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Background Field Method,Batalin-Vilkovisky Formalism AndParametric Completeness Of RenormalizationDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa, Italy,damiano.anselmi@df.unipi.itAbstractWe investigate the background �eld method with the Batalin-Vilkovisky formalism, to gener-alize known results, study the parametric completeness of general gauge theories and achieve abetter understanding of several properties. In particular, we study renormalization and gauge de-pendence to all orders. Switching between the background �eld approach and the usual approachby means of canonical transformations, we prove parametric completeness without making use ofcohomological theorems; namely we show that if the starting classical action is su�ciently generalall divergences can be subtracted by means of parameter rede�nitions and canonical transforma-tions. Our approach applies to renormalizable and nonrenormalizable theories that are manifestlyfree of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducibleand closes o� shell, the gauge transformations are linear functions of the �elds, and closure is�eld independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included,as well as e�ective and higher-derivative versions of them, but several other theories, such assupergravity, are left out.
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1 IntroductionThe background �eld method [1, 2] is a convenient tool to quantize gauge theories and make ex-plicit calculations, particularly when it is used in combination with the dimensional-regularizationtechnique. It amounts to choosing a nonstandard gauge �xing in the conventional approach and,among its virtues, it keeps the gauge transformations intact under renormalization. However, ittakes advantage of properties that only particular classes of theories have.The Batalin-Vilkovisky formalism [3] is also useful for quantizing general gauge theories, espe-cially because it collects all ingredients of in�nitesimal gauge symmetries in a single identity, themaster equation, which remains intact through renormalization, at least in the absence of gaugeanomalies.Merging the background �eld method with the Batalin-Vilkovisky formalism is not only aninteresting theoretical subject per se, but can also o�er a better understanding of known results,make us appreciate aspects that have been overlooked, generalize the validity of crucial theoremsabout the quantization of gauge theories and renormalization, and help us address open problems.For example, an important issue concerns the generality of the background �eld method. It wouldbe nice to formulate a unique treatment for all gauge theories, renormalizable and nonrenormal-izable, unitary and higher derivative, with irreducible or reducible gauge algebras that close o�shell or only on shell. However, we will see that at this stage it is not possible to achieve thatgoal, due to some intrinsic features of the background �eld method.Another important issue that we want to emphasize more than has been done so far is theproblem of parametric completeness in general gauge theories [4]. To ensure renormalization-group(RG) invariance, all divergences must be subtracted by rede�ning parameters and making canoni-cal transformations. When a theory contains all independent parameters necessary to achieve thisgoal, we say that it is parametrically complete. The RG-invariant renormalization of divergencesmay require the introduction of missing Lagrangian terms, multiplied by new physical constants,or even deform the symmetry algebra in nontrivial ways. However, in nonrenormalizable theoriessuch as quantum gravity and supergravity it is not obvious that the action can indeed be adjustedto achieve parametric completeness. One way to deal with this problem is to classify the wholecohomology of invariants and hope that the solution satis�es suitable properties. This methodrequires lengthy technical proofs that must be done case by case [5], and therefore lacks generality.Another way is to let renormalization build the new invariants automatically, as shown in ref. [4],with an algorithm that is able to iteratively extend the classical action converting divergencesinto �nite counterterms. However, that procedure is mainly a theoretical tool, because althoughvery general and conceptually minimal, it is practically una�ordable. Among the other things, itleaves the possibility that renormalization may dynamically deform the gauge symmetry in phys-ically observable ways. A third possibility is the one we are going to treat here, taking advantage2
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of the background �eld method. Where it applies, it makes cohomological classi�cations unnec-essary and excludes that renormalization may dynamically deform the symmetry in observableways. Because of the intrinsic properties of the background �eld method, the approach of thispaper, although general enough, is not exhaustive. It is general enough because it includes thegauge symmetries we need for physical applications, namely Abelian and non-Abelian Yang-Millssymmetries, local Lorentz symmetry and invariance under general changes of coordinates. At thesame time, it is not exhaustive because it excludes other potentially interesting symmetries, suchas local supersymmetry.To be precise, our results hold for every gauge symmetry that satis�es the following properties:the algebra of gauge transformations (i) closes o� shell and (ii) is irreducible; moreover (iii) thereexists a choice of �eld variables where the gauge transformations δΛφ of the physical �elds φ arelinear functions of φ and the closure [δΛ, δΣ] = δ[Λ,Σ] of the algebra is φ independent. We expectthat with some technical work it will be possible to extend our results to theories that do notsatisfy assumption (ii), but our impression is that removing assumptions (i) and (iii) will bemuch harder, if not impossible.In this paper we also assume that the theory is manifestly free of gauge anomalies. Our resultsapply to renormalizable and nonrenormalizable theories that satisfy the assumptions listed sofar, among which are QED, Yang-Mills theories, quantum gravity and Lorentz-violating gaugetheories [6], as well as e�ective [7], higher-derivative [8] and nonlocal [9] versions of such theories,in arbitrary dimensions, and extensions obtained including any set of composite �elds. We recallthat Stelle's proof [8] that higher-derivative quantum gravity is renormalizable was incomplete,because it assumed without proof a generalization of the Kluberg-Stern�Zuber conjecture [10] forthe cohomological problem satis�ed by counterterms. Even the cohomological analysis of refs. [5]does not directly apply to higher-derivative quantum gravity, because the �eld equations of higher-derivative theories are not equal to perturbative corrections of the ordinary �eld equations. Theseremarks show that our results are quite powerful, because they overcome a number of di�cultiesthat otherwise need to be addressed case by case.Strictly speaking, our results, in their present form, do not apply to chiral theories, suchas the Standard Model coupled to quantum gravity, where the cancellation of anomalies is notmanifest. Nevertheless, since all other assumptions we have made concern just the forms of gaugesymmetries, not the forms of classical actions, nor the limits around which perturbative expansionsare de�ned, we expect that our results can be extended to all theories involving the StandardModel or Lorentz-violating extensions of it [11, 12]. However, to make derivations more easilyunderstandable it is customary to �rst make proofs in the framework where gauge anomalies aremanifestly absent, and later extend the results by means of the Adler-Bardeen theorem [13]. Wefollow the tradition on this, and plan to devote a separate investigation to anomaly cancellation.Although some of our results are better understandings or generalizations of known properties,3
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we do include them for the sake of clarity and self-consistence. We think that our formalism o�ersinsight on the issues mentioned above and gives a more satisfactory picture. In particular, thefact that background �eld method makes cohomological classi�cations unnecessary is somethingthat apparently has not been appreciated enough so far. Moreover, our approach points out thelimits of applicability of the background �eld method.To achieve parametric completeness we proceed in four basic steps. First, we study renor-malization to all orders subtracting divergences �as they come�, which means without worryingwhether the theory contains enough independent parameters for RG invariance or not. Second,we study how the renormalized action and the renormalized Γ functional depend on the gauge�xing, and work out how the renormalization algorithm maps a canonical transformation of theclassical theory into a canonical transformation of the renormalized theory. Third, we renor-malize the canonical transformation that continuously interpolates between the background �eldapproach and the conventional approach. Fourth, comparing the two approaches we show that ifthe classical action Sc(φ, λ) contains all gauge invariant terms determined by the starting gaugesymmetry, then there exists a canonical transformation Φ,K → Φ̂, K̂ such that

SRmin(Φ, φ,K) = Sc(φ̂+ φ, τ(λ)) −

∫
Rα(φ̂+ φ, Ĉ)K̂α, (1.1)where SRmin is the renormalized action with the gauge-�xing sector switched o�, Φα = {φ,C}are the �elds (C being the ghosts), Kα are the sources for the Φα transformations Rα(Φ), φ arethe background �elds, λ are the physical couplings and τ(λ) are λ rede�nitions. Identity (1.1)shows that all divergences can be renormalized by means of parameter rede�nitions and canonicaltransformations, which proves parametric completeness. Power counting may or may not restrictthe form of Sc(φ, λ).Basically, under the assumptions we have made the background transformations do not renor-malize, and the quantum �elds φ can be switched o� and then restored from their backgroundpartners φ. Nevertheless, the restoration works only up to a canonical transformation, which gives(1.1). The story is a bit more complicated than this, but this simpli�ed version is enough to ap-preciate the main point. However, when the assumptions we have made do not hold, the argumentfails, which shows how peculiar the background �eld method is. Besides giving explicit exampleswhere the construction works, we address some problems that arise when the assumptions listedabove are not satis�ed.A somewhat di�erent approach to the background �eld method in the framework of theBatalin-Vilkovisky formalism exists in the literature. In refs. [14] Binosi and Quadri consideredthe most general variation δA = Ω of the background gauge �eld A in Yang-Mills theory, and ob-tained a modi�ed Batalin-Vilkovisky master equation that controls how the functional Γ dependson A. Instead, here we introduce background copies of both physical �elds and ghosts, whichallows us to split the symmetry transformations into �quantum transformations� and �background4
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transformations�. The master equation is split into the three identities (2.21), which controlinvariances under the two types of transformations.The paper is organized as follows. In section 2 we formulate our approach and derive its basicproperties, emphasizing the assumptions we make and why they are necessary. In section 3 werenormalize divergences to all orders, subtracting them �as they come�. In section 4 we derive thebasic di�erential equations of gauge dependence and integrate them, which allows us to show howa renormalized canonical transformation emerges from its tree-level limit. In section 5 we derive(1.1) and prove parametric completeness. In section 6 we give two examples, non-Abelian Yang-Mills theory and quantum gravity. In section 7 we make remarks about parametric completenessand recapitulate where we stand now on this issue. Section 8 contains our conclusions, while theappendix collects several theorems and identities that are used in the paper.We use the dimensional-regularization technique and the minimal subtraction scheme. Recallthat the functional integration measure is invariant with respect to perturbatively local changesof �eld variables. Averages 〈· · · 〉 always denote the sums of connected Feynman diagrams. Weuse the Euclidean notation in theoretical derivations and switch to Minkowski spacetime in theexamples.2 Background �eld method and Batalin-Vilkovisky formalismIn this section we formulate our approach to the background �eld method with the Batalin-Vilkovisky formalism. To better appreciate the arguments given below it may be useful to jumpback and forth between this section and section 6, where explicit examples are given.If the gauge algebra closes o� shell, there exists a canonical transformation that makes thesolution S(Φ,K) of the master equation (S, S) = 0 depend linearly on the sources K. We write

S(Φ,K) = S(Φ)−

∫
Rα(Φ)Kα. (2.1)The �elds Φα = {φi, CI , C̄I , BI} are made of physical �elds φi, ghosts CI (possibly includingghosts of ghosts and so on), antighosts C̄I and Lagrange multipliers BI for the gauge �xing.Moreover, Kα = {Ki

φ,K
I
C ,K

I
C̄
,KI

B} are the sources associated with the symmetry transformations
Rα(Φ) of the �elds Φα, while

S(Φ) = Sc(φ) + (S,Ψ)is the sum of the classical action Sc(φ) plus the gauge �xing, which is expressed as the antiparen-thesis of S with a K-independent gauge fermion Ψ(Φ). We recall that the antiparentheses arede�ned as
(X,Y ) =

∫ {
δrX

δΦα
δlY

δKα
−
δrX

δKα

δlY

δΦα

}
,5
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where the summation over the index α is understood. The integral is over spacetime pointsassociated with repeated indices.The non-gauge-�xed action

Smin(Φ,K) = Sc(φ)−

∫
Riφ(φ,C)Ki

φ −

∫
RIC(φ,C)KI

C , (2.2)obtained by dropping antighosts, Lagrange multipliers and their sources, also solves the masterequation, and is called the minimal solution. Antighosts C̄ and Lagrange multipliers B form trivialgauge systems, and typically enter (2.1) by means of the gauge �xing (S,Ψ) and a contribution
∆Snm = −

∫
BIKI

C̄ , (2.3)to − ∫
RαKα.Let Rα(Φ, C) denote the transformations the �elds Φα would have if they were matter �elds.Each function Rα(Φ, C) is a bilinear form of Φα and C. Sometimes, to be more explicit, we alsouse the notation RI

C̄
(C̄, C) and RIB(B,C) for C̄ and B, respectively. It is often convenient toreplace (2.3) with the alternative nonminimal extension
∆S′nm = −

∫ (
BI + RIC̄(C̄, C)

)
KI
C̄ −

∫
RIB(B,C)KI

B . (2.4)For example, in Yang-Mills theories we have
∆S′nm = −

∫ (
Ba − gfabcCbC̄c

)
Ka
C̄ + g

∫
fabcCbBcKa

Band in quantum gravity
∆S′nm = −

∫ (
Bµ + C̄ρ∂µC

ρ − Cρ∂ρC̄µ
)
Kµ
C̄
+

∫
(Bρ∂µC

ρ + Cρ∂ρBµ)K
µ
B , (2.5)where Cµ are the ghosts of di�eomorphisms.Observe that (2.4) can be obtained from (2.3) making the canonical transformation generatedby

Fnm(Φ,K ′) =

∫
ΦαK ′

α +

∫
RIC̄(C̄, C)KI ′

B .Requiring that Fnm indeed give (2.4) we get the identities
RIB(B,C) = −

∫
BJ δl

δC̄J
RIC̄(C̄, C),

∫ (
RJC

δl
δCJ

+ RJC̄(C̄, C)
δl
δC̄J

)
RIC̄(C̄, C) = 0, (2.6)which can be easily checked both for Yang-Mills theories and gravity. In this paper the notation

Rα(Φ) refers to the �eld transformations of (2.2) plus those of the nonminimal extension (2.3),while R̄α(Φ) refers to the transformations of (2.2) plus (2.4).6
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2.1 Background �eld actionTo apply the background �eld method, we start from the gauge invariance of the classical action
Sc(φ), ∫

Ric(φ,Λ)
δlSc(φ)

δφi
= 0, (2.7)where Λ are the arbitrary functions that parametrize the gauge transformations δφi = Ric. Shiftingthe �elds φ by background �elds φ, and introducing arbitrary background functions Λ we can writethe identity

∫ [
Ric(φ+ φ,Λ) +Xi

] δlSc(φ+ φ)

δφi
+

∫ [
Ric(φ+ φ,Λ)−Xi

] δlSc(φ+ φ)

δφi
= 0,which is true for arbitrary functions Xi. If we choose

Xi = Ric(φ+ φ,Λ)−Ric(φ,Λ),the transformations of the background �elds contain only background �elds and coincide with
Ric(φ,Λ). We �nd

∫ [
Ric(φ+ φ,Λ+ Λ)−Ric(φ,Λ)

] δlSc(φ+ φ)

δφi
+

∫
Ric(φ,Λ)

δlSc(φ+ φ)

δφi
= 0. (2.8)Thus, denoting background quantities by means of an underlining, we are led to consider theaction

S(Φ,Φ,K,K) = Sc(φ+ φ)−

∫
Rα(Φ + Φ)Kα −

∫
Rα(Φ)(Kα −Kα), (2.9)which solves the master equation JS, SK = 0, where the antiparentheses are de�ned as

JX,Y K =

∫ {
δrX

δΦα
δlY

δKα
+
δrX

δΦα
δlY

δKα
−
δrX

δKα

δlY

δΦα
−
δrX

δKα

δlY

δΦα

}
.More directly, if S(Φ,K) = Sc(φ) −

∫
Rα(Φ)Kα solves (S, S) = 0, the background �eld canbe introduced with a canonical transformation. Start from the action

S(Φ,Φ,K,K) = Sc(φ)−

∫
Rα(Φ)Kα −

∫
Rα(Φ)Kα, (2.10)which obviously satis�es two master equations, one in the variables Φ,K and the other one in thevariables Φ,K . A fortiori, it also satis�es JS, SK = 0. Relabeling �elds and sources with primesand making the canonical transformation generated by the functional

Fb(Φ,Φ,K ′,K ′) =

∫
(Φα +Φα)K ′

α +

∫
ΦαK ′

α, (2.11)we obtain (2.9), and clearly preserve JS, SK = 0.7
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The shift Φ is called background �eld, while Φ is called quantum �eld. We also have quan-tum sources K and background sources K. Finally, we have background transformations, thosedescribed by the background ghosts C or the functions Λ in (2.8), and quantum transformations,those described by the quantum ghosts C and (2.3) or the functions Λ in (2.8).The action (2.9) is not the most convenient one to study renormalization. It is �ne in theminimal sector (the one with antighosts and Lagrange multipliers switched o�), but not in thenonminimal one. Now we describe the improvements we need to make.Non-minimal sectorSo far we have introduced background copies of all �elds. Nevertheless, strictly speaking wedo not need to introduce copies of the antighosts C̄ and the Lagrange multipliers B, since we donot need to gauge-�x the background. Thus we drop C̄, B and their sources from now on, andde�ne Φα = {φi, CI , 0, 0}, Kα = {Ki

φ,K
I
C , 0, 0}. Observe that then we have Rα(Φ) = R̄α(Φ) =

{Riφ(φ,C), R
I
C(Φ), 0, 0}.Let us compare the nonminimal sectors (2.3) and (2.4). If we choose (2.3), C̄ and B donot transform under background transformations. Since (2.3) are the only terms that contain

KC̄ , they do not contribute to one-particle irreducible diagrams and do not receive radiativecorrections. Moreover, KB does not appear in the action. Instead, if we choose the nonminimalsector (2.4), namely if we start from
S(Φ,Φ,K,K) = Sc(φ)−

∫
R̄α(Φ)Kα −

∫
Rα(Φ)Kα (2.12)instead of (2.10), the transformation (2.11) gives the action

S(Φ,Φ,K,K) = Sc(φ+ φ)−

∫
(R̄α(Φ + Φ)− R̄α(Φ))Kα −

∫
Rα(Φ)Kα. (2.13)In particular, using the linearity of RI

C̄
and RIB in C, we see that (2.4) is turned into itself plus

−

∫
RIC̄(C̄, C)KI

C̄ −

∫
RIB(B,C)KI

B . (2.14)Because of these new terms, C̄ and B now transform as ordinary matter �elds under backgroundtransformations. This is the correct background transformation law we need for them. On theother hand, the nonminimal sector (2.4) also generates nontrivial quantum transformations for C̄and B, which are renormalized and complicate our derivations.It would be better to have (2.4) in the background sector and (2.3) in the nonbackgroundsector. To achieve this goal, we make the canonical transformation generated by
F ′nm(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +

∫
RIC̄(C̄, C)KI ′

B (2.15)8
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on (2.9). Using (2.6) again, the result is

S(Φ,Φ,K,K) =Sc(φ+ φ)−

∫
(Rα(Φ + Φ)−Rα(Φ))Kα

−

∫
RIC̄(C̄, C)KI

C̄ −

∫
RIB(B,C)K

I
B −

∫
Rα(Φ)Kα. (2.16)This is the background �eld action we are going to work with. It is straightforward to check that(2.16) satis�es JS, SK = 0.Separating the background and quantum sectorsNow we separate the background sector from the quantum sector. To do this properly we needto make further assumptions.First, we assume that there exists a choice of �eld variables where the functions Rα(Φ) areat most quadratic in Φ. We call it linearity assumption. It is equivalent to assume that thegauge transformations δΛφi = Ric(φ,Λ) of (2.7) are linear functions of the �elds φ and closure isexpressed by φ-independent identities [δΛ, δΣ] = δ[Λ,Σ]. The linearity assumption is satis�ed byall gauge symmetries of physical interest, such as those of QED, non-Abelian Yang-Mills theory,quantum gravity and the Standard Model. On the other hand, it is not satis�ed by other importantsymmetries, among which is supergravity, where the gauge transformations either close only onshell or are not linear in the �elds.Second, we assume that the gauge algebra is irreducible, which ensures that the set Φ containsonly ghosts and not ghosts of ghosts.Under these assumptions, we make the canonical transformation generated by

Fτ (Φ,Φ,K
′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α + (τ − 1)

∫
CIKI ′

C (2.17)on the action (2.16). This transformation amounts to rescaling the background ghosts CI by afactor τ and their sources KI
C by a factor 1/τ . Since we do not have background antighosts, (2.17)is the background-ghost-number transformation combined with a rescaling of the backgroundsources.The action (2.16) is not invariant under (2.17). Using the linearity assumption it is easy tocheck that the transformed action Sτ is linear in τ . Writing Sτ = Ŝ + τ S̄ we can split the totalaction S into the sum Ŝ + S̄ of a quantum action Ŝ and a background action S̄.Precisely, the quantum action Ŝ does not depend on the background sources K and thebackground ghosts C, but only on the background copies φ of the physical �elds. We have

Ŝ = Ŝ(Φ, φ,K) = Sc(φ+ φ)−

∫
Rα(φ+ φ,C, C̄,B)Kα. (2.18)9
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Note that, in spite of the notation, the functions Rα(Φ) are actually C̄ independent. Moreover,we �nd

S̄(Φ,Φ,K,K) = −

∫
Rα(Φ, C)Kα −

∫
Rα(Φ)Kα, (2.19)where, for φ and C,

Rα(Φ, C) = Rα(Φ + Φ)−Rα(Φ)−Rα(φ+ φ,C, C̄,B). (2.20)These functions transform φ and C as if they were matter �elds and are of course linear in Φ and
C. Note that formula (2.20) does not hold for antighosts and Lagrange multipliers. In the end allquantum �elds transform as matter �elds under background transformations.The master equation JS, SK = 0 decomposes into the three identities

JŜ, ŜK = JŜ, S̄K = JS̄, S̄K = 0, (2.21)which we call background �eld master equations.The quantum transformations are described by Ŝ and the background ones are described by
S̄. Background �elds are inert under quantum transformations, because JŜ,ΦK = 0. Note that

JŜ, JS̄,XKK + JS̄, JŜ,XKK = 0, (2.22)where X is an arbitrary local functional. This property follows from the Jacobi identity ofthe antiparentheses and JŜ, S̄K = 0, and states that background and quantum transformationscommute.Gauge-�xingNow we come to the gauge �xing. In the usual approach, the theory is typically gauge-�xedby means of a canonical transformation that amounts to replacing the action S by S + (S,Ψ),where Ψ is a local functional of ghost number −1 and depends only on the �elds Φ. Using thebackground �eld method it is convenient to search for a C-independent gauge-�xing functional
Ψ(Φ, φ) that is also invariant under background transformations, namely such that

JS̄,ΨK = 0. (2.23)Then we �x the gauge with the usual procedure, namely we make a canonical transformationgenerated by
Fgf(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +Ψ(Φ, φ). (2.24)Because of (2.23) the gauge-�xed action reads
Sgf = Ŝ + S̄ + JŜ,ΨK. (2.25)10
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De�ning Ŝgf = Ŝ + JŜ,ΨK, identities (2.21), (2.22) and (2.23) give JŜgf, ŜgfK = JŜgf, S̄K = 0, so itis just like gauge-�xing Ŝ. Since both Ŝ and Ψ are K and C independent, Ŝgf is also K and Cindependent. Observe that the canonical transformations (2.17) and (2.24) commute; thereforewe can safely apply the transformation (2.17) to the gauge-�xed action. A gauge �xing satisfying(2.23) is called background-preserving gauge �xing.In some derivations of this paper the background �eld master equations (2.21) are violated inintermediate steps; therefore we need to prove properties that hold more generally. Speci�cally,consider an action

S(Φ,Φ,K,K) = Ŝ(Φ, φ,K) + S̄(Φ,Φ,K,K), (2.26)equal to the sum of a K- and C-independent �quantum action� Ŝ, plus a �background action� S̄that satis�es the following requirements: (i) it is a linear function of the quantum �elds Φ, (ii)it gets multiplied by τ when applying the canonical transformation (2.17), and (iii) δlS̄/δKα is
Φ independent. In particular, requirement (ii) implies that S̄ vanishes at C = 0. Since S̄ is alinear function of Φ, it does not contribute to one-particle irreducible diagrams. Since Ŝ doesnot depend on C, while S̄ vanishes at C = 0, S̄ receives no radiative corrections. Thus the Γfunctional associated with the action (2.26) satis�es

Γ(Φ,Φ,K,K) = Γ̂(Φ, φ,K) + S̄(Φ,Φ,K,K). (2.27)Moreover, thanks to theorem 6 of the appendix we have the general identity
JΓ,ΓK = 〈JS, SK〉, (2.28)under the sole assumption that δlS/δKα is Φ independent.Applying the canonical transformation (2.17) to Γ we �nd Γτ = Γ̂ + τ S̄, so (2.28) gives theidentities

JΓ̂, Γ̂K = 〈JŜ, ŜK〉, JS̄, Γ̂K = 〈JS̄, ŜK〉. (2.29)When JS, SK = 0 we have
JΓ,ΓK = JΓ̂, Γ̂K = JS̄, Γ̂K = 0. (2.30)Observe that, thanks to the linearity assumption, an S̄ equal to (2.19) satis�es the requirementsof formula (2.26).Now we give details about the background-preserving gauge �xing we pick for the action (2.16).It is convenient to choose gauge-�xing functions GIi(φ, ∂)φi that are linear in the quantum �elds

φ, where GIi(φ, ∂) may contain derivative operators. Precisely, we choose the gauge fermion
Ψ(Φ, φ) =

∫
C̄IGIi(φ, ∂)φi, (2.31)11
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and assume that it satis�es (2.23). A more common choice would be (see (6.2) for Yang-Millstheory)

Ψ(Φ, φ) =

∫
C̄I

(
GIi(φ, ∂)φi + ξIJB

J
)
,where ξIJ are gauge-�xing parameters. In this case, when we integrate the B �elds out theexpressions GIi(φ, ∂)φi get squared. However, (2.31) is better for our purposes, because it makesthe canonical transformations (2.15) and (2.24) commute with each other. We call the choice(2.31) regular Landau gauge. The gauge-�eld propagators coincide with the ones of the Landaugauge. Nevertheless, while the usual Landau gauge (with no B's around) is singular, here gauge�elds are part of multiplets that include the B's, therefore (2.31) is regular.In the regular Landau gauge, using (2.23) and applying (2.24) to (2.16) we �nd

Sgf = Ŝgf + S̄ = Sc(φ+ φ)−

∫
Rα(φ+ φ,C, C̄,B)K̃α −

∫
Rα(Φ, C)Kα −

∫
Rα(Φ)Kα, (2.32)where the tilde sources K̃α coincide with Kα apart from K̃i

φ and K̃I
C̄
, which are

K̃i
φ = Ki

φ − C̄
IGIi(φ,−

←−
∂ ), K̃I

C̄ = KI
C̄ −G

Ii(φ, ∂)φi. (2.33)Recalling that the functions Rα(Φ) are C̄ independent, we see that Ŝgf does not depend on Ki
φand C̄ separately, but only through the combination K̃i

φ. Every one-particle irreducible diagramwith C̄I external legs actually factorizes a −C̄IGIi(φ,−←−∂ ) on those legs. Replacing one or moresuch objects with Ki
φs, we obtain other contributing diagrams. Conversely, replacing one ormore Ki

φ-external legs with −C̄IGIi(φ,−←−∂ ) we also obtain contributing diagrams. Therefore,all radiative corrections, as well as the renormalized action ŜR and the Γ functionals Γ̂ and Γ̂Rassociated with the action (2.32), do not depend on Ki
φ and C̄ separately, but only through thecombination K̃i

φ.The only B-dependent terms of Ŝgf, provided by JS,ΨK and (2.3), are
∆SB ≡ −

∫
BIK̃I

C̄ =

∫
BI

(
GIi(φ, ∂)φi −KI

C̄

)
, (2.34)and are quadratic or linear in the quantum �elds. For this reason, no one-particle irreduciblediagrams can contain external B legs, therefore ∆SB is nonrenormalized and goes into ŜR, Γ̂ and

Γ̂R unmodi�ed.We thus learn that using linear gauge-�xing functions we can set C̄ = B = 0 and later restorethe correct C̄ and B dependencies in Ŝgf, ŜR, Γ̂ and Γ̂R just by replacing Ki
φ with K̃i

φ and adding
∆SB .From now on when no confusion can arise we drop the subscripts of Sgf and Ŝgf and assumethat the background �eld theory is gauge-�xed in the way just explained.12
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2.2 Background-preserving canonical transformationsIt is useful to characterize the most general canonical transformations Φ,Φ,K,K → Φ′,Φ′,K ′,K ′that preserve the background �eld master equations (2.21) and the basic properties of Ŝ and S̄.By de�nition, all canonical transformations preserve the antiparentheses, so (2.21) are turnedinto

JŜ′, Ŝ′K′ = JŜ′, S̄′K′ = JS̄′, S̄′K′ = 0. (2.35)Moreover, Ŝ′ should be K ′ and C ′ independent, while S̄ should be invariant, because it encodesthe background transformations. This means
S̄′(Φ,Φ,K,K) = S̄(Φ,Φ,K,K). (2.36)We prove that a canonical transformation de�ned by a generating functional of the form

F (Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +Q(Φ, φ,K ′), (2.37)where Q is a K ′- and C-independent local functional such that
JS̄, Q(Φ, φ,K)K = 0, (2.38)satis�es our requirements.Since Q is K ′ and C independent, the background �elds and the sources KC do not transform:

Φ′ = Φ, K ′

C = KC . Moreover, the action Ŝ′ is clearly K ′ and C ′ independent, as desired, so wejust need to prove (2.36). For convenience, multiply Q by a constant parameter ζ and considerthe canonical transformations generated by
Fζ(Φ,Φ,K

′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α + ζQ(Φ, φ,K ′). (2.39)Given a functional X(Φ,Φ,K ′,K ′) it is often useful to work with the tilde functional
X̃(Φ,Φ,K,K) = X(Φ,Φ,K ′(Φ,Φ,K,K),K ′(Φ,Φ,K,K)). (2.40)obtained by expressing the primed sources in terms of unprimed �elds and sources. Assumption(2.38) tells us that Q(Φ, φ,K) is invariant under background transformations. Since Φα and

Kβ transform as matter �elds under such transformations, it is clear that δQ/δKα and δQ/δΦβtransform precisely like them, as well as Φα′ and K ′

β. Moreover, we have JS̄, Q̃K = 0 for every ζ.Applying theorem 9 to χ = S̄ we obtain
∂′S̄′

∂ζ
=
∂S̄

δζ
− JS̄, Q̃K =

∂S̄

δζ
, (2.41)13
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where ∂′/∂ζ is taken at constant primed variables and ∂/∂ζ is taken at constant unprimed vari-ables. If we treat the unprimed variables as ζ independent, and the primed variables as functionsof them and ζ, the right-hand side of (2.41) vanishes. Varying ζ from 0 to 1 we get

S̄′(Φ,Φ,K,K) = S̄′(Φ′,Φ′,K ′,K ′) = S̄(Φ,Φ,K,K),where now the relations among primed and unprimed variables are those speci�ed by (2.37).We call the canonical transformations just de�ned background-preserving canonical transfor-mations. We stress once again that they do not just preserve the background �eld (Φ′ = Φ),but also the background transformations (S̄′ = S̄) and the K and C independence of Ŝ. Thegauge-�xing canonical transformation (2.24) is background preserving.Canonical transformations may convert the sourcesK into functions of both �elds and sources.However, the sources are external, while the �elds are integrated over. Thus, canonical transfor-mations must be applied at the level of the action S, not at the levels of generating functionals.In the functional integral they must be meant as mere replacements of integrands. Nevertheless,we recall that there exists a way [15, 16, 17] to upgrade the formalism of quantum �eld theory andovercome these problems. The upgraded formalism allows us to implement canonical transforma-tions as true changes of �eld variables in the functional integral, and closely track their e�ectsinside generating functionals, as well as throughout the renormalization algorithm.3 RenormalizationIn this section we give the basic algorithm to subtract divergences to all orders. As usual, weproceed by induction in the number of loops and use the dimensional-regularization techniqueand the minimal subtraction scheme. We assume that gauge anomalies are manifestly absent, i.e.that the background �eld master equations (2.21) hold exactly at the regularized level. We �rstwork on the classical action S = Ŝ + S̄ of (2.32) and de�ne a background-preserving subtractionalgorithm. Then we generalize the results to non-background-preserving actions.Call Sn and Γn the action and the Γ functional renormalized up to n loops included, with
S0 = S, and write the loop expansion as

Γn =
∞∑

k=0

~
nΓ(k)

n .The inductive assumptions are that Sn has the form (2.26), with S̄ given by (2.19), and
Sn= S + poles, Γ(k)

n <∞ ∀k 6 n, (3.1)
JSn, SnK=O(~n+1), JS̄, SnK = 0, (3.2)14
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where �poles� refers to the divergences of the dimensional regularization. Clearly, the assumptions(3.1) and (3.2) are satis�ed for n = 0.Using formulas (2.29) and recalling that JSn, SnK is a local insertion of order O(~n+1), we have

JΓn,ΓnK = 〈JSn, SnK〉 = JSn, SnK + O(~n+2), JS̄,ΓnK = 〈JS̄, SnK〉 = 0. (3.3)By JS, SK = 0 and the �rst of (3.1), JSn, SnK is made of pure poles.Now, take the order ~
n+1 of equations (3.3) and then their divergent parts. The second of(3.1) tells us that all subdivergences are subtracted away, so the order-~n+1 divergent part Γ(n+1)

n divof Γn is a local functional. We obtain
JS,Γ

(n+1)
n div K =

1

2
JSn, SnK + O(~n+2), JS̄,Γ

(n+1)
n div K = 0. (3.4)De�ne

Sn+1 = Sn − Γ
(n+1)
n div . (3.5)Since Sn has the form (2.26), Γn has the form (2.27), therefore both Γ̂n and Γ

(n+1)
n div are K and Cindependent, which ensures that Sn+1 has the form (2.26) (with S̄ given by (2.19)). Moreover,the �rst inductive assumption of (3.1) is promoted to Sn+1. The diagrams constructed withthe vertices of Sn+1 are the diagrams of Sn, plus new diagrams containing vertices of −Γ(n+1)

n div ;therefore
Γ
(k)
n+1 = Γ(k)

n <∞ ∀k 6 n, Γ
(n+1)
n+1 = Γ(n+1)

n − Γ
(n+1)
n div <∞,which promotes the second inductive assumption of (3.1) to n + 1 loops. Finally, formulas (3.4)and (3.5) give

JSn+1, Sn+1K = JSn, SnK− 2JS,Γ
(n+1)
n div K + O(~n+2) = O(~n+2), JS̄, Sn+1K = 0,so (3.2) are also promoted to n+ 1 loops.We conclude that the renormalized action SR = S∞ and the renormalized generating functional

ΓR = Γ∞ satisfy the background �eld master equations
JSR, SRK = JS̄, SRK = 0, JΓR,ΓRK = JS̄,ΓRK = 0. (3.6)For later convenience we write down the form of SR, which is

SR(Φ,Φ,K,K) = ŜR(Φ, φ,K) + S̄(Φ,Φ,K,K) = ŜR(Φ, φ,K)−

∫
Rα(Φ, C)Kα −

∫
Rα(Φ)Kα.(3.7)In the usual (non-background �eld) approach the results just derived hold if we just ignorebackground �elds and sources, as well as background transformations, and use the standardparentheses (X,Y ) instead of JX,Y K. Then the subtraction algorithm starts with a classical action15
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S(Φ,K) that satis�es the usual master equation (S, S) = 0 exactly at the regularized level andends with a renormalized action SR(Φ,K) = S∞(Φ,K) and a renormalized generating functional
ΓR(Φ,K) = Γ∞(Φ,K) that satisfy the usual master equations (SR, SR) = (ΓR,ΓR) = 0.In the presence of background �elds Φ and background sources K, ignoring invariance un-der background transformations (encoded in the parentheses JS̄, SK, JS̄, SnK, JS̄, SRK and similarones for the Γ functionals), we can generalize the results found above to any classical action
S(Φ,Φ,K,K) that satis�es JS, SK = 0 at the regularized level and is such that δlS/δKα is Φindependent. Indeed, these assumptions allow us to apply theorem 6, instead of formulas (2.29),which is enough to go through the subtraction algorithm ignoring the parentheses JS̄,XK. Wehave δlS/δKα = δlΓ/δKα = δlSn/δKα for every n. Thus, we conclude that a classical action
S(Φ,Φ,K,K) that satis�es JS, SK = 0 at the regularized level and is such that δlS/δKα is Φindependent gives a renormalized action SR(Φ,Φ,K,K) and a Γ functional ΓR(Φ,Φ,K,K) thatsatisfy JSR, SRK = JΓR,ΓRK = 0 and δlSR/δKα = δlΓR/δKα = δlS/δKα.The renormalization algorithm of this section is a generalization to the background �eldmethod of the procedure �rst given in ref. [18]. Since it subtracts divergences just as theycome, as emphasized by formula (3.5), we use to call it �raw� subtraction [4], to distinguish itfrom algorithms where divergences are subtracted away at each step by means of parameter re-de�nitions and canonical transformations. The raw subtraction does not ensure RG invariance[4], because it subtracts divergent terms even when there is no (running) parameter associatedwith them. For the same reason, it tells us very little about parametric completeness.In power-counting renormalizable theories the raw subtraction is satisfactory, since we canstart from a classical action Sc that already contains all gauge-invariant terms that are generatedback by renormalization. Nevertheless, in nonrenormalizable theories, such as quantum gravity,e�ective �eld theories and nonrenormalizable extensions of the Standard Model, in principle renor-malization can modify the symmetry transformations in physically observable ways (see ref. [4]for a discussion about this possibility). In section 5 we prove that this actually does not happenunder the assumptions we have made in this paper; namely when gauge anomalies are manifestlyabsent, the gauge algebra is irreducible and closes o� shell, and Rα(Φ) are quadratic functions ofthe �elds Φ. Precisely, renormalization a�ects the symmetry only by means of canonical trans-formations and parameter rede�nitions. Then, to achieve parametric completeness it is su�cientto include all gauge-invariant terms in the classical action Sc(φ), as classi�ed by the startinggauge symmetry. The background �eld method is crucial to prove this result without advocatinginvolved cohomological classi�cations.

16
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4 Gauge dependenceIn this section we study the dependence on the gauge �xing and the renormalization of canonicaltransformations. We �rst derive the di�erential equations that govern gauge dependence; then weintegrate them and �nally use the outcome to describe the renormalized canonical transformationthat switches between the background �eld approach and the conventional approach. Theseresults will be useful in the next section to prove parametric completeness.The parameters of a canonical transformation are associated with changes of �eld variablesand changes of gauge �xing. For brevity we call all of them �gauge-�xing parameters� and denotethem with ξ. Let (2.37) be a tree-level canonical transformation satisfying (2.38). We write
Q(Φ, φ,K ′, ξ) to emphasize the ξ dependence ofQ. We prove that for every gauge-�xing parameter
ξ there exists a local K- and C-independent functional QR,ξ such that

QR,ξ = Q̃ξ + O(~)-poles, 〈QR,ξ〉 <∞, (4.1)and
∂SR
∂ξ

= JSR, QR,ξK, JS̄, QR,ξK = 0,
∂ΓR
∂ξ

= JΓR, 〈QR,ξ〉K, (4.2)where Qξ = ∂Q/∂ξ, Q̃ξ is de�ned as shown in (2.40) and the average is calculated with theaction SR. We call the �rst and last equations of the list (4.2) di�erential equations of gaugedependence. They ensure that renormalized functionals depend on gauge-�xing parameters in acohomologically exact way. Later we integrate equations (4.2) and move every gauge dependenceinside a (renormalized) canonical transformation. A consequence is that physical quantities aregauge independent.We derive (4.2) proceeding inductively in the number of loops, as usual. The inductive as-sumption is that there exists a K- and C-independent local functional Qn,ξ = Q̃ξ + O(~)-polessuch that 〈Qn,ξ〉 is convergent up to the nth loop included (the average being calculated with theaction Sn) and
∂Sn
∂ξ

= JSn, Qn,ξK + O(~n+1), JS̄, Qn,ξK = 0. (4.3)Applying the identity (A.19), which here holds with the parentheses JX,Y K, we easily see that
Q0,ξ = Q̃ξ satis�es (4.3) for n = 0. Indeed, taking χ = S and noting that ∂S′/∂ξ|Φ′,K ′ = 0, sincethe parameter ξ is absent before the transformation (a situation that we describe using primedvariables), we get the �rst relation of (4.3), without O(~) corrections. Applying (A.19) to χ = S̄and recalling that S̄ is invariant, we get the second relation of (4.3).Let Q(n+1)

n,ξdiv denote the O(~n+1) divergent part of 〈Qn,ξ〉. The inductive assumption ensuresthat all subdivergences are subtracted away, so Q(n+1)
n,ξdiv is local. De�ne

Qn+1,ξ = Qn,ξ −Q
(n+1)
n,ξdiv. (4.4)17
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Clearly, Qn+1,ξ is K and C independent and equal to Q̃ξ+O(~)-poles. Moreover, by construction
〈Qn+1,ξ〉 is convergent up to the (n + 1)-th loop included, where the average is calculated withthe action Sn+1.Now, corollary 8 tells us that JS̄, Qn,ξK = 0 and JS̄, SnK = 0 imply JS̄, 〈Qn,ξ〉K = 0. Taking the
O(~n+1) divergent part of this formula we obtain JS̄, Q

(n+1)
n,ξdivK = 0; therefore the second formulaof (4.3) is promoted to n+ 1 loops.Applying corollary 7 to Γn and Sn, with X = Qn,ξ, we have the identity

∂Γn
∂ξ

= JΓn, 〈Qn,ξ〉K +

〈
∂Sn
∂ξ
− JSn, Qn,ξK

〉
+

1

2
〈JSn, SnKQn,ξ〉Γ , (4.5)where 〈AB〉Γ denotes the one-particle irreducible diagrams with one A insertion and one B in-sertion. Now, observe that if A = O(~nA) and B = O(~nB ) then 〈AB〉Γ = O(~nA+nB+1), sincethe A,B insertions can be connected only by loops. Let us take the O(~n+1) divergent part of(4.5). By the inductive assumption (3.2), the last term of (4.5) can be neglected. By the inductiveassumption (4.3) we can drop the average in the second-to-last term. We thus get

∂Γ
(n+1)
n div
∂ξ

= JΓ
(n+1)
n div , Q0,ξK + JS,Q

(n+1)
n,ξdivK + ∂Sn

∂ξ
− JSn, Qn,ξK + O(~n+2).Using this fact, (3.5) and (4.4) we obtain

∂Sn+1

∂ξ
= JSn+1, Qn+1,ξK + O(~n+2), (4.6)which promotes the �rst inductive hypothesis of (4.3) to order ~n+1. When n is taken to in�nity,the �rst two formulas of (4.2) follow, with QR,ξ = Q∞,ξ. The third identity of (4.2) follows fromthe �rst one, using (4.5) with n =∞ and JŜR, ŜRK = 0. This concludes the derivation of (4.2).4.1 Integrating the di�erential equations of gauge dependenceNow we integrate the �rst two equations of (4.2) and �nd the renormalized canonical transforma-tion that corresponds to a tree-level transformation (2.37) satisfying (2.38). Speci�cally, we provethatTheorem 1 There exists a background-preserving canonical transformation

FR(Φ,Φ,K
′,K ′, ξ) =

∫
ΦAK ′

A +

∫
ΦAK ′

A +QR(Φ, φ,K
′, ξ), (4.7)where QR(Φ, φ,K ′, ξ) = Q(Φ, φ,K ′, ξ) + O(~) is a K- and C-independent local functional, suchthat the transformed action Sf (Φ′,Φ′,K ′,K ′) = SR(Φ,Φ,K,K, ξ) is ξ independent and invariantunder background transformations:

∂Sf
∂ξ

= 0, JS̄, Sf K = 0. (4.8)18
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Proof. To prove this statement we introduce a new parameter ζ multiplying the whole functional
Q of (2.37), as in (2.39). We know that JS̄, QK = 0 implies JS̄, Q̃K = 0. If we prove that the
ζ dependence can be reabsorbed into a background-preserving canonical transformation we alsoprove the same result for every gauge-�xing parameter ξ and also for all of them together. Thedi�erential equations of gauge dependence found above obviously apply with ξ → ζ.Speci�cally, we show that the ζ dependence can be reabsorbed in a sequence of background-preserving canonical transformations SRn → SRn+1 (with SR0 = SR), generated by

Fn(Φ,Φ,K
′,K ′) =

∫
ΦAK ′

A +

∫
ΦAK ′

A +Hn(Φ, φ,K
′, ζ), (4.9)where Hn = O(~n), and such that

∂SRn
∂ζ

= JSRn, TnK, Tn = O(~n). (4.10)The functionals Tn and Hn are determined by the recursive relations
Tn+1(Φ

′, φ,K ′, ζ)= Tn(Φ, φ,K, ζ) −
∂̃Hn

∂ζ
, (4.11)

Hn(Φ, φ,K
′, ζ)=

∫ ζ

0
dζ ′Tn,n(Φ, φ,K

′, ζ ′), (4.12)with the initial conditions
T0 = QR,ζ , H0 = ζQ.In formula (4.11) the tilde operation (2.40) on ∂Hn/∂ζ and the canonical transformation Φ,K →

Φ′,K ′ are the ones de�ned by Fn. In formula (4.12) Tn,n(Φ, φ,K ′) denotes the contributions oforder ~
n to Tn(Φ, φ,K(Φ, φ,K ′)), the function K(Φ, φ,K ′) also being determined by Fn. Notethat for n > 0 we have Tn(Φ, φ,K(Φ, φ,K ′)) = Tn(Φ, φ,K

′) + O(~n+1), therefore formula (4.12),which determines Hn (and so Fn), does not really need Fn on the right-hand side. Finally, (4.12)is self-consistent for n = 0.Formula (A.19) of the appendix describes how the dependence on parameters is modi�ed bya canonical transformation. Applying it to (4.10), we get
∂SRn+1

∂ζ
=
∂SRn
∂ζ

− JSRn,
∂̃Hn

∂ζ
K = JSRn, Tn −

∂̃Hn

∂ζ
K,whence (4.11) follows. For n = 0 the �rst formula of (4.1) gives T0 = Q̃ + O(~), therefore

T1 = O(~). Then (4.12) gives H1 = O(~). For n > 0 the order ~
n of Tn+1 vanishes by formula(4.12); therefore Tn+1 = O(~n+1) and Hn+1 = O(~n+1), as desired.Consequently, Sf ≡ SR∞ is ζ independent, since (4.10) implies ∂SR∞/∂ζ = 0. Observe that

K and C independence is preserved at each step. Finally, all operations de�ned by (4.11) and19
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(4.12) are background preserving. We conclude that the canonical transformation FR obtainedcomposing the Fns solves the problem.Using (4.8) and (2.29) we conclude that in the new variables

∂Γf
∂ξ

=

〈
∂Sf
∂ξ

〉
= 0 JS̄,Γf K = 0, (4.13)for all gauge-�xing parameters ξ.4.2 Non-background-preserving canonical transformationsIn the usual approach the results derived so far apply with straightforward modi�cations. It issu�cient to ignore the background �elds and sources, as well as the background transformations,and use the standard parentheses (X,Y ) instead of JX,Y K. Thus, given a tree-level canonicaltransformation generated by

F (Φ,K ′) =

∫
ΦαK ′

α +Q(Φ,K ′, ξ), (4.14)there exists a local functional QR,ξ satisfying (4.1) such that
∂SR
∂ξ

= (SR, QR,ξ),
∂ΓR
∂ξ

= (ΓR, 〈QR,ξ〉), (4.15)and there exists a renormalized canonical transformation
FR(Φ,K

′) =

∫
ΦAK ′

A +QR(Φ,K
′, ξ), (4.16)where QR(Φ,K ′, ξ) = Q(Φ,K ′, ξ) + O(~) is a local functional, such that the transformed action

Sf (Φ
′,K ′) = SR(Φ,K, ξ) is ξ independent. Said di�erently, the entire ξ dependence of SR isreabsorbed into the transformation:

SR(Φ,K, ξ) = Sf (Φ
′(Φ,K, ξ),K ′(Φ,K, ξ)).In the presence of background �elds Φ and background sources K, dropping assumption (2.38)and ignoring invariance under background transformations, encoded in the parentheses JS̄,XK,the results found above can be easily generalized to any classical action S(Φ,Φ,K,K) that solves

JS, SK = 0 and is such that δlS/δKα is Φ independent, and to any K-independent canonicaltransformation. Indeed, these assumptions are enough to apply theorem 6 and corollary 7, and gothrough the derivation ignoring the parentheses JS̄,XK. The tree-level canonical transformationis described by a generating functional of the form
F (Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +Q(Φ, φ, C,K ′, ξ). (4.17)20
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We still �nd the di�erential equations

∂SR
∂ξ

= JSR, QR,ξK,
∂ΓR
∂ξ

= JΓR, 〈QR,ξ〉K, (4.18)where QR,ξ satis�es (4.1). When we integrate the �rst of these equations with the procedurede�ned above we build a renormalized canonical transformation
FR(Φ,Φ,K

′,K ′, ξ) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +QR(Φ, φ, C,K
′, ξ), (4.19)where QR = Q+O(~) is a local functional, such that the transformed action Sf (Φ′,Φ′,K ′,K ′) =

SR(Φ,Φ,K,K, ξ) is ξindependent. The only di�erence is that now QR,ξ, 〈QR,ξ〉, Tn, Hn and QRcan depend on C, which does not disturb any of the arguments used in the derivation.4.3 Canonical transformations in ΓWe have integrated the �rst equation of (4.18), and shown that the ξ dependence can be reab-sorbed in the canonical transformation (4.19) on the renormalized action SR, which gives the
ξ-independent action with Sf . We know that the generating functional Γf of one-particle irre-ducible Green functions determined by Sf is ξ independent. We can also prove that Γf can beobtained applying a (non-local) canonical transformation directly on ΓR.To achieve this goal we integrate the second equation of (4.18). The integration algorithm isthe same as the one of subsection 4.1, with the di�erence that QR,ξ is replaced by 〈QR,ξ〉. Thecanonical transformation on ΓR has a generating functional of the form

FΓ(Φ,Φ,K
′,K ′, ξ) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +QΓ(Φ, φ, C,K
′, ξ), (4.20)where QΓ = Q+ O(~) (non-local) radiative corrections.The result just obtained is actually more general, and proves that if S is any action that solvesthe master equation (it can be the classical action, the renormalized action, or any other action)canonical transformations on S correspond to canonical transformations on the Γ functional de-termined by S. See [14] for a di�erent derivation of this result in Yang-Mills theory. Our lineof reasoning can be recapitulated as follows: in the usual approach, (i) make a canonical trans-formation (4.14) on S; (ii) derive the equations of gauge dependence for the action, which are

∂S/∂ξ = (S,Qξ); (iii) derive the equations of gauge dependence for the Γ functional determinedby S, which are ∂Γ/∂ξ = (Γ, 〈Qξ〉), and integrate them.The property just mentioned may sound obvious, and is often taken for granted, but actuallyneeded to be proved. The reason is that the canonical transformations we are talking about arenot true changes of �eld variables inside functional integrals, but mere replacements of integrands[15]. Therefore, we cannot automatically infer how a transformation on the action S a�ects the21
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generating functionals Z, W = lnZ and Γ, and need to make some additional e�ort to get wherewe want. We recall that to skip this kind of supplementary analysis we need to use the formalismof the master functional, explained in refs. [16, 17].4.4 ApplicationAn interesting application that illustrates the results of this section is the comparison betweenthe renormalized action (3.7), which was obtained with the background �eld method and the rawsubtraction procedure of section 3, and the renormalized action S′

R that can be obtained with thesame raw subtraction in the usual non-background �eld approach.The usual approach is retrieved by picking a gauge fermion Ψ′ that depends on Φ + Φ, suchas
Ψ′(Φ + Φ) =

∫
C̄IGIi(0, ∂)(φi + φi). (4.21)Making the canonical transformation generated by

F ′gf(Φ,Φ,K ′,K ′) =

∫
ΦαK ′

α +

∫
ΦαK ′

α +Ψ′(Φ + Φ) (4.22)on (2.9) we �nd the classical action
S′(Φ,Φ,K,K) = Ŝ′(Φ + Φ,K) + S̄′(Φ,Φ,K,K), (4.23)where

Ŝ′(Φ+Φ,K) = Sc(φ+φ)−

∫
Rα(Φ+Φ)K̄α, S̄′(Φ,Φ,K,K) = −

∫
Rα(Φ)(Kα−Kα), (4.24)and the barred sources K̄α coincide with Kα apart from K̄i

φ and K̄I
C̄
, which are

K̄i
φ = Ki

φ − C̄
IGIi(0,−

←−
∂ ), K̄I

C̄ = KI
C̄ −G

Ii(0, ∂)(φi + φi). (4.25)Clearly, Ŝ′ is the gauge-�xed classical action of the usual approach, apart from the shift Φ→ Φ+Φ.The radiative corrections are generated only by Ŝ′ and do not a�ect S̄′. Indeed, Ŝ′ as wellas the radiative corrections are una�ected by setting Φ = 0 and then shifting Φ back to Φ + Φ,while S̄′ disappears doing this. Thus, S̄′ is nonrenormalized, and the renormalized action S′

R hasthe form
S′

R(Φ,Φ,K,K) = Ŝ′

R(Φ + Φ,K) + S̄′(Φ,Φ,K,K). (4.26)Now we compare the classical action (2.32) of the background �eld method with the classicalaction (4.23) of the usual approach. We recapitulate how they are obtained with the help of thefollowing schemes:(2.9) (2.15)
−→ (2.16) (2.24)

−→ S = (2.32) (2.9) (4.22)
−→ S′ = (4.24).22
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Above the arrows we have put references to the corresponding canonical transformations, which are(2.15), (2.24) and (4.22) and commute with one another. We can interpolate between the classicalactions (2.32) and (4.24) by means of a K-independent non-background-preserving canonicaltransformation generated by

Fξ(Φ,Φ,K
′,K ′, ξ) =

∫
ΦαK ′

α +

∫
ΦαK ′

α + ξ∆Ψ+ ξ

∫
RIC̄(C̄, C)KI ′

B . (4.27)where ξ is a gauge-�xing parameter that varies from 0 to 1, and
∆Ψ =

∫
C̄I

(
GIi(φ, ∂)φi −GIi(0, ∂)(φi + φi)

)
.Precisely, start from the non-background �eld theory (4.23), and take its variables to be primedones. We know that Ŝ′ depends on the combination

K̃i ′
φ = Ki ′

φ − C̄
IGIi(0,−

←−
∂ ), (4.28)and we have C̄I = C̄I ′. Expressing the primed �elds and sources in terms of the unprimed onesand ξ, we �nd the interpolating classical action

Sξ(Φ,Φ,K,K) = Sc(φ+φ)−

∫
Rα(Φ+Φ)K̃α(ξ)−ξ

∫
RIC̄(C̄, C)K̃I

C̄(ξ)−

∫
Rα(Φ)(K̃α(ξ)−K̃α(ξ)),(4.29)where K̃I

C(ξ) = KI
C ,
K̃i
φ(ξ) = Ki

φ − ξC̄
IGIi(φ,−

←−
∂ )− (1− ξ)C̄IGIi(0,−

←−
∂ ), (4.30)while the other ξ-dependent tilde sources have expressions that we do not need to report here.It su�ces to say that they are Ki

φ independent, such that δrSξ/δKα = −Rα(Φ), and linearin the quantum �elds Φ, apart from K̃i
φ(ξ), which is quadratic. Thus the action Sξ and thetransformation Fξ satisfy the assumptions that allow us to apply theorem 6 and corollary 7.Actually, (4.27) is of type (4.17); therefore we have the di�erential equations (4.18) and therenormalized canonical transformation (4.19).We want to better characterize the renormalized version FR of Fξ. We know that the derivativeof the renormalized Γ functional with respect to ξ is governed by the renormalized version of theaverage 〈

∂̃Fξ
∂ξ

〉
= 〈∆Ψ〉+

∫
RIC̄(C̄, C)KI

B .It is easy to see that 〈∆Ψ〉 is independent of K, B, KC̄ and KB , since no one-particle irreduciblediagrams with such external legs can be constructed. In particular, KI ′
B = KI

B . Moreover, usingthe explicit form (4.29) of the action Sξ and arguments similar to the ones that lead to formulas23
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(2.33), we easily see that 〈∆Ψ〉 is equal to ∆Ψ plus a functional that does not depend on Ki

φand C̄I separately, but only on the convex combination (4.30). Indeed, the C̄-dependent termsof (4.29) that do not �t into the combination (4.30) are Ki
φ independent and at most quadraticin the quantum �elds, so they cannot generate one-particle irreducible diagrams that have either

Ki
φ or C̄ on the external legs. Clearly, the renormalization of 〈∆Ψ〉 also satis�es the propertiesjust stated for 〈∆Ψ〉.Following the steps of the previous section we can integrate the ξ derivative and reconstructthe full canonical transformation. However, formula (4.12) shows that the integration over ξ mustbe done by keeping �xed the unprimed �elds Φ and the primed sources K ′. When we do thisfor the zeroth canonical transformation F0 of (4.9), the combination K̃i

φ(ξ) is turned into (4.28),which is ξ independent. Every other transformation Fn of (4.9) preserves the combination (4.28),so the integrated canonical transformation does not depend on Ki
φ and C̄I separately, but onlyon the combination K̃i ′

φ , and the generating functional of the renormalized version FR of Fξ hasthe form
FR(Φ,Φ,K

′,K ′, ξ) =

∫
ΦαK ′

α+

∫
ΦαK ′

α+ξ∆Ψ+ξ

∫
RIC̄(C̄, C)KI ′

B+∆Fξ(φ,C, φ,C, K̃
′

φ,K
′

C , ξ).(4.31)Using this expression we can verify a posteriori that indeed K̃i
φ(ξ) depends just on (4.28), not on

Ki ′
φ and C̄I separately. Moreover, (4.31) implies

Φα′ = Φα, BI ′ = BI + ξRIC̄(C̄, C), C̄I ′ = C̄I , KI ′
B = KI

B . (4.32)In the next section these results are used to achieve parametric completeness.5 Renormalization and parametric completenessThe raw renormalization algorithm of section 3 subtracts away divergences just as they come. Itdoes not ensure, per se, RG invariance, for which it is necessary to prove parametric completeness,namely that all divergences can be subtracted by rede�ning parameters and making canonicaltransformations. We must show that we can include in the classical action all invariants thatare generated back by renormalization, and associate an independent parameter with each ofthem. The purpose of this section is to show that the background �eld method allows us to proveparametric completeness in a rather straightforward way, making cohomological classi�cationsunnecessary.We want to relate the renormalized actions (3.7) and (4.26). From the arguments of theprevious section we know that these two actions are related by the canonical transformationgenerated by (4.31) at ξ = 1. We have
Ŝ′

R(Φ
′ +Φ,K ′)−

∫
Rα(Φ)(K ′

α −K
′

α) = ŜR(Φ, φ,K)−

∫
Rα(Φ, C)Kα −

∫
Rα(Φ)Kα. (5.1)24
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From (4.31) we �nd the transformation rules (4.32) at ξ = 1 and
φ′ = φ+

δ∆F

δK̃ ′

φ

, KI
C̄ = KI ′

C̄ +GIi(φ, ∂)φi −GIi(0, ∂)(φi ′ + φi) +
δ

δC̄I

∫
RJC̄(C̄, C)KJ

B , (5.2)where ∆F is ∆Fξ at ξ = 1. Here and below we sometimes understand indices when there is noloss of clarity. We want to express equation (5.1) in terms of unprimed �elds and primed sources,and then set φ = C = K ′ = 0. We denote this operation with a subscript 0. Keeping φ,C, C̄,Band K ′ as independent variables, we get
Ŝ′

R(Φ
′

0 +Φ,K ′) = ŜR(0, φ, 0) −

∫
BI′(KI ′

C̄ −G
Ii(0, ∂)(φi ′0 + φi))

−

∫
RIC̄(C̄, C)

δ

δC̄I

∫
RJC̄(C̄, C)KJ ′

B −

∫
Rα(Φ)(Kα0 +K ′

α). (5.3)To derive this formula we have used
ŜR({0, 0, C̄, B}, φ,K) = ŜR(0, φ, 0) −

∫
BIKI

C̄ , (5.4)together with (2.6), (4.32) and (5.2). The reason why (5.4) holds is that at C = 0 there are noobjects with positive ghost numbers inside the left-hand side of this equation; therefore we candrop every object that has a negative ghost number, which means C̄ and all sources K but KI
C̄
.Since (2.34) are the only B and KI

C̄
-dependent terms, and they are not renormalized, at φ = 0we �nd (5.4).Now, consider the canonical transformation {φ,C, C̄,B}, K̆ → Φ′′,K ′ de�ned by the generat-ing functional

F ({φ,C, C̄,B},K ′) =

∫
φK ′

φ +

∫
CK ′

C + FR({0, 0, C̄, B},Φ,K
′, 0, 1). (5.5)It gives the transformation rules

Φ ′′ =Φ+ Φ′

0, K̆φ = K ′

φ +Kφ0, K̆C = K ′

C +KC0,

K̆I
C̄ =KI ′

C̄ −G
Ii(0, ∂)φi ′′ +

δ

δC̄I

∫
RJC̄(C̄, C)KJ ′

B , K̆B = K ′

B ,which turn formula (5.3) into
Ŝ′

R(Φ
′′,K ′) = ŜR(0, φ, 0)−

∫
Riφ(Φ)K̆

i
φ −

∫
RIC(Φ)K̆

I
C

−

∫
BIK̆I

C̄ −

∫
RIC̄(C̄, C)K̆I

C̄ −

∫
RIB(B,C)K̆I

B . (5.6)Note that (Ŝ′

R, Ŝ
′

R) = 0 is automatically satis�ed by (5.6). Indeed, we know that ŜR(Φ, φ,K)is invariant under background transformations, and so is ŜR(0, φ, 0), because Φ and K transformas matter �elds. 25
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We can classify ŜR(0, φ, 0) using its gauge invariance. Let Gi(φ) denote a basis of gauge-invariant local functionals constructed with the physical �elds φ. Then

ŜR(0, φ, 0) =
∑

i

τiGi(φ), (5.7)for suitable constants τi.Now we manipulate these results in several ways to make their consequences more explicit.To prepare the next discussion it is convenient to relabel {φ,C, C̄,B} as Φ̆α and K ′ as K ′′. Thenformulas (5.5) and (5.6) tell us that the canonical transformation
F1(Φ̆,K

′′) =

∫
φ̆K ′′

φ +

∫
C̆K ′′

C + FR({0, 0,
˘̄C, B̆}, {φ̆, C̆},K ′′ , 0, 1) (5.8)is such that

Ŝ′

R(Φ
′′,K ′′) = ŜR(0, φ̆, 0) −

∫
R̄α(Φ̆)K̆α. (5.9)Parametric completenessMaking the further canonical transformation Φ̆, K̆ → Φ,K generated by

F2(Φ, K̆) =

∫
ΦαK̆α +

∫
C̄IGIi(0, ∂)φi −

∫
RIC̄(C̄, C)K̆I

B ,we get
Ŝ′

R(Φ
′′,K ′′) = ŜR(0, φ, 0) −

∫
Rα(Φ)K̄α, (5.10)where the barred sources are the ones of (4.25) at φ = 0. If we start from the most generalgauge-invariant classical action,

Sc(φ, λ) ≡
∑

i

λiGi(φ), (5.11)where λi are physical couplings (apart from normalization constants), identities (5.7) and (5.10)give
Ŝ′

R(Φ
′′,K ′′) = Sc(φ, τ(λ)) −

∫
Rα(Φ)K̄α. (5.12)This result proves parametric completeness in the usual approach, because it tells us that therenormalized action of the usual approach is equal to the classical action Ŝ′(Φ,K) (check (4.23)-(4.24) at Φ = K = 0), apart from parameter rede�nitions λ→ τ and a canonical transformation.In this derivation the role of the background �eld method is just to provide the key tool to provethe statement.We can also describe parametric completeness in the background �eld approach. Making thecanonical transformation Φ̆, K̆ → Φ̂, K̂ generated by

F ′

2(Φ̂, K̆) =

∫
Φ̂αK̆α +

∫
φiK̆i

φ +

∫
ˆ̄CIGIi(φ, ∂)φ̂i −

∫
RIC̄(

ˆ̄C, Ĉ)K̆I
B , (5.13)26
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formula (5.9) becomeŝ

S′

R(Φ
′′,K ′′) = Sc(φ̂+ φ, τ)−

∫
Rα(φ̂+ φ, Ĉ, ˆ̄C, B̂)

˜̂
Kα, (5.14)where the relations between tilde and nontilde sources are the hat versions of (2.33). Next, wemake a Φ translation on the left-hand side of (5.14) applying the canonical transformation Φ′′,K ′′

→ Φ′,K ′ generated by
F3(Φ

′,K ′′) =

∫
(Φα′ +Φα)K ′′

α. (5.15)Doing so, Ŝ′

R(Φ
′′,K ′′) is turned into Ŝ′

R(Φ
′ +Φ,K ′).At this point, we want to compare the result we have obtained with (5.1). Recall that for-mula (5.1) involves the canonical transformation (4.31) at ξ = 1. If we set K ′ = 0 we projectthat canonical transformation onto a canonical transformation Φ,K → Φ′,K ′ generated by

FR(Φ,Φ,K
′, 0, 1), where Φ is regarded as a spectator. Furthermore, it is convenient to set C = 0,because then formula (5.1) turns into

Ŝ′

R(Φ
′ +Φ,K ′) = ŜR(Φ, φ,K),where now primed �elds and sources are related to the unprimed ones by the canonical transfor-mation generated by FR(Φ, {φ, 0},K ′, 0, 1). Finally, recalling that Ŝ′

R(Φ
′′,K ′′) = Ŝ′

R(Φ
′ +Φ,K ′)and using (5.14) we get the key formula we wanted, namely

ŜR(Φ, φ,K) = Sc(φ̂+ φ, τ(λ)) −

∫
Rα(φ̂+ φ, Ĉ, ˆ̄C, B̂)

˜̂
Kα. (5.16)Observe that formula (1.1) of the introduction is formula (5.16) with antighosts and Lagrangemultipliers switched o�. Checking (2.32), formula (5.16) tells us that the renormalized background�eld action ŜR is equal to the classical background �eld action Ŝgf up to parameter rede�nitions

λ → τ and a canonical transformation. This proves parametric completeness in the background�eld approach.The canonical transformation Φ,K → Φ̂, K̂ involved in formula (5.16) is generated by the func-tional F̂R(Φ, φ, K̂) obtained composing the transformations generated by FR(Φ, {φ, 0},K ′, 0, 1),
F1(Φ̆,K

′′), F ′

2(Φ̂, K̆) and F3(Φ
′,K ′′) of formulas (4.31), (5.8), (5.13) and (5.15) (at C = 0).Working out the composition it is easy to prove that

ˆ̄C = C̄, B̂ = B, K̂B = KB , K̂I
C̄ −G

Ii(φ, ∂)φ̂i = KI
C̄ −G

Ii(φ, ∂)φi,and therefore F̂R(Φ, φ, K̂) has the form
F̂R(Φ, φ, K̂) =

∫
ΦαK̂α +∆F̂ (φ,C, φ, K̂i

φ −
ˆ̄CIGIi(φ,−

←−
∂ ), K̂C), (5.17)where ∆F̂ = O(~)-poles. 27
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6 ExamplesIn this section we give two examples, non-Abelian gauge �eld theories and quantum gravity, whichare also useful to familiarize oneself with the notation and the tools used in the paper. We switchto Minkowski spacetime. The dimensional-regularization technique is understood.6.1 Yang-Mills theoryThe �rst example is non-Abelian Yang-Mills theory with simple gauge group G and structureconstants fabc, coupled to fermions ψi in some representation described by anti-Hermitian matrices
T aij . The classical action Sc(φ) can be restricted by power counting, or enlarged to include allinvariants of (5.11). The nonminimal non-gauge-�xed action S is the sum Ŝ + S̄ of (2.18) and(2.19). We �nd

Ŝ =Sc(φ+ φ) +

∫ [
g(ψ̄i + ψ̄i)T aijC

aKj
ψ + gK̄i

ψT
a
ijC

a(ψj + ψj)
]

−

∫ [
(DµC

a + gfabcAbµC
c)Kµa −

1

2
gfabcCbCcKa

C +BaKa
C̄

]
,and

S̄ = gfabc
∫
Cb(AcµK

µa + CcKa
C + C̄cKa

C̄ +BcKa
B) + g

∫ [
ψ̄iT aijC

aKj
ψ + K̄i

ψT
a
ijC

aψj
]

−

∫ [
(DµC

a)Kµa −
1

2
gfabcCbCcKa

C − gψ̄
iT aijC

aKj
ψ − gK̄

i
ψT

a
ijC

aψj
]
. (6.1)The covariant derivative Dµ is the background one; for example DµΛ

a = ∂µΛ
a + gfabcAbµΛ

c.The �rst line of (6.1) shows that all quantum �elds transform as matter �elds under backgroundtransformations. It is easy to check that Ŝ and S̄ satisfy JŜ, ŜK = JŜ, S̄K = JS̄, S̄K = 0.A common background-preserving gauge fermion is
Ψ =

∫
C̄a

(
−
λ

2
Ba +DµAaµ

)
, (6.2)and the gauge-�xed action Ŝgf = Ŝ + JŜ,ΨK reads

Ŝgf = Ŝ −
λ

2

∫
(Ba)2 +

∫
BaDµAaµ −

∫
C̄aDµ(DµC

a + gfabcAbµC
c).Since the gauge �xing is linear in the quantum �elds, the action Ŝ depends on the combination

Ka
µ + DµC̄

a and not on Ka
µ and C̄a separately. From now on we switch matter �elds o�, forsimplicity, and set λ = 0. 28
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We describe renormalization using the approach of this paper. First we concentrate on thestandard power-counting renormalizable case, where
Sc(A, g) = −

1

4

∫
F aµν(A, g)F

µνa(A, g), F aµν(A, g) = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν .The key formula (5.16) gives

ŜR(Φ, A,K) =−
Z

4

∫
F aµν(Â+A, g)Fµνa(Â+A, g) +

∫
B̂aDµÂaµ −

∫
B̂aK̂a

C̄

+

∫
(K̂µa +Dµ ˆ̄Ca)(DµĈ

a + gfabcÂbµĈ
c) +

1

2
gfabc

∫
ĈbĈcK̂a

C , (6.3)where Z is a renormalization constant. The most general canonical transformation Φ,K → Φ̂, K̂that is compatible with power counting, global gauge invariance and ghost number conservationcan be easily written down. Introducing unknown constants where necessary, we �nd that itsgenerating functional has the form
F̂R(Φ, A, K̂) =

∫
(Z

1/2
A Aaµ + Z

1/2
A Aaµ)K̂

µa +

∫
Z

1/2
C CaK̂a

C +

∫
Z

1/2

C̄
C̄aK̂a

C̄

+

∫
(Z

1/2
B Ba + αDµAaµ + β∂µAaµ + γgfabcAµbAcµ + δgfabcC̄bCc)K̂a

B

+

∫
C̄a(ζBa + ξDµAaµ + η∂µAaµ + θgfabcAµbAcµ + χgfabcC̄bCc)

+

∫
σK̂a

C̄K̂
a
B +

∫
τgfabcCaK̂b

BK̂
c
B .Inserting it in (6.3) and using the nonrenormalization of the B and KC̄ -dependent terms, we �nd

a = β = γ = δ = ζ = θ = χ = σ = τ = 0 and
ξ = 1− Z

1/2

C̄
Z

1/2
A , η = −Z

1/2

C̄
Z

1/2
A , ZB = ZC̄ . (6.4)It is easy to check that ZC̄ disappears from the right-hand side of (6.3), so we can set ZC̄ = 1.Furthermore, we know that ŜR(Φ, A,K) is invariant under background transformations (JŜR, S̄K =

0), which requires ZA = 0. Finally, the canonical transformation just reads
F̂R(Φ, A, K̂) =

∫
Z

1/2
A AaµK̂

µa +

∫
Z

1/2
C CaK̂a

C +

∫
C̄aK̂a

C̄ +

∫
BaK̂a

B + (1−Z
1/2
A )

∫
C̄a(DµAaµ),which contains the right number of independent renormalization constants and is of the form(5.17).De�ning Zg = Z−1/2 and Z ′

A = ZZA we can describe renormalization in a more standard way.Writing
ŜR(0, Â+A, 0) = −

1

4

∫
F aµν(Z

′1/2
A A+ Z−1

g A, gZg)F
µνa(Z

′1/2
A A+ Z−1

g A, gZg),29
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we see that Zg is the usual gauge-coupling renormalization constant, while Z ′

A and Z−2
g are thewave-function renormalization constants of the quantum gauge �eld A and the background gauge�eld A, respectively. We remark that the local divergent canonical transformation Φ,K → Φ̂, K̂corresponds to a highly nontrivial, convergent but non-local canonical transformation at the levelof the Γ functional.If the theory is not power-counting renormalizable, then we need to consider the most generalclassical action, equal to the right-hand side of (5.11). Counterterms include vertices with arbi-trary numbers of external Φ and K legs. Nevertheless, the key formula (5.16) ensures that therenormalized action ŜR remains exactly the same, up to parameter rede�nitions and a canonicaltransformation. The only di�erence is that now even the canonical transformation F̂R(Φ, φ, K̂)of (5.17) becomes nonpolynomial and highly nontrivial.6.2 Quantum gravityHaving written detailed formulas for Yang-Mills theory, in the case of quantum gravity we canjust outline the key ingredients. In particular, we stress that the linearity assumption is satis�edboth in the �rst-order and second-order formalisms, both using the metric gµν and the vielbein eaµ.For example, using the second-order formalism and the vielbein, the symmetry transformationsare encoded in the expressions

−

∫
Rα(Φ)Kα =

∫
(eaρ∂µC

ρ +Cρ∂ρe
a
µ + Cabeµb)K

µ
a +

∫
Cρ(∂ρC

µ)KC
µ

+

∫
(CacηcdC

db + Cρ∂ρC
ab)KC

ab −

∫
BµK

µ
C̄
−

∫
BabK

ab
C̄ ,

−

∫
R̄α(Φ)Kα =−

∫
Rα(Φ)Kα −

∫
(C̄ρ∂µC

ρ − Cρ∂ρC̄µ)K
µ
C̄
+

∫
(Bρ∂µC

ρ + Cρ∂ρBµ)K
µ
B,in the minimal and nonminimal cases, respectively, where Cµ are the ghosts of di�eomorphisms,

Cab are the Lorentz ghosts and ηab is the �at-space metric. We see that both Rα(Φ) and R̄α(Φ)are at most quadratic in Φ. Matter �elds are also �ne, since vectors Aµ, fermions ψ and scalars
ϕ contribute with
−

∫
(∂µC

a + gfabcAbµC
c − Cρ∂ρA

a
µ −A

a
ρ∂µC

ρ)Kµa
A +

∫ (
Cρ∂µC

a +
1

2
gfabcCbCc

)
Ka
C

+

∫
Cρ(∂ρϕ)Kϕ +

∫
Cρ(∂ρψ̄)Kψ −

i

4

∫
ψ̄σabCabKψ +

∫
Kψ̄C

ρ(∂ρψ)−
i

4

∫
Kψ̄σ

abCabψ,where σab = i[γa, γb]/2. Expanding around �at space, common linear gauge-�xing conditionsfor di�eomorphisms and local Lorentz symmetry are ηµν∂µeaν = ξηaµ∂µe
b
νδ
ν
b , eaµ = ebνηbµη

νa,respectively. 30
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In the �rst-order formalism we just need to add the transformation of the spin connection ωabµ ,encoded in ∫

(Cρ∂ρω
ab
µ + ωabρ ∂µC

ρ − ∂µC
ab + Cacηcdω

db
µ − ω

ac
µ ηcdC

db)Kµ
ab.Moreover, in this case we can also gauge-�x local Lorentz symmetry with the linear gauge-�xingcondition ηµν∂µωabν = 0, instead of eaµ = ebνηbµη

νa.We see that all gauge symmetries that are known to have physical interest satisfy the lin-earity assumption, together with irreducibility and o�-shell closure. On the other hand, morespeculative symmetries (such as local supersymmetry) do not satisfy those assumptions in anobvious way. When auxiliary �elds are introduced to achieve o�-shell closure, some symmetrytransformations (typically, those of auxiliary �elds) are nonlinear [19]. The relevance of this issueis already known in the literature. For example, in ref. [20] it is explained that in supersymmetrictheories the standard background �eld method cannot be applied, precisely because the symme-try transformations are nonlinear. It is argued that the linearity assumption is tied to the linearsplitting Φ → Φ + Φ between quantum �elds Φ and background �elds Φ, and that the problemof supersymmetric theories can be avoided with a nonlinear splitting of the form Φ → Φ + Φ +nonlinear corrections. Perhaps it is possible to generalize the results of this paper to supergrav-ity following those guidelines. From our viewpoint, the crucial property is that the backgroundtransformations of the quantum �elds are linear in the quantum �elds themselves, because thenthey do not renormalize.An alternative strategy, not bound to supersymmetric theories, is that of introducing (possi-bly in�nitely many) auxiliary �elds, replacing every nonlinear term appearing in the symmetrytransformations with a new �eld N , and then proceeding similarly with the N transformationsand the closure relations, till all functions Rα are at most quadratic. The natural framework forthis kind of job is the one of refs. [15, 16, 17], where the �elds N are dual to the sources L coupledto composite �elds. Using that approach the Batalin-Vilkovisky formalism can be extended tothe composite-�eld sector of the theory and all perturbative canonical transformations can bestudied as true changes of �eld variables in the functional integral, instead of mere replacementsof integrands. For reasons of space, though, we cannot pursue this strategy here.7 The quest for parametric completeness: Where we stand nowIn this section we make remarks about the problem of parametric completeness in general gaugetheories and recapitulate where we stand now on this issue. To begin with, consider non-AbelianYang-Mills theory as a deformation of its Abelian limit. The minimal solution S(g) of the masterequation (S(g), S(g)) = 0 reads
S(g) = −

1

4

∫
F aµνF

µνa +

∫
Kµa∂µC

a + gfabc
∫ (

KµaAbµ +
1

2
Ka
CC

b

)
Cc.31



13A3Renorm
Di�erentiating the master equation with respect to g and setting g = 0, we �nd

(S, S) = 0, (S, ω) = 0, S = S(0), ω =
dS(g)

dg

∣∣∣∣
g=0

.On the other hand, we can easily prove that there exists no local functional χ such that ω = (S, χ).Thus, we can say that ω is a nontrivial solution of the cohomological problem associated withan Abelian Yang-Mills theory that contains a suitable number of photons [4]. Nevertheless,renormalization cannot turn ω on as a counterterm, because S(0) is a free �eld theory. Even ifwe couple the theory to gravity and assume that massive fermions are present (which allows usto construct dimensionless parameters multiplying masses with the Newton constant), radiativecorrections cannot dynamically �un-Abelian-ize� the theory, namely convert an Abelian theoryinto a non-Abelian one. One way to prove this fact is to note that the dependence on gauge �eldsis even at g = 0, but not at g 6= 0. The point is, however, that cohomology per se is unable toprove it. Other properties must be advocated, such as the discrete symmetry just mentioned. Ingeneral, we cannot rely on cohomology only, and the possibility that gauge symmetries may bedynamically deformed in nontrivial and observable ways remains open.In ref. [4] the issue of parametric completeness was studied in general terms. In that approach,which applies to all theories that are manifestly free of gauge anomalies, renormalization triggersan automatic parametric extension till the classical action becomes parametrically complete. Theresults of ref. [4] leave the door open to dynamically induced nontrivial deformations of the gaugesymmetry. Instead, the results found here close that door in all cases where they apply, whichmeans manifestly nonanomalous irreducible gauge symmetries that close o� shell and satisfy thelinearity assumption. The reason is � we stress it again � that by formulas (5.12) and (5.16) alldynamically induced deformations can be organized into parameter rede�nitions and canonicaltransformations. As far as we know now, gauge symmetries can still be dynamically deformed inobservable ways in theories that do not satisfy the assumptions of this paper. Supergravities arenatural candidates to provide explicit examples.8 ConclusionsThe background �eld method and the Batalin-Vilkovisky formalism are convenient tools to quan-tize general gauge �eld theories. In this paper we have merged the two to rephrase and generalizeknown results about renormalization, and to study parametric completeness. Our approach ap-plies when gauge anomalies are manifestly absent, the gauge algebra is irreducible and closes o�shell, the gauge transformations are linear functions of the �elds, and closure is �eld independent.These assumptions are su�cient to include the gauge symmetries we need for physical appli-cations, such as Abelian and non-Abelian Yang-Mills symmetries, local Lorentz symmetry and32
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general changes of coordinates, but exclude other potentially interesting symmetries, such as localsupersymmetry. Both renormalizable and nonrenormalizable theories are covered, such as QED,non-Abelian Yang-Mills theories, quantum gravity and Lorentz-violating gauge theories, as wellas e�ective and higher-derivative models, in arbitrary dimensions, and also extensions obtainedadding any set of composite �elds. At the same time, chiral theories, and therefore the StandardModel, possibly coupled with quantum gravity, require the analysis of anomaly cancellation andthe Adler-Bardeen theorem, which we postpone to a future investigation. The fact that super-gravities are left out from the start, on the other hand, suggests that there should exist either ano-go theorem or a more advanced framework. At any rate, we are convinced that our formalismis helpful to understand several properties better and address unsolved problems.We have studied gauge dependence in detail, and renormalized the canonical transformationthat continuously interpolates between the background �eld approach and the usual approach.Relating the two approaches, we have proved parametric completeness without making use ofcohomological classi�cations. The outcome is that in all theories that satisfy our assumptionsrenormalization cannot hide any surprises; namely the gauge symmetry remains essentially thesame throughout the quantization process. In the theories that do not satisfy our assumptions,instead, the gauge symmetry could be dynamically deformed in physically observable ways. Itwould be remarkable if we discovered explicit examples of theories where this sort of �dynamicalcreation� of gauge symmetries actually takes place.AcknowledgmentsThe investigation of this paper was carried out as part of a program to complete the book[21], which will be available at Renormalization.com once completed.A AppendixIn this appendix we prove several theorems and identities that are used in the paper. We use theEuclidean notation and the dimensional-regularization technique, which guarantees, in particular,that the functional integration measure is invariant under perturbatively local changes of �eldvariables. The generating functionals Z and W are de�ned from

Z(J,K,Φ,K) =

∫
[dΦ] exp(−S(Φ,Φ,K,K) +

∫
ΦαJα) = expW (J,K,Φ,K), (A.1)and Γ(Φ,Φ,K,K) = −W +

∫
ΦαJα is the W Legendre transform. Averages denote the sumsof connected diagrams (e.g. 〈A(x)B(y)〉 = 〈A(x)B(y)〉nc − 〈A(x)〉〈B(y)〉, where 〈A(x)B(y)〉ncincludes disconnected diagrams). Moreover, the average 〈X〉 of a local functional X can beviewed as a functional of Φ,Φ,K,K (in which case it collects one-particle irreducible diagrams)or a functional of J,Φ,K,K . When we need to distinguish the two options we specify whether33
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Φ or J are kept constant in functional derivatives. First we work in the usual (non-background�eld) framework; then we generalize the results to the background �eld method.To begin with, we recall a property that is true even when the action S(Φ,K) does not satisfythe master equation.Theorem 2 The identity (Γ,Γ) = 〈(S, S)〉 holds.Proof. Applying the change of �eld variables

Φα → Φα + θ(S,Φα) (A.2)to (A.1), where θ is a constant anticommuting parameter, we obtain
θ

∫ 〈
δrS

δKα

δlS

δΦα

〉
− θ

∫ 〈
δrS

δKα

〉
Jα = 0,whence

1

2
〈(S, S)〉 = −

∫ 〈
δrS

δKα

δlS

δΦα

〉
= −

∫ 〈
δrS

δKα

〉
Jα =

∫
δrW

δKα

δlΓ

δΦα
= −

∫
δrΓ

δKα

δlΓ

δΦα
=

1

2
(Γ,Γ).Now we prove results for an action S that satis�es the master equation (S, S) = 0.Theorem 3 If (S, S) = 0 then (Γ, 〈X〉) = 〈(S,X)〉 for every local functional X.Proof. Applying the change of �eld variables (A.2) to

〈X〉 =
1

Z(J,K)

∫
[dΦ]X exp(−S +

∫
ΦαJα),and using (S, S) = 0 we obtain

∫ 〈
δrS

δKα

δlX

δΦα

〉
= (−1)εX+1

∫ 〈
X
δrS

δKα

〉
δlΓ

δΦα
, (A.3)where εX denotes the statistics of the functional X (equal to 0 if X is bosonic, 1 if it is fermionic,modulo 2). Moreover, we also have

∫ 〈
δrS

δΦα
δlX

δKα

〉
=

∫
δrΓ

δΦα

〈
δlX

δKα

〉
, (A.4)which can be proved starting from the expression on the left-hand side and integrating by parts.In the derivation we use the fact that since X is local, δrδlX/(δΦαδKα) is set to zero by thedimensional regularization, which kills the δ(0)s and their derivatives.34
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Next, straightforward di�erentiations give

δl〈X〉

δKα

∣∣∣∣
J

=

〈
δlX

δKα

〉
−

〈
δlS

δKα
X

〉 (A.5)
=
δl〈X〉

δKα

∣∣∣∣
Φ

−

∫
δlJβ
δKα

∣∣∣∣
Φ

δl〈X〉

δJβ

∣∣∣∣
K

. (A.6)At this point, using (A.3)-(A.6) and (Jα,Γ) = 0 (which can be proved by di�erentiating (Γ,Γ) = 0with respect to Φα), we derive (Γ, 〈X〉) = 〈(S,X)〉.Corollary 4 If (S, S) = 0 and
∂S

∂ξ
= (S,X), (A.7)where X is a local functional and ξ is a parameter, then

∂Γ

∂ξ
= (Γ, 〈X〉). (A.8)Proof. Using theorem 3 we have

∂Γ

∂ξ
= −

∂W

∂ξ
= 〈

∂S

∂ξ
〉 = 〈(S,X)〉 = (Γ, 〈X〉).Now we derive results that hold even when S does not satisfy the master equation.Theorem 5 The identity

(Γ, 〈X〉) = 〈(S,X)〉 −
1

2
〈(S, S)X〉Γ (A.9)holds, where X is a generic local functional and 〈AB · · ·Z〉Γ denotes the set of connected, one-particle irreducible diagrams with one insertion of A, B, . . . Z.This theorem is a generalization of theorem 3. It is proved by repeating the derivation withoutusing (S, S) = 0. First, observe that formula (A.3) generalizes to

∫ 〈
δrS

δKα

δlX

δΦα

〉
= (−1)εX+1

∫ 〈
X
δrS

δKα

〉
δlΓ

δΦα
−

1

2
〈(S, S)X〉. (A.10)On the other hand, formula (A.4) remains the same, as well as (A.5) and (A.6). We have

(Γ, 〈X〉) = 〈(S,X)〉 −
1

2
〈(S, S)X〉 +

∫
δrΓ

δΦα
δlJβ
δKα

∣∣∣∣
Φ

δl〈X〉

δJβ

∣∣∣∣
K

−

∫
δrΓ

δKα

δl〈X〉

δΦα

∣∣∣∣
K

.Di�erentiating (Γ,Γ) with respect to Φα we get
1

2

δr(Γ,Γ)

δΦα
=

1

2

δl(Γ,Γ)

δΦα
= (Jα,Γ) = (−1)εα(Γ, Jα),35



13A3Renorm
where εα is the statistics of Φα. Using (Γ,Γ) = 〈(S, S)〉 we �nally obtain

(Γ, 〈X〉) = 〈(S,X)〉 −
1

2
〈(S, S)X〉 +

1

2

∫
(−1)εα

δr〈(S, S)〉

δΦα
δl〈X〉

δJα

∣∣∣∣
K

. (A.11)The set of irreducible diagrams contained in 〈AB〉, where A and B are local functionals, isgiven by the formula
〈AB〉Γ = 〈AB〉 − {〈A〉, 〈B〉}, (A.12)where {X,Y } are the �mixed brackets� [22]

{X,Y } ≡

∫
δrX

δΦα
〈ΦαΦβ〉

δlY

δΦβ
=

∫
δrX

δΦα
δrδrW

δJβδJα

δlY

δΦβ
=

∫
δrX

δJα

∣∣∣∣
K

δlY

δΦα
, (A.13)

X and Y being functionals of Φ and K. Indeed, {〈A〉, 〈B〉} is precisely the set of diagrams inwhich the A and B insertions are connected in a one-particle reducible way. Thus, formula (A.11)coincides with (A.9).Using (A.9) we also have the identity
∂Γ

∂ξ
− (Γ, 〈X〉) =

〈
∂S

∂ξ
− (S,X)

〉
+

1

2
〈(S, S)X〉Γ , (A.14)which generalizes corollary 4.Now we switch to the background �eld method. We begin by generalizing theorem 2.Theorem 6 If the action S(Φ,Φ,K,K) is such that δlS/δKα is Φ independent, the identity

JΓ,ΓK = 〈JS, SK〉holds.Proof. Since δlS/δKα is Φ independent we have δlΓ/δKα = δlS/δKα. Using theorem 2 we�nd
JΓ,ΓK = (Γ,Γ)+2

∫
δrΓ

δΦα
δlΓ

δKα
= 〈(S, S)〉+2

∫
〈
δrS

δΦα
〉
δlS

δKα
= 〈(S, S)〉+2

∫
〈
δrS

δΦα
δlS

δKα
〉 = 〈JS, SK〉.Next, we mention the useful identity

δl〈X〉

δΦα

∣∣∣∣
Φ

=

〈
δlX

δΦα

〉
−

〈
δlS

δΦα
X

〉

Γ

, (A.15)which holds for every local functional X. It can be proved by taking (A.5)�(A.6) with K → Φand using (A.12)�(A.13).Mimicking the proof of theorem 6 and using (A.15), it is easy to prove that theorem 5 impliesthe identity
JΓ, 〈X〉K = 〈JS,XK〉 −

1

2
〈JS, SKX〉Γ, (A.16)for every K-independent local functional X. Thus we have the following property.36
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Corollary 7 The identity

∂Γ

∂ξ
− JΓ, 〈X〉K =

〈
∂S

∂ξ
− JS,XK

〉
+

1

2
〈JS, SKX〉Γ (A.17)holds for every action S such that δlS/δKα is Φ independent, for every K-independent localfunctional X and for every parameter ξ.If the action S has the form (2.26) and X is also C independent, applying (2.17) to (A.16) weobtain

JΓ̂, 〈X〉K = 〈JŜ,XK〉 −
1

2
〈JŜ, ŜKX〉Γ, JS̄, 〈X〉K = 〈JS̄,XK〉 − 〈JS̄, ŜKX〉Γ, 〈JS̄, S̄KX〉Γ = 0,(A.18)which imply the following statement.Corollary 8 If S satis�es the assumptions of (2.26), JS̄,XK = 0 and JS̄, ŜK = 0, where X is a

C- and K-independent local functional, then JS̄, 〈X〉K = 0.Finally, we recall a result derived in ref. [23].Theorem 9 If Φ,K → Φ′,K ′ is a canonical transformation generated by F (Φ,K ′), and χ(Φ,K)is a functional behaving as a scalar (that is to say χ′(Φ′,K ′) = χ(Φ,K)), then
∂χ′

∂ς
=
∂χ

∂ς
− (χ, F̃ς) (A.19)for every parameter ς, where F̃ς(Φ,K) ≡ Fς(Φ,K
′(Φ,K)) and Fς(Φ,K ′) = ∂F/∂ς.Proof. When we do not specify the variables that are kept constant in partial derivatives,it is understood that they are the natural variables. Thus F , Φ′ and K are functions of Φ,K ′,while χ and F̃ς are functions of Φ,K and χ′ is a function of Φ′,K ′. It is useful to write down thedi�erentials of Φ′ and K, which are [24]

dΦ′α=

∫
δlδF

δK ′

αδΦ
β
dΦβ +

∫
δlδF

δK ′

αδK
′

β

dK ′

β +
∂Φ′α

∂ς
dς,

dKα=

∫
dΦβ

δlδF

δΦβδΦα
+

∫
dK ′

β

δlδF

δK ′

βδΦ
α
+
∂Kα

∂ς
dς. (A.20)Di�erentiating χ′(Φ′,K ′) = χ(Φ,K) with respect to ς at constant Φ′ and K ′, we get

∂χ′

∂ς
=
∂χ

∂ς
+

∫
δrχ

δΦα
∂Φα

∂ς

∣∣∣∣
Φ′,K ′

+

∫
δrχ

δKα

∂Kα

∂ς

∣∣∣∣
Φ′,K ′

. (A.21)37
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Formulas (A.20) allow us to write

∂Φ′α

∂ς
= −

∫
δlδF

δK ′

αδΦ
β

∂Φβ

∂ς

∣∣∣∣
Φ′,K ′

,
δlδF

δK ′

αδΦ
β
=
δlKβ

δK ′

α

∣∣∣∣
Φ,ς

,and therefore we have
δF̃ς
δKα

=

∫
δlK

′

β

δKα

∣∣∣∣∣
Φ,ς

∂Φ′β

∂ς
= −

∫
δlK

′

β

δKα

∣∣∣∣∣
Φ,ς

δlKγ

δK ′

β

∣∣∣∣∣
Φ,ς

∂Φγ

∂ς

∣∣∣∣
Φ′,K ′

= −
∂Φα

∂ς

∣∣∣∣
Φ′,K ′

. (A.22)Following analogous steps, we also �nd
δF̃ς
δΦα

=
∂Kα

∂ς
+

∫
δlK

′

β

δΦα

∣∣∣∣∣
K,ς

∂Φ′β

∂ς
,

∂Kα

∂ς
=
∂Kα

∂ς

∣∣∣∣
Φ′,K ′

−

∫
δlδF

δΦαδΦβ
∂Φβ

∂ς

∣∣∣∣
Φ′,K ′

,whence
∂Kα

∂ς

∣∣∣∣
Φ′,K ′

=
δF̃ς
δΦα

+

∫ 
δlKγ

δΦα
+
δlK

′

β

δΦα

∣∣∣∣∣
K,ς

δlKγ

δK ′

β


 ∂Φγ

∂ς

∣∣∣∣
Φ′,K ′

=
δF̃ς
δΦα
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