
22
A
2
R
en
or
m

Purely Virtual Particles

versus Lee-Wick Ghosts:

Physical Pauli-Villars Fields,

Finite QED, and Quantum Gravity

Damiano Anselmi

National Institute of Chemical Physics and Biophysics, Rävala 10, Tallinn 10143, Estonia
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Abstract

We reconsider the Lee-Wick (LW) models and compare their properties to the properties

of the models that contain purely virtual particles. We argue against the LW premise

that unstable particles can be removed from the sets of incoming and outgoing states in

scattering processes. The removal leads to a non-Hermitian classical limit, besides clashing

with the observation of the muon. If, on the other hand, all the states are included, the

LW models have a Hamiltonian unbounded from below or negative norms. Purely virtual

particles, on the contrary, lead to a Hermitian classical limit and are absent from the

sets of incoming and outgoing states without implications on the observation of long-lived

unstable particles. We give a vademecum to summarize the properties of most options

to treat abnormal particles. We study a method to remove the LW ghosts only partially,

by saving the physical particles they contain. Specifically, we replace a LW ghost with a

certain superposition of a purely virtual particle and an ordinary particle, and drop only

the former from the sets of the external states. The trick can be used to make the Pauli-

Villars fields consistent and observable, without sending their masses to infinity, or to build

a finite QED, by tweaking the original Lee-Wick construction. However, it has issues with

general covariance, so it cannot be applied as is to quantum gravity, where a manifestly

covariant decomposition requires the introduction of a massive spin-2 multiplet.
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1 Introduction

In the late 1960s Lee and Wick proposed a way to give sense to models that contain fields

with negative kinetic terms [1, 2]. A key point of their idea is that “abnormal” particles

do not belong to the spectrum of asymptotic states, as long as they are unstable. In their

approach, it is sufficient that all the stable particle states have positive square lengths. The

purpose of Lee and Wick was to provide a unitary S matrix in the subspace of stable states,

by extending the previous results on unitarity [3, 4, 5, 6, 7]. In this paper, we reconsider

the Lee-Wick (LW) models, concentrating on the treatment of unstable particles.

The muons are unstable elementary particles that can be observed directly before they

decay. Tauon traces can also be observed in special situations. Composite long-lived

particles are more common, but their relatively long lifetimes can be due to their compos-

iteness. The other elementary particles are stable, short-lived, or confined. Moreover, the

resonances can in principle be boosted enough and detected as particles before they decay.

In light of these remarks, it does not seem so justified to remove a particle from the set of

asymptotic states just because it is unstable.

In the context of the Lee-Wick models, it is actually sufficient to remove the abnormal

particles from the sets of the external states and keep the physical particles as usual. The

advantage of this modified removal option is that it does not clash with the observation of

the muon. Nevertheless, it leads to an unacceptable classical limit.

The classical limit is given by the tree diagrams that have physical particles in the

external legs and no physical particles in the internal legs. We can also define a “reduced”

action, which is the effective action obtained by integrating out the abnormal particles. It

collects all the diagrams that have physical particles in the external legs and no physical

particles in the internal legs, and includes the loops of abnormal particles as effective

vertices. If we want to define a fundamental theory by removing particles, the reduced

action should be seen as the “classical” action of that fundamental theory.

The abnormal particles propagating in the internal legs generate nonlocal, acausal, non-

Hermitian effective self-interactions among the physical particles. Violations of locality and

causality in the classical action are not excluded by the requirements of internal consistency,

as long as they are microscopic and compatible with data, which occurs (for example) if

the masses of the abnormal particles are sufficiently large. On the other hand, a classical

Lagrangian with a nonvanishing imaginary part is troubling. The simplest explanation for

such an instance is that something has been provisionally integrated out, which is precisely

what is going on in the case we are considering. If we reinstate the missing entity (which

2



22
A
2
R
en
or
m

is the Lee-Wick abnormal particle) as an independent degree of freedom, we remove the

imaginary part of the classical Lagrangian, but go back to the initial problem of negative

kinetic terms (free Hamiltonian unbounded from below). This either-or situation is the

trouble with the Lee-Wick models.

For most purposes, the muon can be treated as a stable particle, since its width is very

small (around 10−19GeV). If we resum the muon self-energies into the dressed propagator,

as is commonly done for resonances, we find that the theory predicts no muon observation

[8]. The reason is that we cannot observe an unstable particle with infinite resolving power

on the energy: such an instance would violate the energy-time uncertainty principle. Once

the energy resolution ∆E of the experimental setup is inserted explicitly, the problem

disappears [8]. We can argue in a similar way for every resonance, if we imagine to boost it

enough to make it detectable as a particle. Indeed, the resonances and the muon just differ

by the magnitudes of their widths. We conclude that in a sound theoretical framework

unstable particles should be included among the external states.

In this paper, we compare the Lee-Wick idea to several other options, including physical

particles, ordinary ghosts and purely virtual particles. We also consider the effects of the

removal of those from the sets of incoming and outgoing states. By “ghost” we mean a

degree of freedom that appears with a negative kinetic term in the classical Lagrangian.

Purely virtual particles, or fake particles, or “fakeons”, are based on a new diagram-

matics [9]. They allow us to formulate a consistent theory of quantum gravity [10], which is

experimentally testable due to its sharp prediction of the tensor-to-scalar ratio in inflation-

ary cosmology [11]. They can also be used to search for new physics beyond the standard

model, by evading common constraints in collider phenomenology [12] and offering pos-

sible resolutions of discrepancies with data [13]. The only requirement is that fakeons

are massive and nontachyonic. Their diagrammatics can be implemented in softwares like

FeynCalc, FormCalc, LoopTools and Package-X [14].

Unlike the LW abnormal particles (which we call “LW ghosts” from now on), fakeons

lead to a Hermitian classical limit and a Hermitian reduced action. Their absence from

the sets of incoming and outgoing states has no implication on the observation of long-

lived unstable particles. The reason is that the fakeons are purely virtual. Instead, the

LW ghosts are not purely virtual, which is why they leave an imaginary remnant in the

classical limit, once they are removed.

After reconsidering the Lee-Wick construction, we formulate a procedure that is as

close as possible to the idea of removing the LW ghost from the sets of external states only
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partially and save the physical degree of freedom it contains. Specifically, we switch to

a theory of particles and fakeons by replacing the LW ghost with a certain superposition

of a fakeon and an observable particle, and remove only the former. The trick works

with neutral matter fields and can be used to make the Pauli-Villars fields consistent, and

observable, without sending their masses to infinity. It also allows us to build a finite QED,

by overcoming the difficulties of the original Lee-Wick construction. In quantum gravity,

the method could lead to an extra (observable) massive spin-2 particle. However, a number

of unresolved issues with general covariance (and gauge invariance) show that it cannot be

applied to gravity as is. A covariant decomposition can be achieved by adding a massive

spin-2 multiplet (which can be done in a unitary and renormalizable way as explained in

[15]). However, this procedure just gives the theory of [10] coupled to matter in a peculiar

way.

We do not cover all the proposals available in the literature about ghosts. Among

the missing ones, we mention the PT (parity and time reversal) symmetric approach of

Berends and Manheim [16].

The removal of degrees of freedom from the incoming and outgoing states is consistent

only if it is compatible with unitarity, in which case we call it “projection” and call the ac-

tion “projected action”. The fakeon projection is compatible with unitarity order by order

(and diagram by diagram) in the perturbative expansion (see for example [9]). The removal

of unstable particles (which we call Veltman’s projection, see below) is compatible with

unitarity in a semi-perturbative approach, because the self-energies of unstable particles

must be resummed into their dressed propagators. After this diagrammatic reorganization,

it is also valid diagram by diagram.

Since the fakeon approach is perturbative, we require the Hamiltonian to be bounded

from below in the free-field limit (in flat space), both classically and at the quantum level.

Once a particle is projected away, it is no longer relevant to the issue, because it disappears

from the free-field limit. We have no way to say whether the Hamiltonian is bounded or

not in the complete theory. In simple models, the nonlocalities surviving the classical limit

are diluted by the fakeon projection into an asymptotic series of perturbative corrections

[17]. In other cases, they affect only high orders, where they compete with the quantum

corrections, which are nonlocal anyway. For example, in [18] it is shown that, in primordial

cosmology, the fakeon projection leaves the theory practically local for various orders of

the perturbative expansion.

The paper is organized as follows. In section 2 we discuss Veltman’s projection and the
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issue of unitarity with unstable particles. In section 3 we compare various options for the

quantization of fields with negative kinetic terms. In section 4 we briefly recall how such

fields are treated inside the loop diagrams. In section 5 we present the trick that makes

the Pauli-Villars physical by means of fakeons. In section 6 we apply it to build a finite

QED. In section 7 we discuss the obstacles we meet when we apply the same method to

quantum gravity. Section 8 contains the conclusions.

2 Veltman’s projection

A result due to Veltman states that the S matrix constructed with the dressed propagators

and connecting stable particle states only is unitary [4]. Because of this, unstable particles

can be consistently dropped from the sets of incoming and outgoing states of the scattering

processes. We call this removal Veltman’s projection. The S matrix obtained from it is

called reduced (or projected) S matrix and denoted by Sr.

Veltman’s result S†
rSr = 1 follows from the common proofs of perturbative unitarity by

means of cut diagrams [4, 3, 5, 6, 7]. When an unstable particle is projected away by means

of Veltman’s projection, it generates effective nonlocal, non-Hermitian interactions among

the other particles (see, for example, formula (3.13) below). In general, non-Hermitian

interactions are problematic for unitarity, but in the case of Veltman’s projection they are

precisely what makes the unitarity equation S†
rSr = 1 hold true. At the end of this section,

we briefly recall how this happens and also show that Veltman’s projection preserves CPT

invariance.

Veltman considered stable and unstable particles. To apply Veltman’s projection to

ghosts, we should first ensure that Veltman’s results extend to them. There are various

options to treat ghosts at the quantum level.

The simplest possibility, which we call iǫ ghost, is the standard quantization by means

of the Feynman iǫ prescription, which means that we choose the free propagator

− i

p2 −M2 + iǫ
(2.1)

and integrate on Minkowski spacetime as usual. In ref. [8] it has been shown that the

dressed propagators of the iǫ ghosts do not make sense close to the peaks, because the

resummation of the perturbative expansion does not exist there. Having no knowledge

about the nonperturbative sector of the theory, Veltman’s projection cannot be applied to

the iǫ ghosts. This is not a big deal, since the iǫ ghosts violate unitarity.
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Other options to quantize ghosts have different properties. The second possibility,

which we call −iǫ ghost, is to choose the free propagator

− i

p2 −M2 − iǫ
. (2.2)

Then we cannot integrate on Minkowski spacetime, because if we do so we run into the con-

sistency problems described in ref. [19], which means nonlocal divergent parts, exchanges

of roles between the usual thresholds and the pseudothresholds, instabilities, violations of

unitarity, etc. Lee and Wick proposed a different set of rules for handling (2.2) in Feynman

diagrams, which must be combined with the Cutkosky et al. (CLOP) prescription [20] and

possibly other rules, to solve the ambiguities mentioned in [20] (see also [21]). For the

purposes of this paper, we can just assume that a complete set of rules does exist. At the

end, the −iǫ ghost turns into a new type of object, which we call a LW ghost.

More importantly, the idea of Lee and Wick is to arrange the model so that the inter-

actions make the ghost unstable, to apply Veltman’s projection to it. To this purpose, we

note that the dressed propagator makes sense, even close to the peak, where it reads1

− iZ

p2 −M2
gh − i(ǫ+MghΓ)

. (2.3)

Here, Γ is a positive width, M2
gh =M2+∆M2 is the “physical” mass squared and Z is the

normalization factor. The ǫ prescription is there to show that the corrections proportional

to Γ have the same sign. According to the arguments of [8], it is correct to extend the

resummation of the self-energies from the convergence region to the peak region by means

of analyticity.

To summarize, Lee and Wick get rid of ghosts by turning them into LW ghosts and

arranging the model so that they are unstable or become so dynamically, to build a unitary

reduced S matrix Sr à la Veltman.

Although Veltman’s result is correct, it does not suggest that we should drop unstable

particles from the physical spectrum2. It simply proves that if we drop them, we get a

unitary reduced scattering matrix Sr. The problem with Sr is that it turns a blind eye to

the experimental observation of the muon.

1Formula (2.3) is correct as is for legs that disconnect the diagram once they are broken. Inside loops

we must use the rules mentioned previously.
2Actually, Veltman seems to suggest precisely that in [4], by saying that it is an undesirable feature

of perturbation theory to have unstable particles among the asymptotic states. Our position, instead, is

that a theory of scattering where processes end at the end of time is not satisfactory.
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Normally, the incoming and outgoing states of a scattering process are assumed to be

at t = −∞ and t = +∞, respectively. This is a nonrealistic simplification, useful to derive

general formulas. A more realistic assumption is ∆̄t ≪ ∆t < ∞, where ∆t denotes the

time separation between the incoming and outgoing states and ∆̄t is the duration of the

interactions. This leaves room for including long-lived unstable particles, by assuming that

∆t is smaller than the lifetimes of some of them. Once the scattering process ends and

the outgoing particles fly away, there is no reason why we should wait till they decay, if

we can catch them on the fly.

To establish an unambiguous terminology, we talk about “physical” spectra when we

include everything we can physically observe, in practice or in principle. Clearly, the muon

is included, among the other unstable particles. With the word “asymptotic”, we mean the

same, i.e., ∆t≫ ∆̄t. Thus, the muon is also included in the set of “asymptotic states” and

is part of the asymptotic spectra. Incoming and outgoing states that are literally taken at

t = −∞ and t = +∞ will be called “strictly asymptotic states”.

Given that we never see resonances like the Z boson, one could ask why we should

include them in the physical spectra. The reason is that a fundamental theory should

be able to cover all the situations, including the ones that are currently out of reach

experimentally.

Although Veltman’s projection is not acceptable for physical particles, because it forces

us to drop the muon from the physical spectrum of the standard model, we could accept

a restricted form of it, by applying it to the LW ghosts only. The restricted option is

compatible with the observations of long-lived unstable particles. Nevertheless, Veltman’s

projection has another problem, which concerns the classical limit.

Every unstable particle becomes stable in the classical limit, by definition. If we ignore

unstable particles as asymptotic states at the quantum level, the classical limit cannot

resuscitate them. This means that the reduced S matrix Sr does not correspond to an

acceptable classical Lagrangian, typically because the latter turns out to be non-Hermitian.

Thus, even if there existed no muon in nature, or we applied Veltman’s projection to

the LW ghosts only, the model would still not be good enough to define a fundamental

quantum field theory, although it could be acceptable in the realm of effective field theories.

The theories with fakeons do not have these problems, because they are defined in a

radically different way. In particular, fakeons are purely virtual particles, so they do not

need to be unstable and decay to be removed from the physical spectrum, which they never

enter in the first place. There is no implication on the observation of unstable long-lived

particles like the muon. The classical limit is described by a Hermitian Lagrangian, which
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collects, after the projection, anti-Hermitian effective vertices. Moreover, the diagrammatic

analysis of [9] shows that all the effective vertices given by the 1PI diagrams with no fakeons

in the external legs and no physical particles in the internal legs are anti-Hermitian, even

if they close loops. Thus, the reduced action is Hermitian and the CPT theorem holds

after the projection.

The reason why the LW ghosts leave an imaginary remnant in the classical limit is

that they are not purely virtual. What Lee and Wick suggest, i.e., assume that they are

unstable and drop them from the physical spectrum, does not remove them completely.

2.1 Unitarity, Hermiticity and CPT invariance

Normally, the unitarity equation S†S = 1 is proved by means of “cutting equations”, which

are identities

G+ Ḡ+
∑

c

Gc = 0, (2.4)

among cut and uncut diagrams. Specifically, one rewrites S†S = 1 as the optical theorem

iT − iT † + T †T = 0, where S = 1 + iT . Then, G is the uncut diagram and stands for

iT , Ḡ is its complex conjugate and stands for −iT †, while Gc are the cut diagrams, which

are obtained by cutting internal lines, and stand for T †T . The cut propagators encode the

on-shell content of the full propagators.

Let us see how the unitarity equation S†
rSr = 1 works after Veltman’s projection.

We can build Sr in two ways. The straightforward method is to quantize the classical,

unprojected Lagrangian L as usual, build the (unprojected) S matrix from it and perform

Veltman’s projection at the very end. The second method is to work out the projected

Lagrangian LV right away and then derive Sr from LV. Then, however, LV contains

effective non-Hermitian interactions due to the removal of the unstable particles. We show

that these effective interactions make unitarity work as desired.

The projection L → LV is obtained in two steps. First, one builds the effective vertices,

which are given by the one-particle irreducible (1PI) diagrams (generated by L) that have
stable particles in the external legs and no stable particles in the internal legs. Second, the

self-energies of the unstable particles are resummed into their dressed propagators. In the

end, LV is made of “dressed effective vertices”. In some sense, it is semi-nonperturbative.

The point is that its vertices are not Hermitian, in general. So, how can the S matrix Sr

obtained from LV be unitary?

In the algebraic approach of ref. [9], it is simple to prove that a non-Hermitian classical
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Lagrangian LV leads to a generalized version of the cutting equations of the form

G+ Ḡ+
∑

c

Gc +
∑

c′

Gc′ = 0, (2.5)

where G and Ḡ are as above, Gc are the cut diagrams obtained by cutting internal (stable-

particle) lines and Gc′ are additional cut diagrams, obtained by cutting the non-Hermitian

vertices as well. Normally, the extra terms Gc′ quantify the violations of unitarity, because

they have no interpretation in the unitary equation S†S = 1. However, in the case of

Veltman’s projection, they are precisely what is needed to interpret the identities (2.5)

as the correct diagrammatic versions of S†
rSr = 1. The reason is that the cut vertices of

Gc′ describe the decays of the unstable particles that have been projected away, which are

not included in the diagrams Gc. More details and the diagrammatic analysis of the extra

terms can be found in Veltman’s paper [4].

Another issue is the CPT theorem after Veltman’s projection. If the unprojected theory

is CPT invariant, the projected theory described by Sr should be CPT invariant as well.

The trouble is, again, that LV is not Hermitian. If we want to have CPT invariance after

the projection, we must treat the effective vertices of LV in a particular way under that

symmetry.

Specifically, let S(L, ǫ) denote the S matrix built from a local Lagrangian L with

Feynman’s iǫ prescription. Then, S(−L†,−ǫ) is the conjugate matrix S†. CPT invariance

is the statement that S(L†, ǫ) = S, or S(−L,−ǫ) = S†, which is true if L = L†. If we

take LV as the Lagrangian, we have S(LV, ǫ) = Sr, where ǫ refers to the stable particles

only. The point is that LV also depends on the Feynman prescription (for the unstable

particles projected away). So, S(−LV(ǫ),−ǫ) 6= S†
r . Nevertheless, we have the identities

(LV(ǫ))† = LV(−ǫ) and S(−LV(−ǫ),−ǫ) = S†
r , which can be interpreted as the CPT

theorem for Sr.

3 Basic quantization options

In this section we compare the quantizations of physical particles, ghosts and purely virtual

particles and emphasize their basic properties, also in relation with Veltman’s projection,

when it applies. We concentrate on the tree diagrams, the classical limit and the dressed

propagators. In the next section we consider the loop diagrams.

We start from the Lagrangian

Lcl =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 + Lφ − gϕ2φ− Λφ (3.1)
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in four spacetime dimensions, which couples a physical particle ϕ to some other type of

particle φ, to be defined below, with free Lagrangian

Lφ =
ρ

2

[
(∂µφ)(∂

µφ)−M2φ2
]
. (3.2)

For the time being, we assume M > 2m and ρ = ±1. The last term of (3.1) can be

removed by translating φ and redefining the other parameters, so we ignore it from now

on. The theory is superrenormalizable and the particle φ gets a nonvanishing width.

The quantization of ϕ proceeds as usual, so we concentrate on φ, starting from the

free-field limit. The presence of ϕ lets us study the effects of interactions.

The φ momentum and its commutation relations read

πφ = ρ∂0φ, [πφ(t,x), φ(t,y)] = −iδ(3)(x− y). (3.3)

The free classical Hamiltonian is

Hφ =
ρ

2

∫
d3x

[
(∂0φ)

2 + (▽φ)2 +M2φ2
]
. (3.4)

To study more possibilities at once, we expand the field operator φ̂ as

φ̂(t,x) =

∫
d3k

(2π)32ω

[
(−1)ηake

−iσkx + (−1)η
′

a†
k
eiσkx

]
, (3.5)

in terms of creation and annihilation operators a†
k
and ak, where kx = ωt − k · x and

ω =
√
k2 +M2. The parameters η and η′ can have values 0 or 1, while σ can have values

±1. To have agreement with (3.3), the commutation relations of a†
k
and ak must be

[ak, a
†
k′ ] = 2ρσ(−1)η+η′ω(2π)3δ(3)(k− k′), [a†

k
, a†

k′ ] = [ak, ak′ ] = 0. (3.6)

We define the vacuum |0〉 to be annihilated by ak and the states to be created by a†
k
:

ak|0〉 = 0, |n〉 = 1√
n!A

∫ ( n∏

i=1

d3ki

(2π)32ωi

)
f(k1, · · · ,kn)a

†
k1
· · · a†

kn

|0〉, (3.7)

where

A =

∫ ( n∏

i=1

d3ki

(2π)32ωi

)
|f(k1, · · · ,kn)|2.

From (3.4) we derive the Hamiltonian operator

Ĥφ =
ρ

2
(−1)η+η′

∫
d3k

(2π)3
a†
k
ak (3.8)
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(neglecting an infinite additive constant). From (3.6) we find the norms

〈n|n〉 = ρnσn(−1)n(η+η′). (3.9)

The Ĥφ eigenvalues are

Ĥφ|n〉 = hn|n〉, hn = σ

n∑

i=1

ω̄i, (3.10)

for f(k1, · · · ,kn) =
n∏

i=1

δ(3)(ki − k̄i) (A being replaced by an arbitrary finite constant),

where k̄i are given momenta and ω̄i are their frequencies.

The free (T ordered) φ̂ propagator is

〈0|T φ̂(x)φ̂(y)|0〉= ρσ

∫
d3k

(2π)32ω

[
θ(x0 − y0)e−iσk(x−y) + θ(y0 − x0)e−iσk(y−x)

]

=

∫
d4p

(2π)4
iρe−ip(x−y)

p2 −M2 + iσǫ
. (3.11)

The physical particles have ρ = σ = 1 and η = η′ = 0. Then the Hamiltonians Hφ and

Ĥφ are bounded from below and the norms are positive.

Now we consider the options with ρ = −1.

3.1 iǫ ghost

The first possibility is to perform the φ quantization as usual, which means choose (3.5)

with σ = 1, η = η′ = 0. Then, formula (3.9) shows that there are states with positive

norms and states with negative norms. From (3.10), we see that the Hamiltonian Ĥφ is

bounded from below. Formula (3.11) shows that the propagator is equal to (2.1), that is

to say, the opposite of a physical particle. In particular, the iǫ prescription is the usual one

(M2 →M2− iǫ). This is just the ordinary ghost, which has positive energy, but indefinite

metric. We call it “iǫ ghost”.

The iǫ ghosts violate unitarity. Nevertheless, they satisfy a pseudounitary equation

(see [6, 7]), which holds perturbatively diagram by diagram.

Since we are assuming M > 2m, the interaction equips φ with a positive width Γφ.

The φ dressed propagator formally reads

− iZ

p2 −M2
gh + i(ǫ−MghΓφ)

(3.12)

around the peak. The minus sign between ǫ and MghΓφ signals that the resummation

cannot be trusted close to the peak, as shown in [8], so we have a “peak uncertainty”. We
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cannot apply Veltman’s projection, because we do not know what dressed propagator we

should use inside bigger diagrams.

On the other hand, we cannot remove the ghosts from the external states order by

order in the perturbative expansion, since this kind of removal is not a projection, because

it is not compatible with the pseudounitarity equation. Without projections, the classical

limit is just (3.1). Formula (3.4) shows that the free φ classical Hamiltonian Hφ is not

bounded from below, although, as we have seen above, the quantum one Ĥφ is.

A way to overcome these obstacles is to define the dressed propagator of a ghost as the

one of formula (3.12) at ǫ = 0 and start over from there. Then we obtain the same options

as with the −iǫ ghost discussed below.

3.2 −iǫ ghost
Now we define φ in (3.5) with σ = −1 and η = η′ = 0. These choices give positive norms

in (3.9), but formula (3.10) shows that the quantum Hamiltonian Ĥφ in not bounded

from below. The propagator (3.11) becomes (2.2) and acquires an unusual prescription

(M2 →M2 + iǫ).

This option is not equivalent to the previous one, because the roles of the annihilation

and creation operators are interchanged inside φ, but not in the definitions (3.7) of vacuum

state and occupied states.

The dressed propagator can be resummed straightforwardly, including the region around

the peak, where we find (2.3). Since there is no peak uncertainty, Veltman’s projection

can be applied. Once we remove φ from the set of asymptotic states, because of its finite

lifetime, φ is no longer a degree of freedom in the classical limit. This means that it is

“frozen”, integrated out by means of its own propagator (calculated at ~ → 0).

The classical limit is obtained by collecting the tree diagrams. Veltman’s projection

reduces the set of such diagrams to those that do not have φ external legs. The φ internal

legs build nonlocal interactions among the physical fields ϕ. At the end, the true classical

Lagrangian LV
cl is the projected version of (3.1), obtained by integrating out φ with the

ghost propagator (2.2), which is the classical limit of (2.3). The result is

LV
cl =

1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 − g2

2
ϕ2 1

�+M2 + iǫ
ϕ2. (3.13)

As predicted, it contains a micro nonlocal ϕ self-interaction, which is also micro acausal.

If M is large enough to have agreement with the experimental data available today, micro
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nonlocalities and micro acausalities are not problematic. What makes LV
cl not acceptable

is that it is not Hermitian. The imaginary part of the projected classical action is

∫
d4xIm

[
LV

cl

]
=
πg2

2

∫
d4xϕ2δ(−�−M2)ϕ2 =

πg2

2

∫
d4p

(2π)4
ϕ̃2(−p)δ(p2 −M2)ϕ̃2(p),

where ϕ̃2 is the Fourier transform of ϕ2.

If we choose not to advocate Veltman’s projection, the classical Lagrangian we obtain is

(3.1): the denominator �+M2+ iǫ is moved to the numerator, sandwiched in between two

fields φ, so the contribution of −iǫ becomes negligible. In that case, φ is not integrated out,

but an independent degree of freedom, with its own field equations and boundary condi-

tions. The classical limit is Hermitian, but still unacceptable, in the realm of perturbation

theory, because the classical free Hamiltonian Hφ is not bounded from below.

The Lee-Wick ghosts are −iǫ ghosts equipped with appropriate rules to treat them

inside the loop diagrams (see section 4).

3.3 Non-Hermitian ghost

We mention a third option, because it is the one preferred by Lee and Wick in their papers,

although it is equivalent to the −iǫ ghost just described. We choose ρ = 1 and expand

φ with σ = 1, η = 0, η′ = 1. So doing, we understand that φ is anti-Hermitian and the

coupling g is purely imaginary. The metric is indefinite and the Hamiltonians Hφ and Ĥφ

are bounded from below. The dressed propagator is fine, so there is no peak uncertainty

and Veltman’s projection can be applied. The −iǫ ghost can be obtained from this type

of ghost, which we call non-Hermitian (nH) ghost, by turning φ into iφ and g into −ig.
There is also a variant with ρ = 1, σ = −1, η = 0, η′ = 1. Then, the norms are positive,

but Ĥφ is not bounded from below. The dressed propagator cannot be resummed in the

peak region, so there is a peak uncertainty and Veltman’s projection cannot be used.

3.4 Fakeon

In the case of purely virtual particles, we can take ρ = ±1. Doubling the set of creation

and annihilation operators, we write

φ̂(t,x) =

∫
d3k

(2π)32ω

[
ak + b†

k√
2

e−ikx +
a†
k
+ bk√
2

eikx

]
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and assume

[ak, a
†
k′ ] = 2ρω(2π)3δ(3)(k− k′), [bk, b

†
k′ ] = −2ρω(2π)3δ(3)(k− k′),

all the other commutators being identically zero.

Inside the loop diagrams, the fakeon projection amounts to integrate φ out with the

appropriate diagrammatic rules (see [9] for explicit formulas). In the classical limit, we

must integrate it out with the propagator

P iρ

p2 −M2
, (3.14)

which coincides with the Fourier transform of 〈0|T φ̂(x)φ̂(y)|0〉, where P is the Cauchy

principal value. The Lagrangian describing the classical limit, which reads

Lf
cl =

1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 + ρ

g2

2
ϕ2P

(
1

�+M2

)
ϕ2, (3.15)

is the sum of a standard kinetic term plus a micro nonlocal Hermitian self-interaction.

3.5 Summary

We summarize the various options considered so far and their main properties in table 1,

where “l” stands for local, “nl” means nonlocal, “+V” and “–V” mean with and without

Veltman’s projection, respectively, and “f±” denotes the fakeons with ρ = ±1. Finally,

“phys. part.” means physical particle, “uncert.” means uncertainty, “Re” means Hermitian

and “Im” means non-Hermitian.

4 Loops and unstable particles

We briefly recall how the various options listed in the previous section are treated inside

the loop diagrams, referring to the literature for more details.

The propagator of an iǫ ghost coincides with the one of a physical particle, apart

from its overall sign, so its diagrammatics is straightforward. The propagator of a −iǫ
ghost, on the other hand, is defined by the opposite prescription. If we integrate the loop

diagrams on real energies and real momenta, the −iǫ prescription cannot coexist with

the usual iǫ one [19], because it switches the roles of the thresholds with those of the

pseudothresholds, causing instabilities, violations of unitarity, as well as violations of the
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phys.

part.
iǫgh −iǫgh+V −iǫgh–V nH+V nH–V nHσ=−1 f±

ρ 1 −1 −1 −1 1 1 1 ±1

σ 1 1 −1 −1 1 1 −1 ±1

η 0 0 0 0 0 0 0 0

η′ 0 0 0 0 1 1 1 0

φ̂† φ̂ φ̂ φ̂ φ̂ −φ̂ −φ̂ −φ̂ φ̂

norms + ± × + × ± + ×
Hφ > 0 6 0 × 6 0 × > 0 > 0 ×
Ĥφ > 0 > 0 × 6 0 × > 0 6 0 ×

Lcl

l

Re

l

Re

nl

Im

l

Re

nl

Im

l

Re

l

Re

nl

Re

peak

uncert.
no X no no no no X X

Table 1: Main properties of the options for quantization. The symbol “×” means “not

applicable”

locality and Hermiticity of counterterms. To avoid these types of problems, it is necessary

to formulate better integration prescriptions or give alternative diagrammatic rules.

The LW ghost is obtained from the −iǫ ghost by adopting the Lee-Wick integration

prescription on the loop energies [1], combined with the CLOP prescription [20] and any

other rules that might be necessary for the internal consistency. Here, we do not need to

prove that they exist, so we just assume that they do. The LW ghosts must be unstable,

dynamically or not, to apply Veltman’s projection to them. The procedure is semipertur-

bative, because it requires to use the dressed propagators inside diagrams and reorganize

the diagrammatic rules accordingly.

In the model (3.1), it is enough to turn on the vertex −gϕ2φ and assume the inequality

M > 2m. Then, the decay φ→ ϕϕ gives φ a nonvanishing width Γφ. The −iǫ prescription
guarantees that it is possible to resum the self-energies into the φ dressed propagators

with no peak uncertainty, so Veltman’s projection can be applied to φ, to build a unitary
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reduced S matrix Sr on the strictly asymptotic states.

Fakeons inside loops are defined by means of a different diagrammatics [9], which

works as a mathematical tool to surgically eradicate the potential degree of freedom at all

energies, turning it de facto into a fake degree of freedom. The mathematics of the fakeon

projection does not have a direct physical interpretation, such as a decay. We may expect

that if the removal of a degree of freedom (or its impossibility to be observed in nature) is

due to the physics, it is either nonperturbative (as in the cases of quarks and gluons) or

not a complete removal (as in the case of the LW ghost).

In particular, a purely virtual particle does not need to have a nonvanishing width Γ.

The assumption M > 2m is unnecessary to make the model (3.1) work with φ = fakeon.

We can even replace the vertex −gϕ2φ with an interaction like −gϕφ2, which makes the

fakeon width identically zero. Phenomenological models with fakeons of vanishing widths

are studied in ref. [12].

5 Pauli-Villars fields made physical

In this section we use fakeons to make the Pauli-Villars fields consistent and observable

without sending their masses to infinity.

We first recall the main properties of the Pauli-Villars fields [22, 6]. Consider the

Lagrangian

LPV =
1

2

N∑

j=1

[
(∂µϕj)(∂

µϕj)−m2
jϕ

2
j

]
− 1

2

N ′∑

j=1

[
(∂µφj)(∂

µφj)−M2
j φ

2
j

]
− V (ϕ̆, φ) , (5.1)

where

φ ≡
N∑

j=1

cjϕj +
N ′∑

j=1

djφj,

cj, dj are real constants and ϕ̆ are the fields ϕj that do not appear inside φ (because they

have cj = 0). V is a potential, or, more generally, the interaction part (if it depends on

the derivatives of the fields).

It is possible to organize the diagrammatics so that each non-ϕ̆ internal leg of the

diagrams propagates the whole combination φ, with free propagator

〈φ(p)φ(−p)〉0 =
N∑

j=1

ic2j
p2 −m2

j + iǫ
−

N ′∑

j=1

id2j
p2 −M2

j + iǫ
. (5.2)
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For the moment, we use the standard iǫ prescription for the PV fields φj. We examine

different options later.

If we choose cj, dj such that

N∑

j=1

c2j(m
2
j)

k =
N ′∑

j=1

d2j(M
2
j )

k, (5.3)

k = 0, 1, 2, . . . n̄, the propagator (5.2) falls off as 1/(p2)2+n̄ for large |p2|. So doing, we can

improve the power counting and in some cases render the theory (5.1) completely finite.

If we plan to send the masses Mj to infinity, we can use the PV fields as regulators.

The Pauli-Villars regularization technique is obtained by adding PV fields so as to make

the theory completely finite at finite masses Mj.

An important property of the PV regularization technique is that it is not gauge invari-

ant, nor general covariant, because it does not treat the quadratic and interaction parts of

the Lagrangian on an equal footing. Indeed, the interaction part of (5.1) depends only on

the physical fields ϕ̆ and the linear combination φ, while the quadratic terms cannot be

expressed by means of ϕ̆ and φ. Gauge invariance and general covariance can be recovered

in the limitMj → ∞ (provided they are not anomalous) by subtracting local counterterms.

If we want to give physical significance to the PV fields without sending their masses

to infinity, we must restrict to neutral matter fields. We study the main options we have

in this context.

The first option is the one already considered, i.e., quantize the PV fields as iǫ ghosts.

Then, it is not possible to ignore them from the incoming and outgoing states, because

the dressed propagators cannot be resummed around the peaks. The classical Lagrangian

is not acceptable, because it has negative kinetic terms.

The second option is what Lee and Wick do, i.e., quantize the PV fields as −iǫ ghosts,
treat them as LW ghosts inside the loop diagrams, ensure that they are unstable, build

their dressed propagators and apply Veltman’s projection. The problem with this option

is that the classical limit is not Hermitian.

The standard option with fakeons is to quantize φj as purely virtual particles, which

removes them completely. There is a new possibility, though, which emerges by combining

the PV, LW and fakeon ideas in a certain way. It amounts to removing the φj only partially,

to overcome the difficulties described above and gain extra (observable) physical particles.

The trick works with neutral matter fields and is fully perturbative.

We first describe the new option in the model (3.1), with Λ = 0, which is a particular

case of (5.1), then we generalize it to (5.1). In the next sections we apply it to finite QED,
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and quantum gravity.

We decompose φ as the combination of a physical field Φ and an additional field Q.

Specifically, we turn the classical Lagrangian (3.1) into

Lcl =
1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 +

1

2
(∂µΦ)(∂

µΦ)− M2

2
Φ2

−1

2

[
(∂µQ)(∂

µQ)−M2Q2
]
− gϕ2(Φ +

√
2Q) (5.4)

and view Φ as a standard physical particle and Q as a fakeon. The combined φ propagator

becomes

− 2i

p2 −M2

∣∣∣∣
f

+
i

p2 −M2 + iǫ
, (5.5)

where the subscript “f” means “fakeon prescription”. At the tree level, (3.14) (with ρ →
−2) gives

− i

p2 −M2 − iǫ
− i

p2 −M2 + iǫ
+

i

p2 −M2 + iǫ
= − i

p2 −M2 − iǫ
,

which is the propagator of a −iǫ ghost. Resumming the self-energies, the dressed propa-

gator reads

− iZ

p2 −M2
ph − i(ǫ+ Γ)

→ − iZ

p2 −M2
ph − iΓ

around the peak, where Γ is non-negative. Although the φ two-point function has no peak

uncertainty, this is not crucial now, because we do not need Veltman’s projection, having

abandoned the LW approach to adopt the fakeon one.

Since Φ is a fakeon, it does not belong to the set of asymptotic states, by definition.

Instead, Q does: unstable or not, it is an extra, physically observable particle, originated

by a PV field. The decomposition of φ as Φ +
√
2Q and the properties of fakeons allow

us to treat Φ and Q differently, which is crucial to have a Hermitian classical limit. That

limit, obtained by keeping Φ and projecting Q away in (5.4), is given by the Lagrangian

Lf
cl =

1

2
(∂µϕ)(∂

µϕ)− m2

2
ϕ2 +

1

2
(∂µΦ)(∂

µΦ)− M2

2
Φ2 − gϕ2Φ− g2ϕ2P 1

�+M2
ϕ2, (5.6)

which describes two physical particles, ϕ and Φ, with a nonstandard (micro nonlocal and

micro acausal) ϕ self-interaction.

The decomposition also specifies how to treat φ inside the loop diagrams. We must

proceed as in [9], distinguishing the contributions due to Φ from those due to Q, since Φ

is a physical particle, while Q is a fakeon. Note that Φ and Q have the same mass, so
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there are many coinciding thresholds, which must be treated as limits of distinct ones. The

counterterms of (5.4) just depend on ϕ and φ. The φ propagator renormalizes exactly as

for the theory (3.1). The Φ and Q two-point functions can be derived from it. They may

separately have peak uncertainties, but, again, this is not of our concern.

The masses of purely virtual particles are observable quantities. Nevertheless, they are

not revealed as “masses”, but through their indirect effects on the other particles. For

example, in the model (5.6) such effects are encoded in the last term, M being the mass

of the fakeon Q.

We can generalize the trick by turning (5.1) into

LPV =
1

2

N∑

j=1

[
(∂µϕj)(∂

µϕj)−m2
jϕ

2
j

]
+

1

2

N ′∑

j=1

[
(∂µΦj)(∂

µΦj)−M2
j Φ

2
j

]

−1

2

N ′∑

j=1

[
(∂µQj)(∂

µQj)−M2
jQ

2
j

]
− V (ϕ̌, φ) , (5.7)

where

φ =
N∑

j=1

cjϕj +
N ′∑

j=1

dj(Φj +
√
2Qj),

and interpreting Φj as additional physical particles and Qj as fakeons. The φ propagator

is
N∑

j=1

ic2j
p2 −m2

j + iǫ
+

N ′∑

j=1

id2j
p2 −M2

j + iǫ
−

N ′∑

j=1

2id2j
p2 −M2

j

∣∣∣∣
f

.

Thanks to conditions such as (5.3), we can make it fall off as fast as we want for large |p2|.
The classical limit is a theory of N + N ′ physical particles with certain micro nonlocal

self-interactions.

6 Finite QED

In this section we use the trick explained in the previous one to build a finite QED, by

tweaking the original Lee-Wick construction [2]. In the next section we investigate the

possibility of generalizing the trick to quantum gravity.

We start from the classical Lagrangian

LQED =−1

4
FµνF

µν +
1

4
GµνG

µν − M2

2
BµB

µ +
2∑

j=1

ψ̄j [iγ
µ(∂µ + ieAµ + ieBµ)−mj]ψj

+Ψ̄σ1 [iγ
µ(∂µ + eσ2Aµ + eσ2Bµ)−MΨ] Ψ, (6.1)
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where Fµν = ∂µAν − ∂νAµ, Gµν = ∂µBν − ∂νBµ, σ1 and σ2 are the first two Pauli matrices,

ψ1 and ψ2 denote the electron and the muon, respectively, Ψ is an extra fermion doublet

and MΨ denotes the Ψ mass matrix. The Lagrangian is Hermitian and gauge invariant,

the gauge transformations being

Aµ → Aµ+∂µΛ, Bµ → Bµ, ψ → e−ieΛψ, ψ̄ → eieΛψ̄, Ψ → e−eσ2ΛΨ, Ψ̄ → Ψ̄e−eσ2Λ.

6.1 Lee-Wick QED

If we follow Lee and Wick, the vector Bµ is a −iǫ ghost at the tree level, to be treated as a

LW ghost inside the loops. Since the interactions contain only the combination Aµ + Bµ,

what matters, for power counting, is the combined propagator of Aµ + Bµ, which reads

−iηµν
(

1

p2 + iǫ
− 1

p2 −M2 − iǫ

)
+ pµpν(· · · ), (6.2)

where ηµν =diag(1,−1,−1,−1) is the flat-space metric. The transverse part, proportional

to ηµν , is gauge independent and falls off like 1/(p2)2 for large momenta, à la Pauli-Villars.

The longitudinal part does not fall off rapidly. Nevertheless, it is gauge dependent and

does not affect the physical quantities.

The behavior of (6.2) is enough to ensure that every diagram but one is convergent, up

to gauge-dependent contributions. The exception is the one-loop photon self-energy. Its

convergence is provided by the doublet Ψ, introduced to obtain a completely finite theory.

At one loop the photon self-energy receives contributions from the bubble diagrams

with circulating electrons, muons and Ψ fields. The diagram with circulating Ψ fields has

an extra −2 factor with respect to the electron and muon bubble diagrams, because of the

trace

tr[σ1(−iσ1σ2)σ1(−iσ1σ2)] = −2.

A σ1 is brought by each Ψ propagator and a −iσ1σ2 is brought by each vertex. The factor

−2 is precisely what is needed to compensate the logarithmic divergences due to electrons

and muons.

The dressed propagator of Aµ + Bµ can be resummed in the transverse sector. We

do not repeat the calculation of Lee and Wick here, but just recall that Bµ acquires a

nonvanishing width and becomes unstable. It is then removed from the set of strictly

asymptotic states à la Veltman.

Lee and Wick need to make Ψ decay as well. Since Ψ does not become unstable

dynamically, they equip it with a nonvanishing width at the classical level, by choosing a
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mass matrix of the form

MΨ = mΨ +
i

2
σ2γΨ, (6.3)

where mΨ and γΨ are real numbers. The Lagrangian (6.1) remains Hermitian.

Once Veltman’s projection is advocated for the unstable particles Bµ and Ψ (the muon

being stable here), the reduced S matrix Sr is unitary. As expected, the classical limit,

which reads

LLW
cl =−1

4
FµνF

µν +
2∑

j=1

ψ̄j [iγ
µ(∂µ + ieAµ)−mj]ψj

+
e2

2M2

(
2∑

j=1

ψ̄jγ
µψj

)
ηµνM

2 + ∂µ∂ν
�+M2 + iǫ

(
2∑

l=1

ψ̄lγ
νψl

)
, (6.4)

contains a non-Hermitian self-interaction.

6.2 Standard option with fakeons

The easiest way to solve the problems of the Lee-Wick construction is to treat Bµ and Ψ

as fakeons. The theory remains finite. The dressed Bµ propagator cannot be resummed

around its peak, so Bµ has a peak uncertainty, equal to its width divided by 2 [8]. As

far as Ψ is concerned, we can just leave γΨ = 0 in formula (6.3), since Ψ is out of the

physical spectrum without requiring that it decays. Note that Ψ appears quadratically

in the action. This means that, once it is projected away, it does not contribute to the

classical limit (its field equation being satisfied by Ψ = 0). At higher orders, it contributes

by means of Ψ loops (similar to the loops of Faddeev-Popov ghosts), which are Hermitian

due to the diagrammatics of purely virtual particles.

The classical limit becomes

Lf
cl =−1

4
FµνF

µν +
2∑

j=1

ψ̄j [iγ
µ(∂µ + ieAµ)−mj]ψj

+
e2

2M2

(
2∑

j=1

ψ̄jγ
µψj

)
P ηµνM

2 + ∂µ∂ν
�+M2

(
2∑

l=1

ψ̄lγ
νψl

)
, (6.5)

which is the standard QED Lagrangian with a nonstandard four fermion Hermitian, micro

nonlocal self-interaction.
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6.3 New option with fakeons

The new option, instead, amounts to interpreting Bµ as a superposition B̃µ +
√
2Qµ of a

physical vector B̃µ and a different fakeon Qµ, while the doublet Ψ is still seen as a fakeon.

We obtain the Lagrangian

LQED =−1

4
FµνF

µν − 1

4
F̃µνF̃

µν +
M2

2
B̃µB̃

µ +
1

4
QµνQ

µν − M2

2
QµQ

µ

+
2∑

j=1

ψ̄j

[
iγµ(∂µ + ieAµ + ieB̃µ + ie

√
2Qµ)−mj

]
ψj

+Ψ̄σ1

[
iγµ(∂µ + eσ2Aµ + eσ2B̃µ + e

√
2σ2Qµ)−MΨ

]
Ψ, (6.6)

where F̃µν = ∂µB̃ν − ∂νB̃µ and Qµν = ∂µQν − ∂νQµ. The theory remains finite, because

the combined propagator of Aµ + B̃µ +
√
2Qµ behaves like (6.2) for large |p2|, although it

is defined by a different prescription at finite momenta. The classical limit reads

Lf
cl =−1

4
FµνF

µν − 1

4
F̃µνF̃

µν +
M2

2
B̃µB̃

µ +
2∑

j=1

ψ̄j

[
iγµ(∂µ + ieAµ + ieB̃µ)−mj

]
ψj

+
e2

M2

(
2∑

j=1

ψ̄jγ
µψj

)
P ηµνM

2 + ∂µ∂ν
�+M2

(
2∑

l=1

ψ̄lγ
νψl

)
. (6.7)

This is the standard QED Lagrangian with an extra Proca vector B̃µ and a peculiar

Hermitian, micro nonlocal four fermion self-interaction.

Since the QED models formulated in this section are finite, the coupling α = e2/(4π)

does not run. However, if the mass M of the vector Bµ and the mass MΨ of the doublet

Ψ are assumed to be large, they can be treated as cutoffs at low energies. The logarithmic

divergences that appear when they tend to infinity give the usual running.

7 Quantum gravity

In this section we discuss the possibility of applying the trick to quantum gravity and stress

the difficulties that arise with general covariance. Then we explain how a fully covariant

decomposition can be achieved by adding a massive spin-2 multiplet.

Consider the classical action

SQG = − 1

16πG

∫
d4x

√−g
(
2Λ +R +

λ

2m2
χ

CµνρσC
µνρσ − R2

6m2
φ

)
, (7.1)
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where λ = m2
χ(3m

2
φ + 4Λ)/(m2

φ(3m
2
χ − 2Λ)) is a parameter very close to 1. The theory

includes the square CµνρσC
µνρσ of the Weyl tensor Cµνρσ and is renormalizable by power

counting [23]. It propagates the graviton, a scalar field φinfl of mass mφ (which can be

interpreted as the inflaton) and a spin-2 field χµν of mass mχ, which has a kinetic term

multiplied by the wrong sign. The three can be made explicit with the help of auxiliary

fields, as shown in [24].

If χµν is interpreted as an iǫ ghost, we obtain the Stelle theory [23], which is not unitary.

Since χµν dynamically acquires a nonvanishing width Γχ, it is interesting to consider the

χµν dressed propagator. The results of [8] show that the resummation of the self-energies

does not make sense around the peak, because we formally obtain (3.12). Thus, we cannot

project χµν away à la Veltman. The classical limit of this theory is exactly (7.1), which is

not acceptable.

The LW option, studied by Donoghue and Menezes in ref. [25], is to interpret χµν as a

−iǫ ghost at the tree level and as a LW ghost inside the loops. In this case, it is meaningful

to resum the self-energies into the χµν dressed propagator, which has the form (2.3). It is

possible to project χµν away à la Veltman and focus on the reduced S matrix Sr. However,

the classical limit is not Hermitian, like (3.13) and (6.4).

If we tweak the Lee-Wick proposal by removing Veltman’s projection, the classical limit

is still (7.1). If we remove Veltman’s projection just for the physical massive spin-2 particle

singled out by the narrow-width approximation (the real part of the propagator (2.2)), we

break general covariance, for arguments similar to the ones we explain below.

Other Lee-Wick approaches to quantum gravity, starting from different classical actions,

have been considered in the literature [26].

Now we examine the options we have with fakeons. The standard option is to interpret

χµν as a fakeon, which gives the quantum gravity theory of [10]. Then, χµν does not

belong to the sets of initial and final states, because it is purely virtual, and has a peak

uncertainty, quantified by its width Γχ divided by two. The classical limit is Hermitian,

like (6.5) (see [27]).

The new option is to pursue the strategy of the previous two sections, as in the exten-

sions (5.4), (5.7) and (6.6). We wish to interpret χµν as the superposition χ̃µν +
√
2χ′

µν of

an extra, observable massive spin-2 particle χ̃µν and a new fakeon χ′
µν .

We recall, from [24], that the χµν action Sχ(g, φinfl, χ), which can be obtained from

(7.1) by means of auxiliary fields, is the sum

Sχ(g, φinfl, χ) = − λ

8πG
SPF(g, χ) + Sχint(g, φinfl, χ) (7.2)
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of a term proportional to the covariantized Pauli-Fierz action

SPF(g, χ)=
1

2

∫
d4x

√−g [DρχµνD
ρχµν −DρχD

ρχ+ 2Dµχ
µνDνχ− 2Dµχ

ρνDρχ
µ
ν

−m2
χ(χµνχ

µν − χ2) +Rµν(χχµν − 2χµρχ
ρ
ν)
]
, (7.3)

with nonminimal terms (χ denoting the trace gµνχµν), plus further interactions Sχint(g, φinfl, χ).

The decomposition of χµν in terms of χ̃µν and χ′
µν requires that we treat the quadratic

parts of χ̃µν and χ′
µν differently from their interactions. We expand the metric tensor gµν

around the flat-space metric ηµν and write

Sχ(g, φinfl, χ) ≡ − λ

8πG
SPF(η, χ) + ∆Sχ(η, g, φinfl, χ).

Then we modify the theory according to the strategy of section 5. The interaction part

remains the same and contains the combination χµν = χ̃µν+
√
2χ′

µν . Instead, the quadratic

part is turned into the sum of the quadratic parts of χ′
µν and χ̃µν . Mimicking (5.4), the

replacement reads

Sχ(g, φinfl, χ) →
λ

8πG
SPF(η, χ̃)−

λ

8πG
SPF(η, χ

′) + ∆Sχ(η, g, φinfl, χ̃+
√
2χ′), (7.4)

so χ̃µν becomes a physically observable massive spin-2 particle, while χ′
µν must be treated

as a fakeon.

The right-hand side of (7.4) breaks general covariance, because it depends on both met-

rics gµν and ηµν . The fields χ̃µν and χ
′
µν are defined by different prescriptions and physically

distinguished: χ̃µν , which is a physical particle, must be included in the set of incoming

and outgoing states; χ′
µν , as a fakeon, does not belong there. In these circumstances, it is

not obvious how to recover general covariance. Below we study the issue in more detail.

We remarked in section 5 that this problem is a well-known aspect of the Pauli-Villars

approach, which treats the interactions differently from the quadratic parts.

To conclude, the new option, which works well in QED, cannot be used as is in quantum

gravity. This is unfortunate, because the resulting theory would contain an additional,

observable massive spin-2 particle χ̃µν with respect to the theory of [10] (as well as a

different spin-2 fakeon χ′
µν).

7.1 General covariance and PV fields

The breaking of general covariance due to the decomposition of χµν into the fields χ̃µν and

χ′
µν is entirely due to the quantization prescriptions. For this reason, the issue deserves a

careful analysis.
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We begin by describing an alternative procedure to apply the trick of converting a

ghost into the superposition of a physical particle plus a fakeon, which helps us keep the

symmetries under control in a more transparent way. Let

S(φ, g) = −1

2

∫
d4x[(∂µφ)(∂

µφ)−M2φ2] + Sint(φ, g)

denote the action of a field φ with negative kinetic term coupled to gravity. Adding a

decoupled free field Ω with the same mass, we obtain

S ′(φ, g,Ω) = S(φ, g) +
1

2

∫
d4x[(∂µΩ)(∂

µΩ)−M2Ω2]. (7.5)

The total action is still invariant under general coordinate transformations, provided Ω

does not transform. At the infinitesimal level, the transformations read

δφ = ξρ∂ρφ, δgµν = ξρ∂ρgµν + gµρ∂νξ
ρ + gνρ∂µξ

ρ, δΩ = 0. (7.6)

The action (7.5) gives an invariant theory at the quantum level as long as the quanti-

zation prescriptions are compatible with the symmetry (7.6). If so, the Ward-Takahashi-

Slavnov-Taylor (WTST) identities [28] can be derived in the usual fashion, by means of a

change of field variables dictated by (7.6) in the functional integral, after introducing the

source term
∫
d4x(Jφφ + JΩΩ + Jµνgµν). If we focus on the matter sector and treat the

metric as an external field, the identities read

∫
d4x [Jφ〈δφ〉J + JΩ〈δΩ〉J + Jµνδgµν ] = 0, (7.7)

where 〈· · · 〉J denotes the connected Green functions at nonvanishing sources. The term

〈δΩ〉J vanishes by (7.6). We specialize to gµν = ηµν and ξρ = constant (translations),

so that the term δgµν vanishes as well. Differentiating the resulting equation (7.7) with

respect to Jφ and JΩ and setting Jφ = JΩ = 0 afterwards, we find

〈δφ(x)Ω(y)〉 = ξρ〈∂ρφ(x)Ω(y)〉 = 0. (7.8)

In particular, the quantization prescription should not mix φ with Ω: a quadratic contri-

bution like ∫
d4xd4yJφ(x)Gmix(x, y)JΩ(y) (7.9)

to the generating functional of the connected Green functions is not compatible with

general covariance.
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Now, observe that the free-field action

−1

2

∫
d4x[(∂µφ)(∂

µφ)−M2φ2] +
1

2

∫
d4x[(∂µΩ)(∂

µΩ)−M2Ω2]

is invariant under the hyperbolic rotation

φ = Φ+
√
2Q, Ω =

√
2Φ +Q. (7.10)

The rotated action

S ′′(Φ, g, Q)≡S ′(Φ +
√
2Q, g,

√
2Φ +Q) =

1

2

∫
d4x[(∂µΦ)(∂

µΦ)−M2Φ2]

−1

2

∫
d4x[(∂µQ)(∂

µQ)−M2Q2] + Sint(Φ +
√
2Q, g) (7.11)

matches the actions (5.4), (5.7), (6.6) and (7.4). It is precisely what we need to decompose

the field φ into a physical particle Φ plus a fakeon Q.

We can read the symmetries of S ′′(Φ, g, Q) from (7.6). They are

δΦ = −ξρ∂ρΦ−
√
2ξρ∂ρQ, δQ = −

√
2δΦ.

The free-field propagators we want can be derived from (5.5). They are, in momentum

space,

〈Φ(p)Φ(−p)〉0 =
i

p2 −M2 + iǫ
, 〈Φ(p)Q(−p)〉0 = 0, 〈Q(p)Q(−p)〉0 = − i

p2 −M2

∣∣∣∣
f

.

(7.12)

Switching to the field variables φ and Ω by means of (7.10), we find, for legs that disconnect

the diagrams,

〈φ(p)φ(−p)〉0=− i

p2 −M2 − iǫ
, 〈φ(p)Ω(−p)〉0 =

√
2πδ(p2 −M2),

〈Ω(p)Ω(−p)〉0=
i

p2 −M2 + iǫ
+ πδ(p2 −M2). (7.13)

We see that, although 〈φ(p)φ(−p)〉0 is the desired one, i.e. (2.2), we cannot fulfil (7.8)

and make Gmix vanish. This is inconsistent with the WTST identities. Moreover, the Q

projection amounts to set JQ = 0, which does not kill the contributions like (7.9). For

these reasons, we cannot ensure that general covariance can be recovered.

The case of gravity is obtained by means of the substitutions φ → χµν , Φ → χ̃µν ,

Q → χ′
µν , and adapting the formulas where necessary. The role of Ω is played by a free

Pauli-Fierz spin-2 particle Ωµν of mass mχ. Renormalizability is ensured by the very fact

that Ωµν decouples from the rest (apart from the quantization prescription, which does

not affect the renormalizability). The conclusions do not change.
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7.2 Manifestly covariant decomposition by means of a massive

spin-2 multiplet

A way to perform the decomposition in a manifestly covariant way is to include a Pauli-

Fierz spin-2 particle Ωµν of mass mχ, coupled to gravity as required by general covariance,

and then rotate the degenerate pair χµν , Ωµν , so as to single out the physically observable

spin-2 particle χ̃µν and the fakeon χ′
µν . However, such a theory is not renormalizable,

because the Pauli-Fierz propagator does not fall off as required by power counting at large

momenta.

It is possible to have renormalizability (and unitarity) if we replace Ωµν with a whole

massive spin-2 multiplet Υµν , of the type studied in ref. [15]. In that case Υµν is a

symmetric, traceless tensor and contains a triplet: the spin-2 particle Ωµν , a spin-1 fakeon

Ωµ and a massive scalar Ω. If we choose the mass of Ωµν to be equal to mχ, to have

degeneracy with χµν , the masses m1 and m0 of Ωµ and Ω are related to mχ by a certain

formula that can be found in [15]. Then, we assume that χµν has the free propagator of

a LW ghost and complete the set of free propagators as in (7.13), so that, after rotating

the degenerate pair χµν , Ωµν , we can identify the physically observable spin-2 particle χ̃µν

and the fakeon χ′
µν , with free propagators of the form (7.12).

So doing, we manage to extend the original LW concept to gravity in a general covariant

way, under the requirement that the projected classical action be Hermitian. However,

what we obtain is just the theory of [10] coupled to matter in a peculiar way.

8 Conclusions

The Lee-Wick models rely on the premise that a unitary reduced S matrix Sr can be

built by removing the LW ghosts, which are unstable, from the sets of asymptotic states.

However, a finite lifetime is not a sufficient reason to ignore a particle from the physical

spectrum. If we just drop the LW ghosts, saving the muon and the resonances, the models

have non-Hermitian classical limits.

A proper classical limit is important to develop a meaningful cosmology. Although it is

legitimate to ignore heavy massive particles at low energies in particle physics, in primordial

cosmology the understanding of high energies (subhorizon scales) is necessary to make

predictions about the low energies (superhorizon scales). The Bunch-Davies condition [29,

30], for example, specifies the vacuum in the subhorizon region. We cannot make realistic

assumptions about that region, which is experimentally and observationally inaccessible, if
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the theory has ghosts or non-Hermitian interactions. The ABP bound mχ > mφ/4 of [11],

crucial for the prediction of the tensor-to-scalar ratio r, also follows from the interpolation

between the subhorizon and the superhorizon scales.

We have shown that a nonpurely virtual particle cannot be completely removed, within

the realm of perturbation theory. Barring nonperturbative mechanisms, unacceptable

remnants emerge one way or another, like a non-Hermitian self-interaction, an indefinite

metric or a Hamiltonian that is unbounded from below.

Fakeons, on the other hand, are purely virtual, so it is not necessary to worry about

making them decay. For this reason, they avoid the problems of the other options, without

using semiperturbative approaches or advocating nonperturbative effects. Besides being

fully perturbative, the models with fakeons have a Hermitian classical limit and a Hermitian

reduced action. In quantum gravity, they lead to a predictive primordial cosmology. The

fakeon width Γ is not interpreted as a lifetime, but as (twice) the magnitude of the peak

uncertainty, for processes that probe energies close to the fakeon mass.

The investigation carried out in this paper suggests a way to remove a LW ghost only

partially, after converting it into a superposition of a fakeon and an observable physical

particle. Under certain assumptions, this trick makes the Pauli-Villars fields consistent

without sending their masses to infinity. It also allows us to build a finite QED. Neverthe-

less, it works only with neutral matter fields, in the absence of gravity, because it clashes

with general covariance and gauge invariance. A manifestly covariant decomposition can

be obtained by adding a massive spin-2 multiplet, which in the end just gives quantum

gravity coupled to matter in a peculiar way.
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