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Abstract

The properties of quantum gravity are reviewed from the point of view of renormalization.
Various attempts to overcome the problem of nonrenormalizability are presented, and the
reasons why most of them fail for quantum gravity are discussed. Interesting possibilities
come from relaxing the locality assumption, which can inspire the investigation of a largely
unexplored sector of quantum field theory. Another possibility is to work with infinitely
many independent couplings, and search for physical quantities that only depend on a finite
subset of them. In this spirit, it is useful to organize the classical action of quantum gravity,
determined by renormalization, in a convenient way. Taking advantage of perturbative local
field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term,
a peculiar scalar that is important only in higher dimensions, plus invariants constructed with
at least three Weyl tensors. We show that the FRLW configurations, and many other locally
conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions
d > 3. If the metric is expanded around such configurations the quadratic part of the action
is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are
instead affected in nontrivial ways by the classical corrections of quantum origin.
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1 Nonrenormalizability and its possible remedies

The Einstein-Hilbert action

Sen(e) = 5,5 [ VIgIR (1.1)

is nonrenormalizable in four dimensions, because when the metric tensor g, is expanded around

the flat-space metric 7, by writing

uv = N + 2"“25;“/7 (1-2)
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the quadratic terms are properly normalized and the vertices are multiplied by powers of x, which
has dimension —1. The counterterms generated by renormalization have dimensions 2L + 2, and
increase with the number of loops L.

In the absence of matter, the theory is finite at one loop [I]. Indeed, using the dimensional

regularization the one-loop divergent terms have the form

Tz [ VBl (@R R bR (13)

where € =4 — D, D is the continued complex dimension, p is the subtraction scale and a, b are

AS(g) =

calculable numbers. Formula (L3]) follows from locality, general covariance, power counting and
the identity
vari (RWPUR“””” — 4R, R" + Rz) = total derivative, (1.4)

which can be used to eliminate the third scalar of dimension 4, R, R'’??, by converting it into
a linear combination of R, R*” and R?. The counterterms (3 are proportional to the Sgy
vacuum field equations and can be eliminated with a redefinition of the metric tensor. Precisely,
2%,,—€
K hu
g:“j = g:U'V — W (2CZR#V — ((I + 2b)g#yR) (15)
gives

Seu(g’) = Seulg) — AS(g) + O(*).

Finiteness is indeed the property that divergences can be subtracted just by means of field
redefinitions, with no redefinitions of parameters. The one-loop finiteness of four dimensional
pure quantum gravity is however a lucky coincidence. It is spoiled by the presence of matter [I],
because in that case the terms (3] are no longer proportional to the classical field equations.
In the absence of matter, it is spoiled at two loops |2, [3], where there appears a counterterm

proportional to
—2¢e /42 h2

M@W / AT e (1.6)
which cannot be absorbed into field redefinitions. In higher even dimensions finiteness does not
even hold at one loop and in the absence of matter. For example, in six-dimensional pure quantum
gravity the counterterm (L6 appears already at one loop [4].

Supergravity enhances the finiteness properties of quantum gravity, but not enough to solve
the problem of renormalizability. N=1 pure supergravity is finite through two loops [5]. Extended
supergravities and supergravities in higher dimensions are believed to be finite up to higher orders.
However, it is always possible to build candidate counterterms that may appear at even higher
orders, and only a miracle would prevent them from being generated by renormalization.

Barring miracles, if we want to remove the divergences of quantum gravity, or supergravity, we

need to extend the classical action by including the invariants generated by renormalization, such
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as ((L.O), multiplied by independent parameters. However, those invariants generate counterterms
of new types, which must also be included. In the end, the extension contains infinitely many

independent terms and parameters, which raises the issue of predictivity.

Renormalization and higher derivatives

Alternative theories of quantum gravity have been investigated for many years. We discuss the
most important results of this research. First observe that the divergent terms (I.3]) can also be
subtracted by extending the classical action (1)), instead of making field redefinitions. Consider
the theory

1 v
Sun(9.8) =~z [ VI (R+ R B + 52 R2) (1.7
where a and 8 are two new independent parameters. If we define

2ahpu—¢
(4m)2e’

2bhiy e

=8+ Ty

o/:oH—

we get

Sup(g, o', ") = Sup(g, o, B) — AS(g).

The problem of this approach is that once the couplings a and [ are introduced, there are
energy domains where the values of a and § cannot be considered small. The modified theory (7))
violates unitarity, because its propagators in flat space have a spin-2 unphysical pole of squared
mass 1/(k%a), which is a ghost, besides a new scalar physical pole of squares mass 1/(x2a), where
a = —2(a + 33). Differently from the Fadeev-Popov ghosts commonly introduced by the gauge-
fixing, the spin-2 unphysical particle cannot be eliminated by choosing a different gauge-fixing,
and does contribute to the S matrix. In the end, it is responsible for the violation of the identity
SST=1.

If we include the cosmological term, we obtain higher-derivative quantum gravity, whose action

1
Supa(g, @, B) = — 5 / Vgl (R +2A + ak®R,, R™ + Br*R?) . (1.8)

is renormalizable to all orders by simple power counting [6], because its propagators (upon choosing
a suitable higher-derivative gauge-fixing) fall off like 1/(p?)? for large momenta p. This improve-
ment of the ultraviolet behavior, however, requires « and & to be of order one, which makes it
impossible to eliminate the unphysical pole from the propagators.

Let us see what happens if we try and suppress the higher-derivative terms nonetheless. The
limit 5 — 0 is costless, but when we further take o — 0 (at which point we can also take A — 0),
we find divergences ~ o~ " In® a, where r,s > 0, r + s > 0, which replace the factors p=¢/e and

p~ 2% /e in (L3) and (LH), and multiply all sorts of similar terms. The removal of those divergences
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takes us back to the problems of the action (LI]), and its nonrenormalizability. In the end, higher-
derivative extensions may solve the problem of renormalizability, but the price to pay, that is to

say the violation of unitarity, is unacceptable.

Renormalization and local perturbative changes of field variables

We may try and get rid of the unphysical pole by taking a somewhat intermediate attitude, that is
to say leaving both « and 3 at their places, but treat them perturbatively, and include all orders
in & and S. In this case, the couplings a and S are called “inessential” [7] and the theory (L) is
no different from (LLI). Precisely, there exists a map [§]

K;2

5 (2aR,, — (o +28)gu R) + O(R?), (1.9)

g;,u/ = Guv

such that
Seu(9") = Sup(g, o, B)

exactly to all orders in o and . Said differently, if the unperturbed theory is the same, in this
case the quadratic part of the action (ILI)) in the expansion ([2)), the actions (LI and (7)) are
completely equivalent from the point of view of perturbative quantum field theory. At the level
of Feynman diagrams, it means that when we use (LL7)) we expand the integrands in powers of «
and B before evaluating the integrals. Doing so, we find a huge number of nontrivial divergent
terms, which are in one-to-one correspondence with those of (ILT). To emphasize the perturbative
equivalence of (LI and (IL7) even more, observe that if we use the same procedure (namely, first
expand in powers of a and [, then calculate) to evaluate the Jacobian determinant associated
with the field redefinition (L9), the result is identically one in dimensional regularization.

A map similar to (9] exists also in the presence of the cosmological constant, which makes

(L8)) perturbatively equivalent to the action

Sennle) = ~5 [ VIsl (R-+20) (110

of Einstein gravity with a cosmological constant. More generally, a similar map exists any time a
correction is quadratically proportional to the field equations of the uncorrected action [§].
Higher-derivative quantum gravity is defined by the action (L8] when « is not treated pertur-
batively. Then it is not equivalent to (L.I0]), because it is defined by expanding around a different
unperturbed theory, that is to say the quadratic part of (L), instead of the quadratic part of
(LI0). Since counterterms are polynomial in the cosmological constant, for the sole purposes
of renormalization it is like expanding around the quadratic part of (7)) versus the quadratic
part of (LI). The integrals of Feynman diagrams must be evaluated at finite «, which kills all

nonrenormalizable divergences, but gives birth to the spin-2 ghost.
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More higher derivatives

Any attempts to remove the ghost from the actions (7)) and (L8) have been unsuccessful so
far, so we may try and modify those actions. The ultraviolet behaviors of propagators can be
further improved by adding terms with more higher-derivatives and considering the coefficient of
R, 00" RM of order one when n has the maximum value, [J being the covariant D’Alembertian.

For example, instead of (L.8)) we can consider

1
Supa(g,a, 8) = ~5.3 / varl (R +2A + omsz,RW + Br*R?
+v&* R, OR™ + 6x*ROR) (1.11)

and take 7 of order one, while o, § and ¢ are treated perturbatively. We can choose a suitable
gauge-fixing so that all propagators fall off as 1/(p?)® for large momenta p, which makes the
theory (LII)) super-renormalizable. Then all the diagrams are convergent, except for a few ones.

It is not possible to improve the renormalization of the theory any further by adding higher
and higher derivatives. In particular, we cannot make the theory finite, since certain one-loop
diagrams remain divergent. This is a simple consequence of power counting: since the higher-
derivative corrections are gauge invariant, they not only improve the behaviors of propagators,
but also generate vertices with large numbers of derivatives. The two effects sort of compensate
each other inside the one-loop diagrams.

The problem of unitarity remains in all these cases: if we switch A off and expand the metric

tensor around flat space, the propagators do contain unphysical poles.

Renormalization and nonlocality

A possible wayout, put forward by Tomboulis in 1997 [9] is to relax the assumption of locality

and add infinitely many higher-derivative terms. Consider the action
1 v
Su(9,0,6) =~ / Vg (R+2A + ¥R AOR™ + £2RE(O)R),  (1.12)

where h(0J) and h'(0J) are so-far unspecified functions. If we choose them so that

/
fim P g My

and such limits are reached sufficiently smoothly, we may expect that the ultraviolet behavior of
the nonlocal theory (I.I2) is the same as the one of Stelle’s theory (L.8]), which would make (LI2])

power counting renormalizable. If we choose the functions so that

. h(z) . h(2)
1 = =
\z\li)noo ZK2y \z\li)noo 2K26
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we expect that the nonlocal theory (LI2]) is super-renormalizable, like the theory (LIIl). More

generally, we can require that there exist polynomials P,(z) and P/ (z) of degrees n > 0, such

that hz) W)
z z
lim = lim =1.

The limits must be sufficiently smooth to ensure that the surviving divergences are local.

(1.13)

Not everything works as expected, but the basic idea is ultimately right. The main point is
that the functions h(z) and h’(z) are unconstrained by renormalization for finite values of z and
can be chosen (together with suitable gauge-fixing functions) so that the propagators do not have
unphysical poles (aside from those introduced by the gauge-fixing, which do not contribute to the
S matrix). This goal can be achieved by demanding that h(z) and h'(z) be entire trascendental
functions that have real and positive values on the real axis, no zeros on the complex plane and
the same asymptotic behaviors at 0o on the real axis. Moreover, the condition (LI3]) must be
restricted to n > 3 in a cone C containing the real axis, or replaced by the milder condition that
there exists an integer n > 3 such that |h(2)|, |h/(2)] — |2|™ for |z| — oo in C. Then, it can be
proved that the theory is super-renormalizable.

The investigation of nonlocal theories is expected to shed light on a mainly unexplored sector of
quantum field theory, and recently has been the focus of renewed interest [10, [I1]. One of the main
objections to this approach to quantum field theory is that “by relaxing nonlocality everything
becomes possible”. As far as we know now, this is not true, because the conditions (.I3]) pose
severe restrictions on the functions h(z) and h’(z), and the solutions are not particularly easy
to work with. To overcome this difficulty, it is necessary to explore more general approaches to
nonlocal theories, and understand whether simpler functions, such as exponentials [I1], may be
viable or not from the point of view of renormalization. This investigation is in progress [12], and
may lead to a better understanding of the relation between nonlocality and renormalization.

It is possible to make the nonlocal theory completely finite by working in odd dimensions,
where one-loop divergences are trivial in dimensional regularization, or adding suitable nonmini-
mal terms [13].

Other remedies for nonrenormalizability

Other approaches to try and make sense of nonrenormalizable theories have been explored in the
literature. We mention four such methods. Each of them has its own weaknesses. Some have
nonperturbative aspects, others can be applied to very few models, others can be applied to a
large class of theories, but not quantum gravity.

First, we mention the idea of asymptotic safety, which is a generalization of asymptotic freedom
[7]. If the ultraviolet limit of quantum gravity is an interacting conformal field theory and its

critical surface is finite dimensional, then it is possible to reduce the free parameters of quantum
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gravity to a finite number by demanding that the theory lie on the critical surface at high energies.
The difficulty of this idea is that it is not known how to implement it in the realm of perturbation
theory. However, truncations and consistency checks have been used to provide evidence that
ultraviolet fixed points with good critical surfaces may exist [22].

Large N expansions can be used to treat quantum field theories beyond the weakly coupled
limit. In some cases, they can also be used to give sense to nonrenormalizable theories [I4]. For

example, the four fermion model in three spacetime dimensions with Lagrangian

N N 2
L=> gy + % (Z Eﬂlﬁ) (1.14)
=1 =1

is nonrenormalizable by power counting, but becomes renormalizable in the large N expansion,
where N is the number of fermion copies and M is a mass scale. Unfortunately, this approach
works only in a very sparse set of special models. The model ([.14) is also a good example of
asymptotically safe theory[I5], its UV interacting fixed point being the conformal field theory
described by the Lagrangian|I6]

Lyy = g@l <i@ = %) Yr,

where o is a scalar field acquiring a nontrivial two-point function from a one-loop “bubble” diagram
at the leading order of the large N limit.

Another approach to the problem of nonrenormalizability is the infinite reduction of refs.
[17, (18], which amounts to express the infinitely many independent parameters A; of a nonrenor-
malizable theory as functions f;(«) of a finite subset a; of them, in a way that is consistent with
the renormalization group. This procedure works better when the power counting renormalizable
sector is an interacting conformal field theory C [18]. Then the solution exists and is unique under
relatively mild assumptions on C and the critical exponents of its irrelevant operators. “Queues”
made of infinitely many higher-dimensional operators O can be consistently turned on, and de-
form C into a “quasi finite” theory. Each operator O’ is multiplied by an appropriate power of
a scale x, which can run due to radiative corrections, and a dimensionless coefficient r;, which
depends on the marginal couplings of C and is determined by requiring that its beta function
vanishes. If the power counting renormalizable sector is not conformal, but the marginal sector is
interacting, it is still possible to define an infinite reduction, by imposing analyticity requirements
on the functions f;(«, ), where o are the marginal couplings. However, in general the solution
is not unique and new independent parameters sporadically appear at high orders [17]. When
the marginal sector is not interacting, which is the case of quantum gravity, the infinite reduction

is difficult to control. Attempts to apply the infinite reduction to quantum gravity have been
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made [19], but they only work in higher-derivative theories, because the presence of terms such
as R, RM, multiplied by finite coefficients, is crucial.

Another mechanism that can be used to turn vertices that are usually nonrenormalizable into
renormalizable ones is the explicit violation of Lorentz symmetry at high energies |20, 21]. It allows
us to add Lagrangian terms containing higher space derivatives without being forced to accom-
pany them by terms containing higher time derivatives. In this way, perturbative unitarity can be
preserved, while improving the behaviors of propagators in the limit where the space components
of momenta become large. These improved behaviors are enough to make several theories renor-
malizable according to a “weighted power counting”|20]. The divergences of Feynman diagrams
are controlled by appropriate weights, which replace the dimensions in units of mass. Energy
and space components of momenta obviously have different weights. Weights are also assigned
to parameters and fields, and a renormalizable theory is a theory that contains no parameters
of negative weights (when the kinetic terms are appropriately normalized and the propagators
behave correctly). Weighted power counting gives us full control on the renormalizability of the
theory and the locality of counterterms. Examples of vertices that become renormalizable are
the dimension-5 vertex (LH)?, which gives Majorana masses to left-handed neutrinos, and the
dimension-6 four fermion vertices ~ (@1?)2- Interesting renormalizable Standard Model exten-
sions can be built incorporating these interactions [21I]. Unfortunately, the breaking of Lorentz
symmetry must be explicit, because a spontaneous breaking is unable to modify ultraviolet behav-
iors. Quantum gravity turns Lorentz symmetry into a local symmetry. Like the explicit breaking
of any gauge symmetry, the explicit breaking of local Lorentz symmetry causes the propagation

of ghosts in the physical sector and so violates unitarity.

Other spacetime dimensions

In general dimension d, the constant s has dimension (2 — d)/2, which is negative for d > 3.
Thus, quantum gravity in higher dimensions has the same problems as in four dimensions. Three
dimensions, on the other hand, are exceptional. The constant x has dimension —1/2, nevertheless
pure Einstein gravity is finite to all orders in d = 3. The reason is that the Weyl tensor C,, s
identically vanishes and so the Riemann tensor R,,,, can be expressed by means of the Ricci
tensor R,, and the scalar curvature R. This means that every counterterm of pure gravity
without a cosmological constant is proportional to the Ricci tensor, so it vanishes by using the
Einstein field equations. All the counterterms can be subtracted by means of field redefinitions,
as we did using (L3 to remove (L3]), which proves that the theory is finite.

The theory remains finite in d = 3 if the cosmological term is switched on, because it can
be reformulated as a Chern-Simons theory [23]. Generically, it is not finite when it is coupled to

matter, which can be proved by explicit computation [24]. Nevertheless, under certain conditions,
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three-dimensional quantum gravity coupled to matter can be made finite by infinite reduction

[25].

2 The classical action of quantum gravity

An enormous effort has been spent in the past decades to explore approaches “beyond quantum
field theory”, but a convincing proposal has yet to emerge from those investigations. In such
a situation, it is worth pursuing quantum gravity within its original framework, the one made
of quantum field theory and renormalization, and be open to change our attitudes towards a
number of fundamental issues, such as locality and predictivity. Even if the ultimate theory of
quantum gravity is still missing, we can work with its nonrenormalizable, perturbatively local
version. Like any nonrenormalizable theory, it is predictive in the low-energy regime, where only
a finite number of terms really contribute to the physical amplitudes, all others being suppressed
by powers of the energy divided by the Planck mass. However, in principle it is also possible to
use quantum gravity to make physical predictions beyond the low-energy regime, if we identify
physical amplitudes that just depend on a finite subset of parameters.

The first thing to do is to organize the classical action of quantum gravity, determined by
renormalization, in a convenient way. Among other things, we know that a term proportional to
(CH) must necessarily be there, multiplied by an independent parameter, because renormalization
turns it on at two loops |2, B]. This is the first departure from Einstein gravity. Even if each
correction to Einstein gravity is small, the presence of infinitely many such corrections may origi-
nate unforeseen effects, probably belonging to energy domains not tested so far, but detectable in
the forthcoming future. Some of those effects might even be insensitive to radiative corrections,
in which case the classical action of quantum gravity is sufficient to single them out. In extreme
situations, such as inside black holes, or close to the event horizon, or in the primordial phases of
the universe, classical corrections of quantum origin may play a relevant role.

Using field redefinitions, the classical action of quantum gravity Sqa can be written in different,
perturbatively equivalent ways as expansions around the Einstein action. For example, we can
rearrange the terms proportional to the Einstein vacuum field equations in the way we like.
Equivalent actions can be useful to uncover different classes of exact solutions of the field equations,
or reduce the effort to study approximate solutions.

The form of Sqg we want to study here contains the Hilbert term, the cosmological term, a pe-
culiar scalar G that is nontrivial in dimensions d larger than four, and then invariants constructed

with the Weyl tensor C),,s, rather than the Riemann tensor Ry, ;. Precisely, we take[26], in
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arbitrary dimensions d > 2,

1 A
SQG:_W/\/M <R+2A+>\052G+)\1H403 + A ROy

+3 ML (Y, C)> + S (2.15)
n=2

where k has dimension —1 in units of mass, A, are dimensionless constants, S,, are the contribu-

tions of matter fields and other gauge fields, G is the special combination [27]

) A(d — 3)(d — 4)

— urpo Qv 2
G = RupoR AR, R" + R* + (d_l)(d_2)A(R+A),

and Z,(V, C) collectively denotes the local scalars of dimension 2n + 4 that can be constructed
with three or more Weyl tensors C,,,» and covariant derivatives V,, up to covariant divergences
of vectors. Each such scalar must be multiplied by an independent parameter A,,. The terms

7,(V,C) have been written explicitly as contractions of three Weyl tensors:
C3 = CWPUCPMBC«JBW’ Cé = Cupwcauﬁycpagﬁ‘

For simplicity we assume parity invariance. Parity violating terms may be treated along the same
guidelines.

In four dimensions \/—gG is the Gauss-Bonnet integrand, which does not contribute to the
field equations. Moreover, C5 and C% are proportional to each other, so we can set A} = 0 in
d = 4. Because of the result of Goroff and Sagnotti [2] the term Cj is switched on at two loops
in pure gravity. That result can be interpreted as the running of the coupling constant A, and
allows us to infer that quantum gravity predicts A\; # 0. In principle, the presence of matter can
modify this conclusion, but only if the matter fields exactly cancel the Cs-counterterm generated
by pure gravity, and the cancellation is consistent with renormalization-group invariance. As far
as we know today, this happens only in supergravity.

It is useful to compare Sqgg with the most general local perturbative extension Sy of the

Einstein action [7]

1 S _ R
Sioc = ~5773 / & (R +20 4> A ePPIN(V, R)) + S, (2.16)
n=0

where ZSA) (V, f?) denotes the scalars of dimensions 2n + 4 that can be constructed with two or
more tensors

. 2A

Ruupo‘ = Ruupa + m (gupgl/a - g;wgup) ’ (217)
as well as their contractions Ry, = R, and R = Rl and covariant derivatives V,, up to

covariant divergences of vectors.

10
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The action Sqg looks like a restriction on Sie, but it is actually perturbatively equivalent to
Sloc- Precisely, the two actions can be mapped into each other by means of local field redefinitions
and parameter redefinitions, the parameters A\, and ), being treated perturbatively. The action
Sloc is preserved by renormalization, since it is the most general local covariant action. Its
perturbative equivalence with Sqq proves that Sqg is also preserved by renormalization, namely
all the divergences generated by the Feynman diagrams can be subtracted away by redefining the
metric tensor and the parameters A,, as well as the matter fields and the parameters contained
inside S,,. Using Bianchi identities, commuting covariant derivatives and integrating by parts
every (counter)term that does not explicitly appear inside Sqa can be canceled in this way [27].
In particular, the scalar G is used to write RWPURW P? as a linear combination of terms that are
present in Sqq, plus terms quadratically proportional to }A%W. In turn, these can be converted
into terms of Sqg by redefining the metric tensor.

Spaces of constant curvature play a peculiar role, since in the absence of matter they are
exact solutions of the field equations of the most general covariant action. Indeed, once R0 =
K (9up9ve — Guo9up) is used, with K =constant, any covariant gravitational field equations must
reduce to a simple condition

F(R2K, 52 A \) g = 0, (2.18)

where f is some function of the parameters of the theory, which can be solved to obtain K. The
parametrizations of (2.I5]) and (2.16]), which use hat tensors or Weyl tensors, are such that the

solution of (2.I8)) simply reads
2A

K= —m. (2.19)

The scalar G generalizes the Gauss-Bonnet integrand in a convenient way. Its main property

is that by expanding the metric tensor around a background g, of constant curvature K equal to

([2.19), the integral [ \/—_gG does not contain terms that are linear or quadratic in the quantum
fluctuations. The invariants [ /=g¢Z,, and [ \/—_gL(IA), n > 1, clearly have the same property.

In every even dimensions d = 2k we can drop one term ~ [ +/—gC¥ containing k Weyl tensors

and no derivatives and add the topological invariant

instead, which does not contribute to the field equations. The difference between two such actions
is a linear combination of other terms ~ [ /—gC¥ plus terms containing the Ricci tensor [28].
Writing the Ricci tensor as a linear combination of R;w and Ag,,, we can reabsorb the differ-
ence into a perturbative local field redefinition and parameter redefinitions. For example, in six
dimensions we can set A} = 0 and add [ /—g¢Gs.

The invariants ([2.20) with k£ < d/2 are not topological. Nevertheless, their variations with
respect to the metric tensor are free of higher derivatives [29]. The action of Lovelock gravity [29]

11
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in d dimensions contains only the invariants ([Z20) with & < d/2. Therefore, its field equations
are completely free of higher derivatives. Nevertheless, that kind of action is not preserved by
renormalization. For example, in four dimensions Lovelock gravity is just Einstein gravity with a
cosmological constant and the Gauss-Bonnet term.

The form (2.15]) is convenient for various purposes. For example, it allows us to find interesting
classes of exact solutions of the field equations, besides the spaces of constant curvature. Examples
are all the locally conformally flat metrics (which we just call “conformally flat” from now on) that
solve the Einstein equations. In particular, the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metrics are exact solutions of the Sqg field equations in arbitrary dimensions d > 2 with a
homogeneous and isotropic matter distribution. In four dimensions such solutions coincide with
the usual ones, while in higher dimensions they coincide with the usual solutions once the energy
density p and the pressure p are replaced by suitable functions of p and p. Metric independent
maps also relate conformally flat solutions of the Sqq field equations to conformally flat solutions
of the Einstein equations. On the other hand, solutions that are not conformally flat, such as the
Schwarzschild and Kerr metrics, are deformed in nontrivial ways by the couplings Ay,.

Another property of Sqgg is that by expanding the metric tensor around conformally flat
backgrounds the quadratic part of the action is free of higher derivatives. Vertices, instead, as
well as quadratic terms obtained by expanding around more general backgrounds, do not have
this feature. Working perturbatively in the couplings A,, every term of the field equations that
contains higher derivatives can be unambiguously resolved. Then the solutions of the Sqq field
equations are uniquely determined by their A,, — 0 limits. The absence of higher derivatives in
the quadratic part of the action is important to prevent the propagation of unphysical degrees of
freedom, such as those of higher-derivative quantum gravity (LT).

The matter action S, is the most general local one, as long as it has correct unitary prop-
agators. If the classical action has correct propagators, the renormalized one also has. Indeed,
in a quantum field theory of matter fields of spins < 1/2 and gauge fields of spins < 2, higher-

derivative quadratic terms are not turned on by renormalization if they are absent at the tree

level [27].

Field equations
Writing
1
Sqc =53 / V=g (R+2A)+ S, + 59,

the Sqq-field equations read

1 _ _
Ryy = 5 R — Mgy, = K2 T + 12T, (2.21)

12
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where

T = _2 95m T(9) — 2 08@
H \/__g 59#1/ ’ 1224 \/_ 5g;uz )
are the matter energy-momentum tensor and the gravitational self-energy-momentum tensor,

respectively. Varying [ V—9G explicitly, we find

1

A(d—4
KT = — Aok [2CMPMCV =3 91 ClooapCP7? — (j_ 5 )C,WUR 7
(d=3)(d—4) [ - = . 2 o -~ d+2 )
——— | 4 h— 2 v ol po — v v
2P R, R — 29, Rpo R d_lR#R%—Q(d 1)9#3
+0O(V2C?) + O(RC?) + O(C3). (2.22)

Observe that the variation of [ \/—gG with respect to the metric is O(R?), where the notation
(’)(]A%”) means terms containing at least n powers of ]A%Wpa and its contractions. Clearly, the tensor
Tﬁg) of (Z:22)) is identically zero in three dimensions. In four dimensions, instead, it reduces to the
last line of (Z.22). For future use we explicitly work out the first non-trivial contributions to T,Sg)
in d = 4, which are the ones proportional to the Goroff-Sagnotti (GS) constant Ags = 3\1k*.

Setting A} = 0 and dropping the Gauss-Bonnet term, we write the four dimensional action as

Acs
Seet = /\/_ (R + 20+ =57 Cs + Z At L (V7 0)) + S
Then we find

2 o (2 o apo 2 apo
T80 = s (VU ClEh, + VP97 CL — SO B — SO R,

1 1 1 1
+69MVC3 _EVMVI/CQ + aguuv202 + ERMV02> (2.23)

+O(ViC?) + O(V2C?) + 0(CY),

where

CR = CuapC®,,  Co= ClyasC’.

Hwpo
In the list of higher orders that appears in the third line of (2.23]) it is understood that pairs of
covariant derivatives can be replaced by curvature tensors, so O(V*C?) = O(V2RC?), etc.

As promised, when the metric tensor is expanded around the metric g,,, of a space of constant
curvature, an FLRW metric, or more generally a conformally flat metric, the quadratic part of the
expanded action Sqg does not contain higher derivatives. We can prove this fact by considering

9)

the variation of T(,, with respect to the metric. The first two lines of (2.22]) give contributions
that contain at most two derivatives of the fluctuation. The third line of (2.22) gives contributions

that are proportional to the Weyl tensor, and vanish on conformally flat metrics. If g,,, does not

13
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belong to these classes of backgrounds then the quadratic part of the action may contain higher
derivatives. In general, vertices do contain higher derivatives of g, , multiplied by the couplings
An-

To understand how to deal with such higher derivatives, recall that renormalization, which is
respounsible for turning on the couplings A, is purely perturbative. To be consistent, the action
Sqa must be treated perturbatively in the A,s. In particular, we must search for solutions of the
field equations that are analytic in the A,s, at least away from singularities. Such solutions exist
and are uniquely determined by their limits A, — 0. Indeed, the field equations contain at most
two time derivatives at A, = 0. Therefore, working perturbatively in A\, we can express the terms
that contain higher derivatives as nonlocal averages of the external sources. In this way we obtain
new field equations that are perturbatively equivalent to (2.21).

Similar methods are commonly used to eliminate runaway solutions caused by higher-time
derivatives, as in the case of the Abraham-Lorentz force in classical electrodynamics [30]. For
applications to gravity see refs. [31, 82] [8]. The elimination of unphysical solutions has a price,
because it generates violations of microcausality [30].

These facts, together with the presence of infinitely many independent couplings, are there to
remind us that Sqg is not the action of a fundamental theory, but must be viewed as an effective
action that can be obtained from a more complete theory in a particular limit or integrating out
some massive fields. In the same way as the Fermi theory of weak interactions helped building the
Standard Model, studying the properties of Sqg can be useful to identify the missing ultimate
theory of quantum gravity, which should be unitary, causal (but non necessarily microcausal) and

renormalizable with a finite number of independent couplings.

3 Exact solutions

In this section we derive exact solutions of the Sqq field equations and relate them to known
solutions of the Einstein equations. Any solution of Sqg can be perturbatively mapped into a
solution of the field equations of any action that is perturbatively equivalent to Sqq, for example
Sloc-

We begin observing that in four dimensions all the conformally flat metrics that solve the

Einstein equations
1
R — §R9uv ~ Mgy = KTy, (3.24)

also solve the Sqq field equations (2.21I)), and vice versa. The reason is that when d = 4 and
Clpvo = 0 formulas ([2:22)) and (2.23)) ensure that the gravitational self-energy-momentum tensor
Tﬁﬂ) identically vanishes. Moreover, the variation of Tlslg,) with respect to the metric is proportional

to the Weyl tensor. Therefore, it also vanishes on conformally flat metrics. If we expand the metric

14
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tensor around conformally flat backgrounds in four dimensions, the propagator coincides with the
one of Einstein gravity (if the same gauge-fixing is used).
Now, if dQ2_, denotes the standard metric of the (d — 2)-dimensional sphere of unit radius,

the metrics

dr?

1 — kr2

of homogeneous and isotropic spaces are conformally flat in arbitrary dimensions > 4. Indeed,

ds* = g datde” = dt* — a®(t) ( + r2d93_2> (3.25)

it is easy to prove that the Weyl tensor vanishes everywhere. The FLRW metrics have the form
(3:25) and solve (3.24) with a homogeneous and isotropic distribution of matter, described by an

energy-momentum tensor 7 equal to

d—1

T (p,p) = popdy —p > _ 5,67, (3.26)
=1

where the energy density p and the pressure p can be time-dependent.
Thus, the FLRW metrics are exact solutions of the Sqg field equations (2Z21)) in four dimen-
sions.

FLRW solutions in arbitrary dimensions

In higher dimensions we have to take the term | \/—_gé into account. Nevertheless, in the classes
of FLRW metrics and conformally flat metrics we can find metric-independent maps that convert
solutions of the Einstein equations into solutions of the Sqqg field equations, and vice versa.
Consider the Sqg field equations (2.2I) with matter energy-momentum tensor given by (3.26]).
We want to show that the FLRW metrics (3.25]) that solve

1 _ .
R;w - §Rg;w - Ag;w = K4 2T;U/(pap) (3'27)

also solve (Z.2I)), and vive versa, where p and p are suitable functions of p and p. Inserting (3.27)
into (2.2I)) we find that this statement is true if and only if

Ty (5,5) = Ty (p, p) + T,9). (3.28)
Using ([3.27) inside (2.22)) (and recalling that C),, 0 = 0) we easily get
d-1
T = Aop <ﬁ5258 —(p+2p)) 6,36;-’) :
i=1

where
Ag = 2)\0/<d(
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so equation (3.28)) is equivalent to the pair of metric-independent quadratic equations
p=p—NAop®,  p=p—Nop(p+2p), (3.29)

for p and p.

Given p and p, we determine p and p by solving the equations (B.29)). Then the usual FLRW
solution with energy density p and pressure p solves the Sqg field equations with energy density
p and pressure p. Assuming pAg,pAg < 1 the solution can be worked out perturbatively. The
cases d = 3,4 can be seen as particular cases of the more general solution.

Observe that in higher dimensions when we expand the metric around FLRW backgrounds
the propagator does not coincide with the one obtained in Einstein gravity (even if we use the
same gauge-fixing). Nevertheless, formula ([2.22]) shows that the quadratic part of the expanded
action Sqg does not contain higher derivatives. Indeed, it is just affected by terms ~ pv7? and

~ pv/2, and terms with fewer derivatives.
Conformally flat solutions in arbitrary dimensions

More generally, if Tl’j and T}; are related by the metric independent polynomial equation

d—1
d—2

Ty =T/ — Ao

PV v 2 20 1 V2
v <2T5Tp — 0Ty — - TVT + —— T > , (3.30)

d—1 d—1

where T =T} and Ty = T[‘)’ T?, then the conformally flat metrics that solve

1 -
R, — §Rg,w — Agu = K72T), (3.31)

also solve the Sqq field equations, and vice versa. The condition (B:30) is obtained inserting (3.31))
into (2.22) and ([22I)), and using C,pc = 0. Expanding the metric tensor around a conformally

flat solution the quadratic part of the action Sqq is free of higher derivatives.

4 Approximate solutions

From the observational point of view, deformed black-hole solutions can offer interesting possi-
bilities to test modifications of general relativity. Deviations from the Kerr metric, in particular,
are the easiest to detect. Since black-hole solutions are not conformally flat, they are affected in
a non-trivial way by the corrections to Einstein gravity contained in Sqg.

To illustrate these effects, we work in four dimensions and in the absence of matter, and keep
only the GS constant Ags, besides the Newton constant G = k2 /87 and the cosmological constant
A. The action reads

1 A
Sthe = —ﬁ/\/_—g <R+ 2A + %cg) : (4.32)

16
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We begin looking for spherically symmetric solutions of the form
ds? = /Fem g2 _ o7 qr? — 12(dh% + sin? dp?). (4.33)

Inserting the ansatz (A33]) into the field equations (2.2I)) and using (2.23)) we find differential
equations for v(r) and w(r). The Ags dependent contributions involve up to four derivatives
of these functions. We must search for solutions that are analytic in Ags, at least away from
singularities. Thus we can work iteratively in Agg, which allows us to convert the higher-derivative
terms into terms that have at most two derivatives. After this conversion we find two (involved)
equations of the form

vV =F(v,w,r), W' = F(v,w,r), (4.34)

for certain functions F; and F, that are analytic in Ags, and two other equations that are
automatically satisfied when (4.34]) hold. We see that the solutions certainly exist and are uniquely

determined by their limits Ags — 0. To the lowest order of approximation, the solutions are

2
vy _q_Ts _ Ao OAesrs (1 8rs 4, 2
e 1 o3t % 1 o gAr + O(Agg),
4Ags7‘§
w(r)==—"5"+ O(ALs), (4.35)

rs = 2Gm being the usual Schwarzschild radius. Higher-order corrections show that the solution

has the form

_ T A P P—
St = =1 oS E 2R, W)= Y Qe (436)
n=1 n=1
where A
GSTs
£(r) = =2

and P,, Q, are polynomials of degree n in r¢/r and Ar2. It is easy to verify that the expansion
of gy has the same form as the one of —g-!. Thus the approximation obtained by expanding in
powers of Ags is valid for ¢ < 1, with 74/r and Ar? bounded.

The violations of microcausality induced by the presence of higher time derivatives can be
studied by considering a fluctuation d¢ around the metric given by (£33]) and (£35]). Higher-time
derivative terms provided by 5Tlslg,) are multiplied by the Weyl tensor C ~ r4/r3 or by VO ~ 1, /r4:

K0T ~ AasVCV35g + AasC'V*og

Comparing these terms with the ones contained in the Einstein equations and assuming that the

derivatives of dg are time ones, for £(r) < 1 causality violations last for a typical time equal to
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In the case of gravitational lensing by a light black hole, taking r around a few times 7 and
assuming &(r) ~ 1 it is necessary to resolve time intervals of about 10™* seconds.

Now we switch to the modified Kerr metric. We study the large distance expansion of the
deformed Kerr metric at A = 0. Precisely, we take rs,a ~ ¢ and Ags ~ €, e < 1 (i.e. we assume
that the constants 7, @ and Ags are of orders equal to their dimensions in units of length), and
calculate the metric to the order 2. Doing so, we automatically exclude orders of Agg larger than

the first. In Boyer-Lindquist coordinates we write

ds? = gudt® + grrdr® + geed0* + g4edd? + 2gidtde

and obtain
2A. 2 6 2,.2
g =1— % + Gzrs (3p% — 2rry — 54a® cos? 0), geg = —p° + a GTS Aggsin® 6,
p 3p p
2 2
2Agsr
Grr = _% + 3p6A8 (9(12 +9p% + rry + 12 — 2974 cos? 9), (4.37)
arrs . o 4AGS7"§> . 9 9 5 airrs . o

Jip = —5— sin 0<1+ , Jos = —sin“0 [ a* +r* + ——sin“0 |,

where, as usual,
p* =12 +a%cos? 6, A=r%—rrg+ad

We stress again that renormalization predicts Ags # 0. Therefore, the deviations just reported
can be viewed as predictions of quantum gravity. Their practical detectability depends on the
actual value of the constant Agg. Theoretically, we cannot predict the exact value of Agg, but
only the Ags running, which gives us an estimate of the minimum value of |Agg|. Using the
two-loop result of ref. [2] we find

/ N

AAGS(&E) = Ags(@ — Ags(€ ) = fﬁ In ?,
where Ags(z) is the running coupling at the scale =, [p = v/G is the Planck length and f is a
numerical factor of order 1. If we take £ equal to the diameter of the observable universe and ¢

equal to the Planck length itself, we obtain
|AAgs| ~ Ip.

If the value of |Ags| were around % there would be no chance to detect the deviations we have
worked out so far. We can only hope that |Agg| has a much larger value in nature. Light black
holes are the ones that are affected more sensibly. Taking a mass equal to 5 solar masses, we need
at least

|Ags| ~ 101561} = 101 (eV) ™ (4.38)
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to get €5 ~ 1. In this case the deviations would be appreciable right outside the black hole. The
Schwarzschild radius would be modified in a sensible way and effects on the deflection of light,
for example, could be detected. Depending on the precision of our instruments, smaller values of
&s could suffice. In case no deviations are observed it is possible to put experimental bounds on
Ags. Observe that as long as |Agg| is much larger than l;lg, for all practical purposes Agg does

not run throughout the universe.

5 Conclusions

The nonrenormalizability of quantum gravity is a challenging problem that forces us to investigate
unexplored sectors of quantum field theory, and maybe change our attitudes towards a number of
fundamental issues. Most attempts to make it renormalizable generate violations of unitarity. A
possibility to have both renormalizability and unitarity at the same time is to relax the locality
assumption. A more conservative standpoint is to work with quantum gravity as a nonrenormaliz-
able theory, which means get used to deal with infinitely many parameters and search for physical
predictions that just depend on a finite subset of them. In this perspective, the first thing to do
is to organize the classical action of quantum gravity, as determined by renormalization, in the
most convenient way.

Using perturbative field redefinitions and parameter redefinitions, we can single out a form
Sqa that allows us to show that some well known metrics, such as the FLRW metrics, are exact
solutions of the field equations, or can be mapped into exact solutions. More generally, all the
conformally flat solutions of Einstein gravity can be mapped in a metric independent way into
conformally flat solutions of Sqq, and vice versa. The quadratic terms of the action, generated by
expanding the metric around these solutions, are free of higher derivatives. Solutions that are not
conformally flat are instead modified in a nontrivial way. We have studied the first corrections
to the metrics of the Schwarzschild and Kerr types, by expanding in powers of the GS constant.
Renormalization only tells us that this constant is nonvanishing, but is unable to predict its actual
value. It would be desirable to put constraints on its magnitude by comparing predictions and

observational data.
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