19S1 D. Anselmi
Theories of gravitation




D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)

Recent Papers

We extend quantum field theory by including purely virtual “cloud” sectors, which allow us to define physical off-shell correlation functions of gauge invariant quark and gluon fields. Thanks to certain “cloud symmetries”, the new sectors do not change the fundamental physics. In particular, the ordinary correlation functions and the S matrix amplitudes remain the same. Each cloud sector is made of a cloud field, its anticommuting partner, a cloud function and a cloud Faddeev-Popov determinant. Every field insertion in a correlation function can be made gauge invariant by dressing it with an independent cloud. The cloud sectors are rendered purely virtual, to ensure that they do not propagate extra degrees of freedom. The off-shell, diagrammatic version of the optical theorem holds, and the extended theory is unitary. The one-loop two-point functions of the dressed quarks and gluons are calculated. Their absorptive parts are gauge independent, cloud independent and positive (while they are cloud dependent and possibly negative, if the clouds are defined by means of the Feynman prescription). A gauge/cloud duality simplifies the computations and shows that the gauge choice is just a particular cloud. Renormalizability is proved to all orders by means of an extended Batalin-Vilkovisky formalism and its Zinn-Justin master equations. We compare the purely virtual approach with the Coulomb nonlocal dressing of Dirac for QED, and the one of Lavelle and McMullan for non-Abelian gauge theories. We also comment on the use of Wilson lines and ‘t Hooft composite fields.


arXiv: 2207.11271 [hep-ph]

Embedded PDFFullscreen PDF view

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel


14B1 D. Anselmi

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:


1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas