Course

19R1 D. Anselmi
Theories of gravitation

Last update: October 5th 2018

PhD course – 54 hours – Videos of lectures and PDF files of slides

To be held in the first part of 2019 – Stay tuned

Program

Recent Papers

The cutting equations are diagrammatic identities that are used to prove perturbative unitarity in quantum field theory. In this paper, we derive algebraic, upgraded versions of them. Differently from the diagrammatic versions, the algebraic identities also holds for propagators with arbitrary, nonvanishing widths. In particular, the cut propagators do not need to vanish off shell. The new approach provides a framework to address unsolved problems of perturbative quantum field theory and a tool to investigate perturbative unitarity in higher-derivative theories that are relevant to the problem of quantum gravity, such as the Lee-Wick models and the fakeon models.

PDF

Ann. Phys. 394 (2018) 294 | DOI: 10.1016/j.aop.2018.04.034

arXiv: 1612.07148 [hep-th]

We show that Minkowski higher-derivative quantum field theories are generically inconsistent, because they generate nonlocal, non-Hermitian ultraviolet divergences, which cannot be removed by means of standard renormalization procedures. By “Minkowski theories” we mean theories that are defined directly in Minkowski spacetime. The problems occur when the propagators have complex poles, so that the correlation functions cannot be obtained as the analytic continuations of their Euclidean versions. The usual power counting rules fail and are replaced by much weaker ones. Self-energies generate complex divergences proportional to inverse powers of D’Alembertians. Three-point functions give more involved nonlocal divergences, which couple to infrared effects. The violations of the locality and Hermiticity of counterterms are illustrated by means of explicit computations in scalar models and higher-derivative gravity.

PDF

Eur. Phys. J. C 77 (2017) 84 | DOI: 10.1140/epjc/s10052-017-4646-7

arXiv: 1612.06510 [hep-th]

We reconsider perturbative unitarity in quantum field theory and upgrade several arguments and results. The minimum assumptions that lead to the largest time equation, the cutting equations and the unitarity equation are identified. Using this knowledge and a special gauge, we give a new, simpler proof of perturbative unitarity in gauge theories and generalize it to quantum gravity, in four and higher dimensions. The special gauge interpolates between the Feynman gauge and the Coulomb gauge without double poles. When the Coulomb limit is approached, the unphysical particles drop out of the cuts and the cutting equations are consistently projected onto the physical subspace. The proof does not extend to nonlocal quantum field theories of gauge fields and gravity, whose unitarity remains uncertain.

PDF

Phys. Rev. D 94 (2016) 025028 | DOI: 10.1103/PhysRevD.94.025028

arXiv: 1606.06348 [hep-th]

Using the background field method and the Batalin-Vilkovisky formalism, we prove a key theorem on the cohomology of perturbatively local functionals of arbitrary ghost numbers, in renormalizable and nonrenormalizable quantum field theories whose gauge symmetries are general covariance, local Lorentz symmetry, non-Abelian Yang-Mills symmetries and Abelian gauge symmetries. Interpolating between the background field approach and the usual, nonbackground approach by means of a canonical transformation, we take advantage of the properties of both approaches and prove that a closed functional is the sum of an exact functional plus a functional that depends only on the physical fields and possibly the ghosts. The assumptions of the theorem are the mathematical versions of general properties that characterize the counterterms and the local contributions to the potential anomalies. This makes the outcome a theorem on the cohomology of renormalization, rather than the whole local cohomology. The result supersedes numerous involved arguments that are available in the literature.

PDF

Phys. Rev. D 93 (2016) 065034 | DOI: 10.1103/PhysRevD.93.065034

arXiv: 1511.01244 [hep-th]

We study some properties of the canonical transformations in classical mechanics and quantum field theory and give a number of practical formulas concerning their generating functions. First, we give a diagrammatic formula for the perturbative expansion of the composition law around the identity map. Then, we propose a standard way to express the generating function of a canonical transformation by means of a certain “componential” map, which obeys the Baker-Campbell-Hausdorff formula. We derive the diagrammatic interpretation of the componential map, work out its relation with the solution of the Hamilton-Jacobi equation and derive its time-ordered version. Finally, we generalize the results to the Batalin-Vilkovisky formalism, where the conjugate variables may have both bosonic and fermionic statistics, and describe applications to quantum field theory.

PDF

Eur. Phys. J. C 76 (2016) 49 | DOI: 10.1140/epjc/s10052-015-3874-y

arXiv: 1511.00828 [hep-th]

We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost numbers satisfy a variant of the Kluberg-Stern–Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\Lambda $ associated with them is kept fixed, the theory is super-renormalizable and has the property that, once the gauge anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the $\Lambda $ divergences are subtracted away and $\Lambda $ is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.

PDF

Phys. Rev. D 91 (2015) 105016 | DOI: 10.1103/PhysRevD.91.105016

arXiv: 1501.07014 [hep-th]

Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

PDF

Phys. Rev. D 92 (2015) 025027 | DOI: 10.1103/PhysRevD.92.025027

arXiv: 1501.06692 [hep-th]

The properties of quantum gravity are reviewed from the point of view of renormalization. Various attempts to overcome the problem of nonrenormalizability are presented, and the reasons why most of them fail for quantum gravity are discussed. Interesting possibilities come from relaxing the locality assumption, which can inspire the investigation of a largely unexplored sector of quantum field theory. Another possibility is to work with infinitely many independent couplings, and search for physical quantities that only depend on a finite subset of them. In this spirit, it is useful to organize the classical action of quantum gravity, determined by renormalization, in a convenient way. Taking advantage of perturbative local field redefinitions, we write the action as the sum of the Hilbert term, the cosmological term, a peculiar scalar that is important only in higher dimensions, plus invariants constructed with at least three Weyl tensors. We show that the FRLW configurations, and many other locally conformally flat metrics, are exact solutions of the field equations in arbitrary dimensions $d>3$. If the metric is expanded around such configurations the quadratic part of the action is free of higher-time derivatives. Other well-known metrics, such as those of black holes, are instead affected in nontrivial ways by the classical corrections of quantum origin.

Mod. Phys. Lett. A 30 (2015) 1540004 | DOI: 10.1142/S0217732315400040

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Contents:

Preface

1. Functional integral

  • 1.1 Path integral
    • Schroedinger equation
    • Free particle
  • 1.2 Free field theory
  • 1.3 Perturbative expansion
    • Feynman rules
  • 1.4 Generating functionals, Schwinger-Dyson equations
  • 1.5 Advanced generating functionals
  • 1.6 Massive vector fields
  • 1.7 Fermions

2. Renormalization

  • 2.1 Dimensional regularization
    • 2.1.1 Limits and other operations in $D$ dimensions
    • 2.1.2 Functional integration measure
    • 2.1.3 Dimensional regularization for vectors and fermions
  • 2.2 Divergences and counterterms
  • 2.3 Renormalization to all orders
  • 2.4 Locality of counterterms
  • 2.5 Power counting
  • 2.6 Renormalizable theories
  • 2.7 Composite fields
  • 2.8 Maximum poles of diagrams
  • 2.9 Subtraction prescription
  • 2.10 Regularization prescription
  • 2.11 Comments about the dimensional regularization
  • 2.12 About the series resummation

3. Renormalization group

  • 3.1 The Callan-Symanzik equation
  • 3.2 Finiteness of the beta function and the anomalous dimensions
  • 3.3 Fixed points of the RG flow
  • 3.4 Scheme (in)dependence
  • 3.5 A deeper look into the renormalization group

4. Gauge symmetry

  • 4.1 Abelian gauge symmetry
  • 4.2 Gauge fixing
  • 4.3 Non-Abelian global symmetry
  • 4.4 Non-Abelian gauge symmetry

5. Canonical gauge formalism

  • 5.1 General idea behind the canonical gauge formalism
  • 5.2 Systematics of the canonical gauge formalism
  • 5.3 Canonical transformations
  • 5.4 Gauge fixing
  • 5.5 Generating functionals
  • 5.6 Ward identities

6. Quantum electrodynamics

  • 6.1 Ward identities
  • 6.2 Renormalizability of QED to all orders

7 Non-Abelian gauge field theories

  • 7.1 Renormalizability of non-Abelian gauge theories to all orders
    • Raw subtraction

A. Notation and useful formulas

Read in flash format

PDF

We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the $\gamma $ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.

PDF

Phys. Rev. D 89 (2014) 125024 | DOI: 10.1103/PhysRevD.89.125024

arXiv: 1405.3110 [hep-th]

Support Renormalization

If you want to support Renormalization.com you can spread the word on social media or make a small donation





Book

14B1 D. Anselmi
Renormalization

Read in flash format

PDF

Last update: May 9th 2015, 230 pages

Contents: Preface | 1. Functional integral | 2. Renormalization | 3. Renormalization group | 4. Gauge symmetry | 5. Canonical formalism | 6. Quantum electrodynamics | 7. Non-Abelian gauge field theories | Notation and useful formulas | References

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)