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Quantum Gravity And RenormalizationDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,Largo Pontecorvo 3, I-56127 Pisa, Italy,and INFN, Sezione di Pisa, Pisa, Italydamiano.anselmi@df.unipi.itAbstractThe properties of quantum gravity are reviewed from the point of view of renormalization.Various attempts to overcome the problem of nonrenormalizability are presented, and thereasons why most of them fail for quantum gravity are discussed. Interesting possibilitiescome from relaxing the locality assumption, which can inspire the investigation of a largelyunexplored sector of quantum �eld theory. Another possibility is to work with in�nitelymany independent couplings, and search for physical quantities that only depend on a �nitesubset of them. In this spirit, it is useful to organize the classical action of quantum gravity,determined by renormalization, in a convenient way. Taking advantage of perturbative local�eld rede�nitions, we write the action as the sum of the Hilbert term, the cosmological term,a peculiar scalar that is important only in higher dimensions, plus invariants constructed withat least three Weyl tensors. We show that the FRLW con�gurations, and many other locallyconformally �at metrics, are exact solutions of the �eld equations in arbitrary dimensions

d > 3. If the metric is expanded around such con�gurations the quadratic part of the actionis free of higher-time derivatives. Other well-known metrics, such as those of black holes, areinstead a�ected in nontrivial ways by the classical corrections of quantum origin.Keywords: quantum gravity; renormalization. PACS Nos.: 04.60.-m, 11.10.Gh1 Nonrenormalizability and its possible remediesThe Einstein-Hilbert action
SEH(g) = − 1

2κ2

∫

√

|g|R (1.1)is nonrenormalizable in four dimensions, because when the metric tensor gµν is expanded aroundthe �at-space metric ηµν , by writing
gµν = ηµν + 2κφµν , (1.2)1
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the quadratic terms are properly normalized and the vertices are multiplied by powers of κ, whichhas dimension −1. The counterterms generated by renormalization have dimensions 2L+ 2, andincrease with the number of loops L.In the absence of matter, the theory is �nite at one loop [1]. Indeed, using the dimensionalregularization the one-loop divergent terms have the form

∆S(g) =
}µ−ε

(4π)2ε

∫

√

|g|
(

aRµνR
µν + bR2

) (1.3)where ε = 4 −D, D is the continued complex dimension, µ is the subtraction scale and a, b arecalculable numbers. Formula (1.3) follows from locality, general covariance, power counting andthe identity
√

|g|
(

RµνρσR
µνρσ − 4RµνR

µν +R2
)

= total derivative, (1.4)which can be used to eliminate the third scalar of dimension 4, RµνρσR
µνρσ, by converting it intoa linear combination of RµνR

µν and R2. The counterterms (1.3) are proportional to the SEHvacuum �eld equations and can be eliminated with a rede�nition of the metric tensor. Precisely,
g′µν = gµν −

κ2}µ−ε

(4π)2ε
(2aRµν − (a+ 2b)gµνR) (1.5)gives

SEH(g′) = SEH(g) −∆S(g) +O(}2).Finiteness is indeed the property that divergences can be subtracted just by means of �eldrede�nitions, with no rede�nitions of parameters. The one-loop �niteness of four dimensionalpure quantum gravity is however a lucky coincidence. It is spoiled by the presence of matter [1],because in that case the terms (1.3) are no longer proportional to the classical �eld equations.In the absence of matter, it is spoiled at two loops [2, 3], where there appears a countertermproportional to
µ−2εκ2}2

(4π)4ε

∫

√

|g|R ρσ
µν R µν

αβ R αβ
ρσ , (1.6)which cannot be absorbed into �eld rede�nitions. In higher even dimensions �niteness does noteven hold at one loop and in the absence of matter. For example, in six-dimensional pure quantumgravity the counterterm (1.6) appears already at one loop [4].Supergravity enhances the �niteness properties of quantum gravity, but not enough to solvethe problem of renormalizability. N=1 pure supergravity is �nite through two loops [5]. Extendedsupergravities and supergravities in higher dimensions are believed to be �nite up to higher orders.However, it is always possible to build candidate counterterms that may appear at even higherorders, and only a miracle would prevent them from being generated by renormalization.Barring miracles, if we want to remove the divergences of quantum gravity, or supergravity, weneed to extend the classical action by including the invariants generated by renormalization, such2
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as (1.6), multiplied by independent parameters. However, those invariants generate countertermsof new types, which must also be included. In the end, the extension contains in�nitely manyindependent terms and parameters, which raises the issue of predictivity.Renormalization and higher derivativesAlternative theories of quantum gravity have been investigated for many years. We discuss themost important results of this research. First observe that the divergent terms (1.3) can also besubtracted by extending the classical action (1.1), instead of making �eld rede�nitions. Considerthe theory

SHD(g, α, β) = − 1

2κ2

∫

√

|g|
(

R+ ακ2RµνR
µν + βκ2R2

)

, (1.7)where α and β are two new independent parameters. If we de�ne
α′ = α+

2a}µ−ε

(4π)2ε
, β′ = β +

2b}µ−ε

(4π)2ε
.we get

SHD(g, α′, β′) = SHD(g, α, β) −∆S(g).The problem of this approach is that once the couplings α and β are introduced, there areenergy domains where the values of α and β cannot be considered small. The modi�ed theory (1.7)violates unitarity, because its propagators in �at space have a spin-2 unphysical pole of squaredmass 1/(κ2α), which is a ghost, besides a new scalar physical pole of squares mass 1/(κ2ᾱ), where
ᾱ = −2(α + 3β). Di�erently from the Fadeev-Popov ghosts commonly introduced by the gauge-�xing, the spin-2 unphysical particle cannot be eliminated by choosing a di�erent gauge-�xing,and does contribute to the S matrix. In the end, it is responsible for the violation of the identity
SS† = 1.If we include the cosmological term, we obtain higher-derivative quantum gravity, whose action

SHDΛ(g, α, β) = − 1

2κ2

∫

√

|g|
(

R+ 2Λ + ακ2RµνR
µν + βκ2R2

)

. (1.8)is renormalizable to all orders by simple power counting [6], because its propagators (upon choosinga suitable higher-derivative gauge-�xing) fall o� like 1/(p2)2 for large momenta p. This improve-ment of the ultraviolet behavior, however, requires α and ᾱ to be of order one, which makes itimpossible to eliminate the unphysical pole from the propagators.Let us see what happens if we try and suppress the higher-derivative terms nonetheless. Thelimit β → 0 is costless, but when we further take α→ 0 (at which point we can also take Λ → 0),we �nd divergences ∼ α−r lns α, where r, s > 0, r + s > 0, which replace the factors µ−ε/ε and
µ−2ε/ε in (1.3) and (1.6), and multiply all sorts of similar terms. The removal of those divergences3



14R1Renorm
takes us back to the problems of the action (1.1), and its nonrenormalizability. In the end, higher-derivative extensions may solve the problem of renormalizability, but the price to pay, that is tosay the violation of unitarity, is unacceptable.Renormalization and local perturbative changes of �eld variablesWe may try and get rid of the unphysical pole by taking a somewhat intermediate attitude, that isto say leaving both α and β at their places, but treat them perturbatively, and include all ordersin α and β. In this case, the couplings α and β are called �inessential� [7] and the theory (1.7) isno di�erent from (1.1). Precisely, there exists a map [8]

g′µν = gµν −
κ2

2
(2αRµν − (α+ 2β)gµνR) +O(R2), (1.9)such that

SEH(g′) = SHD(g, α, β)exactly to all orders in α and β. Said di�erently, if the unperturbed theory is the same, in thiscase the quadratic part of the action (1.1) in the expansion (1.2), the actions (1.1) and (1.7) arecompletely equivalent from the point of view of perturbative quantum �eld theory. At the levelof Feynman diagrams, it means that when we use (1.7) we expand the integrands in powers of αand β before evaluating the integrals. Doing so, we �nd a huge number of nontrivial divergentterms, which are in one-to-one correspondence with those of (1.1). To emphasize the perturbativeequivalence of (1.1) and (1.7) even more, observe that if we use the same procedure (namely, �rstexpand in powers of α and β, then calculate) to evaluate the Jacobian determinant associatedwith the �eld rede�nition (1.9), the result is identically one in dimensional regularization.A map similar to (1.9) exists also in the presence of the cosmological constant, which makes(1.8) perturbatively equivalent to the action
SEHΛ(g) = − 1

2κ2

∫

√

|g| (R+ 2Λ) (1.10)of Einstein gravity with a cosmological constant. More generally, a similar map exists any time acorrection is quadratically proportional to the �eld equations of the uncorrected action [8].Higher-derivative quantum gravity is de�ned by the action (1.8) when α is not treated pertur-batively. Then it is not equivalent to (1.10), because it is de�ned by expanding around a di�erentunperturbed theory, that is to say the quadratic part of (1.8), instead of the quadratic part of(1.10). Since counterterms are polynomial in the cosmological constant, for the sole purposesof renormalization it is like expanding around the quadratic part of (1.7) versus the quadraticpart of (1.1). The integrals of Feynman diagrams must be evaluated at �nite α, which kills allnonrenormalizable divergences, but gives birth to the spin-2 ghost.4
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More higher derivativesAny attempts to remove the ghost from the actions (1.7) and (1.8) have been unsuccessful sofar, so we may try and modify those actions. The ultraviolet behaviors of propagators can befurther improved by adding terms with more higher-derivatives and considering the coe�cient of
Rµν�

nRµν of order one when n has the maximum value, � being the covariant D'Alembertian.For example, instead of (1.8) we can consider
SHDΛ(g, α, β) =− 1

2κ2

∫

√

|g|
(

R+ 2Λ + ακ2RµνR
µν + βκ2R2

+γκ4Rµν�R
µν + δκ4R�R

) (1.11)and take γ of order one, while α, β and δ are treated perturbatively. We can choose a suitablegauge-�xing so that all propagators fall o� as 1/(p2)3 for large momenta p, which makes thetheory (1.11) super-renormalizable. Then all the diagrams are convergent, except for a few ones.It is not possible to improve the renormalization of the theory any further by adding higherand higher derivatives. In particular, we cannot make the theory �nite, since certain one-loopdiagrams remain divergent. This is a simple consequence of power counting: since the higher-derivative corrections are gauge invariant, they not only improve the behaviors of propagators,but also generate vertices with large numbers of derivatives. The two e�ects sort of compensateeach other inside the one-loop diagrams.The problem of unitarity remains in all these cases: if we switch Λ o� and expand the metrictensor around �at space, the propagators do contain unphysical poles.Renormalization and nonlocalityA possible wayout, put forward by Tomboulis in 1997 [9] is to relax the assumption of localityand add in�nitely many higher-derivative terms. Consider the action
Snl(g, α, β) = − 1

2κ2

∫

√

|g|
(

R+ 2Λ + κ2Rµνh(�)Rµν + κ2Rh′(�)R
)

, (1.12)where h(�) and h′(�) are so-far unspeci�ed functions. If we choose them so that
lim

|z|→∞

h(z)

α
= lim

|z|→∞

h′(z)

β
= 1,and such limits are reached su�ciently smoothly, we may expect that the ultraviolet behavior ofthe nonlocal theory (1.12) is the same as the one of Stelle's theory (1.8), which would make (1.12)power counting renormalizable. If we choose the functions so that

lim
|z|→∞

h(z)

zκ2γ
= lim

|z|→∞

h′(z)

zκ2δ
= 1,5
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we expect that the nonlocal theory (1.12) is super-renormalizable, like the theory (1.11). Moregenerally, we can require that there exist polynomials Pn(z) and P ′

n(z) of degrees n > 0, suchthat
lim

|z|→∞

h(z)

Pn(z)
= lim

|z|→∞

h′(z)

P ′
n(z)

= 1. (1.13)The limits must be su�ciently smooth to ensure that the surviving divergences are local.Not everything works as expected, but the basic idea is ultimately right. The main point isthat the functions h(z) and h′(z) are unconstrained by renormalization for �nite values of z andcan be chosen (together with suitable gauge-�xing functions) so that the propagators do not haveunphysical poles (aside from those introduced by the gauge-�xing, which do not contribute to theS matrix). This goal can be achieved by demanding that h(z) and h′(z) be entire trascendentalfunctions that have real and positive values on the real axis, no zeros on the complex plane andthe same asymptotic behaviors at ±∞ on the real axis. Moreover, the condition (1.13) must berestricted to n > 3 in a cone C containing the real axis, or replaced by the milder condition thatthere exists an integer n > 3 such that |h(z)|, |h′(z)| → |z|n for |z| → ∞ in C. Then, it can beproved that the theory is super-renormalizable.The investigation of nonlocal theories is expected to shed light on a mainly unexplored sector ofquantum �eld theory, and recently has been the focus of renewed interest [10, 11]. One of the mainobjections to this approach to quantum �eld theory is that �by relaxing nonlocality everythingbecomes possible�. As far as we know now, this is not true, because the conditions (1.13) posesevere restrictions on the functions h(z) and h′(z), and the solutions are not particularly easyto work with. To overcome this di�culty, it is necessary to explore more general approaches tononlocal theories, and understand whether simpler functions, such as exponentials [11], may beviable or not from the point of view of renormalization. This investigation is in progress [12], andmay lead to a better understanding of the relation between nonlocality and renormalization.It is possible to make the nonlocal theory completely �nite by working in odd dimensions,where one-loop divergences are trivial in dimensional regularization, or adding suitable nonmini-mal terms [13].Other remedies for nonrenormalizabilityOther approaches to try and make sense of nonrenormalizable theories have been explored in theliterature. We mention four such methods. Each of them has its own weaknesses. Some havenonperturbative aspects, others can be applied to very few models, others can be applied to alarge class of theories, but not quantum gravity.First, we mention the idea of asymptotic safety, which is a generalization of asymptotic freedom[7]. If the ultraviolet limit of quantum gravity is an interacting conformal �eld theory and itscritical surface is �nite dimensional, then it is possible to reduce the free parameters of quantum6
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gravity to a �nite number by demanding that the theory lie on the critical surface at high energies.The di�culty of this idea is that it is not known how to implement it in the realm of perturbationtheory. However, truncations and consistency checks have been used to provide evidence thatultraviolet �xed points with good critical surfaces may exist [22].Large N expansions can be used to treat quantum �eld theories beyond the weakly coupledlimit. In some cases, they can also be used to give sense to nonrenormalizable theories [14]. Forexample, the four fermion model in three spacetime dimensions with Lagrangian

L =

N
∑

I=1

ψI i∂/ψI +
1

2MN

(

N
∑

I=1

ψIψI

)2 (1.14)is nonrenormalizable by power counting, but becomes renormalizable in the large N expansion,where N is the number of fermion copies and M is a mass scale. Unfortunately, this approachworks only in a very sparse set of special models. The model (1.14) is also a good example ofasymptotically safe theory[15], its UV interacting �xed point being the conformal �eld theorydescribed by the Lagrangian[16]
LUV =

N
∑

I=1

ψI

(

i∂/− σ√
N

)

ψI ,where σ is a scalar �eld acquiring a nontrivial two-point function from a one-loop �bubble� diagramat the leading order of the large N limit.Another approach to the problem of nonrenormalizability is the in�nite reduction of refs.[17, 18], which amounts to express the in�nitely many independent parameters λi of a nonrenor-malizable theory as functions fi(α) of a �nite subset αI of them, in a way that is consistent withthe renormalization group. This procedure works better when the power counting renormalizablesector is an interacting conformal �eld theory C [18]. Then the solution exists and is unique underrelatively mild assumptions on C and the critical exponents of its irrelevant operators. �Queues�made of in�nitely many higher-dimensional operators Oi can be consistently turned on, and de-form C into a �quasi �nite� theory. Each operator Oi is multiplied by an appropriate power ofa scale κ, which can run due to radiative corrections, and a dimensionless coe�cient ri, whichdepends on the marginal couplings of C and is determined by requiring that its beta functionvanishes. If the power counting renormalizable sector is not conformal, but the marginal sector isinteracting, it is still possible to de�ne an in�nite reduction, by imposing analyticity requirementson the functions fi(α, κ), where α are the marginal couplings. However, in general the solutionis not unique and new independent parameters sporadically appear at high orders [17]. Whenthe marginal sector is not interacting, which is the case of quantum gravity, the in�nite reductionis di�cult to control. Attempts to apply the in�nite reduction to quantum gravity have been7
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made [19], but they only work in higher-derivative theories, because the presence of terms suchas RµνR

µν , multiplied by �nite coe�cients, is crucial.Another mechanism that can be used to turn vertices that are usually nonrenormalizable intorenormalizable ones is the explicit violation of Lorentz symmetry at high energies [20, 21]. It allowsus to add Lagrangian terms containing higher space derivatives without being forced to accom-pany them by terms containing higher time derivatives. In this way, perturbative unitarity can bepreserved, while improving the behaviors of propagators in the limit where the space componentsof momenta become large. These improved behaviors are enough to make several theories renor-malizable according to a �weighted power counting�[20]. The divergences of Feynman diagramsare controlled by appropriate weights, which replace the dimensions in units of mass. Energyand space components of momenta obviously have di�erent weights. Weights are also assignedto parameters and �elds, and a renormalizable theory is a theory that contains no parametersof negative weights (when the kinetic terms are appropriately normalized and the propagatorsbehave correctly). Weighted power counting gives us full control on the renormalizability of thetheory and the locality of counterterms. Examples of vertices that become renormalizable arethe dimension-5 vertex (LH)2, which gives Majorana masses to left-handed neutrinos, and thedimension-6 four fermion vertices ∼
(

ψψ
)2. Interesting renormalizable Standard Model exten-sions can be built incorporating these interactions [21]. Unfortunately, the breaking of Lorentzsymmetry must be explicit, because a spontaneous breaking is unable to modify ultraviolet behav-iors. Quantum gravity turns Lorentz symmetry into a local symmetry. Like the explicit breakingof any gauge symmetry, the explicit breaking of local Lorentz symmetry causes the propagationof ghosts in the physical sector and so violates unitarity.Other spacetime dimensionsIn general dimension d, the constant κ has dimension (2 − d)/2, which is negative for d > 3.Thus, quantum gravity in higher dimensions has the same problems as in four dimensions. Threedimensions, on the other hand, are exceptional. The constant κ has dimension −1/2, neverthelesspure Einstein gravity is �nite to all orders in d = 3. The reason is that the Weyl tensor Cµνρσidentically vanishes and so the Riemann tensor Rµνρσ can be expressed by means of the Riccitensor Rµν and the scalar curvature R. This means that every counterterm of pure gravitywithout a cosmological constant is proportional to the Ricci tensor, so it vanishes by using theEinstein �eld equations. All the counterterms can be subtracted by means of �eld rede�nitions,as we did using (1.5) to remove (1.3), which proves that the theory is �nite.The theory remains �nite in d = 3 if the cosmological term is switched on, because it canbe reformulated as a Chern-Simons theory [23]. Generically, it is not �nite when it is coupled tomatter, which can be proved by explicit computation [24]. Nevertheless, under certain conditions,8
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three-dimensional quantum gravity coupled to matter can be made �nite by in�nite reduction[25].2 The classical action of quantum gravityAn enormous e�ort has been spent in the past decades to explore approaches �beyond quantum�eld theory�, but a convincing proposal has yet to emerge from those investigations. In sucha situation, it is worth pursuing quantum gravity within its original framework, the one madeof quantum �eld theory and renormalization, and be open to change our attitudes towards anumber of fundamental issues, such as locality and predictivity. Even if the ultimate theory ofquantum gravity is still missing, we can work with its nonrenormalizable, perturbatively localversion. Like any nonrenormalizable theory, it is predictive in the low-energy regime, where onlya �nite number of terms really contribute to the physical amplitudes, all others being suppressedby powers of the energy divided by the Planck mass. However, in principle it is also possible touse quantum gravity to make physical predictions beyond the low-energy regime, if we identifyphysical amplitudes that just depend on a �nite subset of parameters.The �rst thing to do is to organize the classical action of quantum gravity, determined byrenormalization, in a convenient way. Among other things, we know that a term proportional to(1.6) must necessarily be there, multiplied by an independent parameter, because renormalizationturns it on at two loops [2, 3]. This is the �rst departure from Einstein gravity. Even if eachcorrection to Einstein gravity is small, the presence of in�nitely many such corrections may origi-nate unforeseen e�ects, probably belonging to energy domains not tested so far, but detectable inthe forthcoming future. Some of those e�ects might even be insensitive to radiative corrections,in which case the classical action of quantum gravity is su�cient to single them out. In extremesituations, such as inside black holes, or close to the event horizon, or in the primordial phases ofthe universe, classical corrections of quantum origin may play a relevant role.Using �eld rede�nitions, the classical action of quantum gravity SQG can be written in di�erent,perturbatively equivalent ways as expansions around the Einstein action. For example, we canrearrange the terms proportional to the Einstein vacuum �eld equations in the way we like.Equivalent actions can be useful to uncover di�erent classes of exact solutions of the �eld equations,or reduce the e�ort to study approximate solutions.The form of SQG we want to study here contains the Hilbert term, the cosmological term, a pe-culiar scalar Ĝ that is nontrivial in dimensions d larger than four, and then invariants constructedwith the Weyl tensor Cµνρσ , rather than the Riemann tensor Rµνρσ . Precisely, we take[26], in

9



14R1Renorm
arbitrary dimensions d > 2,

SQG=− 1

2κd−2

∫

√

|g|
(

R+ 2Λ + λ0κ
2Ĝ + λ1κ

4C
3
+ λ′1κ

4C ′
3

+
∞
∑

n=2

λnκ
2n+2In(∇, C)

)

+ Sm (2.15)where κ has dimension −1 in units of mass, λn are dimensionless constants, Sm are the contribu-tions of matter �elds and other gauge �elds, Ĝ is the special combination [27]
Ĝ = RµνρσR

µνρσ − 4RµνR
µν +R2 +

4(d− 3)(d − 4)

(d− 1)(d− 2)
Λ (R+ Λ) ,and In(∇, C) collectively denotes the local scalars of dimension 2n + 4 that can be constructedwith three or more Weyl tensors Cµνρσ and covariant derivatives ∇µ, up to covariant divergencesof vectors. Each such scalar must be multiplied by an independent parameter λn. The terms

I1(∇, C) have been written explicitly as contractions of three Weyl tensors:
C3 = CµνρσC

ρσαβC µν
αβ , C ′

3 = CµρνσC
αµβνCρ σ

α β.For simplicity we assume parity invariance. Parity violating terms may be treated along the sameguidelines.In four dimensions √−gĜ is the Gauss-Bonnet integrand, which does not contribute to the�eld equations. Moreover, C3 and C ′
3 are proportional to each other, so we can set λ′1 = 0 in

d = 4. Because of the result of Goro� and Sagnotti [2] the term C3 is switched on at two loopsin pure gravity. That result can be interpreted as the running of the coupling constant λ1, andallows us to infer that quantum gravity predicts λ1 6= 0. In principle, the presence of matter canmodify this conclusion, but only if the matter �elds exactly cancel the C3-counterterm generatedby pure gravity, and the cancellation is consistent with renormalization-group invariance. As faras we know today, this happens only in supergravity.It is useful to compare SQG with the most general local perturbative extension Sloc of theEinstein action [7]
Sloc = − 1

2κd−2

∫ √−g
(

R+ 2Λ +

∞
∑

n=0

λ̄nκ
2n+2Ī(Λ)

n (∇, R̂)
)

+ Sm, (2.16)where Ī(Λ)
n (∇, R̂) denotes the scalars of dimensions 2n + 4 that can be constructed with two ormore tensors

R̂µνρσ = Rµνρσ +
2Λ

(d− 1) (d− 2)
(gµρgνσ − gµσgνρ) , (2.17)as well as their contractions R̂µν = R̂ρ

µρν and R̂ = R̂µ
µ, and covariant derivatives ∇µ, up tocovariant divergences of vectors. 10
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The action SQG looks like a restriction on Sloc, but it is actually perturbatively equivalent to

Sloc. Precisely, the two actions can be mapped into each other by means of local �eld rede�nitionsand parameter rede�nitions, the parameters λn and λ̄n being treated perturbatively. The action
Sloc is preserved by renormalization, since it is the most general local covariant action. Itsperturbative equivalence with SQG proves that SQG is also preserved by renormalization, namelyall the divergences generated by the Feynman diagrams can be subtracted away by rede�ning themetric tensor and the parameters λn, as well as the matter �elds and the parameters containedinside Sm. Using Bianchi identities, commuting covariant derivatives and integrating by partsevery (counter)term that does not explicitly appear inside SQG can be canceled in this way [27].In particular, the scalar Ĝ is used to write R̂µνρσR̂

µνρσ as a linear combination of terms that arepresent in SQG, plus terms quadratically proportional to R̂µν . In turn, these can be convertedinto terms of SQG by rede�ning the metric tensor.Spaces of constant curvature play a peculiar role, since in the absence of matter they areexact solutions of the �eld equations of the most general covariant action. Indeed, once Rµνρσ =

K(gµρgνσ − gµσgνρ) is used, with K =constant, any covariant gravitational �eld equations mustreduce to a simple condition
f(κ2K,κ2Λ, λ)gµν = 0, (2.18)where f is some function of the parameters of the theory, which can be solved to obtain K. Theparametrizations of (2.15) and (2.16), which use hat tensors or Weyl tensors, are such that thesolution of (2.18) simply reads
K = − 2Λ

(d− 1) (d− 2)
. (2.19)The scalar Ĝ generalizes the Gauss-Bonnet integrand in a convenient way. Its main propertyis that by expanding the metric tensor around a background ḡµν of constant curvature K equal to(2.19), the integral ∫ √−gĜ does not contain terms that are linear or quadratic in the quantum�uctuations. The invariants ∫ √−gIn and ∫ √−gI(Λ)

n , n > 1, clearly have the same property.In every even dimensions d = 2k we can drop one term ∼
∫ √−gCk containing k Weyl tensorsand no derivatives and add the topological invariant

∫ √−gGk ≡
∫ √−gδα1β1···αkβk

µ1ν1···µkνk
Rµ1ν1

α1β1
· · ·Rµkνk

αkβk
(2.20)instead, which does not contribute to the �eld equations. The di�erence between two such actionsis a linear combination of other terms ∼

∫ √−gCk plus terms containing the Ricci tensor [28].Writing the Ricci tensor as a linear combination of R̂µν and Λgµν , we can reabsorb the di�er-ence into a perturbative local �eld rede�nition and parameter rede�nitions. For example, in sixdimensions we can set λ′1 = 0 and add ∫ √−gG3.The invariants (2.20) with k < d/2 are not topological. Nevertheless, their variations withrespect to the metric tensor are free of higher derivatives [29]. The action of Lovelock gravity [29]11
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in d dimensions contains only the invariants (2.20) with k 6 d/2. Therefore, its �eld equationsare completely free of higher derivatives. Nevertheless, that kind of action is not preserved byrenormalization. For example, in four dimensions Lovelock gravity is just Einstein gravity with acosmological constant and the Gauss-Bonnet term.The form (2.15) is convenient for various purposes. For example, it allows us to �nd interestingclasses of exact solutions of the �eld equations, besides the spaces of constant curvature. Examplesare all the locally conformally �at metrics (which we just call �conformally �at� from now on) thatsolve the Einstein equations. In particular, the Friedmann-Lemaître-Robertson-Walker (FLRW)metrics are exact solutions of the SQG �eld equations in arbitrary dimensions d > 2 with ahomogeneous and isotropic matter distribution. In four dimensions such solutions coincide withthe usual ones, while in higher dimensions they coincide with the usual solutions once the energydensity ρ and the pressure p are replaced by suitable functions of ρ and p. Metric independentmaps also relate conformally �at solutions of the SQG �eld equations to conformally �at solutionsof the Einstein equations. On the other hand, solutions that are not conformally �at, such as theSchwarzschild and Kerr metrics, are deformed in nontrivial ways by the couplings λn.Another property of SQG is that by expanding the metric tensor around conformally �atbackgrounds the quadratic part of the action is free of higher derivatives. Vertices, instead, aswell as quadratic terms obtained by expanding around more general backgrounds, do not havethis feature. Working perturbatively in the couplings λn, every term of the �eld equations thatcontains higher derivatives can be unambiguously resolved. Then the solutions of the SQG �eldequations are uniquely determined by their λn → 0 limits. The absence of higher derivatives inthe quadratic part of the action is important to prevent the propagation of unphysical degrees offreedom, such as those of higher-derivative quantum gravity (1.7).The matter action Sm is the most general local one, as long as it has correct unitary prop-agators. If the classical action has correct propagators, the renormalized one also has. Indeed,in a quantum �eld theory of matter �elds of spins 6 1/2 and gauge �elds of spins 6 2, higher-derivative quadratic terms are not turned on by renormalization if they are absent at the treelevel [27].Field equationsWriting

SQG = − 1

2κd−2

∫ √−g (R+ 2Λ) + Sm + S(g),the SQG-�eld equations read
Rµν −

1

2
Rgµν − Λgµν = κd−2Tµν + κd−2T (g)

µν , (2.21)12
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where

Tµν =
2√−g

δSm
δgµν

, T (g)
µν =

2√−g
δS(g)

δgµν
,are the matter energy-momentum tensor and the gravitational self-energy-momentum tensor,respectively. Varying ∫ √−gĜ explicitly, we �nd

κd−2T (g)
µν =−λ0κ2

[

2CµρσαC
ρσα

ν − 1

2
gµνCρσαβC

ρσαβ − 4(d− 4)

d− 2
CµρνσR̂

ρσ

−(d− 3)(d − 4)

(d− 2)2

(

4R̂µρR̂
ρ
ν − 2gµνR̂ρσR̂

ρσ − 2d

d− 1
R̂µνR̂+

d+ 2

2(d− 1)
gµνR̂

2

)]

+O(∇2C2) +O(RC2) +O(C3). (2.22)Observe that the variation of ∫ √−gĜ with respect to the metric is O(R̂2), where the notation
O(R̂n) means terms containing at least n powers of R̂µνρσ and its contractions. Clearly, the tensor
T
(g)
µν of (2.22) is identically zero in three dimensions. In four dimensions, instead, it reduces to thelast line of (2.22). For future use we explicitly work out the �rst non-trivial contributions to T (g)

µνin d = 4, which are the ones proportional to the Goro�-Sagnotti (GS) constant ΛGS ≡ 3λ1κ
4.Setting λ′1 = 0 and dropping the Gauss-Bonnet term, we write the four dimensional action as

S
(d=4)QG = − 1

2κ2

∫ √−g
(

R+ 2Λ +
ΛGS
3
C3 +

∞
∑

n=2

λnκ
2n+2In(∇, C)

)

+ Sm.Then we �nd
κ2T (g)

µν =ΛGS(∇ρ∇σC(2)
µρσν +∇ρ∇σC(2)

νρσµ − 1

2
C(2)
µαρσR

αρσ
ν − 1

2
C(2)
ναρσR

αρσ
µ

+
1

6
gµνC3 −

1

6
∇µ∇νC2 +

1

6
gµν∇2C2 +

1

6
RµνC2

) (2.23)
+O(∇4C2) +O(∇2C3) +O(C4),where

C(2)
µνρσ = CµναβC

αβ
ρσ, C2 = CµναβC

µναβ .In the list of higher orders that appears in the third line of (2.23) it is understood that pairs ofcovariant derivatives can be replaced by curvature tensors, so O(∇4C2) = O(∇2RC2), etc.As promised, when the metric tensor is expanded around the metric gµν of a space of constantcurvature, an FLRW metric, or more generally a conformally �at metric, the quadratic part of theexpanded action SQG does not contain higher derivatives. We can prove this fact by consideringthe variation of T (g)
µν with respect to the metric. The �rst two lines of (2.22) give contributionsthat contain at most two derivatives of the �uctuation. The third line of (2.22) gives contributionsthat are proportional to the Weyl tensor, and vanish on conformally �at metrics. If gµν does not13
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belong to these classes of backgrounds then the quadratic part of the action may contain higherderivatives. In general, vertices do contain higher derivatives of gµν , multiplied by the couplings
λn. To understand how to deal with such higher derivatives, recall that renormalization, which isresponsible for turning on the couplings λn, is purely perturbative. To be consistent, the action
SQG must be treated perturbatively in the λns. In particular, we must search for solutions of the�eld equations that are analytic in the λns, at least away from singularities. Such solutions existand are uniquely determined by their limits λn → 0. Indeed, the �eld equations contain at mosttwo time derivatives at λn = 0. Therefore, working perturbatively in λn we can express the termsthat contain higher derivatives as nonlocal averages of the external sources. In this way we obtainnew �eld equations that are perturbatively equivalent to (2.21).Similar methods are commonly used to eliminate runaway solutions caused by higher-timederivatives, as in the case of the Abraham-Lorentz force in classical electrodynamics [30]. Forapplications to gravity see refs. [31, 32, 8]. The elimination of unphysical solutions has a price,because it generates violations of microcausality [30].These facts, together with the presence of in�nitely many independent couplings, are there toremind us that SQG is not the action of a fundamental theory, but must be viewed as an e�ectiveaction that can be obtained from a more complete theory in a particular limit or integrating outsome massive �elds. In the same way as the Fermi theory of weak interactions helped building theStandard Model, studying the properties of SQG can be useful to identify the missing ultimatetheory of quantum gravity, which should be unitary, causal (but non necessarily microcausal) andrenormalizable with a �nite number of independent couplings.3 Exact solutionsIn this section we derive exact solutions of the SQG �eld equations and relate them to knownsolutions of the Einstein equations. Any solution of SQG can be perturbatively mapped into asolution of the �eld equations of any action that is perturbatively equivalent to SQG, for example
Sloc.We begin observing that in four dimensions all the conformally �at metrics that solve theEinstein equations

Rµν −
1

2
Rgµν − Λgµν = κ2Tµν , (3.24)also solve the SQG �eld equations (2.21), and vice versa. The reason is that when d = 4 and

Cµρνσ = 0 formulas (2.22) and (2.23) ensure that the gravitational self-energy-momentum tensor
T
(g)
µν identically vanishes. Moreover, the variation of T (g)

µν with respect to the metric is proportionalto the Weyl tensor. Therefore, it also vanishes on conformally �at metrics. If we expand the metric14
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tensor around conformally �at backgrounds in four dimensions, the propagator coincides with theone of Einstein gravity (if the same gauge-�xing is used).Now, if dΩ2

d−2 denotes the standard metric of the (d − 2)-dimensional sphere of unit radius,the metrics
ds2 = gµνdx

µdxν = dt2 − a2(t)

(

dr2

1− kr2
+ r2dΩ2

d−2

) (3.25)of homogeneous and isotropic spaces are conformally �at in arbitrary dimensions > 4. Indeed,it is easy to prove that the Weyl tensor vanishes everywhere. The FLRW metrics have the form(3.25) and solve (3.24) with a homogeneous and isotropic distribution of matter, described by anenergy-momentum tensor T ν
µ equal to

T ν
µ (ρ, p) = ρδ0µδ

ν
0 − p

d−1
∑

i=1

δiµδ
ν
i , (3.26)where the energy density ρ and the pressure p can be time-dependent.Thus, the FLRW metrics are exact solutions of the SQG �eld equations (2.21) in four dimen-sions.FLRW solutions in arbitrary dimensionsIn higher dimensions we have to take the term ∫ √−gĜ into account. Nevertheless, in the classesof FLRW metrics and conformally �at metrics we can �nd metric-independent maps that convertsolutions of the Einstein equations into solutions of the SQG �eld equations, and vice versa.Consider the SQG �eld equations (2.21) with matter energy-momentum tensor given by (3.26).We want to show that the FLRW metrics (3.25) that solve

Rµν −
1

2
Rgµν − Λgµν = κd−2Tµν(ρ̃, p̃) (3.27)also solve (2.21), and vive versa, where ρ̃ and p̃ are suitable functions of ρ and p. Inserting (3.27)into (2.21) we �nd that this statement is true if and only if

Tµν(ρ̃, p̃) = Tµν(ρ, p) + T (g)
µν . (3.28)Using (3.27) inside (2.22) (and recalling that Cµνρσ = 0) we easily get

T (g)ν
µ = Λ0ρ̃

(

ρ̃δ0µδ
ν
0 − (ρ̃+ 2p̃)

d−1
∑

i=1

δiµδ
ν
i

)

,where
Λ0 = 2λ0κ

d (d− 3)(d − 4)

(d− 2)(d − 1)
,15
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so equation (3.28) is equivalent to the pair of metric-independent quadratic equations

ρ = ρ̃− Λ0ρ̃
2, p = p̃− Λ0ρ̃(ρ̃+ 2p̃), (3.29)for ρ̃ and p̃.Given ρ and p, we determine ρ̃ and p̃ by solving the equations (3.29). Then the usual FLRWsolution with energy density ρ̃ and pressure p̃ solves the SQG �eld equations with energy density

ρ and pressure p. Assuming ρΛ0, pΛ0 � 1 the solution can be worked out perturbatively. Thecases d = 3, 4 can be seen as particular cases of the more general solution.Observe that in higher dimensions when we expand the metric around FLRW backgroundsthe propagator does not coincide with the one obtained in Einstein gravity (even if we use thesame gauge-�xing). Nevertheless, formula (2.22) shows that the quadratic part of the expandedaction SQG does not contain higher derivatives. Indeed, it is just a�ected by terms ∼ ρ̃52 and
∼ p̃52, and terms with fewer derivatives.Conformally �at solutions in arbitrary dimensionsMore generally, if T̃ ν

µ and T ν
µ are related by the metric independent polynomial equation

T ν
µ = T̃ ν

µ − Λ0
d− 1

d− 2

(

2T̃ ρ
µ T̃

ν
ρ − δνµT̃2 −

2

d− 1
T̃ ν
µ T̃ +

1

d− 1
δνµT̃

2

)

, (3.30)where T̃ = T̃ ρ
ρ and T̃2 = T̃ σ

ρ T̃
ρ
σ , then the conformally �at metrics that solve

Rµν −
1

2
Rgµν − Λgµν = κd−2T̃µν (3.31)also solve the SQG �eld equations, and vice versa. The condition (3.30) is obtained inserting (3.31)into (2.22) and (2.21), and using Cµνρσ = 0. Expanding the metric tensor around a conformally�at solution the quadratic part of the action SQG is free of higher derivatives.4 Approximate solutionsFrom the observational point of view, deformed black-hole solutions can o�er interesting possi-bilities to test modi�cations of general relativity. Deviations from the Kerr metric, in particular,are the easiest to detect. Since black-hole solutions are not conformally �at, they are a�ected ina non-trivial way by the corrections to Einstein gravity contained in SQG.To illustrate these e�ects, we work in four dimensions and in the absence of matter, and keeponly the GS constant ΛGS, besides the Newton constant G = κ2/8π and the cosmological constant

Λ. The action reads
S′QG = − 1

2κ2

∫ √−g
(

R+ 2Λ +
ΛGS
3
C3

)

. (4.32)16
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We begin looking for spherically symmetric solutions of the form

ds2 = eν(r)+ω(r)dt2 − e−ν(r)dr2 − r2(dθ2 + sin2 θdϕ2). (4.33)Inserting the ansatz (4.33) into the �eld equations (2.21) and using (2.23) we �nd di�erentialequations for ν(r) and ω(r). The ΛGS dependent contributions involve up to four derivativesof these functions. We must search for solutions that are analytic in ΛGS, at least away fromsingularities. Thus we can work iteratively in ΛGS, which allows us to convert the higher-derivativeterms into terms that have at most two derivatives. After this conversion we �nd two (involved)equations of the form
ν ′ = F1(ν, ω, r), ω′ = F2(ν, ω, r), (4.34)for certain functions F1 and F2 that are analytic in ΛGS, and two other equations that areautomatically satis�ed when (4.34) hold. We see that the solutions certainly exist and are uniquelydetermined by their limits ΛGS → 0. To the lowest order of approximation, the solutions are

eν(r) =1− rs
r

− Λ

3
r2 +

6ΛGSr2s
r6

(

1− 8rs
9r

− 4

9
Λr2

)

+O(Λ2GS),
ω(r) =−4ΛGSr2s

r6
+O(Λ2GS), (4.35)

rs = 2Gm being the usual Schwarzschild radius. Higher-order corrections show that the solutionhas the form
− g−1

rr = eν(r) = 1− rs
r

− Λ

3
r2 +

rs
r

∞
∑

n=1

ξnPn, ω(r) =
rs
r

∞
∑

n=1

ξnQn−1, (4.36)where
ξ(r) =

ΛGSrs
r5and Pn, Qn are polynomials of degree n in rs/r and Λr2. It is easy to verify that the expansionof gtt has the same form as the one of −g−1

rr . Thus the approximation obtained by expanding inpowers of ΛGS is valid for ξ � 1, with rs/r and Λr2 bounded.The violations of microcausality induced by the presence of higher time derivatives can bestudied by considering a �uctuation δg around the metric given by (4.33) and (4.35). Higher-timederivative terms provided by δT (g)
µν are multiplied by the Weyl tensor C ∼ rs/r

3 or by ∇C ∼ rs/r
4:

κ2δT (g)
µν ∼ ΛGS∇C∇3δg + ΛGSC∇4δgComparing these terms with the ones contained in the Einstein equations and assuming that thederivatives of δg are time ones, for ξ(r) < 1 causality violations last for a typical time equal to

τ(r) = r
√

ξ(r).17
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In the case of gravitational lensing by a light black hole, taking r around a few times rs andassuming ξ(r) ∼ 1 it is necessary to resolve time intervals of about 10−4 seconds.Now we switch to the modi�ed Kerr metric. We study the large distance expansion of thedeformed Kerr metric at Λ = 0. Precisely, we take rs, a ∼ ε and ΛGS ∼ ε4, ε� 1 (i.e. we assumethat the constants rs, a and ΛGS are of orders equal to their dimensions in units of length), andcalculate the metric to the order ε8. Doing so, we automatically exclude orders of ΛGS larger thanthe �rst. In Boyer-Lindquist coordinates we write

ds2 = gttdt
2 + grrdr

2 + gθθdθ
2 + gφφdφ

2 + 2gtφdtdφand obtain
gtt =1− rrs

ρ2
+

2ΛGSr2s
3ρ8

(3ρ2 − 2rrs − 54a2 cos2 θ), gθθ = −ρ2 + 6a2r2s
ρ6

ΛGS sin2 θ,
grr =−ρ

2

∆
+

2ΛGSr2s
3ρ6∆

(

9a2 + 9ρ2 + rrs + r2s − 297a2 cos2 θ
)

, (4.37)
gtφ =

arrs
ρ2

sin2 θ

(

1 +
4ΛGSr2s
3ρ6

)

, gφφ = − sin2 θ

(

a2 + r2 +
a2rrs
ρ2

sin2 θ

)

,where, as usual,
ρ2 = r2 + a2 cos2 θ, ∆ = r2 − rrs + a2.We stress again that renormalization predicts ΛGS 6= 0. Therefore, the deviations just reportedcan be viewed as predictions of quantum gravity. Their practical detectability depends on theactual value of the constant ΛGS. Theoretically, we cannot predict the exact value of ΛGS, butonly the ΛGS running, which gives us an estimate of the minimum value of |ΛGS|. Using thetwo-loop result of ref. [2] we �nd
∆ΛGS(`, `′) = ΛGS(`)− ΛGS(`′) = f

l4P
π2

ln
`

`′
,where ΛGS(x) is the running coupling at the scale x, lP =

√
G is the Planck length and f is anumerical factor of order 1. If we take ` equal to the diameter of the observable universe and `′equal to the Planck length itself, we obtain

|∆ΛGS| ∼ l4P .If the value of |ΛGS| were around l4P there would be no chance to detect the deviations we haveworked out so far. We can only hope that |ΛGS| has a much larger value in nature. Light blackholes are the ones that are a�ected more sensibly. Taking a mass equal to 5 solar masses, we needat least
|ΛGS| ∼ 10156l4P = 1044(eV)−4 (4.38)18
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to get ξs ∼ 1. In this case the deviations would be appreciable right outside the black hole. TheSchwarzschild radius would be modi�ed in a sensible way and e�ects on the de�ection of light,for example, could be detected. Depending on the precision of our instruments, smaller values of
ξs could su�ce. In case no deviations are observed it is possible to put experimental bounds on
ΛGS. Observe that as long as |ΛGS| is much larger than l4P , for all practical purposes ΛGS doesnot run throughout the universe.5 ConclusionsThe nonrenormalizability of quantum gravity is a challenging problem that forces us to investigateunexplored sectors of quantum �eld theory, and maybe change our attitudes towards a number offundamental issues. Most attempts to make it renormalizable generate violations of unitarity. Apossibility to have both renormalizability and unitarity at the same time is to relax the localityassumption. A more conservative standpoint is to work with quantum gravity as a nonrenormaliz-able theory, which means get used to deal with in�nitely many parameters and search for physicalpredictions that just depend on a �nite subset of them. In this perspective, the �rst thing to dois to organize the classical action of quantum gravity, as determined by renormalization, in themost convenient way.Using perturbative �eld rede�nitions and parameter rede�nitions, we can single out a form
SQG that allows us to show that some well known metrics, such as the FLRW metrics, are exactsolutions of the �eld equations, or can be mapped into exact solutions. More generally, all theconformally �at solutions of Einstein gravity can be mapped in a metric independent way intoconformally �at solutions of SQG, and vice versa. The quadratic terms of the action, generated byexpanding the metric around these solutions, are free of higher derivatives. Solutions that are notconformally �at are instead modi�ed in a nontrivial way. We have studied the �rst correctionsto the metrics of the Schwarzschild and Kerr types, by expanding in powers of the GS constant.Renormalization only tells us that this constant is nonvanishing, but is unable to predict its actualvalue. It would be desirable to put constraints on its magnitude by comparing predictions andobservational data.References[1] G. 't Hooft and M. Veltman, One-loop divergences in the theory of gravitation, Ann. Inst.Poincarè, 20 (1974) 69.[2] M.H. Goro� and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266(1986) 709. 19
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