Field equations
Consider an action $S$ depending on fields $\phi_{i}$, where the index $i$ labels both the field type, the component and the spacetime point. Add a term quadratically proportional to the field equations $S_{i}\equiv \delta S/\delta \phi _{i}$ and define the modified action
\begin{equation}
\phantom{(1)}\qquad\qquad\qquad S^{\prime }(\phi _{i})=S(\phi _{i})+S_{i}F_{ij}S_{j}, \qquad\qquad\qquad (1)
\end{equation}
where $F_{ij}$ is symmetric and can contain derivatives acting to its left and to its right. Summation over repeated indices (including the integrationover spacetime points) is understood. Then there exists a field redefinition
\begin{equation}
\phantom{(1)}\qquad\qquad\qquad\phi _{i}^{\prime }=\phi _{i}+\Delta _{ij}S_{j}, \qquad\qquad\qquad (2)
\end{equation}
with $\Delta _{ij}$ symmetric, such that, perturbatively in $F$ and to all orders in powers of $F$,
\begin{equation}
\phantom{(1)}\qquad\qquad\qquad S^{\prime }(\phi _{i})=S(\phi _{i}^{\prime }). \qquad\qquad\qquad (3)
\end{equation}