19S1 D. Anselmi
Theories of gravitation




D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)

Recent Papers

We review the concept of purely virtual particle and its uses in quantum gravity, primordial cosmology and collider physics. The fake particle, or “fakeon”, which mediates interactions without appearing among the incoming and outgoing states, can be introduced by means of a new diagrammatics. The renormalization coincides with one of the parent Euclidean diagrammatics, while unitarity follows from spectral optical identities, which can be derived by means of algebraic operations. The classical limit of a theory of physical particles and fakeons is described by an ordinary Lagrangian plus Hermitian, micro acausal and micro nonlocal self-interactions. Quantum gravity propagates the graviton, a massive scalar field (the inflaton) and a massive spin-2 fakeon, and leads to a constrained primordial cosmology, which predicts the tensor-to-scalar ratio r in the window 0.4≲1000r≲3.5. The interpretation of inflation as a cosmic RG flow allows us to calculate the perturbation spectra to high orders in the presence of the Weyl squared term. In models of new physics beyond the standard model, fakeons evade various phenomenological bounds, because they are less constrained than normal particles. The resummation of self-energies reveals that it is impossible to get too close to the fakeon peak. The related peak uncertainty, equal to the fakeon width divided by 2, is expected to be observable.


Symmetry 2022, 14(3), 521 | DOI: 10.3390/sym14030521

arXiv: 2203.02516 [hep-th]

Embedded PDFFullscreen PDF view

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel


14B1 D. Anselmi

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:


1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas