we have used that J is divergen
eless. We see that the result is independent

of Q, whi
h was expe
ted, sin
e Q is arbitrary in formula (4.9).

Formula (4.11) 
ontains a det� in the numerator, for whi
h it is not easy

to write Feynman rules. We 
ould ignore this fa
tor, be
ause it is a just


onstant in QED. However, in more general gauge theories the analogue of

this fa
tor depends on the �elds. If we introdu
e suitable anti
ommuting

�elds C and C̄, 
alled Faddeev-Popov ghosts and antighosts, respe
tively, we


an exponentiate the determinant. The 
omplete gauge-�xed fun
tional then

reads

Z(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +B∂µAµ − C̄�C −BQ− JA

))
,

(4.13)

where [dµ] ≡ [dAdCdC̄dB]. The ghost propagator is simply

〈C(k)C̄(−k)〉 = 1

k2
. (4.14)

We 
an also relax the assumption that J is divergen
eless. Then the

fun
tional integral (4.13) does depend on Q, but is still well de�ned. If we

average over Q with the Gaussian measure

∫
[dQ] exp

(
− 1

2λ

∫
dDxQ(x)2

)
,

where λ is an arbitrary parameter, we obtain

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν −

λ

2
B2 +B ∂ ·A− C̄�C − JA

))
.

(4.15)

Sin
e B now appears quadrati
ally, it 
an be easily integrated away, giving

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +

1

2λ
(∂ · A)2 − C̄�C − JA

))
,

(4.16)

where now [dµ] = [dAdCdC̄].

14B1 Renorm



158 CHAPTER 4. GAUGE SYMMETRY

In this framework, the ghost propagator (4.14) is un
hanged, while the

gauge-�eld propagator reads

〈Aµ(k) Aν(−k)〉 =
1

k2

(
δµν + (λ− 1)

kµkν
k2

)
. (4.17)

A simple gauge 
hoi
e is the Feynman gauge, where λ = 1 and

〈Aµ(k) Aν(−k)〉 =
δµν
k2
. (4.18)

The 
hoi
e λ = 0 is also known as the Landau gauge.

Everything we said so far 
an be repeated by repla
ing ∂µAµ in (4.9) with

the Coulomb gauge �xing (4.8). Then we get

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν −

λ

2
B2 −B▽ ·A+ C̄△C − JA

))
,

(4.19)

and, after integrating B away,

Z ′(J) =

∫
[dµ] exp

(
−
∫

dDx

(
1

4
F 2
µν +

1

2λ
(▽ ·A)2 + C̄△C − JA

))
.

(4.20)

For the moment we 
ontent ourselves with these two 
hoi
es of gauge

�xing. However, in prin
iple the gauge-�xing fun
tion G(A) 
an be arbitrary,

as long as it properly �xes the gauge. Later we will see how to de�ne the

fun
tional integral with an arbitrary G(A).
The arguments given above are formal, however the �nal result is 
orre
t.

We 
an take the �nal result as the de�nition of the fun
tional integral for

gauge �elds and then prove that this de�nition satis�es the properties we

need.

Physi
al degrees of freedom

The physi
al degrees of freedom are more 
learly visible in the Coulomb

gauge. Indeed, formula (4.20) gives us the gauge-�eld propagators, whi
h in

Minkowski spa
etime read

〈A0(k)A0(−k)〉M =
1

k2
− λE2

(k2)2
, 〈A0(k)Ai(−k)〉M = −λEki

(k2)2
,

〈Ai(k)Aj(−k)〉M =
1

E2 − k2

(
δij −

kikj
k2

)
− λkikj

(k2)2
. (4.21)

14B1 Renorm



4.2 Gauge �xing 159

To swit
h from the Eu
lidean framework to the Minkowskian one we have

written A = (iA0,A) and k = (iE,k), and then re
alled that the Fourier

transforms of the �elds get a further fa
tor i. Studying the poles of (4.21),

we see that only 〈AiAj〉 has any, pre
isely two. They have positive residues

and their dispersion relations are E = |k|. The ghost propagator is now

〈C(k)C̄(−k)〉M =
1

k2
(4.22)

and has no pole. In total, the physi
al degrees of freedom are 2, as expe
ted.

In the Lorenz gauge the propagators have a more 
ompli
ated pole stru
-

ture. For example, the ghost propagator (4.14) has poles and the gauge-�eld

propagators (4.17) and (4.18) have extra poles. We will show that the un-

physi
al degrees of freedom that appear with an arbitrary 
hoi
e of gauge

�xing 
ompensate one another. More pre
isely, we will prove that the phys-

i
al quantities do not depend on the gauge �xing, and that property will

allow to freely swit
h to the Coulomb gauge, where no unphysi
al poles are

present.

When we add matter, the gauge-�xing pro
edure does not 
hange. For

example, in the Lorentz gauge the gauge-�xed Lagrangian of QED is

L
gf

=
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ − λ

2
B2 +B ∂ ·A− C̄�C,

before integrating B out. For 
ompleteness, we report the propagator of the

multiplet made of Aµ and B

(
〈Aµ(k)Aν(−k)〉 〈Aµ(k)B(−k)〉
〈B(k)Aν(−k)〉 〈B(k)B(−k)〉

)
=

1

k2


 δµν + (λ− 1)

kµkν
k2

−ikµ
ikν 0


 ,

(4.23)

whi
h 
oin
ides with (4.12) ad λ = 0.

The gauge-�xing pro
edure we have des
ribed breaks the lo
al symmetry

(4.3). Nevertheless, the symmetry is not truly lost, be
ause the fun
tional

integral a
quires new properties. Thanks to those, we will be able to prove

that the physi
al quantities are gauge invariant and gauge independent, be-

fore and after renormalization. Su
h properties are elegantly 
ombined in a

very pra
ti
al and 
ompa
t 
anoni
al formalism. That formalism is a
tually

more than we need for Abelian theories, but has the virtue of providing a
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uni�ed treatment that is also suitable to treat the non-Abelian gauge theo-

ries, as well as quantum gravity and every general gauge theory. Thus, before

introdu
ing the 
anoni
al formalism for the gauge symmetry, we introdu
e

non-Abelian gauge symmetry.

4.3 Non-Abelian global symmetry

Consider a multiplet ψi of fermioni
 �elds. The free Lagrangian

∑

i

(
ψ̄
i /∂ψi +mψ̄

i
ψi
)

is invariant under the global transformation

ψi ′ = U ijψj , ψ̄
i ′
= ψ̄

j
U †ji, (4.24)

where U is a unitary matrix. More generally, given a non-Abelian group G,

we 
an 
onsider multiplets ψi of fermioni
 �elds that transform a

ording to

some representation of G, and theories that are symmetri
 with respe
t to

these global transformations.

We fo
us our attention on the 
ase G = SU(N), where U 
an be parame-

trized as

U = exp (−gΛaT a) , (4.25)

by using a basis of N ×N tra
eless anti-Hermitian matri
es T aij , where g and

Λa are real 
onstants and a is an index ranging from 1 to dimG = N2 − 1.

Consider the 
ommutator [T a, T b]: sin
e it is tra
eless and anti-Hermitian,

it 
an be expanded in the basis T a. We have

[T a, T b] = fabcT c, (4.26)

where fabc are real numbers su
h that

fabc = −f bac, (4.27)

fabcf cde + fdacf cbe + f bdcf cae = 0. (4.28)

The se
ond line follows from the Ja
obi identity of the anti
ommutator.

The matri
es T a 
an be normalized so that

tr[T aT b] = −1

2
δab, (4.29)
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where the sign is determined by the anti-Hermiti
ity, while the fa
tor 1/2 is


onventional. In a basis where (4.29) holds, the 
onstants fabc are 
ompletely

antisymmetri
, whi
h 
an be proved from

tr[T c[T a, T b]] = −1

2
fabc,

by using the 
y
li
ity of the tra
e.

For example, in the 
ase G = SU(2) we have T a = −iσa/2, where σa are
the Pauli matri
es in the standard basis, and fabc = εabc.

Any real 
onstants fabc that satisfy the properties (4.27) and (4.28) de�ne

a Lie algebra. The fabcs are 
alled stru
ture 
onstants of the algebra. We


an introdu
e abstra
t generators T a that satisfy the formal 
ommutation

rules

[T a,T b] = fabcT c. (4.30)

When the generators T a are given an expli
it form, as matri
es of some kind,

we have a representation of the Lie algebra.

The 
ommutation rules (4.30) de�ne the Lie algebra asso
iated with the

group G. The set of N × N tra
eless anti-Hermitian matri
es T a form the

fundamental representation of the algebra, whi
h is the one of minimal di-

mension > 1. It is 
ommonly denoted with its dimension, whi
h is equal to

N . Taking the 
omplex 
onjugate of (4.26), we obtain a new representation

with T a = T̄ a, 
alled antifundamental, 
ommonly denoted with N̄ . The

trivial representation, whi
h has dimension 1, is 
alled singlet.

In a generi
 representation r, the matri
es T a 
an be normalized so that

tr[T aT b] = −C(r)δab, (4.31)

where C(r) is a 
onstant depending on r. We have C(N) = C(N̄) = 1/2.

Another important identity is

T aT a = −C2(r)1, (4.32)

where C2(r) is 
alled quadrati
 Casimir operator of the representation r. The

property (4.32) is proved below.

A 
onsequen
e of the Ja
obi identity (4.28) is that the matri
es

(τa)bc = −fabc
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satisfy the 
ommutation rules (4.30), so they form another representation

of the Lie algebra, 
alled adjoint representation, normally denoted with G.

Contra
ting a and b in (4.31) and tra
ing the equation (4.32), we get

C(r)d(G) = C2(r)d(r),

where d(r) is the dimension of the representation r. With r = N we �nd

C2(N) = (N2 − 1)/(2N). Choosing r = G we obtain that the two Casimirs

of the adjoint representation 
oin
ide: C(G) = C2(G). It 
an be shown that

C(G) = C2(G) = N . In parti
ular, using (4.31) for r = G, we get

facdf bcd = Nδab (4.33)

Observe that any N × N matrix 
an be written as a 
omplex linear


ombination of the identity matrix and the matri
es T a. Consider the tensor

δijδkl as a N ×N matrix in the indi
es j and k. It 
an be expanded as

δijδkl = αilδkj + αailT
a
jk, (4.34)

where αil and α
a
il are 
omplex numbers. Taking j = k we get

δil = Nαil. (4.35)

Moreover, we also have

T ali = T akjδijδkl = αbil tr[T
aT b] = −1

2
αail. (4.36)

Colle
ting (4.35) and (4.36), formula (4.34) 
an be rephrased as

T aijT
a
kl = −

1

2

(
δilδkj −

1

N
δijδkl

)
, (4.37)

an identity that is often handy.

We have started this dis
ussion with �elds ψi and ψ̄
i
that, a

ording to

(4.24), transform in the fundamental and antifundamental representations,

respe
tively. It is 
onvenient to distinguish these two types of indi
es. We

introdu
e the following notation. We 
all

vi1···inj1···jm
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a tensor whose upper n indi
es transform in the fundamental representa-

tion and lower m indi
es transform in the antifundamental representation.

Globally and in�nitesimally, we have

v′i1···inj1···jm
= U †l1

j1
· · ·U †lm

jm
U i1k1 · · ·U

in
kn
vk1···knl1···lm

,

and

δΛv
i1···in
j1···jm

=−g
dimG∑

a=1

Λa
(
T ai1l1v

l1i2···in
j1···jm

+ · · · + T ainlnv
i1···in−1ln
j1···jm

)

+g
dimG∑

a=1

Λa
(
T ak1j1v

i1···in
k1j2···jm

+ · · · + T akmjmv
i1···in
j1···jm−1km

)
, (4.38)

respe
tively. We have written the matri
es T aij as T
ai
j to emphasize the roles

of their indi
es.

The tensors

δij , εi1···iN , εi1···iN , (4.39)

are 
learly invariant. Observe that δij 
an 
ontra
t only di�erent types of

indi
es.

Let ui, vi, . . . and ui, vi,. . . denote ve
tors transforming in the funda-

mental and antifundamental representations, respe
tively. We 
an 
onstru
t

new representations by 
onsidering the produ
ts uivjw
k · · · . Using the ten-

sors (4.39), the produ
ts of fundamental and antifundamental representations


an be de
omposed into sums of irredu
ible representations. The de
omposi-

tion is obtained by repeatedly subtra
ting 
ontributions proportional to the

invariant tensors, until what remains vanishes whenever it is 
ontra
ted with

invariant tensors.

For example, the produ
t uivj of a fundamental and an antifundamental

representation 
an be de
omposed as the sum of two irredu
ible representa-

tions, as follows

uivj =
(
P il
1jk + P il

2jk

)
ukvl , (4.40)

by means of the proje
tors

P il
1jk = δikδ

l
j −

1

N
δijδ

l
k, P il

2jk =
1

N
δijδ

l
k. (4.41)

It 
an be shown that the tra
eless 
ombination given by P
1

is equivalent to

the adjoint representation. The term proportional to δij is obviously a singlet.
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We symboli
ally write the de
omposition (4.40) as

N ⊗ N̄ = Adg⊕ 1.

The matri
es T ailjk of the representation a
ting on the produ
t ukvl are

T ai kδ
l
j − T al jδik. They do not need to be proje
ted with (4.41), sin
e they

a
t nontrivially only on the adjoint 
ombination.

Another example is the produ
t uivj of two fundamental representations.

It 
an be de
omposed as the sum of the symmetri
 and antisymmetri
 
om-

binations,

uivj =
1

2
(uivj + uivj)− 1

2(N − 2)!
εijk1···kN−2εk1···kN−2mnu

mvn,

whi
h are new representations of dimensions N(N + 1)/2 and N(N − 1)/2,

respe
tively. We have

T aij± kl =
1

2

(
T aikδ

j
l + δikT

aj
l ± T

aj
kδ
i
l ± δjkT ai l

)
,

or, symboli
ally,

T a± = P± (T a ⊗ 1+ 1⊗ T a)P±,

where P± are the proje
tors on the symmetri
 and antisymmetri
 
ombina-

tions, respe
tively.

A theorem ensures that all the representations 
an be obtained by means

of a similar pro
edure.

Theorem 4 All the irredu
ible �nite dimensional representations 
an be ob-

tained from the produ
ts of fundamental and antifundamental representa-

tions, de
omposed by means of the invariant tensors (4.39).

A
tually, even the antifundamental representation 
an be obtained from

the fundamental one. Indeed,

ui ≡
1

(N − 1)!
εik2···kNv

k2 · · · vkN

does transform in the antifundamental representation. Thus,

Theorem 5 All the irredu
ible �nite dimensional representations 
an be ob-

tained by de
omposing produ
ts of fundamental representations.
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The theorem just stated ensures that

Corollary 6 the generators T a of every representation 
an be written using

the matri
es T ai j and the invariant tensors (4.39).

Symboli
ally, we 
an write

T ar = Pr(T
a ⊗ 1 · · · ⊗ 1 + · · ·+ 1⊗ · · ·1⊗ T a)Pr, (4.42)

where Pr is the proje
tor on the representation r, 
onstru
ted with the ten-

sors (4.39).

The identity (4.32) 
an be proved as follows. Observe that T ar T ar is an

invariant tensor, sin
e T a, as well as any T ar , transforms in the adjoint rep-

resentation. Using (4.42) and (4.37) we know that it has the form Pr(Qr)Pr,

where Qr is 
onstru
ted by means of Krone
ker symbols. Thus, T ar T ar is a


onstant times Pr itself, as wanted.

Expanding by means of the Krone
ker tensor, 
ontra
ting in all possible

ways and using the identities already proved, we also �nd

fabcT ai jT
bk
lT
cm
n =

1

4
(δilδ

k
nδ
m
j − δinδkj δml ). (4.43)

4.4 Non-Abelian gauge symmetry

Now we want to gauge the non-Abelian global symmetry. We promote the

unitary matrix (4.25) to a family of spa
etime-dependent unitary matri
es

U(x) = e−gΛ
a(x)Ta

. (4.44)

and introdu
e the non-Abelian gauge �elds Aµ, as well as the 
ovariant

derivative

(Dµψ)
i = ∂µψ

i + ig(Aµψ)
i, (4.45)

where g denotes the gauge 
oupling. Formula (4.45) shows that the Aµs

must be matri
es with indi
es ij. The gauge �eld Aµ is often 
alled gauge


onne
tion.

We determine the transformation A′
µ of the gauge �eld by requiring that

(Dµψ)
i
transform exa
tly as ψi. We have

(Dµψ)
′i = ∂µψ

′i + ig(A′
µψ

′)i

= (∂µU
ij)ψj + ig(A′

µU − UAµ)ijψj + U ijDµψ
j = U ijDµψ

j ,
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hen
e

A′
µ =

i

g
(∂µU)U−1 + UAµU

−1, (4.46)

The transformation rule for Dµ is

D′
µ = UDµU

−1
. (4.47)

Sin
e the 
ovariant di�erential operator iDµ must be Hermitian, as is

i∂µ, the matri
es Aµ are also Hermitian, so they 
an be parametrized as

Aijµ (x) = −iAaµ(x)T aij , (4.48)

where Aaµ(x) are real fun
tions. We 
an write, in matrix and index notations,

Dµ = ∂µ+ igAµ and Dij
µ = δij∂µ+ igAijµ , respe
tively. Distinguishing upper

and lower indi
es, we have Aiµj = −iT ai jAaµ, whi
h emphasizes that Aµ is the

tra
eless produ
t of a fundamental and an antifundamental representation.

De�ne the �eld strength

Fµν =
1

g
[Dµ,Dν ] ≡ F aµνT a.

Clearly, (4.47) implies the transformation rule

F ′
µν = UFµνU

−1. (4.49)

We �nd

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν .

So far, we have taken matter �elds ψi in the fundamental representation.

For �elds χI in a generi
 representation r, des
ribed by matri
es T ar , we have
AIJµ = −iAaµT arIJ and still Dµ = ∂µ + igAµ, but D

IJ
µ = δIJ∂µ + igAIJµ .

The in�nitesimal forms of the transformations (4.24), (4.49) and (4.46)

read

δΛA
a
µ = ∂µΛ

a + gfabcAbµΛ
c ≡ DµΛ

a,

δΛF
a
µν = gfabcF bµνΛ

c, δΛχ
I = −gT arIJΛaχJ . (4.50)

We 
an state that the fun
tions Λa belong to the adjoint representation of

G, so δΛA
a
µ is just the 
ovariant derivative of Λa.
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The gauge-invariant a
tion of fermioni
 �elds χI 
an be 
onstru
ted by

means of the 
ovariant derivative, and reads

Sψ =

∫
dDxχ̄( /D +m)χ =

∫
dDxχ̄I(δIJ /∂ + gAaµT arIJ +mδIJ)χ

J . (4.51)

Similarly, if ϕ are (
omplex) s
alar �elds transforming a

ording to some

representation of the gauge group, the s
alar a
tion is

Sϕ =

∫
dDx

(
|Dµϕ|2 +m2ϕ̄ϕ

)
, (4.52)

up to other intera
tions. The invariant a
tion of the gauge �elds is

SA =
1

4

∫
dDxF a 2

µν = −1

2

∫
dDx tr[F 2

µν ], (4.53)

where Fµν is written using the matri
es T a of the fundamental representation.

The gauge invarian
e of SA is a 
onsequen
e of (4.49) and the 
y
li
ity of

the tra
e. The theory (4.53) is 
alled non-Abelian Yang-Mills theory. Note

that (4.53) is an intera
ting theory.

The free-�eld limit g → 0 of (4.53) des
ribes a set of N2−1 free photons.

For this reason, the propagator of non-Abelian Yang-Mills theory has the

same problems as the propagator of QED, and 
an be de�ned only after

a gauge �xing. Now, the gauge-�xing pro
edure is more involved than in

quantum ele
trodynami
s. It be
omes relatively simple if we endow the

gauge symmetry with a suitable 
anoni
al formalism, whi
h is introdu
ed

in the next 
hapter.
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Chapter 5

Canoni
al gauge formalism

Gauge symmetry 
an be treated e�
iently by means of a 
anoni
al formalism

of new type, known as Batalin-Vilkovisky formalism. It is equipped with

suitable notions of parentheses, 
anoni
al transformations, and a number of

tools that allow us to make a number of 
ru
ial operation with a relatively

small e�ort. The �time� evolution asso
iated with this formalism is just

the gauge transformation. We do not need to expli
itly introdu
e a �time�


oordinate θ for this kind of evolution, be
ause this θ would be 
onstant

anti
ommuting parameter, so every fun
tion of θ has a Taylor expansion

that stops at the �rst order.

Brie�y, the Batalin-Vilkovisky formalism is a pra
ti
al tool to (i) gather

the key properties of the in�nitesimal symmetry transformations and their

algebra in a single equation, (ii) �x the gauge and have 
ontrol on the gauge

�xing with a straightforward pro
edure, (iii) prove that gauge theories 
an be

renormalized by preserving gauge invarian
e to all orders, (iv) prove that the

physi
al quantities are gauge independent, and (v) study the anomalies of the

global and gauge symmetries to all orders. Combined with the dimensional

regularization (or its modi�
ations and upgrades, to be de�ned later on),

the Batalin-Vilkovisky formalism allows us to derive these and several other

properties in a systemati
 way.

We generi
ally refer to the resulting formal appratus by 
alling it �
anon-

i
al gauge formalism� for quantum �eld theory. Its main virtue is that it

allows us to prove old and new results to all orders with mu
h less e�ort

than is required by the other approa
hes.

Although we mainly work with gauge (that is to say lo
al) symmetries,
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everything we say also works for global symmetries. At the same time, we

stress that the 
anoni
al formalism is well suited to study in�nitesimal sym-

metries. At present, there exists no equally 
ompa
t and elegant formalism

for �nite or dis
rete symmetries.

In the rest of this 
hapter we mostly work at the bare level, but drop the

subs
ripts B that we normally use to denote bare quantities. The properties

we are going to derive 
an be interpreted at the 
lassi
al level, if they 
on
ern

the a
tion S, and at the bare and tree levels, if they 
on
ern the generating

fun
tionals. The renormalization program will be 
arried out in detail in the

next se
tions. Among other things, we will have to prove that the properties

derived here are preserved by the subtra
tion of divergen
es.

We 
olle
t the 
lassi
al �elds into a single row

φi = (Aaµ, ψ̄, ψ, ϕ)

and assume that a 
lassi
al a
tion Sc(φ) is given, whi
h is invariant under

some in�nitesimal transformations

δΛφ
i = Ric(φ,Λ), (5.1)

that is to say

δΛSc =

∫
δΛφ

i δlSc
δφi

=

∫
Ric(φ,Λ)

δlSc
δφi

= 0. (5.2)

Here Λ(x) denote the lo
al parameters of the symmetry.

5.1 General idea behind the 
anoni
al gauge for-

malism

We �rst introdu
e the basi
 ideas behind the 
anoni
al formalism, without

paying too mu
h attention to the details, su
h as the statisti
s of the �elds,

the 
orre
t relative positions of �elds and sour
es and some 
ru
ial minus

signs that will be dealt with shortly after. It is useful to have a general idea

of what we want to do, before plunging into the te
hni
al aspe
ts. Later, we

go through the systemati
s.

The fun
tions Ric(φ,Λ) are lo
al, and linear in Λ. Apart from this, they


an be arbitrary fun
tions, nonlinear in φ, and renormalize independently of
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the elementary �elds. In other words, they must be regarded as 
omposite

�elds. We know that 
omposite �elds 
an be treated by adding them to the

a
tion, 
oupled to external sour
es K. This de�nes the extended a
tion

SΛ
c (φ,K) = Sc(φ) +

∫
Ric(φ,Λ)Ki.

The identity (5.2) 
an be written in the form

δΛSc = (SΛ
c , Sc) =

∫
dDx

{
δSc
δφi(x)

δSΛ
c

δKi(x)
− δSΛ

c

δφi(x)

δSc
δKi(x)

}
= 0. (5.3)

This expression is appealing, be
ause it reminds us of a 
anoni
al formalism,

on
e the sour
es K are viewed as 
anoni
ally 
onjugate to the elementary

�elds φ. The symmetry transformation of a fun
tional X(φ) 
an be expressed

as the parenthesis with SΛ
c :

δΛX = (SΛ
c ,X) =

∫
δX

δφi
Ric(φ,Λ).

The identity (5.3), however, just tells us about the symmetry transfor-

mations, but does not in
orporate the algebra of the transformations, in

parti
ular their 
losure. Closure means that the 
ommutator [δΛ,δΣ] of two

transformations δΛ and δΣ, with parameters Λ and Σ, is a symmetry trans-

formation δ∆(Λ,Σ) of the same algebra, with 
ertain parameters ∆(Λ,Σ):

[δΛ,δΣ] = δ∆(Λ,Σ). (5.4)

A priori, renormalization may a�e
t both the a
tion Sc and the transfor-

mations Ric, as well as the 
losure relations (5.4). Thus, it is important to


olle
t these three pie
es of information into a unique extended fun
tional.

So doing, we will be able build a powerful formalism that allows us to easily

understand how those pie
es of information renormalize and what role they

play inside the generating fun
tionals.

In formula (5.3) we have two di�erent fun
tionals, Sc and S
Λ
c . Moreover,

Sc, does not 
ontain the sour
esK. As said, we would like to 
olle
t all pie
es

of information into a unique extended fun
tional, and �nd an identity that

involves only that fun
tional. Now, the parenthesis (SΛ
c , S

Λ
c ) = 0 is trivial,

be
ause it is the subtra
tion of the term

∫
δSΛ

c

δφi
δSΛ

c

δKi
(5.5)
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with itself. Nevertheless, the expression (5.5) goes into the right dire
tion, as

we 
an see if we split it into two pie
es, the 
ontributions that do not 
ontain

K and the 
ontributions that are linear in K:

∫
Ric
δSc
δφi

,

∫
Ric
δRjc
δφi

Kj .

The former give the transformation of the a
tion Sc and the latter somehow

point to the transformation of the transformation, that is to say the 
losure

of the algebra.

A tri
k to make the terms (5.5) to sum up instead of 
an
el out, is to


hange the relative statisti
s of φi and Ki, and distinguish left- and right-

derivatives. The resulting de�nition of parentheses and all other details are

given below. The formalism satis�es all the usual properties, appropriately

adapted, in
luding a generalized Ja
obi identity. For the moment, we just

anti
ipate that we get something like

(SΛ
c , S

Λ
c ) = 2

∫
dDx

δSΛ
c

δφi
δSΛ

c

δKi
. (5.6)

Again, this 
annot be the �nal answer, be
ause the �double� Λ transform-

ation 
ontained in (5.6) is not really a 
ommutator. However, it be
omes the


ommutator on
e we also play with the statisti
s of Λ and provide suitable

transformation rules for the Λs themselves.

Now, 
losure demands two indipendent parameters, e.g. Λ and Σ, so SΛ
c

is 
ertainly inadequate to 
ontain the 
losure relations (5.4). On a fun
tional

X, we have

[δΛ,δΣ]X = (SΛ
c , (S

Σ
c ,X)) − (SΣ

c , (S
Λ
c ,X)) = δ∆(Λ,Σ)X = (S∆(Λ,Σ)

c ,X).

(5.7)

We may expe
t that the generalized Ja
obi identity for the parentheses allows

us to repla
e the sum of terms that follows the �rst equal sign in (5.7) with

something like ((SΛ
c , S

Σ
c ),X). Thus, (5.7) gives

((SΛ
c , S

Σ
c )− S∆(Λ,Σ)

c ,X) = 0, (5.8)

for every X, so we 
an express 
losure by means of a relation of the form

(SΛ
c , S

Σ
c ) = S∆(Λ,Σ)

c .
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We have two fun
tionals instead of one here. We 
an 
olle
t everything

into a single fun
tional, if we repla
e Λ(x) and Σ(x) by θC(x) and θ′C(x),

respe
tively, where θ and θ′ are anti
ommuting parameters (that we drop

after moving them to the right or left of ea
h identity) and C(x) is an anti-


ommuting �eld, to be identi�ed with the Fadeev-Popov ghosts. They main

virtue is that they 
an 
arry an anti
ommutator by themselves. For example,

if θa are also anti
ommuting quantities, we have

(θaCa)2 = −1

2
[θa, θb]CaCb.

This tri
k allows us to work with a unique, but anti
ommuting, C(x)

and a unique extended a
tion. Later we will show that, if done properly, the

operations en
oded into the repla
ements Λ→ θC, Σ→ θ′C are 
ompletely

reversible, so they do not 
ause any loss of information. Finally, ∆(C,C) is

identi�ed with the transformation of C itself, apart from a proportionality

fa
tor.

The new extended a
tion is something of the form

S′
c(φ,C,K) = Sc(φ) +

∫
dDx

(
KiR

i
c(φ,C)− 1

2
KC∆(C,C)

)
,

where KC are sour
es for the C transformations. Next, we have an identity

of the form

(S′
c, S

′
c) = 2

∫
dDx

δS′
c

δφi
δS′

c

δKi
+ 2

∫
dDx

δS′
c

δC

δS′
c

δKC
= 0. (5.9)

The terms proportional to Ki in this expression do give the 
losure of the

algebra. The terms proportional to KC 
an
el out by themselves, be
ause

they are just the Ja
obi identity of the Lie algebra.

Summarizing, on
e the 
ru
ial identity (S′
c, S

′
c) = 0 is satis�ed, the ex-

tended a
tion S′
c in
orporates the invariant a
tion, the symmetry transfor-

mations of the �elds, the 
losure of the algebra and its Ja
obi identity.

5.2 Systemati
s of the 
anoni
al gauge formalism

Without further premises, we are now ready to present the systemati
s of

the 
anoni
al gauge formalism. Make the substitution Λ(x)→ θC(x) in the
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identity (5.2), then move θ to the far left and drop it. Sin
e Ri is linear in

Λ, we get an identity of the form

∫
Ri(φ,C)

δlSc
δφi

= 0. (5.10)

The fun
tions Ri(φ,C) are su
h that

Ric(φ, θC) = θRi(φ,C) (5.11)

and may di�er from Ric(φ,C) by a sign, depending on the statisti
s of φ.

The �elds C are 
alled this way, be
ause they 
oin
ide with the Faddeev-

Popov ghosts already met. For the moment, we do not need to introdu
e

antighosts C̄ and Lagrange multipliers B. They are useful to �x the gauge,

but they are not basi
 ingredients of the 
anoni
al formalism. We in
lude

the �elds and the ghosts into the extended row

Φα = (Aaµ, C
a, ψ̄, ψ, ϕ).

The 
onjugate row made by the sour
es is

Kα = (Kµ
a ,K

a
C ,Kψ̄,Kψ,Kϕ).

We de�ne the statisti
s εΦ, εK , ελ, εX of a �eld Φ, a sour
e K, a parameter

λ or a fun
tional X to be zero if the �eld, sour
e, parameter or fun
tional

is bosoni
, one if it is fermioni
. We de�ne the statisti
s of the sour
es as

opposite to the statisti
s of the �elds that are 
onjugate to them:

εKα = εΦα + 1 mod 2. (5.12)

Given two fun
tionals X(Φ,K) and Y (Φ,K) of the �elds and sour
es, we

de�ne their antiparentheses as the fun
tional

(X,Y ) ≡
∫

dDx

{
δrX

δΦα(x)

δlY

δKα(x)
− δrX

δKα(x)

δlY

δΦα(x)

}
, (5.13)

where the sum over α is understood. Observe that if X and Y are lo
al

fun
tionals, then (X,Y ) is a lo
al fun
tional.

The antiparentheses satisfy the properties

(Y,X) = −(−1)(εX+1)(εY +1)(X,Y ),

(−1)(εX+1)(εZ+1)(X, (Y,Z)) + 
y
li
 permutations = 0, (5.14)
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and ε(X,Y ) = εX + εY + 1, whi
h 
an be veri�ed straightforwardly. In par-

ti
ular, formula (5.14) is the Ja
obi identity. Immediate 
onsequen
es are

(F,F ) = 0, (B,B) = 2

∫
δrB

δΦα
δlB

δKα
= −2

∫
δrB

δKα

δlB

δΦα
, (5.15)

if the fun
tionals F and B have fermioni
 and bosoni
 statisti
s, respe
tively.

In (5.15), as often below, we understand integrations over spa
etime points

asso
iated with repeated indi
es α, β, . . .. Another important 
onsequen
e

is

(X, (X,X)) = 0 (5.16)

for every fun
tional X. This property follows from the Ja
obi identity (5.14)

and is useful to study the anomalies.

The a
tion S(Φ,K) is de�ned as the solution of the master equation

(S, S) = 0, (5.17)

with the boundary 
onditions

S(Φ, 0) = Sc(φ), −δrS(Φ,K)

δKi

∣∣∣∣
K=0

= Ri(φ,C). (5.18)

In the naïve derivation given above, the extended a
tion S′
c was linear in

the sour
es K. This is a
tually true in all the appli
ations we have in mind,

at least at the tree level. Thus, we write the solution of the master equation

in the form

S(Φ,K) = Sc(φ) + SK(Φ,K), (5.19)

where

SK(Φ,K) = −
∫
Rα(Φ)Kα = Sc(φ)−

∫
Ri(φ,C)Ki−

∫
RaC(Φ)K

a
C , (5.20)

and RaC(Φ) are fun
tions to be determined, related somwhow to∆(Λ,Λ). The

signs have been adjusted to mat
h the 
hoi
es of statisti
s we have made.

It 
an be shown that the linearity of S(Φ,K) in K means that the algebra


loses o� shell.

More expli
itly, using the last expression of (5.15), we �nd the formula

0 = (S, S) = 2

∫
Rα(Φ)

δlS

δΦα
= 2

∫ [
Ri(φ,C)

δlS

δφi
+RaC(Φ)

δlS

δCa

]
.
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The terms of order 0 in K are twi
e the identity (5.10), while the terms of

order 1 in K give the formula

0 = −2
∫
Rα(Φ)

δl
δΦα

∫
Rβ(Φ)Kβ ,

whi
h implies

0 =

∫
Rα(Φ)

δlR
β(Φ)

δΦα
(5.21)

for every β. Taking β = i, we �nd

0 =

∫
Rj(φ,C)

δlR
i(φ,C)

δφj
+

∫
RaC(Φ)

δlR
i(φ,C)

δCa
. (5.22)

Sin
e Ri are linear in C, the last term is equals to Ric(φ,RC(Φ)). Setting

Ca = θΛa + θ′Σa in (5.22), where θ and θ′ are both anti
ommuting parame-

ters, we obtain

0 =

∫
Rj(φ, θΛa + θ′Σ)

δlR
i(φ, θΛa + θ′Σ)

δφj
+Ric(φ,RC(θΛ

a + θ′Σ)). (5.23)

Note that setting Ca = θΛa in formula (5.11), we also obtain

θRic(φ,Λ
a) = Ri(φ, θΛa). (5.24)

Using this formula and taking the terms proportional to θθ′ (all other terms

being zero), let us write

RaC(θΛ+ θ′Σ) = −θθ′∆(Λ,Σ). (5.25)

This formula 
an be taken as the de�nition of RC(Φ), where ∆(Λ,Σ) is

assumed to be known from the 
losure relation (5.4).

Then formula (5.23) gives

∫
θRjc(φ,Λ

a)
δlθ

′Ric(φ,Σ)

δφj
+

∫
θ′Rjc(φ,Σ)

δlθR
i
c(φ,Λ

a)

δφj
= θθ′Ric(φ,∆(Λ,Σ)).

Moving θ and θ′ to the left and using (5.1), we obtain

θθ′
∫ (

δΛφ
j δl(δΣφ

i)

δφj
− δΣφj

δl(δΛφ
i)

δφj

)
= θθ′Ric(φ,∆(Λ,Σ)),

or, �nally,

θθ′[δΛ, δΣ]φ
i = θθ′δ∆(Λ,Σ)φ

i,
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whi
h is equivalent to (5.4).

Finally, taking Rβ → RaC in (5.21), we get

0 =

∫
RbC(C)

δlR
a
C(C)

δCb
, (5.26)

having observed that RaC(Φ) in the end depends just on C. Formula (5.26),

whi
h is the 
losure of the 
losure, in some sense, is just the Ja
obi identity

of the lie algebra.

For example, in non-Abelian Yang-Mills theories, we have (on fermions

ψ, for de�niteness) δΛψ
i = −gT aijΛaψj , so

[δΛ, δΣ]ψ
i = g2[T a, T b]ijψ

jΣaΛb = −g2T cijψjfabcΛaΣb = δ∆(Λ,Σ)ψ
i,

hen
e

∆a(Λ,Σ) = gfabcΛbΣc.

Using this expression in (5.25), we �nd

RaC(θΛ+ θ′Σ) = −θθ′gfabcΛbΣc = −g
2
gfabc(θΛ+ θ′Σ)b(θΛ+ θ′Σ)c,

when
e

RaC(C) = −g
2
fabcCbCc.

Thus, the identity (5.26) gives

0 = fabcf bdeCcCdCe.

Sin
e the Cs are anti
ommuting, this equation is equivalent to (4.28).

In the Abelian 
ase, ∆(Λ,Σ) = 0, so RC(Φ) = 0.

Given a fun
tional Y , we 
an view the antiparentheses (Y,X) as a map

a
ting on the spa
e of fun
tionals X. Choosing Y = S, the map (S,X)

is nilpotent, be
ause of the Ja
obi identity (5.14) and the master equation

(5.17). Indeed,

(S, (S,X)) =
1

2
((S, S),X) = 0.

On the �elds and sour
es, we have

(S,Φα) = Rα(Φ), (S,Kα) =
δrS

δΦα
.

Basi
ally, (S,Kα) is the Φα �eld equation, plus O(K).

14B1 Renorm



178 CHAPTER 5. CANONICAL GAUGE FORMALISM

The map (S,X) sends fun
tionals G(Φ) that depend only on the �elds

into fun
tionals that depend only on the �elds:

(S,G(Φ)) =
∫
Rα(Φ)

δlG(Φ)
δΦα

.

On the fun
tionals G(φ) that depend only on the physi
al �elds φ the map

is pre
isely the gauge transformation:

(S,G(φ)) =
∫
Ri(φ,C)

δlG(φ)
δφi

.

In parti
ular, (S, Sc(φ)) = 0, whi
h is nothing but the gauge invarian
e of

the 
lassi
al a
tion Sc(φ).

It is always possible to generate solutions S(Φ,K) of the master equa-

tion that are nonlinear in K by means of �eld and sour
e rede�nitions that

preserve the master equation (or the antiparentheses, in whi
h 
ase they are


anoni
al transformations, see below). However, not all the solutions that

are nonlinear in K 
an be obtained this way. To understand this issue better,


onsider again the relation

0 = (S, S) = −2
∫

dDx
δrS

δKα

δlS

δΦα
. (5.27)

The K-independent 
ontributions are always the identity (5.10), but when

S(Φ,K) is not linear in K, the terms of (5.27) that are linear in K (whi
h

en
ode the 
losure of the algebra) 
ontain extra 
ontributions proportional to

the �eld equations. If there exists no 
anoni
al transformation that absorbs

the extra terms away, it means that the gauge algebra does not 
lose o� shell,

but just on shell.

In most physi
al appli
ations the symmetry algebras that 
lose o� shell

play a major role. In this book we mainly fo
us on those. Nevertheless, it is

important to know that more general stru
tures exist. Still, we see that the

solution (5.19) does depend on the �eld variables we 
hoose.

The 
anoni
al formalism does not apply only to lo
al fun
tionals, su
h as

the a
tion S, but also to the generating fun
tionals Z, W , Γ and Ω, whi
h

are nonlo
al. For this reason, it is ne
essary to prove some general properties

before pro
eeding. We have remarked above that the antiparentheses map

lo
al fun
tionals X and Y into a lo
al fun
tional (X,Y ). We now prove that
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they also map one-parti
le irredu
ible fun
tionalsX and Y into a one-parti
le

irredu
ible fun
tional (X,Y ). De�ne the operator

V ≡
∫

dDx

←−
δr

δΦi(x)

−→
δl

δKi(x)
.

We fo
us on the 
ontribution XVY to (X,Y ) in (5.13), sin
e the other 
on-

tribution 
an be treated in an analogous way. Note that if X and Y are

one-parti
le irredu
ible, a fun
tional derivative with respe
t to Φα(x) is an

amputated Φα leg and a fun
tional derivative with respe
t to Kα(x) is an

insertion of Rα(Φ(x)). In parti
ular, no propagators are atta
hed to su
h

legs. The operator V produ
es a sort of new vertex, whose legs are the legs

atta
hed to Φ(x) in δrX/δΦ(x) plus the legs atta
hed to K(x) in δlY/δK(x).

Sin
e the diagrams of δrX/δΦ(x) and δlY/δK(x) are irredu
ible, the 
ontri-

bution XVY to (X,Y ) is also irredu
ible. Diagrammati
ally, we have

δrX
δΦ(x)

...

...

x

...
δlY

δK(x)

...
(5.28)

where the double lines are sour
es and the single lines are �elds.

The solution (5.19) to the master equation is 
alled minimal, be
ause it


ontains the minimal set of �elds. The minimal solution is not su�
ient to

gauge-�x the theory and de�ne the propagators of the gauge �elds, be
ause

it does not 
ontain the antighosts and the Lagrange multipliers. We 
an

in
lude them by enlarging the sets of �elds and sour
es to

Φα = (Aaµ, C
a, C̄a, Ba, ψ̄, ψ, ϕ), Kα = (Kµ

a ,K
a
C ,K

a
C̄ ,K

a
B ,Kψ̄,Kψ,Kϕ).

(5.29)

Again, the statisti
s of the sour
es are de�ned to be opposite of those of their


onjugate �elds.

It is easy to prove that if Smin(Φ,K) is a minimal solution to the master

equation the extended a
tion

Smin(Φ,K)−
∫
BaKa

C̄
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is also a solution. We 
all it extended solution to the master equation. This

extension is su�
ient for the purposes of gauge �xing. From now we under-

stand that the sets of �elds and sour
es are (5.29) and the general solution

to the master equation is

S(Φ,K) = Sc(φ)−
∫ [

Ri(φ,C)Ki +RaC(Φ)K
a
C +BaKa

C̄

]
.

It is also useful to introdu
e the ghost number,

gh(A) = gh(ψ) = gh(ψ̄) = gh(ϕ) = gh(B) = 0, gh(C) = 1, gh(C̄) = −1.

Indeed, the global U(1) transformation

Φ→ Φeiσgh(Φ), (5.30)

σ being a 
onstant parameter, is a symmetry of the a
tions we are going to

work with, as well as the fun
tional integration measure. The ghost number

is trivially preserved by the Feynman rules and the diagrammati
s, so also

by the radiative 
orre
tions and renormalization.

The fermioni
 number of a �eld or a sour
e is equal to zero or one,

depending on whether the �eld or sour
e is a boson or a fermion. The

statisti
s of a �eld or a sour
e is equal to the sum of its fermioni
 number

plus its ghost number, modulo 2. For example, the sour
es Kψ and Kψ̄

asso
iated with the Dira
 fermions are 
ommuting obje
ts, sin
e they are

fermions, but they also have odd ghost numbers. Thus, Kψ and Kψ̄ are

�fermions with bosoni
 statisti
s�, while C and C̄ are �bosons with fermioni


statisti
s�.

Now we are ready to derive the solutions of the master equation for

Abelian and non-Abelian gauge theories. In quantum ele
trodynami
s for-

mulas (4.7) give the fun
tions Ric(φ,Λ). Repla
ing Λ by θC and using

Ric(φ, θC) = θRi(φ,C), we obtain the fun
tions Ri(φ,C) for Aµ, ψ and

ψ̄, whi
h read

∂µC, −ieCψ, −ieψ̄C,
respe
tively. The fun
tions RaC asso
iated with the ghosts 
an be derived

from the 
losure of the algebra. Sin
e it is trivial in the Abelian 
ase, we just

have RaC = 0. Thus, the extended solution of the master equation reads

S(Φ,K) = Sc(φ)−
∫

dDx
(
∂µCKµ − ieψ̄CKψ̄ − ieKψCψ +BKC̄

)
, (5.31)
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where the 
lassi
al a
tion is

Sc(φ) =

∫
dDx

[
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ

]
.

It is easy to 
he
k that (5.17) is indeed satis�ed.

In non-Abelian Yang-Mills theory we start from (4.50) to read the fun
-

tions Ric(φ,Λ), repla
e Λ by θC and use Ric(φ, θC) = θRi(φ,C) again. We

�nd that

∂µC
a + gfabcAbµC

c, −gT aijCaψj , −gψ̄jT aijCa, (5.32)

are the fun
tions Ri(φ,C) for the gauge potential Aaµ, the fermions ψi in the

fundamental representation and their 
onjugates, respe
tively.

The solution reads

S(Φ,K) =Sc(φ) + g

∫ (
ψ̄
i
T aijC

aKj
ψ̄
+Ki

ψT
a
ijC

aψj
)

−
∫ [

(∂µC
a + gfabcAbµC

c)Ka
µ −

g

2
fabcCbCcKa

C +BaKa
C̄

]
, (5.33)

where the 
lassi
al a
tion is

Sc(φ) =
1

4

∫
dDxF a 2

µν +

∫
dDxψ̄

i
(δij /∂ + gT aij /A+mδij)ψ

j . (5.34)

In the next 
hapters we prove the renormalizability of both theories.

From (5.33) and (5.34) we 
an read the dimensions [ ] of the �elds and

the sour
es, as well as their statisti
s εΦA , εKA
. The ghost numbers gh(K) of

the sour
es are obtained by demanding that (5.33) be invariant under (5.30)


ombined with K → Keiσgh(K)
. We have the tables

Aaµ Ca C̄a Ba ψ̄ ψ ϕ

[ ] D
2 − 1 D

2 − 1 D
2 − 1 D

2
D−1
2

D−1
2

D
2 − 1

gh 0 1 −1 0 0 0 0

(5.35)

Kµ
a Ka

C Ka
C̄

Ka
B Kψ̄ Kψ Kϕ

[ ] D
2

D
2

D
2

D
2 − 1 D−1

2
D−1
2

D
2

gh −1 −2 0 −1 −1 −1 −1
(5.36)

Now we stress a property that will be useful later, in the proof of the

renormalizability of non-Abelian Yang-Mills theories. Theorem (5) allows us
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to work without the matri
es T a or T a, just using the invariant tensors (4.39)
and the gauge-�eld variables (4.48). Distinguishing upper and lower indi
es,

we have Aiµj = −iT ai jAaµ. Using formula (4.29) the 
onverse formula reads

Aaµ = −2iT ajiAiµj . Similarly, the ghosts, antighosts and Lagrange multipliers


an be written as Cij = −iT ai jCa, C̄ij = −iT ai jC̄a, and Bi
j = −iT ai jBa

.

When the fermions are in the fundamental representation the solution of

the master equation is written as

S(Φ,K) =Sc(φ) + ig

∫
dDx

(
ψ̄iC

i
jK

j
ψ̄
+KψiC

i
jψ

j
)

−
∫

dDx
[(
∂µC

i
j + ig(AiµkC

k
j −AkµjCik)

)
Kj
µi (5.37)

−2igCikCkjKj
C i +Bi

jK
j
C̄ i

]
,

where

Sc(φ) =

∫
dDx

[
1

4
(F iµν j)

2 + ψ̄i(δ
i
j /∂ + gAaµT

ai
j +mδij)ψ

j

]
, (5.38)

and

F iµν j = ∂µA
i
ν j − ∂νAiµj + ig(AiµkA

k
ν j −Aiν kAkµj).

To derive these expressions we have also used formula (4.43).

A matter �eld ψI in an irredu
ible representation r 
an be denoted by

ψi1···inj1···jm
, if the indi
es have appropriate symmetry properties. From (4.38)

we derive that its 
ontribution to the solution S(Φ,K) proportional to the

sour
es K be
omes

ig

∫
dDx

(
Ci1l1ψ

l1i2···in
j1···jm

+ · · · + Cinlnψ
i1···in−1ln
j1···jm

)
Kj1···jm
i1···in

−ig
∫

dDx
(
Ck1j1 ψ

i1···in
k1j2···jm

+ · · · + Ckmjm ψ
i1···in
j1···jm−1km

)
Kj1···jm
i1···in

, (5.39)

Finally, a generi
 vertex has the form

φi1···inj1···jm
ψ
k1···kp
l1···lq

χut···urv1···vs · · · (5.40)

with indi
es 
ontra
ted by means of the invariant tensors (4.39).

An important theorem states that Yang-Mills theory in pra
ti
e exhausts

the gauge theories of ve
tor �elds.
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Theorem 7 The most general lo
al, power 
ounting renormalizable quantum

�eld theory of ve
tor �elds is a Yang-Mills theory based on a Lie algebra.

Proof. To prove this theorem we 
an take advantage of the 
anoni
al

formalism, be
ause we know that it 
olle
ts the properties of the Lie algebra

in a 
ompa
t form. Let AIµ denote the set of gauge ve
tors 
ontained in

the theory. In the free-�eld limit, the theory must obey the Abelian gauge

symmetry δAIµ = ∂µΛ
I
. Writing ΛI = θCI , as usual, the ghosts CI 
an

always be de�ned so that the derivative term in RIµ(φ,C) is ∂µC
I
. By lo
ality,

ghost number 
onservation and power 
ounting, the most general K se
tor

of the minimal solution to the master equation must have the form

−(∂µCI +AJµC
KκJKI)KI +

1

2
CJCKhJKIKI

C ,

where κIJK and hJKI are numeri
al 
onstants and hJKI are antisymmetri


in J and K. Now we study the 
onstraints imposed by the master equation

(S, S) = 0. It is easy to show that the terms proportional to KI
C in (S, S) = 0

imply that the 
onstants hJKI satisfy the Ja
obi identity (4.28)

hIJKhKLM + hLIKhKJM + hJLKhKIM = 0.

Sin
e both assumptions (4.27) and (4.28) are satis�ed, the 
onstants hJKI

de�ne a Lie algebra. It is also straightforward to 
he
k that the terms pro-

portional to KI
in (S, S) = 0 give κIJK = hIJK . Thus, the gauge transfor-

mations have the Yang-Mills form

δΛA
I
µ = ∂µΛ

I +AJµΛ
KhJKI ,

whi
h proves the theorem. �

We stress again that we have not proved the renormalizability, yet, but

this theorem anti
ipates that if Yang-Mills theory is renormalizable, it is

unique.

5.3 Canoni
al transformations

A 
anoni
al transformation C of the �elds and the sour
es is a transformation

Φα′(Φ,K), K ′
α(Φ,K),
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that preserves the antiparentheses, that is to say su
h that

(X ′, Y ′)′ = (X,Y )

for every pairs of fun
tionals X and Y , where X ′
and Y ′

are de�ned as

X ′(Φ′,K ′) =X(Φ(Φ′,K ′),K(Φ′,K ′)),

Y ′(Φ′,K ′) = Y (Φ(Φ′,K ′),K(Φ′,K ′)),

and (., .)′ denotes the antiparentheses 
al
ulated with respe
t to Φ′
and K ′

.

Sometimes we simply write

X ′ = CX, Y ′ = CY.

By this we mean that X and Y are regarded as fun
tions of the new variables

Φ′,K ′
, obtained by expressing their arguments Φ,K in terms of Φ′,K ′

.

A 
anoni
al transformation is generated by a fun
tional F(Φ,K ′) and


an be expressed as

Φα′ =
δF
δK ′

α

, Kα =
δF
δΦα

. (5.41)

Formula (5.12) implies that F is a fun
tional of fermioni
 statisti
s. For this

reason, there is no need to spe
ify whether the derivatives of (5.41) are left

or right.

The generating fun
tional of the identity transformation is

I(Φ,K ′) =

∫
dDxΦα(x)K ′

α(x).

Observe that if X is su
h that (S,X) = 0, then X ′
is su
h that (S′,X ′)′ =

0.

Let us inspe
t the most general 
anoni
al transformation, to understand

what it 
an be useful for. We 
an write the generating fun
tional as a sum

of a term independent of the sour
es plus the rest:

F(Φ,K ′) = Ψ(Φ) +

∫
K ′
αU

α(Φ,K ′). (5.42)

Then (5.41) gives

Φα′ = Uα(Φ,K ′) +

∫
K ′
β

δrU
β

δK ′
a

, Kα =
δΨ(Φ)

δΦα
+

∫
K ′
β

δrU
β

δΦA
. (5.43)
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Re
all that at the end we must set the sour
es K to zero, sin
e they are

introdu
ed just to have 
ontrol on the gauge symmetry. To illustrate the

meaning of (5.42), we set them to zero after the 
anoni
al transformation. If

we drop the terms proportional to K ′
in (5.43) we obtain

Φα′ = Uα(Φ, 0), Kα =
δΨ(Φ)

δΦα
. (5.44)

The Φ transformation is a �eld rede�nition. Instead, as we will explain later,

the K transformation is a gauge �xing, or a 
hange of gauge �xing. The

K-dependent terms 
ontained in (5.43) do not have a parti
ular meaning.

They are there to promote (5.44) to a 
anoni
al transformation, whi
h is

mu
h easier to manipulate, be
ause it preserves the antiparentheses. Thus,

Proposition 8 the most general 
anoni
al transformation (5.42) is the 
om-

bination of the most general �eld rede�nition and the most general gauge-

�xing.

Of 
ourse, the physi
s should not depend on the �eld variables we use.

5.4 Gauge �xing

We have gauge-�xed quantum ele
trodynami
s in 
hapter 4. Now we are

ready to gauge-�x non-Abelian Yang-Mills theory. Call Ga(A) the gauge-

�xing fun
tions, i.e. Ga(A) = ∂µA
a
µ in the Lorenz gauge, and Ga(A) = −▽·Aa

in the Coulomb gauge. De�ne the gauge fermion

Ψ(Φ) =

∫
dDxC̄a

(
−λ
2
Ba + Ga(A)

)
. (5.45)

The gauge fermion is a lo
al fun
tional of fermioni
 statisti
s that �xes the

gauge in the way explained below. Its typi
al form is (5.45), but more general

fun
tionals 
an be 
hosen.

Working in the Lorenz gauge, for de�niteness, de�ne the gauge-�xed a
-

tion

SΨ(Φ,K) = S(Φ,K) + (S,Ψ). (5.46)

It is easy to prove that SΨ and S are related by the 
anoni
al transformation

generated by the fun
tional

F(Φ,K ′) =

∫
ΦαK ′

α +Ψ(Φ). (5.47)
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Indeed, (5.41) gives

Φα′ = Φα, K ′
α = Kα −

δΨ(Φ)

δΦα
.

Re
alling that the a
tion is linear in the sour
es, we have from (5.19)

S(Φ′,K ′) = S(Φ,K) +

∫
Rα(Φ)

δΨ(Φ)

δΦα
= S(Φ,K) + (S,Ψ) = SΨ(Φ,K).

Moreover,

Proposition 9 If S satis�es the master equation, then every SΨ = S +

(S,Ψ(Φ)) satis�es the master equation.

The reason is that the 
anoni
al transformations preserve the antiparen-

theses, so (S, S) = 0 if and only if (SΨ, SΨ) = 0. In parti
ular, the gauge-

�xing pro
edure preserves the master equation.

Working out SΨ expli
itly, we �nd

SΨ(Φ,K) = Sc(φ) + S
gf

(Φ)−
∫
RαKα, (5.48)

where

Sc(φ) + S
gf

(Φ) =

∫
dDx

(
1

4
F a 2
µν −

λ

2
(Ba)2 +Ba∂ ·Aa − C̄a∂µDµC

a

)
.

(5.49)

Observe that the ghosts do not de
ouple in non-Abelian Yang-Mills theory.

The gauge-�eld propagator 
an be worked out from the free subse
tor

of (5.49), after integrating Ba
out, whi
h gives the equivalent gauge-�xed

a
tion

S =

∫
dDx

(
1

4
F a 2
µν +

1

2λ
(∂µA

a
µ)

2 − C̄a∂µDµC
a

)
. (5.50)

The result is

〈Aaµ(k)Abν(−k)〉 =
δab

k2

(
δµν + (λ− 1)

kµkν
k2

)
, (5.51)

The ghost propagator is

〈Ca(k)C̄b(−k)〉 = δab

k2
. (5.52)
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Repeating the argument that leads to (4.21) we 
an 
he
k, in the Coulomb

gauge, that the physi
al degrees of freedom are 2 dimG, as it must be.

The argument just given does not 
hange when we add matter �elds,

sin
e they are not interested by the gauge-�xing pro
edure. Clearly, in QED

we get ba
k (4.15) and (4.16).

Exer
ise 19 Show that the a
tion SΨ(Φ,K) 
ontinues to satisfy the master

equation after integrating the Lagrange multipliers Ba
out.

Solution. Integrating B out is equivalent to repla
e B with the solution

of its own �eld equation, that is to say make the repla
ement

Ba → 1

λ
(∂ ·Aa −Ka

C̄).

Then SΨ(Φ,K) be
omes

S̄Ψ(Φ,K) =
1

4

∫
F a 2
µν −

∫
C̄a∂µDµC

a +
1

2λ

∫
(Ka

C̄ − ∂ ·Aa)2

−
∫

(DµC
a)Ka

µ +
g

2

∫
fabcCbCcKa

C .

At this point, it is straightforward to 
he
k that the master equation (S̄Ψ, S̄Ψ) =

0 holds. Note that (S̄Ψ, C̄) = (∂ · Aa −Ka
C̄
)/λ.

Observe that the a
tion S̄Ψ(Φ,K) is no longer linear in the sour
esK, but


ontains a term that is quadrati
 in KC̄ . This means that after integrating

B out the Φ transformations do not 
lose o� shell anymore, whi
h the reader


an verify dire
tly. Working with the 
anoni
al formalism this problem is


ured by itself, sin
e the master equation is satis�ed both before and after

the integration over B.

Exer
ise 20 Derive the Feynman rules of (5.50) 
oupled to fermions.
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Solution. The propagators have been given above. The verti
es are

a c

µb

= igfabcqµ,

q
i j

µa

= −gγµ(T a)ij,

= igfabc(δµν(k1ρ − k2ρ) + δµρ(k3ν − k1ν) + δνρ(k2µ − k3µ)),

µa νb

ρc

k1
k2

k3

(5.53)

= −g2
[
f eabf ecd(δµρδνσ − δµσδνρ)

+f eadf ebc(δµνδρσ − δµρδνσ)

+f eacf ebd(δµνδρσ − δµσδνρ)
]
.

µa νb

ρc σd

Exer
ise 21 Prove that the term

∫
RαKα 
an be written as (S, χ) for a lo
al

fun
tional χ.

Solution. Consider the 
anoni
al transformation generated by

F(Φ,K ′) =

∫
ΦαK ′

α + (eζ − 1)

∫
CaKa′

C +
(
e−ζ − 1

) ∫
C̄aKa′

C̄ . (5.54)

Let Sζ(Φ,K) denote the res
aled a
tion. Expanding in ζ we obtain

Sζ(Φ,K) = S(Φ,K) + ζ

(
S,

∫
(CaKa

C − C̄aKa
C̄)

)
+O(ζ2). (5.55)

Now, the transformation res
ales the ghosts by a fa
tor eζ , the antighosts

by the re
ipro
al fa
tor e−ζ , and their sour
es KC and KC̄ by e−ζ and eζ ,

respe
tively. Applied to (5.31) and (5.33), even after in
luding the gauge

�xing (5.48), it is equivalent to res
ale all the sour
es K by eζ , whi
h gives

Sζ(Φ,K) = S(Φ, eζK). Di�erentiating this equation and (5.55) with respe
t

to ζ and setting ζ = 0 we get

∫
RαKα =

(
S,

∫
(C̄aKa

C̄ − CaKa
C)

)
.

The reader is invited to 
he
k this formula expli
itly in both QED and Yang-

Mills theory. This result tea
hes us that

∫
RαKα is exa
t in the 
ohomology

de�ned by the appli
ation X → (S,X), a
ting on the lo
al fun
tionals X. �
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From now on, we drop the subs
ript Ψ in SΨ(Φ,K) and when we write

S(Φ,K) we mean the gauge-�xed a
tion (5.48).

5.5 Generating fun
tionals

De�ne the generating fun
tionals as

Z(J,K) =

∫
[dΦ] exp

(
−S(Φ,K) +

∫
ΦαJα

)
= exp (W (J,K)) , (5.56)

and Γ(Φ,K) as the Legendre transform of W (J,K) with respe
t to J , the

sour
es K remaining inert:

Jα =
δlΓ(Φ,K)

δΦα
, Γ(Φ,K) = −W (J,K) +

∫
ΦαJα. (5.57)

Observe that Γ is the generating fun
tional of one-parti
le irredu
ible dia-

grams, in
luding the diagrams that have ghosts, Lagrange multipliers and

sour
es K on their external legs. We are ta
itly assuming that the inte-

gral (5.56) makes sense, at least perturbatively. This means that the a
tion

S(Φ,K) should be gauge-�xed, so that the propagators are well de�ned. In

the next subse
tion we show how the a
tion 
an be gauge-�xed preserving

the master equation. For the moment we study the 
anoni
al formalism for

the traditional fun
tionals Z, W and Γ. Later we introdu
e the master fun
-

tional Ω for gauge theories and dis
uss the 
omposite �elds and the 
hanges

of �eld variables in detail.

It is apparent from (5.43) that the 
anoni
al transformations 
annot be

implemented as 
hanges of �eld variables inside the fun
tional integral. In-

deed, in general they mix the �elds Φ, over whi
h we integrate, with the

external sour
es K. While it is legitimate to make a 
hange of �eld vari-

ables Φ→ Φ′(Φ,K) in the fun
tional integral, it is not legitimate to rede�ne

the external sour
es as fun
tions of the integrated �elds. Thus, when we

use 
anoni
al transformations we means that we apply them to the a
tion

S(Φ,K), while the generating fun
tionals Z, W and Γ are just repla
ed with

the ones asso
iated with the transformed a
tion. We will not be able to de-

s
ribe our operations, in
luding the renormalization, as true 
hanges of �eld

variables until we introdu
e the master fun
tional for gauge theories.
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To some extent, we 
an study the 
omposite �elds already at the level of

Z, W and Γ. We 
an treat the 
orrelation fun
tions

〈OI1(x1) · · · OIn(xn)〉 (5.58)

of gauge-invariant 
omposite �elds OI(φ) by adding them to the a
tion, mul-

tiplied by suitable sour
es L. Thus, we 
onsider the generating fun
tionals

Z(J,K,L) =

∫
[dΦ] exp

(
−S(Φ,K) +

∫
LIOI(φ) +

∫
ΦαJα

)
= eW (J,K,L),

(5.59)

and the Lagrange transform Γ(Φ,K,L) of W (J,K,L) with respe
t to Φ. We

have

Jα =
δlΓ

δΦα
,

δrW

δKα
= − δrΓ

δKα
,

δlW

δLI
= − δlΓ

δLI
. (5.60)

Re
all that in this 
hapter we are working at the bare level. Indeed, for-

mula (5.59) is the 
orre
t bare form for the generating fun
tionals, while the

renormalized stru
ture is 
onsiderably more involved. Among other things,

the exponent of the integrand be
omes nonpolynomial in the sour
es L and

K, when higher-dimensional 
omposite �elds are present. For the moment,

the 
orrelation fun
tions (5.58) that are gauge invariant and gauge indepen-

dent (see below), but still divergent.

Consider the 
hange of �eld variables

Φα′ = Φα + θRα = Φα + θ(S,Φα), (5.61)

in the fun
tional integral (5.56), where θ is a 
onstant anti
ommuting pa-

rameter. In a sense that we now explain, (5.61) is equivalent to a 
anoni
al

transformation generated by

F(Φ,K ′) =

∫ (
ΦαK ′

α + θRαK ′
α

)
.

Indeed, formulas (5.41) give

Φα′ = Φα + θRα, K ′
α = Kα −

∫
δlR

β

δΦα
Kβθ. (5.62)

We have inverted the se
ond relation using θ2 = 0, whi
h ensures that the

Taylor expansions in θ stops after the �rst order in θ. The K transformation
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appearing here does not a�e
t the a
tion, be
ause S depends on K only via

the 
ombination −
∫
Rα(Φ)Kα, whi
h gets an extra 
ontribution equal to

∫
Rα(Φ)

δlR
β

δΦα
Kβθ =

∫
(S,Rα)Kαθ =

∫
(S, (S,Φα))Kαθ = 0.

Thus, (5.62) is equivalent to just (5.61).

We know that, using the dimensional regularization the fun
tional inte-

gration measure is invariant under the lo
al 
hange of �eld variables (5.61),

by theorem 1. There a
tually exists a stronger argument to prove the same

result, whi
h 
an be applied to a more general 
lass of regularization te
h-

niques. Thanks to (1.98) we have

J = sdet

δΦα′(x)

δΦβ(y)
= sdet

(
δαβδ(x − y) + δ[θRα(x)]

δΦβ(y)

)
= 1 + str

δ[θRα(x)]

δΦβ(y)
.

(5.63)

We have again used θ2 = 0. In QED the matrix

δ[θRα(x)]

δΦβ(y)
=
δ[θ(∂µC, 0, B, 0,−ieψ̄C,−ieCψ)]

δ(Aν , C, C̄, B, ψ̄, ψ)

has no diagonal elements ex
ept for the blo
k

δ(ieψ̄θC,−ieθCψ)
δ(ψ̄, ψ)

= ie

(
θC 0

0 −θC

)
, (5.64)

but the tra
e vanishes. Clearly, this is due to the fa
t that ψ̄ and ψ have

opposite 
harges. Using (1.97) we see that the supertra
e of (5.63) vanishes,

so J = 1.

In non-Abelian gauge theories formulas (5.32) and (5.33) give

δ(θRaµ)

δAbν
= gδµνf

abcθCc,
δ(θRaC)

δCb
= gfabcθCc,

δl(θR
i
ψ)

δψj
=−gT aijθCa ,

δl(θR
i
ψ̄
)

δψ̄
j = gT aijθC

a.

The s
alar 
ontribution is similar to the fermion one. When the representa-

tion is not the fundamental one it is su�
ient to repla
e T a by the appro-

priate matri
es T a. The A and C 
ontributions to (5.63) are zero, be
ause

fabc is 
ompletely antisymmetri
. If the gauge group has no Abelian fa
tors,
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then tr[T a] = 0, so the tra
es of the ψ and ϕ 
ontributions are also zero.

If the gauge group has Abelian fa
tors, the tra
es tr[T a] are given by the

U(1) 
harges. They 
an
el out summing the 
ontributions of both ψ and ψ̄,

or both ϕ and ϕ̄, as in (5.64). Finally, the 
ontributions of C̄ and B are

obviously zero.

Now we prove that

Theorem 10 If the a
tion S satis�es the master equation, the generating

fun
tionals Z and W are invariant under the transformation

τKα = (−1)εα+1Jα, τJα = 0, τLI = 0.

Observe that the operator τ �ips the statisti
s. Be
ause of this, it pro-

du
es a minus sign every time it 
rosses an obje
t with fermioni
 statisti
s.

This property 
an be proved by observing that δτ = θτ obeys the ordinary

Leibniz rule, where θ is an anti
ommuting 
onstant.

Proof. Apply the operator δτ to the Z fun
tional (5.59). Using (5.19),

we see that the exponent of the integrand is 
hanged into itself plus

θ

∫
Rα(Φ)Jα. (5.65)

Thus, we obtain the formula

τW =

〈∫
Rα(Φ)Jα

〉
. (5.66)

We 
an prove that this average vanishes by performing the 
hange of �eld

variables (5.61) in (5.59). Indeed, re
all that the fun
tional measure is invari-

ant, the a
tion S satis�es the master equation and the 
omposite �elds OI
are gauge invariant. Then, (5.61) a�e
ts only

∫
ΦαJα, by an amount equal

to

θ

∫
(S,Φα)Jα = θ

∫
Rα(Φ)Jα, (5.67)

and W by an amount equal to the average of (5.67). Sin
e a 
hange of �eld

variables 
annot modify the result of the integral, we 
on
lude that

τZ(J,K,L) = 0, τW (J,K,L) = 0. (5.68)

�
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Using (5.60), we 
an write

τW =

∫
τKα

δlW

δKα
= (−1)εα

∫
Jα

δlΓ

δKα
=

∫
δrΓ

δΦα
δlΓ

δKα
. (5.69)

Using (5.15) and (5.68), we obtain

τW =
1

2
(Γ,Γ) = 0, (5.70)

whi
h is the master equation for Γ. Later we will show that it en
odes the

gauge invarian
e of physi
al 
orrelation fun
tions. We have thus proved that

Theorem 11 If S satis�es the master equation, then Γ satis�es the master

equation.

When the a
tion S is not assumed to satisfy the master equation, a more

general result tells us that the violation of the Γ master equation (Γ,Γ) = 0

is given by the average of (S, S). This gives a formula that, due to its

importan
e, we 
all master identity. It will be 
ru
ial in the proofs of renor-

malizability and in the study of anomalies and gauge independen
e to all

orders.

Theorem 12 The generating fun
tional Γ satis�es the master identity

(Γ,Γ) = 〈(S, S)〉.

Proof. It 
an be proved by going through the argument that lead to

(5.70), and making the ne
essary modi�
ations. Formula (5.66) is una�e
ted.

Instead, the 
hange of variables (5.61) does not only a�e
t

∫
ΦJ , by an

amount equal to (5.67), but also −S, by an amount equal to −θ(S, S)/2.
Sin
e W 
annot 
hange under a 
hange of variables, we obtain

τW =

〈∫
Rα(Φ)Jα

〉
=

1

2
〈(S, S)〉

Formula (5.69) is also unmodi�ed, so in the end

1

2
〈(S, S)〉 = τW =

1

2
(Γ,Γ).
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5.6 Ward identities

Consider the 
hange of variables (5.61) in the fun
tional integral

∫
[dΦ]Q(Φ) exp

(
−S(Φ,K) +

∫
LIOI(φ)

)
, (5.71)

where now Q denotes a 
ompletely arbitrary fun
tion of the �elds. It 
an

in
lude any string of insertions of elementary and 
omposite �elds, in
luding

ghosts and Lagrange multipliers, as well as fun
tionals, and does not need to

be lo
al. However, for the derivation that we give below Q 
annot depend

on the sour
es K. The reason is that the fun
tional integral is only over Φ,

so the 
hange of variables 
annot transform K. Note that in (5.71) we have

set the sour
es J for the elementary �elds Φ to zero. The reason is that most

sour
es J are not gauge invariant. By means of (5.71), we 
an study the


orrelation fun
tions (5.58).

If S satis�es the master equation, then only Q(Φ) is a�e
ted by (5.61),

and we easily obtain

〈∫
Rα

δQ
δΦα

〉
= 〈(S,Q)〉0 = 0, (5.72)

where the subs
ript 0 reminds us that the sour
es J for the elementary �elds

are set to zero.

This identity is 
alled Ward identity. Its meaning is that an obje
t of the

form (S,Q) is zero for every physi
al purposes, that is to say a 
ompletely

unobservable quantity. Observe that (S,Q) is just a fun
tional of the �elds.

Repla
ing Q with Q(S,Q)n−1
in (5.72), it follows that

〈(S,Q)n〉0 = 0

for every n. Then, if we spe
ialize Q to be a lo
al fun
tional Ψ of fermioni


statisti
s, we also have the identity

∫
[dΦ] e−SΨ(Φ,K)+

∫
LIO

I(φ) =

∫
[dΦ] e−S(Φ,K)+

∫
LIO

I(φ), (5.73)

where SΨ and S are related by formula (5.46), or, whi
h is the same, the


anoni
al transformation (5.47). Identity (5.73) tells us that we are free to

add an arbitrary fun
tional of the form (S,Ψ) to the a
tion, and no 
or-

relation fun
tion (5.58) will depend on it. We have already seen that this

freedom allows us to gauge-�x the theory, by 
hoosing a Ψ of the form (5.45).

This proves that
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Theorem 13 The 
orrelation fun
tions (5.58) are invariant under the 
anon-

i
al transformations of the form (5.47), for an arbitrary lo
al Ψ(Φ).

Sin
e the most general 
anoni
al transformation is a 
ombination of a


anoni
al transformation of type (5.47) and a 
hange of variables for the

�elds Φ, we 
on
lude that

Theorem 14 The physi
al quantities are invariant under the most general


anoni
al transformation.

Among the freedom we have, we 
an repla
e ∂µAµ in (5.45) by another

gauge-�xing fun
tion G(A). From the arbitrariness of Ψ(Φ) and theorem 13,

we 
on
lude that

Theorem 15 The 
orrelation fun
tions (5.58) are gauge-independent,

that is to say they are independent of the gauge �xing. Even if we sti
k to

the same G(A), they are independent of the gauge-�xing parameter λ that

appears in (5.45).

Note that the notion of gauge independen
e does not 
oin
ide with the

notion of gauge invarian
e. A gauge invariant quantity is a quantity that

does not 
hange when a gauge transformation is applied to it. A gauge

independent quantity is a quantity that does not 
hange by modifying the

gauge-�xing fun
tion G(A) that is used to de�ne the fun
tional integral.

Gauge independen
e ensures that the value of the physi
al 
orrelation

fun
tions, su
h as (5.58), is the same with any gauge 
hoi
e. In parti
ular, it


oin
ides with the value we would �nd, for example, in the Coulomb gauge

(4.8), where only the physi
al degrees of freedom propagate. For this reason,

gauge independen
e is 
ru
ial to prove unitarity.

We will have more to say about the independen
e of the physi
al quanti-

ties on 
anoni
al transformations later on. Moreover, we still have to prove

that the theory is renormalizable. So far, we have been working with physi
al

quantities that may be gauge invariant and gauge independent (see below),

but still divergent. We must show that the subtra
tion of divergen
es 
an be

organized so as to preserve the properties proved above.
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Chapter 6

Quantum ele
trodynami
s

In this 
hapter we study quantum ele
trodynami
s and prove its renormal-

izability to all orders. Sin
e the a
tion does not 
ontain 
hiral fermions

the properties we have derived in the previous 
hapter, su
h as the master

equation (5.17), hold in arbitrary 
omplex D dimensions. In parti
ular, the

Lagrangian

L
0

=
1

4
F 2
µν + ψ̄(/∂ + ie /A+m)ψ (6.1)

is gauge invariant in D dimensions and the dimensionally regularized gauge-

�xed extended a
tion

S(Φ,K) =

∫
L
tot

+

∫
(Kµ∂µC + ieψ̄CKψ̄ + ieKψCψ −BKC̄), (6.2)

where

L
tot

= L
0

− λ

2
B2 +B∂ · A− C̄�C, (6.3)

satis�es (S, S) = 0 identi
ally.

After integrating B out, the Feynman rules are

ν
= 1

k2

(

δµν + (λ− 1)kµkν
k2

)

µ

= 1
i/p+mp

= −ieγµ

µ

k

(6.4)

where the wiggled line denotes the photon. We do not need rules for the

ghosts, sin
e they de
ouple.
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The �rst thing to note is that (6.1) does not 
ontain all the terms that

are allowed by power 
ounting. The missing ones, su
h as

1

2
m2
γA

2
µ,

1

3!
A2
µ∂νAν ,

1

4!
(A2

µ)
2, (6.5)

et
., are forbidden by gauge invarian
e. We know that su
h terms are ab-

sent at the tree level, be
ause the tree-level Lagrangian is gauge invariant.

In prin
iple, renormalization might generate them at one loop or higher or-

ders. More pre
isely, it might be ne
essary to introdu
e the verti
es (6.5) as


ounterterms, to remove divergen
es proportional to them. However, if that

happened, renormalization would ruin the gauge invarian
e of the theory. We

need to prove that, instead, the divergent parts of the Feynman diagrams are

gauge invariant, and 
an be removed by by rede�ning the ingredients (�elds,

sour
es and parameters) of the tree-level a
tion S(Φ,K). Fortunately, in

most 
ases, whi
h in
lude QED, renormalization and gauge invarian
e are


ompatible with ea
h other.

For the moment, we just assume that this 
ompatibility holds and work

out some 
onsequen
es. The renormalizability of (6.3) is proven in se
tion

6.2.

Exer
ise 22 Using the dimensional regularization prove by expli
it 
omputa-

tion that the photon four-point fun
tion 〈Aµ(x)Aν(y)Aρ(z)Aσ(w)〉 is one-loop

onvergent.

Solution. By power 
ounting and lo
ality, the divergent part is just a


onstant, so it 
an 
al
ulated at vanishing external momenta. Although the

divergent part is also independent of the mass, we keep m nonzero, be
ause

the limit when both the external momenta and the masses tend to zero


annot be taken inside the integral in dimensional regularization. We have

the diagram

µ ν

ρσ
(6.6)

plus permutations of external legs, whi
h means ex
hanges of ν, ρ and σ.
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The integral 
orresponding to (6.6) is

−e4
∫

dDp

(2π)D
tr[(−i/p +m)γµ(−i/p+m)γν(−i/p +m)γρ(−i/p+m)γσ]

(p2 +m2)4
.

The masses in the numerator 
an be dropped, sin
e they 
ontribute only to

the �nite part. We get

− e4
∫

dDp

(2π)D
pαpβpγpδ
(p2 +m2)4

tr[γαγµγβγνγγγργδγσ]. (6.7)

By Lorentz 
ovarian
e, the integral 
an only be proportional to δαβδγδ +

δαγδβδ + δαδδβγ . The fa
tor in front of this tensor 
an be 
al
ulated by


ontra
ting α with β and γ with δ. We 
an thus write

∫
dDp

(2π)D
pαpβpγpδ
(p2 +m2)4

=
δαβδγδ + δαγδβδ + δαδδβγ

D(D + 2)

∫
dDp

(2π)D
(p2)2

(p2 +m2)4
.

Evaluating the integral with the help of formula (A.5) and using (2.14) and

(2.15) to 
ompute the tra
e, we 
an easily �nd that the divergent part of

(6.7) is nontrivial, equal to

− 8e4

3ε(4π)2
(δµνδρσ − 2δµρδνσ + δµσδνρ) ,

where ε = 4 −D. However, the pole disappears by summing over the per-

mutations of the external legs. Without this 
an
ellation, there would be

a divergent part proportional to (A2
µ)

2
, whi
h would violate gauge invari-

an
e. This exer
ise is an expli
it 
he
k that the dimensional regularization

is manifestly gauge invariant.

Exer
ise 23 Show that the three-point fun
tion 〈Aµ(x)Aν(y)Aρ(z)〉 is also

onvergent at one loop.

Solution. We leave the details to the reader. The fermion loop with

three external photons has a nontrivial divergent part, whi
h is linear in

the external momenta. As before, the pole 
an
els when the permutations

of the external legs are in
luded. Note that ex
hanging two photon legs is

equivalent to �ip the arrow of the fermion loop.

There exist more powerful methods, based on the invarian
e under 
harge


onjugation, to show that the n-photon 
orrelation fun
tions identi
ally van-

ish when n is odd. However, it is not straightforward to use those arguments
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together with the dimensional regularization. The reason is that the 
harge-


onjugation matrix, like the matrix γ5, does not admit a simple extension

to D dimensions, and the dimensionally regularized QED Lagrangian is not

exa
tly invariant under 
harge 
onjugation. �

As usual, we have bare and renormalized versions of L0, whi
h read

L0B =
1

4
F 2
µνB + ψ̄B(/∂ + ieB /AB +mB)ψB =

L0R =
1

4
ZAF

2
µν + Zψψ̄(/∂ + ieµεZeZ

1/2
A

/A+mZm)ψ, (6.8)

having de�ned

AµB = Z
1/2
A Aµ, ψB = Z

1/2
ψ ψ, eB = eµεZe, mB = mZm.

We have repla
ed e by eµε at the tree level, to have the renormalized ele
tri



harge e dimensionless.

The renormalization of the gauge-�xing se
tor is rather simple. Sin
e C

and C̄ de
ouple, they are not renormalized, so CB = C, C̄B = C̄. Moreover,

sin
e B appears only quadrati
ally in (6.3), no one-parti
le irredu
ible dia-

gram with external legs B 
an be 
onstru
ted. Therefore, the Lagrangian

terms involving B are not renormalized either. Writing

BB = Z
1/2
B B, λB = λZλ,

we have

−λ
2
B2+B∂ ·A = −λB

2
B2

B+BB∂ ·AB = −λZλ
2
ZBB

2+Z
1/2
B Z

1/2
A B∂ ·A, (6.9)

that is to say

ZB = Z−1
A , Zλ = ZA. (6.10)

We see that B 
an have a nontrivial renormalization 
onstant.

Now, let us 
onsider the terms proportional to the sour
es in (6.2). The

term BKC̄ is not renormalized by the argument just given. Moreover, sin
e

the ghosts de
ouple, no irredu
ible diagrams with sour
es Kψ, Kψ̄ and/or

Kµ on the external legs 
an be 
onstru
ted. This means that the entire K

se
tor of the solution (6.2) to the master equation is nonrenormalized and

Kψ̄B = Z−1
e Z

−1/2
ψ Kψ̄, KψB = Z−1

e Z
−1/2
ψ Kψ, KC̄B = Z

−1/2
B KC̄ .
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The renormalized solution of the master equation reads

SR(Φ,K) =

∫
(L0R + L

gf

+ LK) = SB(ΦB,KB),

where

L
gf

=−λ
2
B2 +B ∂ · A− C̄�C,

LK =Kµ∂µC + ieµεψ̄CKψ̄ + ieµεKψCψ −BKC̄ .

6.1 Ward identities

The Ward identities (5.72) allow us to derive relations among the 
orrela-

tion fun
tions and the renormalization 
onstants. Before deriving the main

formulas, let us mention two simple, but useful properties 
on
erning the

fun
tional integral over the ghosts C, C̄ and the Lagrange multiplier B.

Sin
e B does not propagate and appears quadrati
ally in the a
tion,

integrating over B is equivalent to repla
e it with the solution

B =
1

λ
∂ ·A (6.11)

of its own �eld equation. Pre
isely, let X(B) be a lo
al fun
tional of B (and

possibly other �elds). Making a translation we �nd

〈X〉B ≡
∫

[dB]X(B) exp

(
λB2

2
−B∂ ·A

)

=

∫
[dB]X

(
B +

∂ ·A
λ

)
exp

(
λB2

2
− (∂ · A)2

2λ

)
.

Now, expand X(B) in powers of B. Observe that ea
h odd power integrates

to zero. On the other hand, nonvanishing even powers give δ(0)s or deriva-

tives of δ(0)s, e.g.

∫
[dB]B(x)∂µB(x) exp

(
λB2

2

)
= ∂µδ(x − y)|y−x ,

whi
h, by formulas (2.12) and (2.13), vanish using the dimensional regular-

ization. We 
on
lude that

〈X〉B = X

(
∂ ·A
λ

)
exp

(
−(∂ ·A)2

2λ

)
. (6.12)
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Another useful property is that, sin
e the ghosts de
ouple, the 
orrelation

fun
tions involving ghost insertions fa
torize, i.e.

〈C(x1) · · ·C(xm)C̄(y1) · · · C̄(yn)χ〉
= 〈C(x1) · · ·C(xm)C̄(y1) · · · C̄(yn)〉〈χ〉, (6.13)

where χ is any string of elementary �elds other than the ghosts, e.g.

χ = Aµ1(x1) · · ·Aµn(xn)ψ̄(y1) · · · ψ̄(ym)ψ(z1) · · ·ψ(zm).

Formula (6.13) 
an be easily proved by writing down the expressions of the

averages as fun
tional integrals.

We obtain the �rst Ward identity by 
hoosing Ψ = C̄(x)∂ · AB(y) in

formula (5.72), whi
h gives

0 = 〈BB(x)∂ · AB(y)〉0 − 〈C̄(x)�C(y)〉0.

We re
all that the subs
ript 0 reminds us that the sour
es J are set to zero.

Using (6.9) and (6.12) we 
an repla
e BB with (∂ · AB)/λB. Next, using

〈C(y)C̄(x)〉0 = G
free

(y − x) (6.14)

where G
free

(y − x) is the solution of −�G
free

(y − x) = δ(y − x), we �nd

〈∂ · AB(x)∂ · AB(y)〉0 = λBδ(x− y).

In terms of renormalized quantities, this identity be
omes

〈∂ ·A(x)∂ ·A(y)〉0 =
λZλ
ZA

δ(x − y).

Sin
e the left-hand side is 
onvergent, by 
onstru
tion, the right-hand side

must also be 
onvergent, so we �nd

Zλ
ZA

= �nite. (6.15)

In the minimal subtra
tion s
heme every Z has the form 1+poles in ε, so

Z̄λ = Z̄A. (6.16)

The bar over the Zs is to remind us that the renormalization 
onstants are

evaluated in the MS s
heme. The result (6.16) agrees with (6.10). When we
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derived (6.10), indeed, we impli
itly used the minimal subtra
tion s
heme,

sin
e we 
on
entrated on the form of divergen
es. More generally, we know

that we 
an always �subtra
t� arbitrary �nite lo
al 
ounterterms. If we do

this in the se
tor (6.9), we end up with (6.15).

As a se
ond example, take Ψ = C̄B(x)ψ̄B(y)ψB(z) in (5.72), whi
h gives

0= 〈BB(x)ψ̄B(y)ψB(z)〉0 + ieB〈C̄(x)ψ̄B(y)C(y)ψB(z)〉0
−ieB〈C̄(x)ψ̄B(y)C(z)ψB(z)〉0.

Using (6.14), (6.12) and (6.13) we �nd

1

λB
〈∂·AB(x)ψ̄B(y)ψB(z)〉0 = −ieB〈ψ̄B(y)ψB(z)〉0 [Gfree

(x− y)−G
free

(x− z)] .

In terms of the renormalized quantities, we have

Z
1/2
A

λZλ
〈∂·A(x)ψ̄(y)ψ(z)〉0 = −ieµεZe〈ψ̄(y)ψ(z)〉0 [Gfree

(x− y)−G
free

(x− z)] .

Sin
e the 
orrelation fun
tions appearing in this equation are �nite, we 
on-


lude

Z
1/2
A

ZλZe
= �nite. (6.17)

Summarizing, in the minimal subtra
tion s
heme

Z̄A = Z̄λ = Z̄−2
e . (6.18)

Exer
ise 24 Using the dimensional regularization, 
ompute the renormal-

ization of QED at one loop and 
he
k (6.18).

Solution. We have already 
he
ked in exer
ises 22 and 23 that the photon

four- and three-point fun
tions are 
onvergent. The surviving diagrams are

(6.19)

The �rst diagram is 
alled �va
uum polarization�. Its divergent part is

− e2

6π2ε
(k2δµν − kµkν), (6.20)
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where k is the external momentum, and gives

ZA = 1− e2

6π2ε
. (6.21)

Note that (6.20) is transverse, namely it vanishes if 
ontra
ted with kµ or kν .

This means that the gauge-�xing term (∂ · A)2/(2λ) is nonrenormalized, so

Zλ = 1− e2

6π2ε
= ZA,

in agreement with the �rst Ward identity (6.16).

The se
ond diagram of (6.19) is the ele
tron self-energy. Its divergent

part is

−ie2λ
8π2ε

/p−
me2

8π2ε
(λ+ 3), (6.22)

where p is the external momentum, oriented a

ording to the arrow. We �nd

Zψ = 1− λe2

8π2ε
, Zm = 1− 3e2

8π2ε
. (6.23)

Finally, by lo
ality and power 
ounting the divergent part of the vertex-

diagram 
an be 
al
ulated at vanishing external momenta. Moreover, masses

in numerators 
an be dropped. We then easily �nd

− iλe3

8π2ε
γµ, (6.24)

when
e

Ze = 1 +
e2

12π2ε
= Z

−1/2
A , (6.25)

in agreement with the se
ond Ward identity (6.18). Observe that only Zψ
is gauge dependent. Later we will appre
iate why. We will be also able to


hara
terize the gauge dependen
e more pre
isely. �

Two interesting 
onsequen
es of the Ward identities in the minimal sub-

tra
tion s
heme 
an be derived very easily.

i) The 
ovariant derivative is not renormalized. Pre
isely,

Dµ ≡ ∂µ + ieBABµ = ∂µ + ieµε/2Z̄eZ̄
1/2
A Aµ = ∂µ + ieµε/2Aµ.

ii) The renormalization of the �elds and the sour
es 
an be expressed in the

form

ΦαB = (Z̄Φ)
1/2Φα, KαB = Z̄−1

e (Z̄Φ)
−1/2Kα, (6.26)
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where no sum over α is understood. Indeed, 
olle
ting all the pie
es of

information found so far, we have

AµB = Z̄−1
e Aµ, KµB = Kµ, ψB = Z̄

1/2
ψ ψ,

KψB = Z̄−1
e Z̄

−1/2
ψ Kψ, KCB = Z̄−1

e KC , CB = C, (6.27)

BB = Z̄eB, KBB = Z̄−2
e KB , KC̄B = Z̄−1

e KC̄ , C̄B = C̄,

eB = eµεZ̄e, mB = mZ̄m, λB = λZ̄−2
e .

The renormalizations ofKB andKC are 
ompletely arbitrary, sin
e the a
tion

does not depend on them. We have 
hosen them to enfor
e (6.26).

We see that only three renormalization 
onstants are independent. The

meaning of (6.26) is that the renormalization of the �elds and the sour
es

is Z̄−1
e times a 
anoni
al transformation. The 
omplete renormalization is

made of these two operations plus a rede�nition of the ele
tri
 
harge e, the

ele
tron mass m and the gauge-�xing parameter λ.

Pre
isely, we have the 
anoni
al transformation (ΦB,KB) → (Φ′,K ′)

generated by

F(Φ′,KB) =

∫ (
Z̄−1
e A′

µK
µ
B + Z̄

1/2
ψ KψBψ

′ + Z̄
1/2
ψ ψ̄

′
Kψ̄B

+KCBC
′ + C̄ ′KC̄B + Z̄eB

′KBB

)
.


omposed with the sour
e rede�nition

Φ′ = Φ, K ′ = Z̄−1
e K,

and

eB = eµεZ̄e, mB = mZ̄m, λB = λZ̄−2
e .

We 
an write the relation between the bare and the renormalized antiparen-

theses as

Z̄−1
e (X,Y )B = (X,Y ). (6.28)

Details about nonminimal subtra
tion s
hemes are given in the next se
-

tion.

6.2 Renormalizability of QED to all orders

Now we prove that quantum ele
trodynami
s is renormalizable to all orders in

a gauge invariant way. We �rst work out the proof in the minimal subtra
tion
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s
heme and at the end extend the proof to a generi
 gauge invariant s
heme.

Consider the bare generating fun
tional

ZB(JB,KB) =

∫
[dΦB] exp

(
−SB(ΦB,KB) +

∑

i

ΦiBJBi

)
= eWB(JB,KB),

(6.29)

written in terms of bare �elds and sour
es. The a
tion SB is the one of

formula (5.31) on
e the subs
ript B is inserted everywhere.

We know that SB satis�es the master equation, (SB, SB)B = 0 and then

theorem (11) ensures that the bare Γ fun
tional ΓB also satis�es (ΓB,ΓB)B =

0. This identity implies

0 = −
∫

δrΓB

δKαB

δlΓB

δΦαB
=

∫
〈RαB(Φ)〉

δlΓB

δΦαB
. (6.30)

Now, observe that 〈RAB(ΦB)〉 = RAB(ΦB). This is obvious for ΦB =

AB, CB, C̄B and BB, be
ause their fun
tions RAB(ΦB) vanish or are linear

in the �elds themselves. It is less obvious for ΦB = ψ̄B, ψB, yet true, be-


ause the ghosts de
ouple, so by (6.13) we have 〈CBψB〉 = 〈CB〉〈ψB〉 and
〈ψ̄BCB〉 = 〈ψ̄B〉〈CB〉. We 
on
lude that the bare fun
tional ΓB satis�es

∫
RαB(ΦB)

δlΓB

δΦαB
= 0. (6.31)

More expli
itly,

∫ (
∂µCB

δlΓB

δAµB
− ieBψ̄BCB

δlΓB

δψ̄B

+ ieB
δrΓB

δψB
CBψB +BB

δlΓB

δC̄B

)
= 0 (6.32)

Now we pro
eed indu
tively. Assume that the theory 
an be renormalized

up to and in
luding the nth loop order by means of renormalization 
onstants

Z̄e,n, Z̄ψ,n and Z̄m,n and the renormalized a
tion

Sn(Φ,K) =

∫
1

4
Z̄−2
e,nF

2
µν +

∫
Z̄ψ,nψ̄(/∂ + ieµε /A+mZ̄m,n)ψ +

∫
(L

gf

+ LK),

in the minimal subtra
tion s
heme. The relations between the bare and

the renormalized quantities are (6.27) with Z̄e, Z̄ψ, Z̄m → Z̄e,n, Z̄ψ,n, Z̄m,n.

Let Γn(Φ,K, e, λ) = ΓB(ΦB,KB, eB, λB) denote the n-loop renormalized and

bare generating fun
tionals of one-parti
le irredu
ible diagrams.
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We must prove that the indu
tive hypotheses are promoted to the (n+1)-

th loop order. Swit
hing formula (6.32) to the renormalized quantities, we

�nd that all the renormalization 
onstants simplify apart from a 
ommon

fa
tor Z̄e, whi
h we 
an drop. At the end, we have

∫ (
∂µC

δlΓn
δAµ

− ieµεψ̄C δlΓn
δψ̄

+ ieµε
δrΓn
δψ

Cψ +B
δlΓn
δC̄

)
= 0. (6.33)

We know that the gauge-�xing se
tor and the K se
tor do not renormalize.

A
tually they do not re
eive any radiative 
orre
tions, be
ause no diagrams


an be 
onstru
ted with those sets of external legs. Thus we have

Γn(Φ,K) = Γ̃n(A, ψ̄, ψ) +

∫
(L

gf

+ L).

Inserting this formula in (6.33), we get

∫ (
∂µC

δlΓ̃n
δAµ

− ieµεψ̄C δlΓ̃n
δψ̄

+ ieµε
δrΓ̃n
δψ

Cψ

)
= 0.

Multiplying by a 
onstant anti
ommuting parameter ξ to the left and identi-

fying ξC with a 
ommuting fun
tion Λ, we obtain that Γ̃n is gauge invariant,

that is to say

δΛΓ̃n = 0, (6.34)

where δΛ is given by (4.7).

To keep tra
k of the orders of the expansion, we reintrodu
e ~ for a

moment. De�ne

Γ̃n =

∞∑

k=0

~
kΓ̃(k)

n . (6.35)

Observe that δΛ is independent of ~. Taking the (n + 1)-th order of (6.34),

we obtain

δΛΓ̃
(n+1)
n = 0. (6.36)

By the indu
tive assumption, Γn and Γ̃n are 
onvergent up to and in
luding

the nth order. Instead, Γ̃
(n+1)
n is the sum of a divergent part, whi
h we

denote by Γ̃
(n+1)
ndiv , and a �nite part. Sin
e all Γ̃

(k)
n , k 6 n, are 
onvergent by

the indu
tive assumption, all the subdivergen
es of the Feynman diagrams of

order ~n+1
are subtra
ted by appropriate 
ounterterms. By the theorem of
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the lo
ality of 
ounterterms, Γ̃
(n+1)
ndiv is a lo
al fun
tional. Taking the divergent

part of (6.36) (i.e. its poles in ε), we obtain

δΛΓ̃
(n+1)
ndiv = 0. (6.37)

Thus, we learn that Γ̃
(n+1)
ndiv is gauge invariant. Summarizing, Γ̃

(n+1)
ndiv (A, ψ̄, ψ)

is a lo
al, gauge-invariant fun
tional. Pre
isely, it is the integral of a lo
al

fun
tion ∆n+1L(A, ψ̄, ψ) of dimension four.

Now we use power 
ounting. With the Lorenz gauge-�xing, the photon

propagator behaves 
orre
tly for large momenta. Moreover, the theory does

not 
ontain parameters of negative dimensions. These fa
ts ensure that the

fun
tion ∆n+1L(A,ψ, ψ̄) is a linear 
ombination of the lo
al terms of dimen-

sions 6 4 that are not total derivatives and 
an be built with the �elds A,

ψ and ψ̄ and their derivatives. Su
h terms are F 2
, (∂ · A)2, ψ̄ /∂ψ, ψ̄ /Aψ and

ψ̄ψ. We 
annot use neither the tensor εµνρσ , nor the matrix γ5, sin
e the

Feynman rules do not 
ontain them. Finally, (6.37) redu
es the list to the

gauge-invariant 
ombinations F 2
, ψ̄ /Dψ and ψ̄ψ, so we 
an write

∆n+1L = an+1F
2
µν + bn+1ψ̄ /Dψ + cn+1mψ̄ψ, Γ̃

(n+1)
ndiv =

∫
dDx∆n+1L,

(6.38)

for suitable divergent 
oe�
ients an+1, bn+1 and cn+1. These divergen
es


an be subtra
ted by means of new renormalization 
onstants

Z̄e,n+1 = (Z̄−2
e,n − an+1)

−1/2, Z̄ψ,n+1 = Z̄ψ,n − bn+1,

Z̄m,n+1 = (Z̄ψ,n − bn+1)
−1(Z̄ψ,nZ̄m,n − cn+1).

The renormalized a
tion

Sn+1(Φ,K) =

∫
1

4
Z̄−2
e,n+1F

2
µν +

∫
Z̄ψ,n+1ψ̄(/∂ + ieµε /A+mZ̄m,n+1)ψ

+

∫
(L

gf

+ LK) = Sn(Φ,K)− Γ̃
(n+1)
ndiv ,

produ
es a generating fun
tional Γn+1 that is 
onvergent up to and in
lud-

ing n + 1 loops. Indeed, sin
e the a
tions di�er by O(~n+1), the Feyn-

man diagrams with n loops or less are exa
tly the same, whi
h ensures

Γn+1 = Γn + O(~n+1). Moreover, at n + 1 loops we have exa
tly the same

diagrams plus the verti
es of −Γ̃(n+1)
ndiv , whi
h subtra
t the overall divergent
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parts. In 
on
lusion,

Γn+1 ≡
∞∑

k=0

~
kΓ̃

(k)
n+1 = Γn − Γ̃

(n+1)
ndiv +O(~n+2),

that is to say Γ̃
(k)
n+1 = Γ̃

(k)
n <∞ for k 6 n and Γ̃

(n+1)
n+1 = Γ̃

(n+1)
n − Γ̃

(n+1)
ndiv <∞.

This result extends the indu
tive hypotheses to n+1 loops, as we wanted.

Iterating the argument to n =∞, the map relating the bare and renormalized

quantities is (6.27) with Z̄e = Z̄e,∞, Z̄ψ = Z̄ψ,∞ and Z̄m = Z̄m,∞. The

renormalized a
tion is

SR = S∞ =

∫
1

4
Z̄−2
e F 2

µν+

∫
Z̄ψψ̄(/∂+ieµ

ε /A+mZ̄m)ψ+

∫
(L

gf

+LK) (6.39)

and the renormalized generating fun
tional of the one-parti
le irredu
ible


orrelation fun
tions is

ΓR(Φ,K) = Γ∞(Φ,K) = Γ̃∞(A, ψ̄, ψ) +

∫
(L

gf

+ LK). (6.40)

Moreover, we have

(i) Z̄−1
e (X,Y )B = (X,Y );

(ii) (SR, SR) = 0;

(iii) (ΓR,ΓR) = 0.

Point (i) follows from (6.27), as shown in (6.28). Point (ii) follows from

(SB, SB)B = 0 and point (i). It 
an also be veri�ed immediately by using

(6.39). Point (iii) follows from point (ii) and theorem 11.

So far, we have worked in the absen
e of 
omposite �elds, whi
h is enough

to derive the S matrix. When we in
lude gauge-invariant 
omposite �elds,

built with the physi
al �elds A, ψ and ψ̄, both the gauge-�xing se
tor and

the K se
tor remain un
orre
ted, be
ause no nontrivial diagrams a�e
ting

them 
an be 
onstru
ted. The derivation given above is unmodi�ed up to

and in
luding (6.37).

Let OI(Φ, eµε) denote a basis of gauge-invariant 
omposite �elds, whi
h

in
ludes the identity. The OIs may depend on e by gauge invarian
e, but

there is no need to assume that they depend on m. The bare a
tion is

extended to

SB(ΦB,KB, LB) = SB(ΦB,KB) +

∫
LIBOI(ΦB, eB).
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Clearly, the master equation (SB, SB)B = 0 is still satis�ed. We write the

n-loop renormalized a
tion as

Sn(Φ,K,L) = Sn(Φ,K) +

∫
f In(L)OI(Φ, eµε), (6.41)

where f In(L) are lo
al fun
tions to be determined that have the form LIn+poles

in ε, with f I0 (L) = LI . Obviously, (Sn, Sn) = 0.

The sour
es L that multiply the 
omposite �elds of dimensions > 4 have

negative dimensions in units of mass. This means that the divergent part

Γ̃
(n+1)
ndiv is no longer restri
ted by power 
ounting. Nevertheless, we 
an write

Γ̃
(n+1)
ndiv (Φ,K,L) =

∫
∆n+1L+

∫
hIn(L)OI(Φ, eµε),

where the divergent fun
tions hIn(L) = O(L) are lo
al. As before, the di-

vergent terms of ∆n+1L 
an be reabsorbed in the 
onstants Z̄e, Z̄ψ and Z̄m.

Instead, the L-dependent divergent part 
an be reabsorbed by de�ning

f In+1(L) = f In(L)− hIn(L). (6.42)

The relations among the bare sour
es LIB and the renormalized sour
es

LI , and the solutions of (6.42), are

LIB ≡ fJn (L)(d−1
n )JI , f In(L) = LI −

n∑

k=1

hIk(L),

where the matri
es of 
onstants dIJn = δIJ+poles in ε are de�ned by

OI(ΦB, eB) = OI(Z̄1/2
Φ,nΦ, eµ

εZ̄e,n) ≡ dIJn OI(Φ, eµε).

The (n + 1)-renormalized a
tion Sn+1(Φ,K,L) has the form (6.41) with

n→ n+ 1. We still have

Sn+1(Φ,K,L) = Sn(Φ,K,L) − Γ̃
(n+1)
ndiv (Φ,K,L),

whi
h ensures that the Γ fun
tional Γn+1(Φ,K,L) is renormalized up to and

in
luding n+1 loops. Iterating the argument to n =∞, we �nd the renormal-

ized a
tion SR(Φ,K,L) = S∞(Φ,K,L) and the renormalized Γ fun
tional

ΓR(Φ,K,L) = Γ∞(Φ,K,L), whi
h still satisfy the properties (i), (ii) and

(iii) listed above.

14B1 Renorm



Chapter 7

Non-Abelian gauge �eld

theories

In this 
hapter we use the Batalin-Vilkovisky formalism to prove the renor-

malizability of Yang-Mills theory to all orders in the perturbative expansion.

We 
on
entrate on gauge theories with a simple gauge group, sin
e the gen-

eralization to produ
t groups is straightforward. We also assume that the

theories are parity invariant, whi
h ensures that the 
lassi
al Lagrangian does

not 
ontain the matrix γ5, the tensor ε
µνρσ

, or their d-dimensional analogues,

where d denotes the physi
al dimension of spa
etime.

7.1 Renormalizability of non-Abelian gauge theo-

ries to all orders

Denote the bare �elds and the bare sour
es with ΦB and KB, respe
tively.

Denote the bare a
tion and the bare Γ fun
tional, de�ned a

ording to (5.59),

with SB(ΦB,KB, LB, ζB, ξB) and ΓB(ΦB,KB, ζB, LB, ζB, ξB), where ζ denote

the physi
al parameters, ξ are the gauge-�xing parameters and L are sour
es

for gauge-invariant 
omposite �elds. At L = 0 the bare a
tion 
an be read

from (5.34) and (5.33), or (5.38) and (5.37), if all the quantities that appear

in those formulas are interpreted as bare quantities.

From (5.17) we have the master equation

(SB, SB)B = 0, (7.1)
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whi
h implies, a

ording to theorem 11,

(ΓB,ΓB)B = 0. (7.2)

The subs
ript B atta
hed to the antiparentheses means that they are 
al
u-

lated with respe
t to the bare �elds and sour
es, the other bare quantities

being kept �xed.

As usual, renormalizability is proved by pro
eeding indu
tively. We give

two proofs: a raw one and a more detailed one.

Raw subtra
tion The simpler proof amounts to subtra
t the 
ountert-

erms �as they 
ome� in the minimal subtra
tion s
heme. We will see in a

moment what this means. We do not need to preserve the master equation

at ea
h step of the subtra
tion. Instead, higher-order violations are allowed.

Call Sn and Γn the a
tion and the Γ fun
tional renormalized up to and

in
luding n loops. Assume the indu
tive hypotheses

Sn = S0 + poles, (Sn, Sn) = O(~n+1), Γ(k)
n <∞ ∀k 6 n, (7.3)

having used the expansion (6.35). The last requirement is just the statement

that Γn is 
onvergent up to and in
luding n loops. Clearly, the indu
tive

assumptions are trivially satis�ed for n = 0. In parti
ular, S0 
oin
ides with

the bare a
tion SB, and formula (7.1) ensures (S0, S0) = 0. Using the master

identity 12 we have

(Γn,Γn) = 〈(Sn, Sn)〉. (7.4)

Sin
e the antiparenthesis (Sn, Sn) is a lo
al fun
tional of order ~n+1
, the


ontributions to 〈(Sn, Sn)〉 of order ~n+1
are given by tree diagrams, so they


oin
ide with the order-~n+1

ontributions to (Sn, Sn), whi
h we denote by

(Sn, Sn)|n+1. Su
h quantity is divergent, by (S0, S0) = 0 and the �rst as-

sumption of (7.3).

Use the expansion (6.35) and think of (7.4) diagrammati
ally, as shown

in (5.28). The order ~n+1
of (7.4) gives

n+1∑

k=0

(
Γ(k)
n ,Γ(n−k)

n

)
= (Sn, Sn)|n+1 . (7.5)

We know that Γ
(k)
n are 
onvergent for k 6 n, by the indu
tive assumption.

Taking the divergent part of (7.5), we obtain

2
(
Γ(0)
n ,Γ

(n+1)
n div

)
= (Sn, Sn)|n+1 . (7.6)
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where Γ
(n+1)
n div

is the order-~n+1
divergent part of Γn. By the third indu
tive

assumption (7.3), all the subdivergen
es are subtra
ted away, so Γ
(n+1)
n div

is a

lo
al fun
tional. Now, Γ
(0)
n 
oin
ides with the 
lassi
al a
tion S0, so (7.6)

be
omes

(S0,Γ
(n+1)
n div

) =
1

2
(Sn, Sn)|n+1 . (7.7)

At this point, de�ne

Sn+1 = Sn − Γ
(n+1)
n div

. (7.8)

The �rst indu
tive assumption of the list (7.3) is 
learly promoted to Sn+1.

Formulas (7.8) and (7.7) give

(Sn+1, Sn+1) = (Sn, Sn)− 2
(
Sn,Γ

(n+1)
n div

)
+
(
Γ
(n+1)
n div

,Γ
(n+1)
n div

)
= O(~n+2),

so the se
ond of (7.3) is also promoted to Sn+1. Finally, the diagrams 
on-

stru
ted with the verti
es of Sn+1 
oin
ide with the diagrams of Sn, plus new

diagrams 
ontaining the verti
es of −Γ(n+1)
n div

. However, the �rst 
ontributions

of the new diagrams have order ~n+1
, so

Γ(k)
n = Γ

(k)
n+1 ∀k 6 n.

Moreover, at n + 1 loops any vertex of −Γ(n+1)
n div


an be used only on
e and

alone, sin
e it is already of order ~n+1
. Thus,

Γ
(n+1)
n+1 = Γ(n+1)

n − Γ
(n+1)
n div

<∞,

whi
h promotes the third indu
tive assumption of (7.3) to Γn+1.

We 
on
lude that formulas (7.3) and (7.4) also hold for the renormalized

a
tion SR ≡ S∞ and the renormalized generating fun
tional ΓR ≡ Γ∞, i.e.

(SR, SR) = 0, (ΓR,ΓR) = 0. (7.9)

The subtra
tion algorithm just given is 
learly 
ompatible with proposi-

tions 16 and 17. In parti
ular, formula (7.8) ensures that those propositions

hold at every step of the subtra
tion pro
edure.

We now study the renormalized a
tion.
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Proposition 16 The renormalized a
tion is independent of Ka
B and depends

on Ba
, Ka

C̄
only by means of the terms

∫ (
−λ
2
(Ba)2 +Ba∂ · Aa −BaKa

C̄

)
,

whi
h are nonrenormalized.

Proof. Clearly the 
lassi
al a
tion (5.37) satis�es these properties. Then,

no one-parti
le irredu
ible diagrams with external legs Ba
, Ka

B and Ka
C̄

an

be 
onstru
ted, so no 
ounterterms 
an depend on Ba
, Ka

B or Ka
C̄
. Note

that, in parti
ular, the absen
e of verti
es with B legs is due to the linearity

of the gauge �xing Ga in A.

Proposition 17 The renormalized a
tion depends on C̄ and Kµ
a only by

means of the 
ombination

Kµ
a + ∂µC̄a. (7.10)

Proof. Again, this property is satis�ed by the 
lassi
al a
tion (5.37).

Then, the verti
es that 
ontain an antighost leg always have a derivative ∂

a
ting on C̄. Moreover, the vertex 
ontaining ∂C̄ has an identi
al vertex-

partner with ∂C̄ repla
ed by Kµ
a . Therefore, given a diagram G with a Kµ

a

external leg, there exists an almost identi
al diagram G′
, whi
h di�ers from

G only be
ause the external Kµ
a leg is repla
ed by a ∂µC̄a leg, and vi
e versa.

Thus all the 
ounterterms satisfy the property, and so does the renormalized

a
tion.

Proposition 18 The renormalized a
tion is linear in K.

Proof. Indeed, from (5.35) and (5.36) it follows that in the absen
e of


omposite �elds any lo
al terms that are quadrati
 in K have either dimen-

sion greater than four or ghost number di�erent from zero. �

Propositions 16 and 17 also hold in the presen
e of sour
e for 
omposite

�elds, be
ause their proofs do not require arguments based on power 
ount-

ing. Instead, 18 does not hold at L 6= 0, in general, be
ause the sour
es L for

the 
omposite �elds 
an have arbitrarily large negative dimensions, as well

as vanishing ghost number. Then, lo
al Lagrangian terms with arbitrarily

large powers of K 
an be 
onstru
ted, provided we adjust their dimensions
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by means of powers of L and their ghost numbers by means of powers of C.

We know that, in renormalization, when a term 
annot be ex
luded a priori

by advo
ating power 
ounting, symmetries or other properties, it is typi
ally

generated as the divergent part of some diagram. For this reason, we 
annot

guarantee that proposition 18 holds at L 6= 0. For a while we argue at L = 0,

then generalize our arguments to L 6= 0.

Sin
e the renormalized a
tion SR is linear in the sour
es K at L = 0, we


an write

SR(Φ,K) = S′
R(Φ)−

∫
dDxRα∞(Φ)Kα.

The fun
tions Rα∞(Φ) that multiply the sour
es inside SR are the renormal-

ized �eld transformations. By proposition 16, ghost number 
onservation,

lo
ality and power 
ounting, we must have, in the notation of formulas (5.37)

and (5.39),

SR(Φ,K) = S′
R(Φ)−

∫
(a∂µC

i
j + bAiµkC

k
j − cAkµjCik)Kj

µi +

∫
hCikC

k
jK

j
C i

−
∫
Bi
jK

j
C̄ i

+

∫ [(
a1C

i1
l1
ψl1i2···inj1···jm

+ · · ·+ anC
in
ln
ψ
i1···in−1ln
j1···jm

)
Kj1···jm
i1···in

+ h.
.

]
,

where a, b, c, h, ak and bk are numeri
al 
onstants. Note that, out of the

three tensors of (4.39), we 
an only use δij . The ε tensors 
annot appear,

just be
ause they are not present in the Feynman rules. It is easy to 
he
k

that the terms proportional to Kj
µi in the master equation (SR, SR) = 0 give

2b = 2c = h. Moreover, the terms proportional to Kj1···jm
i1···in

give 2ak = h for

every k, l. Writing h = 2iga′, we have

SR(Φ,K) =S′
R(Φ) + ga′

∫
dDx

(
ψ̄
IT aIJCaKJ

ψ +KI
ψT aIJCaψJ

)

−
∫
dDx

[(
a∂µC

a + ga′fabcAbµC
c
)
Ka
µ −

ga′

2
fabcCbCcKa

C +BaKa
C̄

]
,

Propositions 16 and 17 ensure that the B-dependent terms are nonrenor-

malized. Then, by lo
ality, power 
ounting and ghost number 
onservation,

S′
R(Φ) has the form

S′
R(Φ)= ScR(φ)−

λ

2

∫
Bi
jB

j
i +

∫
Bj
i ∂ · Aij

−
∫
C̄ji ∂µ

(
ã∂µC

i
j + b̃AiµkC

k
j − c̃AkµjCik

)
,
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where ã, b̃ and c̃ are other 
onstants. Imposing (SR, SR) = 0, we get ã = a,

b̃ = c̃ = ga′ and (SR, ScR) = 0. Then, we 
an write

S′
R(Φ)=ScR(φ) + (SR,Ψ) = ScR(φ) + S

gf

(Φ) =

= ScR(φ) +

∫ [
−λ
2
(Ba)2 +Ba∂ · Aa − C̄a∂µ

(
a∂µC

a + ga′fabcAbµC
c
)]
.

Note that the gauge fermion

Ψ =

∫
C̄a
(
−λ
2
Ba + ∂ · Aa

)

is nonrenormalized.

Let us fo
us, for simpli
ity, on the pure gauge theory. Writing the most

general lo
al form of ScR(A), it is easy to 
he
k, by expli
it 
omputation,

that the most general solution to (SR, ScR) = 0 is

ScR(A) =
a′′

4

∫
dDx

(
a∂µA

a
ν − a∂νAaµ + ga′fabcAbµA

c
ν

)2
,

where a′′ is another 
onstant. Writing

a = ZC , a′′ = ZAZ
−2
C , a′ = µε/2ZgZ

1/2
A ZC ,

we �nally obtain

SR(Φ,K, g, λ) = SB(ΦB,KB, gB, λB), (7.11)

with

AaµB =Z
1/2
A Aaµ, CaB = Z

1/2
C Ca, gB = gµε/2Zg,

Ba
B =Z

−1/2
A Ba, C̄aB = Z

1/2
C C̄a, λB = λZA, (7.12)

Kµ
aB =Z

1/2
C Kµ

a , Ka
CB = Z

1/2
A Ka

C , Ka
C̄B = Z

1/2
A Ka

C̄ .

The in
lusion of matter is straightforward: only ScR(φ) 
hanges, sin
e it

must in
lude all the terms of dimensions 6 4 that are invariant with respe
t

to the renormalized gauge transformations.

At L 6= 0 the renormalized a
tion has a more involved stru
ture, sin
e

higher-dimensional 
omposite �elds make it nonpolynomial in Φ,K and L. In

the se
tor L 6= 0, we just subtra
t the 
ounterterms as they 
ome, a

ording
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to formula (7.8). We do not need to worry about rewriting the subtra
tion as

a rede�nition of the �elds, the sour
es and the parameters. If we wanted to,

we would have nonpolynomial �eld rede�nitions. The gauge transformations

would also be a�e
ted, so the L se
tor would have to in
lude nonpolynomial


orre
tions that are not invariant under the starting gauge transformations,

but invariant under suitably 
orre
ted gauge transformations. For the mo-

ment, we do not need to go through this, be
ause formula (7.8) is su�
ient

for most pra
ti
al purposes.

Expressing renormalization as a rede�nition of the �elds, the sour
es and

the parameters (whi
h is the true meaning of the word �re-normalization�)

is more useful in the L = 0 se
tor, whi
h 
ontains, among other things,

the physi
al parameters. So doing, we 
an show that the renormalization

program 
an be 
arried out to the end by keeping the number of independent

physi
al parameters �nite. This is a ne
essary requirement to ensure that

predi
tivity is retained. The 
omposite �elds, on the other hand, do not

add physi
al parameters to the theory, sin
e the sour
es L are just tools to

simplify the derivations of various properties. Thus, we do not lose mu
h,

if we renormalize the divergen
es belonging to the L-dependent se
tor by

subtra
ting them away just as they 
ome.
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Appendix A

Notation and useful formulas

The �at spa
e metri
 tensor reads

ηµν = ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 .

The Pauli matri
es are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
.

The γ matri
es in four dimensions read

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0

0 1

)
,

where σµ = (1, σ1, σ2, σ3) and σ̄µ = (1,−σ1,−σ2,−σ3). The ε tensor εµνρσ
is de�ned so that ε0123 = 1.

In Minkowski spa
etime the Fourier transform is de�ned as

ϕ(x) =

∫
dDp

(2π)D
e−ip·xϕ̃(p), (A.1)

while in Eu
lidean spa
e it is

ϕ(x) =

∫
dDp

(2π)D
eip·xϕ̃(p).
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To manipulate the denominators of Feynman diagrams it is useful to

introdu
e Feynman parameters by means of the formula

∏

i

1

Aαi
=

Γ(
∑

i αi)∏
j Γ(αj)

∫ 1

0

∏

i

(
dxi x

αi−1
i

) δ(1 −∑k xk)

(
∑

m xmAm)
∑

n αn
.

Parti
ular 
ases are

1

AB
=

∫ 1

0
dx

1

[Ax+B(1− x)]2
, (A.2)

1

AαBβ
=

Γ(α+ β)

Γ(α)Γ(β)

∫ 1

0
dx

xα−1(1− x)β−1

[Ax+B(1− x)]α+β
,

1

ABC
=2

∫ 1

0
dx

∫ 1−x

0
dy

1

[Ax+By + C(1− x− y)]3
.

The integration over Feynman parameters often redu
es to the integral

∫ 1

0
dx xα−1(1− x)β−1 =

Γ(α)Γ(β)

Γ(α+ β)
. (A.3)

The most frequently used D-dimensional integral is

∫
dDp

(2π)D
1

(p2 −m2)α
=
i(−1)αΓ

(
α− D

2

)

(4π)D/2Γ(α)
(m2)

D
2
−α. (A.4)

More generally,

∫
dDp

(2π)D
(p2)β

(p2 −m2)α
=
i(−1)α+βΓ

(
β + D

2

)
Γ
(
α− β − D

2

)

(4π)D/2Γ(α)Γ
(
D
2

) (m2)
D
2
−α+β ,

In Eu
lidean spa
e this result reads

∫
dDp

(2π)D
(p2)β

(p2 +m2)α
=

Γ
(
β + D

2

)
Γ
(
α− β − D

2

)

(4π)D/2Γ(α)Γ
(
D
2

) (m2)
D
2
−α+β. (A.5)

We also re
all that ∫
dDp

(2π)D
(p2)α = 0, (A.6)

for every α.
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We have Γ(x+ 1) = xΓ(x), Γ(n+ 1) = n! and

Γ
(n
2

)
=
√
π
(n − 2)!!

2(n−1)/2
,

Γ(z) =
1

z
− γE +O(z), (A.7)

Γ(z) =
√
π

[
1 +

(
z − 1

2

)
ψ(0)(1/2) +O

((
z − 1

2

)2
)]

,

where γE = 0.5772... is the Euler-Mas
heroni 
onstant, while ψ(0)(1/2) =

−1.96351... and ψ(m)(z) are the polygamma fun
tions.
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