Gauge invariant fields
Quantum field theory is extended to include purely virtual “cloud sectors”, which allow us to define point-dependent observables, including a gauge invariant metric and gauge invariant matter fields, and calculate their off-shell correlation functions perturbatively in quantum gravity. Each extra sector is made of a cloud field, its anticommuting partner, a cloud function and a cloud Faddeev-Popov determinant. Thanks to certain cloud symmetries, the ordinary correlation functions and S matrix elements are unmodified. The clouds are rendered purely virtual, to ensure that they do not propagate unwanted degrees of freedom. So doing, the off-shell, diagrammatic version of the optical theorem holds and the extended theory is unitary. Every insertion in a correlation function can be dressed with its own cloud. The one-loop two-point functions of dressed scalars, vectors and gravitons are calculated. Their absorptive parts are positive, cloud independent and gauge independent, while they are unphysical if non purely virtual clouds are used. Renormalizability is proved to all orders by means of an extended Batalin-Vilkovisky formalism and its Zinn-Justin master equations. The purely virtual approach is compared to other approaches available in the literature.
We extend quantum field theory by including purely virtual “cloud” sectors, to define physical off-shell correlation functions of gauge invariant quark and gluon fields, without affecting the $S$ matrix amplitudes. The extension is made of certain cloud bosons, plus their anticommuting partners. Both are quantized as purely virtual, to ensure that they do not propagate ghosts. The extended theory is renormalizable and unitary. In particular, the off-shell, diagrammatic version of the optical theorem holds. We calculate the one-loop two-point functions of dressed quarks and gluons, and show that their absorptive parts are gauge independent, cloud independent and positive (while they are generically unphysical if the cloud sectors are not purely virtual). A gauge/cloud duality simplifies the computations and shows that the gauge choice is just a particular cloud. It is possible to dress every field insertion with a different cloud. We compare the purely virtual extension to previous approaches to similar problems.
Eur. Phys. J. C 83 (2023) 544 | DOI: 10.1140/epjc/s10052-023-11717-2