Archive for October 2020
Talk at NICPB, Tallinn, Estonia, Oct 14th, 2020
Abstract: I introduce the concept of purely virtual particle, or fakeon, and show how to use to make sense of quantum gravity as a quantum field theory. Then I discuss novel features of the classical limit and derive predictions in inflationary cosmology that could be tested in the forthcoming years, paying special attention to the effects of fakeons on perturbation spectra
We compute the inflationary perturbation spectra and the quantity $r+8n_{T}$ to the next-to-next-to-leading log order in quantum gravity with purely virtual particles (which means the theory $R+R^{2}+C^{2}$ with the fakeon prescription/projection for $C^{2}$). The spectra are functions of the inflationary running coupling $\alpha (1/k)$ and satisfy the cosmic renormalization-group flow equations, which determine the tilts and the running coefficients. The tensor fluctuations receive contributions from the spin-2 fakeon $\chi _{\mu \nu }$ at every order of the expansion in powers of $\alpha \sim 1/115$. The dependence of the scalar spectrum on the $\chi
_{\mu \nu }$ mass $m_{\chi }$, on the other hand, starts from the $\alpha^{2}$ corrections, which are handled perturbatively in the ratio $m_{\phi}/m_{\chi }$, where $m_{\phi }$ is the inflaton mass. The predictions have theoretical errors ranging from $\alpha ^{4}\sim 10^{-8}$ to $\alpha^{3}\sim 10^{-6}$. Nontrivial issues concerning the fakeon projection at higher orders are addressed.
J. Cosmol. Astropart. Phys. 02 (2021) 029 | DOI: 10.1088/1475-7516/2021/02/029