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Abstract

We prove spectral optical identities in quantum field theories of physical particles (de-

fined by the Feynman iε prescription) and purely virtual particles (defined by the fakeon

prescription). The identities are derived by means of purely algebraic operations and hold

for every (multi)threshold separately and for arbitrary frequencies. Their major signifi-

cance is that they offer a deeper understanding on the problem of unitarity in quantum field

theory. In particular, they apply to “skeleton” diagrams, before integrating on the space

components of the loop momenta and the phase spaces. In turn, the skeleton diagrams

obey a spectral optical theorem, which gives the usual optical theorem for amplitudes,

once the integrals on the space components of the loop momenta and the phase spaces

are restored. The fakeon prescription/projection is implemented by dropping the thresh-

olds that involve fakeon frequencies. We give examples at one loop (bubble, triangle, box,

pentagon and hexagon), two loops (triangle with “diagonal”, box with diagonal) and arbi-

trarily many loops. We also derive formulas for the loop integrals with fakeons and relate

them to the known formulas for the loop integrals with physical particles.
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1 Introduction

Unitarity is a key requirement to claim that a quantum field theory has chances to be

fundamental, together with locality and renormalizability. Generically, locality and renor-

malizability can be phrased in simple terms: the Lagrangian should be polynomial in the

fields and their derivatives and obey the power counting criterion. Moreover, the theorem

of locality of counterterms shows that there is a nontrivial connection between renormal-

izability and locality. Unitarity, on the other hand, still lacks an understanding in equally

simple terms. In this paper we overcome this drawback and extend the classical results

[1, 2, 3, 4, 5] in several directions.

We show that unitarity in quantum field theory can be reduced to a set of algebraic

identities, which do not require to integrate on the space components of the loop momenta,

or the phase spaces in cut diagrams, and hold for each physical threshold separately. The

key ingredient is a proper threshold decomposition, because different thresholds do not

talk to one another.

The gain in insight is important. Among the other things, we can identify the purely

virtual (off-shell) content of amplitudes and diagrams. We can switch from the Feynman

prescription to the fakeon prescription [6, 7] by simply dropping all the thresholds that

involve one or more frequencies associated with the legs that we want to quantize as

fakeons (that is to say, purely virtual particles). We can easily generalize the identities

to propagators with arbitrary residues and arbitrary frequencies, as well as vertices with

arbitrary derivative structures (as long as the classical Lagrangian stays Hermitian). We

can show that the spectral identities hold for thick fakeons as well (fakeons with finite

“widths” at the tree level1), which are typically originated by higher-derivative Lagrangians

and can be used to reformulate the Lee-Wick models [9, 10, 11, 12, 13] as models of particles

and fakeons [14, 15]. We can even introduce certain details of the experimental apparatus

without violating the spectral optical identities. For example, we can prove unitarity in

the presence of fakeons when the energy resolution of detectors is taken into account, as a

cutoff for the infrared divergences of massless fields [16]. It is also possible to include the

energy resolution of fakeons in a unitary way.

Purely virtual particles [17], or “fakeons”, can be used to formulate a consistent theory

of quantum gravity [6], which is experimentally testable thanks to its predictions in infla-

tionary cosmology [18]. More generally, they can be used to solve the problem of ghosts in

1For a review, see [8].
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higher-derivatives theories. However, they can also be employed in collider physics [19] to

evade common constraints and offer new ways to solve discrepancies with data, as in the

problem of the muon anomalous magnetic moment [20].

Everything we do in this paper involves nothing more than purely algebraic operations.

Despite some unavoidably lengthy expressions, the identities we write can be checked

straightforwardly. First, we integrate on the loop energies. This is the only integral we

need to do. We can view it as an algebraic operation as well, thanks to the residue

theorem. Then, we ignore the integrals on the space components of the loop momenta

and the phase spaces, i.e., work on the “skeleton” of the diagram. Third, we eliminate

the pseudothresholds, which are unphysical, because they involve differences of frequencies.

Once we remain with the physical thresholds, we proceed with the threshold decomposition,

which provides a separate optical identity for each threshold. Summing the identities

associated with a loop diagram, we derive the spectral optical theorem obeyed by its

skeleton. Integrating the spectral optical theorem on the space components of the loop

momenta and the phase spaces, we obtain the usual optical theorem for amplitudes, which

proves unitarity.

Besides proving the identities and the spectral optical theorem for arbitrary diagrams,

we give a large number of examples that show how the threshold decomposition works.

Apart from the bubble and the triangle, which are relatively straightforward, we study the

box, the pentagon and the hexagon, at one loop. At two loops we study the triangle with

“diagonal” and the box with diagonal. These examples cover the needs of most calcula-

tions in high-energy physics phenomenology. Whole classes of diagrams with arbitrarily

many loops are included straightforwardly. The formulas we obtain for the loop integrals

with fakeons and physical particles can be related to the formulas of ordinary loop inte-

grals (defined by the Feynman prescription everywhere) and implemented in softwares like

FeynCalc, FormCalc, LoopTools and Package-X [21].

The paper is organized as follows. In section 2 we collect the basic definitions and the

strategy of the calculations. In sections 3, 4 and 5 we study the bubble diagram (and its

multibubble versions), the triangle diagram and the box diagram, respectively. In section

6 we extend the results to classes of multiloop diagrams. In section 7 we study the box

diagram with diagonal. In section 8 we provide further insight into the algebraic structure

of the spectral optical identities and derive the formulas of the pentagon and the hexagon.

In section 9 we generalize the results to propagators with arbitrary residues. In section
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10 we extend the proof to diagrams with derivative vertices (integrands with nontrivial

numerators) and degenerate diagrams (diagrams with powers of identical propagators or

subdiagrams). In section 11 we generalize the proofs to propagators with thick fakeons.

In section 12 we show how to treat massless fields and their infrared divergences. Section

13 contains the conclusions.

2 Definitions and strategy

In this section we collect the basic definitions we need and the strategy of the calculations.

Since the matter is technically involved, not all the subtleties we anticipate here can be

appreciated right away. Nevertheless, it is convenient to collect them in a dedicated place

to allow a quick back and forth, for a better understanding of the next sections.

Unitarity is the statement that the scattering matrix (S matrix) is unitary. Writing

S = 1+ iT , where T is the transition amplitude (and iT is the sum of loop diagrams), we

can write the unitarity equation S†S = 1 in the equivalent form

2ImT = T †T, (2.1)

which is known as optical theorem. Proving unitarity, or the optical theorem, is crucial to

establish that a quantum field theory is consistent as a fundamental theory.

More powerful statements can be proved, in general, such as diagrammatic versions of

(2.1), which hold for each loop integral separately. They can be expressed as relations

G+ Ḡ+
∑

c

Gc = 0 (2.2)

among a given diagram G, its complex conjugate Ḡ and certain “cut diagrams” Gc. The

cut diagrams are diagrams divided into two portions by a cut passing through a number

of propagators (which become “cut propagators”). One portion stands of the T of (2.1)

and the other one (which is normally shadowed) stands for T †. Like G and Ḡ, the cut

diagrams can be defined by means of diagrammatic rules, which, in addition to the ordinary

propagators and vertices, involve cut propagators, complex conjugate propagators and

complex conjugate vertices. The rules are given in subsection 2.2.

In ref. [22] it was shown that the diagrammatic version (2.2) of the optical theorem

can be derived algebraically and expressed by means of algebraic equations, which do not
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Figure 1: Marked diagrams and cut diagrams. The shadowed portion stands for T †, the

unshadowed one for T .

require to integrate on the space components of the loop momenta or phases spaces2. In

this paper we exploit these properties to the fullest.

As in [22], it is convenient to denote the cut diagrams in “dual” form, by means of

marked and unmarked vertices. In fig. 1 we show the relation between marked diagrams

and cut diagrams. In fig. 2 we show the marked versions of the triangle diagram, up to

permutations of the vertices.

This convention allows us to identify the diagrams by means of simple “words”. Let

A, B, C, etc., label the unmarked vertices and Ȧ, Ḃ, Ċ, etc., the marked vertices. The

propagators are segments. Segments like AB, BC, etc., are ordinary propagators, while

segments like ȦḂ, ḂĊ, etc., are complex conjugate propagators. Segments like ȦB, BĊ,

etc., are cut propagators with positive energies flowing from the vertices without the dot

to the vertices with the dot.

The loops are enclosed between parentheses. A one-loop (cut or uncut) diagram is a

“word” between parentheses, built with letters. For example: (AB) is the uncut bubble

diagram 〉©〈, where A denotes the left vertex and B is the right vertex. Then, (ȦḂ) denotes

the complex conjugate diagram, while (ȦB) denotes the cut diagram with positive energies

flowing from B to A and (AḂ) is the cut diagram with positive energies flowing from A to

B.

Similarly, (ABC) is the uncut triangle diagram, (ȦḂĊ) is its complex conjugate, (ȦBC)

is the cut diagram with positive energies flowing to A, etc.

2Some integrals on the loop space momenta of G and Ḡ appear as integrals on phase spaces in Gc.

They are those interested by the cut propagators, which put the particles on shell. They stand for the

contraction between T † and T of formula (2.1).
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Figure 2: Triangle uncut and cut diagrams (in marked notation)

Diagrams with more loops are denoted by means of products of one-loop words in

parentheses, repeating the vertices that belong to more loops. For example, the double

bubble 〉©|©〈 is (AB)(BC), its conjugate is (ȦḂ)(ḂĊ), its cut versions are (ȦB)(BC),

(AḂ)(ḂC), etc.

The legs are labeled by numbers: the box diagram, which is concisely denoted by

(ABCD), can be denoted by (A1B2C3D4) in extended form, where 1 is the leg AB, 2

is the leg BC, 3 is the leg CD and 4 is the leg DA. Similarly, (AB)(BC) may stand for

(A1B2)(B3C4), etc. Different “words” may correspond to the same diagram, but this is

not going to cause trouble.

The diagrammatic optical theorem (2.2) is the statement that, given a diagram G, the

sum of all its marked versions (including G itself) vanishes. For example, in the case of

the triangle the sum of the diagrams shown in fig. 2 plus the cyclic permutations of the

last two is equal to zero. Here we generalize the theorem to spectral optical identities,

which separately hold for each threshold. To achieve this result, we need to work out a

neat threshold decomposition of the “skeleton” diagrams, defined below.

In the first part of our investigation, we concentrate on the loop integrals defined by the

Feynman iε prescription everywhere. As soon as their threshold decomposition is worked

out, it is relatively straightforward to apply the fakeon prescription/projection to it.

We do not need to handle the ultraviolet divergences, but, for the sake of precision, we

understand that the loop integrals are defined by means of the dimensional regularization

[25] as follows: the integrals on the loop energies are defined by the residue theorem, while

the integrals on the space components of the loop momenta are defined as the dimensionally

regularized ones in D − 1 continued dimensions.
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2.1 Skeletons

The only integrals we compute in this paper are those on the loop energies. Their evaluation

amounts to an algebraic operation, thanks to the residue theorem. If we drop the integrals

over the space components of the loop momenta (and the phase spaces, in cut diagrams),

as well as certain overall factors, we obtain the skeletons.

If G(p) denotes an ordinary loop integral (with all the propagators defined by the

Feynman iε prescription), the skeleton Gs of G is defined by the formula

G(p) =

∫ L
∏

l=1

dD−1kl

(2π)D−1

(

I
∏

a=1

1

2ωa

)

Gs(p,k), (2.3)

where pµa = (ea,pa) are the external momenta (one for each internal leg), kµ
l = (k0

l ,kl) are

the loop momenta, L is the number of loops, I is the number of internal legs and ωa is the

frequency associated with the ath internal leg.

For example, the basic one-loop integrals

GN =

∫

dDk

(2π)D

N
∏

a=1

1

(k − pa)2 −m2
a + iεa

, (2.4)

define the one-loop skeletons

Gs
N =

∫

dk0

2π

N
∏

a=1

2ωa

(k − pa)2 −m2
a + iεa

=

∫

dk0

2π

N
∏

a=1

2ωa

(k0 − ea)2 − ω2
a + iεa

, (2.5)

so that

GN =

∫

dD−1k

(2π)D−1

(

N
∏

a=1

1

2ωa

)

Gs
N , (2.6)

where the frequencies are ωa =
√

(k− pa)2 +m2
a.

Note that L momenta pa are redundant, since they can be eliminated by translating

the loop momenta. The redundant notation allows us to treat all the internal legs equally,

which is more convenient for the derivations of this paper.

Given complexified external momenta p, if the skeleton Gs(p,k) is regular for every

values of the space components kl of the loop momenta within their integration domains,

then G(p) is analytic in p. The most important analytic region is the Euclidean one, where

the energies are imaginary.
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The p domains where G(p) is not analytic are found by studying the singularities of

Gs(p,k). Important domains of non analyticity are identified by inequalities of the form

P 2
E >

(

∑

a∈J

ma

)2

, (2.7)

where PE is a linear combination of external momenta and J is a subset of internal legs.

The right-hand side of this formula is an optical threshold, namely the minimum invariant

mass of a physical process where the external particles involved in PE produce the internal

particles of the subset J , turning them from virtual to real3. These thresholds are called

“optical”, because they contribute to the optical theorem. Other physical thresholds exist,

which do not participate in the optical theorem. They are called anomalous thresholds

[23].

After integrating on the loop energies, the skeletons are sums of terms that involve

denominators of the forms

D̃phys = E +
∑

a∈J

ω̃a, D̃pseudo = E +
∑

a∈J

ω̃a −
∑

b∈J ′

ω̃b, (2.8)

where ω̃a = ωa − iεa, E is a linear combination of the external energies ec and J , J ′ are

nonempty subsets of internal legs. Defining

Dphys = D̃phys

∣

∣

∣

εa→0
, Dpseudo = D̃pseudo

∣

∣

∣

εa→0
, (2.9)

the zeros of Dphys are associated with the physical thresholds, while the zeros of Dpseudo are

associated with the so-called pseudothresholds. The iε prescription on the loop energies

picks the right residues, which ultimately make the pseudothresholds cancel out4. To have

control on the pseudothresholds in the calculations, we must choose the infinitesimal widths

εa such that all the denominators D̃pseudo have nonvanishing imaginary parts (otherwise

they are not well prescribed).

3A fakeon is purely virtual, i.e., it can never become real. If a leg of the set J is defined as a fakeon (see

below for details), the threshold appearing on the right-hand side of (2.7) is not associated with a physical

process. It is associated with the mathematical violation of analyticity and other physical properties,

typical of fakeons, which we do not need to detail here. We may call it a “fake threshold” and say that it

is associated with a fake physical process.
4The physical reason why the denominatorsDpseudo must disappear is that the differences of frequencies

contained in them would lead to processes plagued by instabilities.
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The linear combinations of energies and frequencies generated by the diagrammatics

have coefficients 0 and ±1. This is guaranteed by the fact that an energy cannot flow into

the same line twice (assuming a “minimal” parametrization of the momenta, such that

every loop momentum kl appears in some leg a with momentum pa − kl). All the manip-

ulations we make in this paper involve linear combinations of the type just mentioned.

Moreover, the operations we make on skeletons are manifestly Lorentz invariant once

we resume the integrals over the space components of the loop momenta and the phase

spaces. The thresholds (2.7) emerge after such integrals. Since we work on skeletons here,

from now we understand that the words “singularity”, “threshold” and “pseudothreshold”

may also refer to the skeletons.

Not all types of Gs(p,k) singularities can be generated, but only “diagrammatic” ones.

As said, the potential violations of analyticity occur when one or more skeleton denomina-

tors vanish. Since the Gs(p,k) denominators are originated by the diagrammatics, it must

be possible to express the singularities diagrammatically. This means that, if we restore

the integrals on the loop energies, the loop energies circulate in the diagram in the way

prescribed by the diagrammatics. In some manipulations, we may create contributions

with non diagrammatic singularities, which cancel out in the total. We give an example

of a non diagrammatic singularity in formula (2.24). We illustrate the cancellation of the

non diagrammatic singularities when we investigate the box (section 5) and the box with

diagonal (section 7).

The spectral optical theorem we are going to prove reads

Gs + Ḡs +
∑

c

Gs
c = 0, (2.10)

where Gs, Ḡs and Gs
c are the skeletons associated with G, Ḡ and Gc, respectively. The

spectral optical identities are the threshold contributions to (2.10), which vanish separately.

2.2 Diagrammatic rules

It is convenient to think of each propagator as the sum of two separate contributions, one

for each pole:
i

p2 −m2 + iε
→

i

2ω

(

1

e− ω + iε
−

1

e+ ω − iε

)

, (2.11)

where pµ = (e,p) and ω =
√

p2 +m2. The arrow means that we are ignoring contributions

that disappear when ε tends to zero. If we write all the propagators as shown on the right-
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hand side of (2.11), we can expand the integrand of a diagram as a sum of terms where

each internal leg is associated with a unique pole. This is very convenient for the analysis

of this paper.

Since we work with skeleton diagrams, without integrating over the space components of

the loop momenta or phase spaces, we are free to multiply the propagators by ω-dependent

overall factors. We choose such factors equal to 2ω, to match the definition of skeletons

given above. The propagators and cut propagators of physical particles are then

p→
=

i

e− ω + iε
−

i

e + ω − iε
,

•
p→

•=
i

e + ω + iε
−

i

e− ω − iε
,

•
p→

=(2π)δ(e+ ω), •
←p

= (2π)δ(e− ω). (2.12)

For definiteness, we assume that each unmarked vertex is equal to −i. Then, each

marked vertex is equal to i. In section 10 we show how to extend the results to derivative

vertices.

We consider connected, non necessarily one-particle irreducible (1PI) diagrams G. If G

is disconnected by cutting an internal line Î, we say that Î is a “link”. Inside cut diagrams

Gc we apply this definition to both sides of the cut separately. Thus, if one side of the cut

is disconnected when a certain leg is broken, we call that leg a link.

Now we give the basic diagrammatic rules for the internal legs that we want to define

as fakeons (denoted by “f”). The cut propagators must vanish:

•
p→

f
= 0, •

←p

f
= 0. (2.13)

The propagator of a link fakeon leg is just the Cauchy principal value P (which is the

classical limit of fakeon prescription [8]):

(link) :
p→

f
= P

(

i

e− ω
−

i

e + ω

)

,

(link) : •
p→

f
• = P

(

i

e + ω
−

i

e− ω

)

. (2.14)

As for the other fakeon legs, the fakeon prescription will be implemented after deriving

the spectral optical identities of Gs, by dropping the thresholds that involve frequencies ω

associated with fakeon legs.
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Note that it is incorrect to use (2.14) inside 1PI diagrams [17]. What we have to do,

instead, is apply the strategy explained in subsection 2.5.

2.3 Threshold decomposition

The crucial operation is the threshold decomposition of a diagram, which we briefly describe

here, leaving the details to next subsections.

After integrating on the loop energies by means of the residue theorem, we obtain the

skeletons. Then, we use certain algebraic manipulations to make all the pseudothresholds

Dpseudo = 0 disappear and only the physical thresholds Dphys = 0 survive. At that point

we apply the decomposition
i

x+ iε
= P

i

x
+ πδ(x) (2.15)

and reorganize the results diagrammatically (see below).

Once these operations are completed, we obtain terms proportional δ functions and

terms proportional to products of δ functions. The terms proportional to one δ function are

called single thresholds, while those proportional to a product of more δ functions are called

multithresholds. When we want to be more precise, we call the latter double thresholds,

triple thresholds, etc., or ` thresholds, where ` is the “level” of the threshold. The support

of the δ functions is the support of the threshold. Sometimes the word “threshold” is used

indistinctly for all of them. The “zero threshold” collects the contributions that contain

only principal values, which identify the purely virtual content of the diagram. The zeros

of the principal values are called “singularities”.

In the end, the threshold decomposition is the decomposition that properly organizes

and separates the independent thresholds and singularities. We stress again that they must

be physical (no Dpseudo can survive) and diagrammatic (because generated by diagrams).

The results of the decomposition are often collected in a table (see table 2 for the

triangle) with the following structure. The columns collect the contributions of the (cut

or uncut) skeleton diagrams shown at the top of them. The rows collect the contributions

of the different (multi)thresholds. The rows are ordered according to the threshold level,

from the zeroth level at the top to the highest level at the bottom. The smaller tables are

shown as equations, while the larger tables are displayed separately, on top of pages.

The spectral optical identities are the sums of the entries of the rows of a table. They

vanish separately, because each row corresponds to a different threshold and different
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thresholds do not interfere with one another. The spectral optical theorem is obtained

by collecting all the entries of the table in the way explained below. The usual optical

theorem is obtained by integrating the spectral optical theorem (divided by 2ω for every

internal leg) over the phase spaces and the space components of the loop momenta.

2.4 Identities for principal values

We show a simple application of the threshold decomposition just described, which gives

identities that are useful for the calculations of the paper. Consider the expression

S(x1, . . . , xn) =
n
∏

i=1

1

xi

−
n
∑

i=1

(

n
∏

j=1,j 6=i

1

xj

)(

n
∑

l=1

xl

)−1

. (2.16)

If we sum the right-hand side with the least common denominator, we find zero. This

operation is legitimate only if the variables xi and their sum do not vanish. It is suffi-

cient to assume that they have nonvanishing imaginary parts σi (typically brought by the

infinitesimal widths εa) such that
∑n

i=1 σi 6= 0.

It is not legitimate to infer S(x1, . . . , xn) = 0 if the variables xi have real values, in

general. In particular, the principal value PS(x1, . . . , xn) may not vanish. To work out its

expression, we start from the identity

0 = S(x1 + iε1, . . . , xn + iεn), (2.17)

where the xj are now real and εj > 0 for every j. Expanding each term on the right-

hand side of (2.16) by means of (2.15), we can derive its threshold decomposition. The

lowest level of the decomposition is the principal value PS(x1, . . . , xn) and the highest

level involves only δ functions. It is easy to show that (2.17) gives an identity

PS(x1, . . . , xn) = cnπ
n

n
∏

i=1

δ(xi), (2.18)

where cn is a real constant. We can prove this statement iteratively in n. For n = 1

the identities (2.17) and (2.18) are trivial. Assuming that the statement holds for n = n̂,

let us consider the case n = n̂ + 1. It is easy to show that all the levels of the threshold

decomposition but the lowest and highest ones can be converted into products of δ functions

by using identities (2.18) with n 6 n̂. Thus, the lowest and highest levels must be related

by an identity (2.18) with n = n̂ + 1.
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Note that, by reality, PS(x1, . . . , xn) = 0 for every odd n.

Among the identities (2.18), we mention the cases n = 2, 3, 4, which will be useful in

the next sections. We find

P

(

1

xy
−

1

x(x+ y)
−

1

y(x+ y)

)

=−π2δ(x)δ(y),

P

[

1

xyz
−

1

x+ y + z

(

1

xy
+

1

xz
+

1

yz

)]

=0, (2.19)

P

[

1

xyzw
−

1

x+ y + z + w

(

1

xyz
+

1

xyw
+

1

xzw
+

1

yzw

)]

=π4δ(x)δ(y)δ(z)δ(w).

A good exercise is to check the steps of the proof outlined above in these examples. It is

also straightforward to verify the identities (2.19) numerically, with the help of arbitrary

test functions ϕ(x1, . . . , xn).

The reason why we cannot use common denominators in the expressions between brack-

ets and conclude that the total is zero is that common denominators worsen the singular-

ities. Even when the numerators are formally zero, the total can be nonvanishing.

The identities just found are useful to work out the correct threshold decomposition.

In particular, they allow us to remove all the spurious thresholds and singularities, which

are the non diagrammatic ones and those due to the denominators Dpseudo. The identities

must be applied within the same 1PI diagram. Connected, non 1PI diagrams are treated

by viewing them as products of 1PI subdiagrams (see below).

2.5 Strategy

For future use, it is convenient to define

F ab =
1

ea − eb − ω̃a − ω̃b

, Pab = P
1

ea − eb − ωa − ωb

, P̂ab = Pab + Pba,

Qab =Pab − P
1

ea − eb − ωa + ωb

, Q̂ab = Qab
∣

∣

ωa→−ωa
,

∆ab = πδ(ea − eb − ωa − ωb), (2.20)

where we recall that ωa are frequencies and ω̃a = ωa − iεa.

It is also useful to introduce some “smart” manipulations. A “smart” common denom-

inator identity is an identity of the form

∑

i

ci

n
∏

j=1

1

D̃ij

=
∑

l

c′l

n
∏

j=1

1

D̃physlj

, (2.21)
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where ci and c′l are numerical coefficients and each D̃ij can be a D̃phys or a D̃pseudo. Observe

that each term of (2.21) has the same number n of denominators. Also recall that all

the manipulations we make involve linear combinations of energies and frequencies with

coefficients 0, +1 or −1. An example of (2.21) is the identity

F 12 − F 13

e2 − e3 + ω̃2 − ω̃3

= F 12F 13, (2.22)

taken from (2.17) with n = 2.

If the left-hand side of (2.21) is generated by a diagram, with all the legs prescribed à

la Feynman, it is always possible to remove the denominators D̃pseudo and obtain a sum of

terms like the right-hand side. This is a key property of the Feynman prescription on the

energies, which guarantees (perturbative) stability.

The strategy of the calculations is as follows. We assume, for simplicity, that G is one-

particle irreducible, the extension to connected, non 1PI diagrams being straightforward.

1) Start from the diagram G, prescribed à la Feynman.

2) Integrate on the loop energies by means of the residue theorem.

3) Use smart common-denominator identities (2.21) to remove all the denominators

D̃pseudo and leave only denominators D̃phys.

4) Perform the threshold decomposition as follows:

4.a) separate each fraction 1/D̃phys into its purely virtual part and its on-shell part by

means of (2.15);

4.b) use identities for principal values such as (2.19) to arrange the decomposition in a

proper diagrammatic form (see below for the meaning of this).

5) Perform the fakeon projection, by eliminating all the thresholds that involve fakeon

frequencies (which will be called “fakeon thresholds”).

Steps 1) to 4) lead to the spectral optical identities of the diagrams where each leg is

prescribed à la Feynman. If some legs are prescribed as fakeons, the identities reduce to a

proper subset, as per step 5).

The purely virtual content of a diagram is its level 0. It is associated with the diagram

where all the internal legs are fakeons. Away from the thresholds, it coincides with the

Euclidean version of the skeleton. It admits no nontrivial cuts.

Due to the diagrammatic structure mentioned in point 4.b), all the threshold con-

tributions (level > 1) are manifestly Lorentz invariant, once we integrate on the space
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components of the loop momenta and the phase spaces. By subtraction, the purely virtual

part is also Lorentz invariant, although not manifestly.

The threshold decomposition also applies to cut diagrams. There, step 2) is simplified

by the presence of cut propagators, which fix some loop energies without the need to use

the residue theorem.

It remains to explain what we mean by step 4.b) and why it is always possible to achieve

the proper diagrammatic form it refers to.

2.6 Proper diagrammatic form and proper decomposition

Before defining the proper diagrammatic form of the threshold decomposition, we illustrate

the problem with two examples at one loop, level ` = 1: the product ∆12P32P34, which

does not have a proper diagrammatic form, and the product ∆12P32P14, which does. If

we reinstate the loop energy k0 leading to ∆12, we find

∆12P32P34 =2π2P

∫

dk0

2π
δ(k0 − e1 + ω1)δ(k

0 − e2 − ω2)
1

e3 − k0 − ω3

1

e3 − e4 − ω3 − ω4

,

∆12P32P14 =2π2P

∫

dk0

2π
δ(k0 − e1 + ω1)δ(k

0 − e2 − ω2)
1

e3 − k0 − ω3

1

k0 − e4 − ω4
. (2.23)

It is evident that the second line has a proper diagrammatic form, with the loop energy

circulating in every factor. In the first line, the δ function of ∆12 cannot be used to modify

P34. The reason is that the skeleton ∆12P32P34 has a non diagrammatic singularity,

obtained by combining the singularities of ∆12 and P34:

e1 − e2 − ω1 − ω2 = e3 − e4 − ω3 − ω4 = 0. (2.24)

Such a singularity is not present in the skeletons we want to decompose, since they are

originated by diagrams. This means that it must cancel with an opposite contribution

coming from some other source. In section 5 we show that indeed it does.

The manipulations advocated in step 4.b) remove contributions like ∆12P32P34 in favor

of contributions like ∆12P32P14. The importance of operation 4.b) will be appreciated

starting from the box (section 5), since the triangle is too simple in this respect.

The proper form of the threshold decomposition (proper decomposition, from now on)

of an L loop connected diagram (prescribed à la Feynman everywhere) is the product of

the proper decompositions of its 1PI ingredients. Vertices are considered 1PI irreducible
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subdiagrams. A propagator with no vertices attached to it is viewed as an 1PI subdiagram

as well. The proper decomposition of a tree diagram follows from the diagrammatic rules

of subsection 2.2 (every propagator being a link, in the sense explained there).

The proper decomposition of an L loop 1PI diagram is defined by induction. Consider

a 1PI skeleton diagram Gs
L with L loops and I internal legs. Let

Gs
L =

I−L
∑

`=0

Gs
L,`

denote its threshold decomposition, organized into levels `. The ` = 0 contribution Gs
L,0 is

the only one that truly has L loops, because every Gs
L,` with ` > 1 carries at least one δ

function, which effectively breaks the skeleton by interrupting an internal leg and setting

a condition on the external momenta. In the case of cut diagrams, the ` = 0 contribution

Gs
L,0 is absent.

The proper decomposition of an L-loop cut diagram is straightforward, because a cut

diagram is broken by the cuts into subdiagrams with smaller numbers of loops (whose

proper decompositions are already known by the inductive assumption).

The proper decomposition of an uncut diagram is determined as follows. The decom-

position of Gs
L,` is known from the optical theorem for every odd `, because it must match

the decompositions of the cut diagrams. The decomposition of each Gs
L,` with even ` > 2

is worked out from the one of Gs
L,`−1 by circumventing the singularities associated with

the principal values as demanded by the Feynman prescription (and paying attention to

the combinatorics, to avoid overcounting). There is no ambiguity in this, since identities

like (2.19) relate levels separated by an even number. Finally, the decomposition of Gs
L,0 is

determined by subtraction.

The proper diagrammatic form of the zeroth level Gs
L,0 is not known a priori, but

determined by the procedure itself. The reason is that the zeroth level is a sum of residues

where every loop energy k0 can have different values: several spurious thresholds and

singularities (like the non diagrammatic ones and those due to the denominators Dpseudo)

mutually cancel, although it is not manifest that they do.

The proper diagrammatic form of the threshold decomposition always exists and is

unique. The skeleton singularities have a diagrammatic origin, so the non diagrammatic

singularities can only appear in the intermediate steps, especially due to the manipulations

of step 3), but must cancel out in the total. Moreover, the thresholds and singularities
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must appear with the right coefficients to match the diagram G they are generated by.

When that happens, the thresholds are properly extracted from the zeroth level to the

levels ` > 1 and the zeroth level defines the purely virtual content of the diagram G.

3 Bubbles

In this section we study the (multi)bubble diagrams. Although they do not present partic-

ular difficulties, they are a useful guide through the more complex configurations we study

in the next sections.

The simple bubble diagram 〉©〈 with physical particles propagating in the internal

legs is denoted by (AB), or (A1B2). It gives the skeleton Bs
AB = Gs

2 of formula (2.5).

Integrating on the loop energy k0 by means of the residue theorem, we obtain

Bs
AB = −i

(

F 12 − F 12
+−

)

− i
(

F 21 − F 21
+−

)

, (3.1)

where F ab
+− = F ab

∣

∣

ωa→−ωa
. While F 12 and F 21 have the form 1/D̃phys, F

12
+− and F 21

+− have

the form 1/D̃pseudo. As expected, the last two mutually cancel (with no need to use the

identities (2.21), in this case). In the end, we get

Bs
AB = −i(F 12 + F 21) = −

2i(ω1 + ω2)

(e1 − e2)2 − (ω1 + ω2)2 + iε
. (3.2)

Using the decomposition (2.15) for Bs
AB, which here reads

F ab = Pab − i∆ab, (3.3)

we find

Bs
AB = −iP̂12 −∆12 −∆21. (3.4)

The conjugate diagram is Bs

ȦḂ
= B̄s

AB. From the rules (2.12), the cut diagrams are

Bs

ȦB
= 2∆21 and Bs

AḂ
= 2∆12 (orienting p1 from A to B). Collecting everything together,

we obtain the table

Th\G Bs
AB Bs

ȦḂ
Bs

ȦB
Bs

AḂ

— −iP̂12 iP̂12 0 0

∆12 −1 −1 0 2

∆21 −1 −1 2 0

(3.5)

17



21
A
5
R
en
or
m

where “Th” stands for threshold and “G” stands for diagram. The thresholds are listed

vertically, while the diagrams are listed horizontally.

Let Cij denote the entries of the table. A (cut or uncut) diagram Gj is the jth column

of the table (j > 1), by which we mean the sum

Gj ≡
∑

i>1

Ci1Cij , (3.6)

where C21 = 1. The spectral optical identities are “the rows of the table”, by which we

mean the identities

Ri ≡ Ci1

∑

j>1

Cij = 0, (3.7)

for i > 1. The spectral optical theorem

Bs
AB +Bs

ȦḂ
+Bs

ȦB
+Bs

AḂ
= 0 (3.8)

is the “sum of the entries” of (3.5), by which we mean the identity
∑

j>1

Gj =
∑

i>1

∑

j>1

Ci1Cij = 0. (3.9)

Finally, the optical theorem is the integral of this identity, multiplied by 4ω1ω2, over the

space components of the loop momentum.

With a fakeon in either internal leg, or in both, we denote the diagram by (AfB),

(AfBf), etc., depending on the case. We need to apply step 5) of subsection 2.5, which

amounts to drop the thresholds identified by ∆12 and ∆21, since each of them contains at

least one fakeon frequency. The table loses the last two rows, so we obtain

Bs
AfB = Bs

AfBf = −iP̂12, Bs

ȦfḂ
= Bs

ȦfḂf
= iP̂12. (3.10)

No nontrivial cut diagram survives, in agreement with the rules of subsection 2.2.

The double bubble 〉©|©〈 is (AB)(BC), or (A1B2)(B3C4). Without the risk of confu-

sion, we just call it ABC in table 1, where we show its threshold decomposition.

With a fakeon in leg 1, we drop ∆12 and ∆21 everywhere and obtain

Th\G Bs
AfBC Bs

ȦfḂĊ
Bs

AfBĊ
Bs

ȦfḂC

— −iP̂12P̂34 iP̂12P̂34 0 0

∆34 −P̂12 −P̂12 2P̂12 0

∆43 −P̂12 −P̂12 0 2P̂12

(3.11)
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Th\G Bs
ABC Bs

ȦḂĊ
Bs

ȦBC
Bs

AḂC
Bs

ABĊ
Bs

AḂĊ
Bs

ȦBĊ
Bs

ȦḂC

— −iP̂12P̂34 iP̂12P̂34 0 0 0 0 0 0

∆12 −P̂34 −P̂34 0 0 0 2P̂34 0 0

∆21 −P̂34 −P̂34 2P̂34 0 0 0 0 0

∆34 −P̂12 −P̂12 0 0 2P̂12 0 0 0

∆43 −P̂12 −P̂12 0 0 0 0 0 2P̂12

∆12∆34 i −i 0 0 −2i 2i 0 0

∆12∆43 i −i 0 −4i 0 2i 0 2i

∆21∆34 i −i −2i 0 −2i 0 4i 0

∆21∆43 i −i −2i 0 0 0 0 2i

Table 1: Threshold decomposition of the double bubble

With fakeons in legs 1 and 2, we get the same. With a fakeon in leg 1 and one in leg

3, we obtain

Bs
AfBfC = −iP̂12P̂34, Bs

ȦfḂfĊ
= iP̂12P̂34. (3.12)

We can repeat the derivation for the skeletons of multibubble diagrams 〉©|©|©|©|©〈.

The result is the product of the skeletons of the single bubbles, for all choices of physical

particles and fakeons.

In all cases, the sum (3.6) of each column equals the (cut or uncut) skeleton diagram

shown at the top of it. Moreover, the spectral optical identities are the sums (3.7) of the

rows. The spectral optical theorem is obtained by summing all the entries of the table as

in (3.9). For example, for the double bubble diagram 〉©|©〈 we have

Bs
ABC +Bs

ȦḂĊ
+Bs

ȦBC
+Bs

AḂC
+Bs

ABĊ
+Bs

AḂĊ
+Bs

ȦBĊ
+Bs

ȦḂC
= 0, with no fakeons,

Bs
AfBC +Bs

ȦfḂĊ
+Bs

AfBĊ
+Bs

ȦfḂC
= 0, with a fakeon in AB,

Bs
AfBfC +Bs

ȦfḂfĊ
= 0, with a fakeon in AB and one in BC. (3.13)

The usual optical theorem is obtained by integrating the spectral optical theorem (di-

vided by 2ω for every internal leg) over the space components of the loop momentum or

the phase spaces (in cut diagrams). For example, with a fakeon in AB, we obtain

BAfBC +BȦfḂĊ +BAfBĊ +BȦfḂC = 0. (3.14)
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The final outcome is that the single bubble diagram with one or two internal fakeons

is equal to i times the imaginary part of the usual bubble diagram:

f

〉©〈 =
f

〉©〈
f

= i Im [〉©〈]. (3.15)

The nth multibubble diagram is the product of the single bubble diagrams it is made of,

times in−1. It is easy to check that the diagrammatics of cut and uncut diagrams, with or

without fakeons, agrees with the one stated in subsection 2.2.

4 Triangle

In this section we study the triangle diagram, denoted by (ABC), or (A1B2C3). Its skeleton

is T s
ABC = Gs

3, from formula (2.5). For convenience, we integrate on the loop energy k0 by

averaging on the two ways to close the integration path at infinity and using the residue

theorem. Without using common denominators or other manipulations, the result can be

expanded as

T s
ABC = −iFABC − iF1ABC − iF2ABC, (4.1)

where

FABC =F 12F 13 + cycl + (e → −e),

F1ABC =
1

2
S12|13 + cycl + (e → −e), F2ABC = −

1

2
S
12|31
++ + (e → −e), (4.2)

Sab|cd=S(ea − eb − ω̃a − ω̃b,−ec + ed + ω̃c + ω̃d), Ŝab|cd = Sab|dc
∣

∣

ω̃b→−ω̃b, ω̃c→−ω̃c
.

Here, “cycl” refers to the cyclic permutations of 1, 2 and 3 and S(x, y) is defined in (2.16).

Because of identities like (2.17), both Sab|cd and Ŝab|cd vanish. This is where the opera-

tion (2.21) eliminates all the pseudothresholds and leaves the physical thresholds only. We

obtain

T s
ABC = −iFABC. (4.3)

With the help of (2.15), or (3.3), the threshold decomposition gives

T s
ABC = −iPABC −

∑

perms

∆abQac +
i

2

∑

perms

∆ab(∆ac +∆cb), (4.4)
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Th\G T s
ABC T s

ȦḂĊ
T s

ȦBC
T s

AḂC
T s

ABĊ
T s

AḂĊ
T s

ȦBĊ
T s

ȦḂC

— −iPABC iPABC 0 0 0 0 0 0

∆23 −Q21 −Q21 0 0 0 0 0 2Q21

∆12 −Q13 −Q13 0 0 0 0 2Q13 0

∆31 −Q32 −Q32 0 0 0 2Q32 0 0

∆32 −Q31 −Q31 0 0 2Q31 0 0 0

∆21 −Q23 −Q23 0 2Q23 0 0 0 0

∆13 −Q12 −Q12 2Q12 0 0 0 0 0

∆12∆13 i −i −2i 0 0 0 2i 0

∆23∆21 i −i 0 −2i 0 0 0 2i

∆31∆32 i −i 0 0 −2i 2i 0 0

∆31∆21 i −i 0 −2i 0 2i 0 0

∆12∆32 i −i 0 0 −2i 0 2i 0

∆23∆13 i −i −2i 0 0 0 0 2i

Table 2: Threshold decomposition of the triangle

where PABC = FABC|F→P and the sums are on {a, b, c} equal to the permutations of 1,

2 and 3. The conjugate diagram is T s

ȦḂĊ
= T̄ s

ABC. The cut diagrams follow from the

diagrammatic rules of subsection 2.2. Orienting p1 from B to A, we have

T s

AḂC
= 2∆21(Q23 − i∆31 − i∆23), T s

ȦBĊ
= 2∆12(Q13 + i∆13 + i∆32), (4.5)

the other ones being derived by cyclically permuting 1, 2 and 3. In the end, we obtain

table 2. The diagrams are given by the columns, as per (3.6).

The entries of the table are organized in a diagrammatic form, as per point 4.b) of

subsection 2.5. Indeed,

∆abQac = ∆abQcb = 16π2ωaωbωcP

∫

dk0

2π

δ−((k − pa)
2 −m2

a)δ
+((k − pb)

2 −m2
b)

(k − pc)2 −m2
c

, (4.6)

where δ±(p2 − m2) = θ(±p0)δ(p2 − m2). As soon as we divide by 8ωaωbωc and integrate

on the space components of the loop momentum, the result is Lorentz invariant.

21



21
A
5
R
en
or
m

The spectral optical identities are the rows (3.7) of table 2, which vanish separately.

The spectral optical theorem is obtained by summing all the entries of the table as in (3.9):

T s
ABC + T s

ȦḂĊ
+ T s

ȦBC
+ T s

AḂC
+ T s

ABĊ
+ T s

AḂĊ
+ T s

ȦBĊ
+ T s

ȦḂC
= 0. (4.7)

The usual optical theorem

TABC + TȦḂĊ + TȦBC + TAḂC + TABĊ + TAḂĊ + TȦBĊ + TȦḂC = 0 (4.8)

is obtained dividing (4.7) by 8ω1ω2ω3 and integrating on the space components k of the

loop momentum. It is also evident that (4.7) and (4.8) agree with the diagrammatic rules

of subsection 2.2.

4.1 Fakeons

Now we study the fakeon prescription/projection. Assume that leg 1, which is the segment

AB, is a fakeon and the other two internal legs are physical particles. Then ω1 is a fakeon

frequency. According to step 5) of subsection 2.5, we must suppress all the thresholds

involving ω1, i.e., the single thresholds proportional to ∆12, ∆21, ∆13 and ∆31, and all the

double thresholds. So doing, we obtain

T s
AfBC=−iPABC −∆23Q21 −∆32Q31, T s

AfBĊ
= 2∆32Q31,

T s

ȦfḂĊ
= iPABC −∆23Q21 −∆32Q31, T s

ȦfḂC
= 2∆23Q21, (4.9)

and the table

Th\G T s
AfBC T s

ȦfḂĊ
T s

AfBĊ
T s

ȦfḂC

— −iPABC iPABC 0 0

∆23 −Q21 −Q21 0 2Q21

∆32 −Q31 −Q31 2Q31 0

(4.10)

As usual, the diagrams are the columns (3.6) of the table and the spectral optical identities

are the rows (3.7). The spectral optical theorem and the ordinary optical theorem are the

sums

T s
AfBC + T s

ȦfḂĊ
+ T s

AfBĊ
+ T s

ȦfḂC
=0,

TAfBC + TȦfḂĊ + TAfBĊ + TȦfḂC=0. (4.11)
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Again, these identities agree with the diagrammatic rules of section 2.2. In particular,

since the shadowed and unshadowed portions of the cut triangle are tree diagrams, the

fakeon propagator in AB is a link in T s

AfBĊ
and T s

ȦfḂC
, so it is given by (2.14).

With two or three fakeons, we drop all the thresholds and obtain

T s
AfBfC = T s

AfBfCf = −iPABC = iIm[T s
ABC]−

i

2

∑

perms

∆ab(∆ac +∆cb). (4.12)

In this case, the skeleton diagram is purely imaginary, so no cut diagrams survive. The

result (4.12) encodes the purely virtual content of the triangle.

Formulas (4.9) and (4.12) can be used to relate the triangles with fakeons to the stan-

dard triangle, for possible implementations in softwares like FeynCalc, FormCalc, Loop-

Tools and Package-X [21].

5 Box

In this section we study the box diagram G4, denoted by (ABCD), or (A1B2C3D4). We

consider its skeleton Gs
4 and integrate on the loop energy k0. Then, we use smart identities

(2.21) to make the pseudothresholds disappear, which we know to be possible because they

are not physical. The result of these operations is

Gs4
ABCD = −

i

6

∑

perms

F abF acF ad −
i

4

∑

perms

F abF acF db + (e → −e), (5.1)

where the sums are evaluated for {a, b, c, d} ranging over the set of permutations of 1, 2, 3

and 4.

To derive the threshold decomposition, we first apply (2.15), or (3.3), and expand. The

terms proportional one δ function, which are

−
1

2

∑

perms

∆abPacPad −
1

4

∑

perms

(∆abPacPdb + Pab∆acPdb + PabPac∆db) (5.2)

plus (e → −e), mix single thresholds and triple thresholds, due to identities like (2.19).

We can separate the two types of contributions by fulfilling the proper diagrammatic

requirement 4.b) of subsection 2.5. Consider, for example, the terms proportional to ∆12
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(all the others being treated the same way), which read

w12≡−∆12

[

P13P14 + P32P42 +
1

2
(P14P32 + P14P34 + P32P34)

+
1

2
(P13P42 + P13P43 + P42P43)

]

. (5.3)

Even if we restrict the sum between the square brackets to the support of the δ function,

we can easily check that the expression does not have a proper diagrammatic form, as in

the first line of (2.23), because P34 and P43 are unaffected by ∆12. We can adjust w12 by

adding and subtracting

w̃12 ≡ −∆12

[

1

2

(

P14P32 −P14P34 −P32P34
)

+
1

2

(

P13P42 − P13P43 − P42P43
)

]

. (5.4)

Indeed, the sum

w12 + w̃12=−∆12
(

P13P14 + P32P42 + P14P32 + P13P42
)

= −∆12Q13Q14

=−32π2ω1ω2ω3ω4P

∫

dk0

2π

δ−((k − p1)
2 −m2

1)

(k − p3)2 −m2
3

δ+((k − p2)
2 −m2

2)

(k − p4)2 −m2
4

, (5.5)

has a proper diagrammatic form. On the other hand, it is easy to show, by means of

the first identity of formula (2.19), that the contribution we need to subtract is a triple

threshold:

w̃12 =
1

2
∆12∆32∆14 +

1

2
∆12∆42∆13. (5.6)

Therefore, we move it down to level 3.

The terms proportional to the product of two δ functions in (5.1), i.e.,

i

2

∑

perms

∆ab∆acPad +
i

4

∑

perms

(∆ab∆acPdb + Pab∆ac∆db +∆abPac∆db) (5.7)

plus (e → −e), are all double thresholds, since there is no product of principal values

here that needs to be rearranged. For example, the terms proportional to ∆12∆13 and

∆12∆34 (the other possibilities being simple transformations of these), either vanish or can

be readily written in a proper diagrammatic form:

i∆12∆13

(

P14 +
1

2
P42 +

1

2
P43

)

= i∆12∆13Q14,
i

2
∆12∆34

(

P14 + P32
)

= 0. (5.8)

Finally, the triple thresholds are Gs4
ABCD|F→−i∆, from formula (5.1), plus the contribu-

tions like (5.6) coming down from the terms proportional to one δ function.
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5.1 Formulas

In the end, the threshold decomposition of the box skeleton diagram reads

Gs4
ABCD=−iP4 −

1

2

∑

perms

∆abQacQad +
i

2

∑

perms

∆ab(∆ac +∆cb)Qad

+
1

6

∑

perms

∆ab(∆ac∆ad +∆cb∆db), (5.9)

where P4 = i Gs4
ABCD|F→P . We obtain the table

Th\G Gs4
ABCD Gs4

ȦḂĊḊ
[ Gs4

AḂCD
Gs4

ȦBĊḊ
Gs4

ȦBCḊ
1
2
Gs4

ȦBĊD
]

— −iP4 iP4 0 0 0 0

[ ∆12 ] −Q13Q14 −Q13Q14 0 2Q13Q14 0 0

[ ∆21 ] −Q23Q24 −Q23Q24 2Q23Q24 0 0 0

[ ∆13 ] −Q12Q14 −Q12Q14 0 0 2Q12Q14 0

. . . . . . . . . . . . . . . . . . . . .

(5.10)

where we have reported only the single thresholds. The contributions between brackets

must be summed over the cyclic permutations of 1, 2, 3, 4.

The complex conjugate diagram is Gs4
ȦḂĊḊ

= Ḡs4
ABCD. The decompositions of the cut

diagrams are

Gs4
ȦBĊḊ

=2∆12Q13Q14 + 2i∆12
[

∆13Q14 +∆14Q13 +∆32Q14 +∆42Q13
]

−2∆12
[

∆13∆14 +∆14∆34 +∆13∆43 +∆32∆42
]

,

Gs4
ȦBCḊ

=2∆13Q12Q14 + 2i∆13
[

∆14Q12 +∆43Q12 −∆23Q14 −∆12Q14
]

+2∆13
[

∆12∆14 +∆14∆24 +∆23∆43 +∆42∆43
]

,

Gs4
AḂCD

= Ḡs4
ȦBĊḊ

∣

∣

e→−e
, Gs4

ȦBĊD
= 8∆12∆14∆34, (5.11)

up to cyclic permutations.

Using (5.9) and (5.11), it is easy to check the spectral optical theorem

Gs4
ABCD +Gs4

ȦḂĊḊ
+

[

Gs4
AḂCD

+Gs4
ȦBĊḊ

+Gs4
ȦBCḊ

+
1

2
Gs4

ȦBĊD
+ cycl

]

= 0. (5.12)

The factor 1/2 avoids overcounting when the cyclic permutations are included. As usual,

the optical theorem

G4
ABCD +G4

ȦḂĊḊ
+

[

G4
AḂCD

+G4
ȦBĊḊ

+G4
ȦBCḊ

+
1

2
G4

ȦBĊD
+ cycl

]

= 0 (5.13)
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is obtained by integrating on the space components of the loop momentum (after divid-

ing by 2ω for every internal leg). Finally, the spectral optical identities are obtained by

separating the contributions of the various (multi)thresholds to (5.12).

5.2 Fakeons

When fakeons are present, we apply the fakeon prescription/projection mentioned in step

5) of subsection 2.5, which amounts to eliminating the contributions coming from the

thresholds that involve one or more fakeons. The spectral optical identities and the spectral

optical theorem continue to hold after these operations, since the thresholds do not interfere

with one another.

Concretely, with one fakeon in leg 4, we must suppress all the ∆ab with a or b equal to

4. From (5.9), the uncut diagram is given by

Gs4
ABCDf = −iP4 −

∑

p(1,2,3)

∆abQacQa4 +
i

2

∑

p(1,2,3)

∆ab(∆ac +∆cb)Qa4, (5.14)

where the sum is restricted to the permutations {a, b, c} of 1, 2 and 3. The nonvanishing

cut diagrams are

Gs4
AḂCDf

= Ḡs4
ȦBĊḊf

∣

∣

e→−e
, Gs4

ȦBĊḊf
= 2∆12Q14(Q13 + i∆13 + i∆32),

Gs4
ABĊDf

= Ḡs4
ȦḂCḊf

∣

∣

e→−e
, Gs4

ȦḂCḊf
= 2∆23Q24(Q21 + i∆21 + i∆13), (5.15)

Gs4
ȦBCḊf

=2∆13Q14(Q12 − i∆23 − i∆12), Gs4
AḂĊDf

= Ḡs4
ȦBCḊf

∣

∣

e→−e
.

It is easy to verify that these expressions satisfy the spectral optical theorem

Gs4
ABCDf +Gs4

ȦḂĊḊf
+Gs4

AḂCDf
+Gs4

ȦBĊḊf
+Gs4

ABĊDf
+Gs4

ȦḂCḊf
+Gs4

ȦBCḊf
+Gs4

AḂĊDf
= 0, (5.16)

where Gs4
ȦḂĊḊf

= Ḡs4
ABCDf, and match the diagrammatics of section 2.2. The vanishing cut

diagrams are those that contain one cut fakeon propagator, which is identically zero by

(2.13), so they also agree with the diagrammatics.

With fakeons in 3 and 4 we have

Gs4
ABCfDf = −iP4 −∆12Q13Q14 −∆21Q23Q24, (5.17)

the nonvanishing cut diagrams being

Gs4
AḂCfDf

= Ḡs4
ȦBĊfḊf

∣

∣

e→−e
, Gs4

ȦBĊfḊf
= 2∆12Q13Q14. (5.18)
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A B2

1

3

Figure 3: Multiloop diagrams with stacks of internal legs connecting vertices

With fakeons in 2 and 4, we have

Gs4
ABfCDf=−iP4 −∆13Q12Q14 −∆31Q32Q34,

Gs4
AḂfĊDf

= Ḡs4
ȦBfCḊf

∣

∣

e→−e
, Gs4

ȦBfCḊf
= 2∆13Q12Q14. (5.19)

Finally, with fakeons in three or four legs, we obtain

Gs4
ABfCfDf = Gs4

AfBfCfDf = −iP4 (5.20)

and no nontrivial cut diagram. This result encodes the purely virtual content of the box

diagram.

6 Simple multiloop diagrams

In this section we discuss a class of multiloop diagrams that can be treated straightfor-

wardly by generalizing the techniques applied in the previous sections. They are those

with stacks of internal legs connecting the same vertices, as shown in Fig. 3.

Formula (3.2) shows that, after the integral on the loop energy, the single bubble is

equivalent5 to a propagator with energy equal to the total incoming energy and frequency

equal to the sum of the frequencies. This property iterates to arbitrary stacks of propaga-

tors. For example, consider the left two-loop diagram of Fig. 3, which is the bubble with

“diagonal”. It leads to the skeleton integral

Gs2D
AB =

∫

dk0

2π

∫

dq0

2π

2
∏

i=1

2ωi

(li − pi)2 −m2
i + iεi

2ω3

(q + k + p3)2 −m2
3 + iε3

, (6.1)

5Apart from a minus sign, which can be easily handled as an overall factor in the spectral optical

theorem.
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Figure 4: Triangle and box diagrams with “diagonals”

where l1 = k, l2 = q. Using the residue theorem, we obtain

Gs2D
AB =

−2i(ω1 + ω2 + ω3)

(e1 + e2 + e3)2 − (ω1 + ω2 + ω3)2 + i(ε1 + ε2 + ε3)
. (6.2)

Again, the stack of propagators is equivalent to a single propagator, from the point of

view of the spectral optical theorem, with energy equal to the total incoming energy and

frequency equal to the sum of the frequencies, apart from an overall minus sign.

Inside more complicated diagrams, we can replace the stack of propagators with a single

propagator, as just shown, and repeat the analyses of the previous sections. For example,

the triangle of fig. 4 (triangle with “diagonal”) is the triangle of section 4 with

e1 → e1 + e4, ω1 → ω1 + ω4. (6.3)

The central diagram of fig. 4 is the box of section 5 with

e1 → e1 + e5, ω1 → ω1 + ω5. (6.4)

It can be used to calculate the left diagram of fig. 5, which contributes to the two-loop

correction to the self energy.

As far as the fakeon prescription is concerned, it is sufficient to have one fakeon leg in

the stack to convert the entire stack into a fakeon. The diagrammatics adapts coherently,

since it is impossible to cut a leg belonging to the stack without cutting the whole stack.

7 Box with diagonal

A more interesting two-loop diagram is the box with one diagonal, which we denote by

G4D. Referring to Fig. 4, it is identified by the “word” (ABD)(BCD), or, in extended
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Figure 5: Two-loop corrections to the self energy

notation, (A2B3D1)(B5C4D3). Below, we just write ABCD. This diagram can be used,

for example, to evaluate the right diagram of fig. 5, which is the second contribution to

the two-loop self energy. To cover the most general case, we attach external momenta to

every vertex.

Choosing the pi orientations opposite to the arrows, the skeleton is

Gs4D
ABCD = i

∫

dk0

2π

∫

dq0

2π

2ω3

(q + k − p3)2 −m2
3 + iε3

∏

i=1,2,4,5

2ωi

(li − pi)2 −m2
i + iεi

, (7.1)

where l1 = l2 = k, l4 = l5 = q. As usual, we first integrate on the loop energies by means

of the residue theorem. Then, we use the smart common-denominator identities (2.21) to

eliminate the pseudothresholds in favor of the physical thresholds. The result is

Gs4D
ABCD = −i

∑

s4D

F a3c

[

F abF cd +
1

2
F abF a3d +

1

2
F b3cF cd +

1

2
F a3dF b3c

]

, (7.2)

where

F abc =
1

ea − eb + ec − ω̃a − ω̃b − ω̃c

(7.3)

and the sum
∑

s4D is on {a, b} = p(1, 2), {c, d} = p(4, 5), where p(1, 2), p(4, 5) are the

permutations of 1,2 and 4,5, respectively, plus (e → −e).

To write the threshold decomposition, it is convenient to define

Qabc =P

(

1

ea − eb + ec − ωa − ωb − ωc

−
1

ea − eb + ec − ωa + ωb − ωc

)

,

∆abc = πδ(ea − eb + ec − ωa − ωb − ωc), ∆̂abc = πδ(ea − eb + ec + ωa + ωb + ωc). (7.4)

As usual, the threshold decomposition is worked out by using (2.15) and writing the

various contributions in manifest diagrammatic forms by means of identities like (2.19).
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The result is

Gs4D
ABCD =−iPs4D

ABCD −∆12 P345|e3→e3−e2−ω2
−∆45 P123|e3→e3−e5−ω5

−∆21 P345|e3→e3−e1−ω1

−∆54 P123|e3→e3−e4−ω4
−
∑

s4D

∆a3cQabQcd + i
∑

s4D

∆a3c(∆abQcd +Qab∆cd)

+
i

2

∑

s4D

[

Qa3c∆ab∆cd +∆a3c(Qab∆a3d +∆b3cQcd)
]

+
∑

s4D

∆a3c

[

∆ab∆cd +
1

2
∆ab∆a3d +

1

2
∆b3c∆cd

]

, (7.5)

where Ps4D
ABCD = i Gs4D

ABCD

∣

∣

F→P
and −iP123, −iP345 are the purely virtual contents of the

triangle diagrams with legs 1,2,3 and 3,4,5, respectively (see section 4, formula (4.4)). The

decompositions of the cut diagrams are

Gs4D
ȦBCD

=2i∆21 T s
345|e3→e3−e1−ω1

, Gs4D
AḂĊḊ

= Ḡs4D
ȦBCD

∣

∣

e→−e
, Gs4D

ABĊD
= Gs4D

ȦBCD

∣

∣

1↔4

2↔5
,

Gs4D
ȦḂCḊ

= Gs4D
AḂĊḊ

∣

∣

1↔4

2↔5
, Gs4D

ABCḊ
= Ḡs4D

ȦBĊḊ

∣

∣

1↔2

4↔5
, Gs4D

ȦḂĊD
= Ḡs4D

AḂCD

∣

∣

1↔2

4↔5
,

Gs4D
AḂCD

=2∆̂235(Q̂21 − i∆12 − i∆̂135)(Q̂54 − i∆45 − i∆̂234), Gs4D
ȦBĊḊ

= Ḡs4D
AḂCD

∣

∣

e→−e
,

Gs4D
ȦḂCD

=2∆̂135(Q̂12 + i∆21 + i∆̂235)(Q̂54 − i∆45 − i∆̂134), Gs4D
ABĊḊ

= Ḡs4D
ȦḂCD

∣

∣

e→−e
,

Gs4D
AḂĊD

=2∆̂234(Q̂21 − i∆12 − i∆̂134)(Q̂45 + i∆54 + i∆̂235), Gs4D
ȦBCḊ

= Ḡs4D
AḂĊD

∣

∣

e→−e
,

Gs4D
ȦBĊD

=4i∆21∆54(Q235 − i∆235 − i∆̂134), Gs4D
AḂCḊ

= Ḡs4D
ȦBĊD

∣

∣

e→−e
, (7.6)

where T s
345 is the triangle (4.4) with legs 3,4,5. The conjugate uncut diagram is Gs4D

ȦḂĊḊ
=

Ḡs4D
ABCD.

The spectral optical theorem reads

Gs4D
ABCD +Gs4D

ȦḂĊḊ
+Gs4D

ȦBCD
+Gs4D

AḂĊḊ
+Gs4D

ABĊD
+Gs4D

ȦḂCḊ
+Gs4D

ABCḊ
+Gs4D

ȦḂĊD
+Gs4D

AḂCD

+Gs4D
ȦBĊḊ

+Gs4D
ȦḂCD

+Gs4D
ABĊḊ

+Gs4D
AḂĊD

+Gs4D
ȦBCḊ

+Gs4D
ȦBĊD

+Gs4D
AḂCḊ

= 0 (7.7)

and can be easily verified. The spectral optical identities are the various threshold contri-

butions to this equality, which vanish separately.

7.1 Fakeons

The fakeon projections can now be implemented straightforwardly. If leg 1, which is the

segment DA, is a fakeon, we suppress all the contributions proportional to ∆ab, ∆abc and
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∆̂abc, whenever a, b or c are equal to 1. Denoting this case by fABCD, the uncut diagram

is

Gs4D
fABCD=−iPs4D

ABCD −∆45(P123|e3→e3−e5−ω5
− i∆234Q21)−∆234Q21(Q45 − i∆235)

−∆54 (P123|e3→e3−e4−ω4
− i∆̂234Q̂21)− ∆̂234Q̂21(Q̂45 − i∆̂235)

−∆235Q21(Q54 − i∆54)− ∆̂235Q̂21(Q̂54 − i∆45). (7.8)

The cut diagrams Gs4D
fȦBCD

, Gs4D
fAḂĊḊ

, Gs4D
fABCḊ

, Gs4D
fȦḂĊD

, Gs4D
fȦḂCD

, Gs4D
fABĊḊ

, Gs4D
fȦBĊD

and

Gs4D
fAḂCḊ

disappear altogether. This is consistent with the diagrammatics of the fakeon

prescription, since those diagrams contain a cut fakeon leg and by (2.13) the cut fakeon

propagator vanishes. The surviving cut diagrams are

Gs4D
fABĊD

=2∆54(P123|e3→e3−e4−ω4
− i∆235Q21 − i∆̂234Q̂21),

Gs4D
fȦḂCḊ

=2∆45(P123|e3→e3−e5−ω5
+ i∆234Q21 + i∆̂235Q̂21),

Gs4D
fAḂCD

=2∆̂235Q̂21(Q̂54 − i∆45 − i∆̂234), Gs4D
fȦBĊḊ

= 2∆235Q21(Q54 + i∆54 + i∆234),

Gs4D
fAḂĊD

=2∆̂234Q̂21(Q̂45 + i∆54 + i∆̂235), Gs4D
fȦBCḊ

= 2∆234Q21(Q45 − i∆45 − i∆235),(7.9)

It is easy to show that these formulas also follow from the diagrammatic rules given in

subsection 2.2. In particular, the fakeon propagator of every link agrees with (2.14).

The spectral optical theorem reads

Gs4D
fABCD +Gs4D

fȦḂĊḊ
+Gs4D

fABĊD
+Gs4D

fȦḂCḊ
+Gs4D

fAḂCD
+Gs4D

fȦBĊḊ
+Gs4D

fAḂĊD
+Gs4D

fȦBCḊ
= 0, (7.10)

where Gs4D
fȦḂĊḊ

= Ḡs4D
fABCD, and can be verified straightforwardly.

If leg 3 is a fakeon, we denote the diagram by AB|f|CD. We have

Gs4D
AB|f|CD=−iPs4D

ABCD −∆12 P345|e3→e3−e2−ω2
−∆45 P123|e3→e3−e5−ω5

−∆21 P345|e3→e3−e1−ω1
−∆54 P123|e3→e3−e4−ω4

+
i

2

∑

s4D

Qa3c∆ab∆cd (7.11)

and Gs4D
ȦḂ|f|ĊḊ

= Ḡs4D
AB|f|CD. The nonvanishing cut diagrams are

Gs4D
ȦB|f|CD

=2∆21(P345|e3→e3−e1−ω1
− i∆45Q234 − i∆54Q235),

Gs4D
AḂ|f|ĊḊ

=2∆12(P345|e3→e3−e2−ω2
+ i∆54Q135 + i∆45Q134), Gs4D

ȦB|f|ĊD
= 4i∆21∆54Q235,

Gs4D
AB|f|ĊD

=2∆54(P123|e3→e3−e4−ω4
− i∆12Q135 − i∆21Q235), Gs4D

AḂ|f|CḊ
= −4i∆12∆45Q134,

Gs4D
ȦḂ|f|CḊ

=2∆45(P123|e3→e3−e5−ω5
+ i∆21Q234 + i∆12Q134), (7.12)
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which agree with the diagrammatic rules of the fakeon prescription.

The spectral optical theorem reads

Gs4D
AB|f|CD +Gs4D

ȦḂ|f|ĊḊ
+Gs4D

ȦB|f|CD
+Gs4D

AḂ|f|ĊḊ
+Gs4D

AB|f|ĊD
+Gs4D

ȦḂ|f|CḊ
+Gs4D

ȦB|f|ĊD
+Gs4D

AḂ|f|CḊ
= 0.

(7.13)

The other possibilities of distributing fakeons in the internal legs can be treated simi-

larly. The case where all the internal legs are fakeons gives the purely virtual content of

the box with diagonal, which is

Gs4D
ABCD

∣

∣

purely virtual
= −iPs4D

ABCD. (7.14)

8 Further insight into the algebraic structure of the

spectral optical identities

In this section we provide more insight into the algebraic structure of the spectral optical

identities and work out formulas for more complicated diagrams, like the pentagon and

the hexagon.

It is useful to introduce a few definitions, such as

IN =
∑

pN

N
∏

k=2

F a1ak + (e → −e), JN =
∑

pN

F aNaN−1

N−1
∏

k=2

F a1ak + (e → −e),

KN =
∑

pN

F a1a2F a3a2F a3a4F a5a4 · · ·+ (e → −e), (8.1)

where pN denotes the permutations of {a1 · · ·aN}.

The triangle, box, pentagon and hexagon diagrams of fig. 6 give

Gs
3=−

i

2!
I3, Gs

4 = −
i

3!

(

I4 +
3

2
J4

)

, Gs
5 = −

i

5!
(I5 + 4J5 + 2K5) ,

Gs
6=−

i

6!
(I6 + 5J6 + 5X6 + 10Y6) , (8.2)

where

X6=
∑

pN

F abF acF adF edF ef + (e → −e), Y6 =
∑

pN

F abF acF adF edF fc + (e → −e),

Z6=
∑

pN

F abF acF adF edF fd + (e → −e), Z6 +K6 = 2Y6. (8.3)
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Figure 6: One-loop diagrams and their snowflake versions

The various contributions can be represented by means of the “snowflake diagrams”

shown in fig. 6, where each leg is an F ab and the vertices are repeated indices. Oriented

legs can be used to distinguish F ab from F ba.

In general, the multithresholds can be expressed in more than one equivalent ways.

This fact leads to nontrivial identities, such as the last of (8.3) and

F 12F 13F 43 + F 12F 42F 43 − F 12F 13F 42 − F 13F 42F 43 = 0. (8.4)

Now we show that the threshold decomposition and the fakeon projection are not affected

by this.

Step 4.b) of subsection 2.5 tells us how to arrange the levels ` > 1 of the decomposition.

The proper diagrammatic structure of the ` = 0 sector, instead, is defined by the procedure

itself. The threshold decomposition of (8.4) gives the second identity of (2.19) at level 0,

that is to say,

P12P13P43 + P12P42P43 − P12P13P42 − P13P42P43 = 0. (8.5)
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If we add the left-hand side to the purely virtual part of the box diagram, we change

its form, but not its value, because the right-hand side of (8.5) vanishes identically. For

the same reason, no remnants drop to the higher levels. Similar arguments apply to the

identity of (8.3) for the hexagon diagram.

A source of worry could come from the other identities of (2.19), where the right-hand

side is nonvanishing and different levels can mix. Those identities, however, require an

odd number of internal legs (triangle, pentagon, etc.), i.e., products of an even number of

F ab. This makes relations like (8.4) unavailable: it is impossible to arrange the product of

an even number of F ab without involving pseudothresholds, which have disappeared after

step 3) of subsection 2.5. In the end, the threshold decomposition is unambiguous.

We conclude by discussing the algebraic structure of the cut diagrams. In the case of

the triangle, the key identities are

αβ − ᾱβ̄ = (α− ᾱ)β + ᾱ(β − β̄) = α(β − β̄) + (α− ᾱ)β̄, (8.6)

where α and β are arbitrary complex numbers and ᾱ, β̄ are their complex conjugates.

Choosing, e.g., α = F 12 and β = F 13 and multiplying by a further factor −i, we get, from

the first equality,

− iF 12F 13 + iF̄ 12F̄ 13 = −2∆12F 13 − 2F̄ 12∆13. (8.7)

The differences α − ᾱ and β − β̄ give the δ functions belonging to the cut propagators.

The application of identities like these to (4.3) gives a different procedure to obtain the

spectral optical identities of the triangle, collected in table 2.

In the case of the box, we can manipulate (5.1) by means of identities like

αβγ − ᾱβ̄γ̄=(α− ᾱ)βγ + ᾱ(β − β̄)γ + ᾱβ̄(γ − γ̄)

=αβ(γ − γ̄) + α(β − β̄)γ̄ + (α− ᾱ)β̄γ̄

=α(β − β̄)γ + (α− ᾱ)β̄γ + ᾱβ̄(γ − γ̄)

= (α− ᾱ)β̄γ + α(β − β̄)γ̄ + ᾱβ(γ − γ̄) + (α− ᾱ)(β − β̄)(γ − γ̄) (8.8)

and then apply the threshold decomposition. Note that the last identity involves cut

diagrams with two marked and two unmarked vertices (such as Gs4
ȦBCḊ

).

We can proceed similarly for the pentagon and the hexagon, as well as for the multiloop

diagrams. Identities like (8.6) and (8.8) can be used to provide alternative proofs of the

optical theorem (via its spectral version and the spectral optical identities).
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In the end, the algebraic structure of the spectral optical identities is encoded in simple

relations such as (8.6) and (8.8). The counterpart of this simplicity is a lengthier diagram-

matics, in the sense that each ordinary diagram is expanded into the sum of numerous

“snowflake” diagrams, as shown in fig. 6.

9 Generalization to propagators with arbitrary real

residues

In this section we generalize the spectral optical identities to propagators with arbitrary

real residues at the poles. This allows us to treat particles and antiparticles asymmetrically

and shows that the identities do not rely on Lorentz invariance, nor the CPT theorem.

Define the propagators

p→
=

iξ

e− ω + iε
−

iζ

e + ω − iε
,

•
p→

•=
iζ

e+ ω + iε
−

iξ

e− ω − iε
,

•
p→

= (2π)ζδ(e+ ω), •
←p

= (2π)ξδ(e− ω). (9.1)

instead of (2.12), where ξ and ζ are arbitrary real numbers.

For the threshold decompositions, it is convenient to introduce the quantities

F ab =
ξb

ea − eb − ω̃a − ω̃b

, Pab = P
ξb

ea − eb − ωa − ωb

,

Qab =Pab − P
ζb

ea − eb − ωa + ωb

, ∆ab = πζaξbδ(ea − eb − ωa − ωb), (9.2)

instead of (2.20). In the formulas of this section it is understood that every expression

must be expanded and, after the expansion, every power of ξa with the same index a must

be turned into ξa. The same must be done for the powers of ζa. For example, ∆ab∆ac is a

double δ function multiplied by π2ζaξbξc, instead of π2ζ2aξbξc. With these conventions, it is

easy to show that formula (5.1) for the box skeleton turns into

Gs4
ABCD = −

i

6

∑

perms

ζaF
abF acF ad −

i

4

∑

perms

ζaζdF
abF acF db + (e → −e, ξ ↔ ζ). (9.3)

Moreover, the threshold decompositions (5.9) and (5.11) remain formally the same, like all

the other formulas of section 5, including those referring to the fakeon prescription.

35



21
A
5
R
en
or
m

The example of the box illustrates how to proceed for every diagram, when we want to

treat propagators with arbitrary real residues.

10 Diagrams with nontrivial numerators and degen-

erate diagrams

So far, we have considered diagrams generated by vertices that do not carry derivatives.

Derivative vertices bring nontrivial numerators into the integrands. The Passarino-Veltman

reduction allows us to convert one-loop diagrams with arbitrary numerators into linear com-

binations of diagrams with unit numerators [24]. However, it does not work for arbitrary

diagrams. In particular, it may fail with more loops.

The versatility of the spectral optical identities provides a more powerful way out.

Recall that every identity holds without integrating on the space components kl of the

loop momenta. This means that the functions of kl can be factored out. A nontrivial

numerator in a loop integral is a tensorial polynomial N(p, k) of the external momenta p

and the loop momenta k. Let us expand it as a sum of monomials

∏

j

p
µj

j

∏

l

kµl

l . (10.1)

Since we can factor out the components of p and every space components of k, we just

need to pay attention to the loop energies k0
l . They can be used to simplify the poles of

the propagators (2.12) and reduce the integral to a sum of integrals with fewer internal

legs and/or fewer loop energies in the numerators6.

Inside the integrals obtained this way, we may not find the propagators (2.12) and

(2.14), since the poles at e = ±ω need not appear in those combinations. Yet, we can use

the generalization of the previous section, since formulas (9.1) with appropriate choices of

ξ or ζ suit every case.

Iterating this procedure, we reduce to a linear combination of spectral optical identities

of the types already considered. This proves that they hold for derivative vertices and

diagrams with arbitrary numerators.

6If the power of some loop energy k0 is large enough, remnants with no k-dependent denominators can

survive. These contributions can be dropped. If the surviving power of k0 is odd, they vanish by symmetric

integration. If the surviving power of k0 is even, they are killed by the dimensional regularization, since

they give integrals of polynomials of k in dDk/(2π)D.
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Another important point is that the identities derived so far have are valid under a

tacit “non-coincidence” assumption, which means that the thresholds are all distinct. The

simplest way to fulfill this requirement is to imagine that the propagators have nonvanish-

ing, different masses mi, such that the sums
∑

i∈J mi are all different, for every subset J

of internal legs7. Another possibility is to assume, as we have done so far, that each vertex

carries an external leg, equipped with an independent external momentum. For example,

instead of the double bubble 〉©©〈, where the central vertex is attached to internal legs

only, we take 〉©|©〈, with additional external legs stemming from the central vertex.

Yet, in many physical situations identical propagators appear, as in the left diagram

of fig. 5, and identical thresholds. The square of a propagator defined by the Feynman

prescription is well defined. What about the threshold decomposition and the fakeon

prescription? The square of the Cauchy principal value is ill-defined and so is the square

of a Dirac δ function.

The way out is to use a “coincidence splitting method” (which works for powers of the

Feynman propagator as well). In other words, we view coinciding thresholds as the limits

of distinct thresholds, obtained in the ways described above (i.e., by inserting fictitious,

small mass differences or equipping the vertices with additional external legs flowing in

small momenta). For example, we can view the left diagram of fig. 5 as a limit of the

middle diagram of fig. 4.

Then, arbitrary powers of the Cauchy principal value are well defined, since [26]

lim
ε→0

P
∏n+1

i=1

1

x− εci
=

(−1)n

n!

dn

dxn
P
1

x
, (10.2)

where ci are distinct numbers. The coincidence splitting method trivializes the powers of

a δ function:

lim
ε→0

∏n+1

i=1
δ(x− εci) = 0. (10.3)

The Feynman prescription generates products of delta functions times principal values,

but only in well-defined combinations such as

lim
ε→0

(

δ(x− εc1)

x− εc2
+

δ(x− εc2)

x− εc1

)

= lim
ε→0

δ(x− εc1)− δ(x− εc2)

ε(c1 − c2)
= −δ′(x). (10.4)

7To prove the optical theorem in the presence of massless fields, it is convenient to equip them with

small, fictitious masses, otherwise the asymptotic states of other particles (e.g., the electron in QED) are

ill defined. The non coincidence assumption can be fulfilled using the fictitious masses. The massless limit

is studied after taking care of the infrared divergences (see section 12).
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The fakeon prescription leaves or drops both contributions appearing on the left-hand side,

so it is also well defined.

11 Thick fakeons

In this section we generalize the identities to complex fakeon frequencies and study the

thick fakeons, which have nonvanishing widths at the tree level. An example is offered by

a propagator of the form

2iM2

(p2 − µ2)2 +M4
=

1

p2 − µ2 − iM2
−

1

p2 − µ2 + iM2
, (11.1)

where, as usual, pµ = (e,p). We can view it as the difference Pthick − P̄thick, where

Pthick =
i

2Ω

(

i

e− Ω
−

i

e+ Ω

)

(11.2)

and Ω =
√

p2 + µ2 − iM2. The propagator Pthick is of the type already studied, apart

from two features: the complex frequency Ω and the overall factor i/(2Ω).

More generally, the typical propagator of thick fakeons reads

C

p2 − µ2 − iM2
−

C∗

p2 − µ2 + iM2
= C∗Pthick − CP̄thick, (11.3)

where C is a complex number. Another interesting example is

i(p2 − µ2)

(p2 − µ2)2 +M4
=

i

2

(

1

p2 − µ2 − iM2
+

1

p2 − µ2 + iM2

)

= −
i

2
(Pthick + P̄thick). (11.4)

Although (11.3) and (11.4) cannot be obtained from a local Lagrangian, they can be used

to include certain limitations due to the experimental apparatus, like the energy resolution

around the “fakeon peak”.

We show that the spectral optical identities for diagrams involving propagators like

(11.1), (11.3) and (11.4) can be derived as (complex) linear combinations of (the complex-

ified versions of) the identities derived in the previous sections.

Typically, propagators like (11.1) appear in higher-derivative theories. Examples are

the Lee-Wick (LW) models [9, 10, 11, 12, 13]. It is worth to emphasize, though, that

the LW models do not have fakeons, but unstable ghosts, which are not really out of the

physical spectrum (in the same way as the muon is not out of the physical spectrum of the
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standard model). The LW ghosts can be dropped from the spectrum only in an effective

field theory approach, if they have relatively large decay widths.

Instead, fakeons are eradicated from the theory at the fundamental level (and therefore,

at all energies). Due to this, they do not need to decay. For example, in the models of

[19], which have a Z2 symmetric fakeon sector, they have indentically vanishing widths.

Moreover, fakeons do not need higher derivatives, nor negative residues in front of their

propagators. What makes all this possible is the fakeon projection, which is consistent

only if we adopt the fakeon quantization prescription8.

As shown by Piva and the current author in [14, 15], it is possible to reformulate the

Lee-Wick models, and a variety of other higher-derivative theories, by converting them

into theories of particles and thick fakeons. This is one reason why it is interesting to

generalize the results of the previous sections to this type of fakeons. Other reasons will

be mentioned soon.

The generalization proceeds as follows. Consider a diagram G involving only real

frequencies. Assume, for definiteness, that the legs 1 and 2 are fakeons9 and complete the

strategy outlined in subsection 2.5. Steps 1-4) give the spectral optical identities of the

Feynman version of G (where all the internal legs are prescribed à la Feynman). After

that, we apply the fakeon prescription/projection of step 5).

Once these operations are concluded, we obtain the identities we start from to make

the complexification. We write them as

f(ω) + f̄(ω) +
∑

c

fc(ω) = 0, (11.5)

where ω is the frequency we want to complexify and f(ω), f̄(ω) and fc(ω) are the con-

tributions of the diagram itself, its complex conjugate and the cut diagrams, respectively.

Note that, after step 5), the thresholds do not involve fakeon frequencies any longer. This

is crucial, because it would make no sense to complexify frequencies that appear inside

delta functions.

We first consider the complexification ω → Ω of the frequency ω associated with leg 1.

Since (11.5) holds for arbitrary ω (and ω does not enter the δ functions), we can replace it

8In this paper, these two operations are condensed into a unique operation, which is step 5) of subsection

2.5.
9We need two fakeons to highlight properties that are not visible with just one. The generalization

from two to an arbitrary number is then straightforward.
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everywhere by the complex Ω. The principal values may sound redundant, at this stage,

but we keep them anyway, for reasons that become clear below. Let us also multiply by a

complex factor K. This gives the relation

Kf(Ω) +Kf̄(Ω) +
∑

c

Kfc(Ω) = 0 (11.6)

with one caveat: the complex conjugation in f̄(Ω) acts on the function f , but not its

variable Ω. This means that (11.6) cannot be interpreted as the spectral optical identity

of the diagram with complexified frequencies, since Kf̄(Ω) is not the complex conjugate

of Kf(Ω). Indeed, a propagator with complex frequencies cannot come from a Hermitian

theory, so it cannot lead to an optical theorem.

A second identity can be obtained from (11.5) by replacing ω everywhere with Ω̄ and

multiplying by K̄:

K̄f(Ω̄) + K̄f̄(Ω̄) +
∑

c

K̄fc(Ω̄) = 0. (11.7)

Summing (11.6) and (11.7), we get
[

Kf(Ω) + K̄f(Ω̄)
]

+
[

K̄f̄(Ω̄) +Kf̄(Ω)
]

+
∑

c

[

Kfc(Ω) + K̄fc(Ω̄)
]

= 0, (11.8)

which is the desired identity. We want to show that the first bracket is the diagram with

the propagator
2iKΩ

e2 − Ω2
+

2iK̄Ω̄

e2 − Ω̄2
(11.9)

in leg 1, the second bracket is the complex conjugate diagram and the sum collects the

contributions of the cut diagrams. We go through the steps 1-5) of subsection 2.5 once

again and generalize them to the case at hand. When we do so, we understand that leg 2

has been treated in a similar way. We distinguish the frequencies of the two fakeon legs

by means of the subscripts 1 and 2.

Let us start from step 2). Recalling how the residue theorem is applied to get to

(11.5), we recognize that the integral on the loop energies with the propagator (11.9) must

be performed along the LW integration path (see [13] or [14] for details), which is, by

definition, the path that picks the residues we need10.

10Thick fakeons and LW decaying ghosts have the LW integration path in common, although they differ

in the rest. The reason is that, as far as the integrals on the loop energies are concerned, the Feynman

integration path, the integration path following from the Wick rotation and the LW integration path are

all the same thing.
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Moving to step 3), we need identities like (2.21) to eliminate the denominators D̃pseudo.

Those manipulations are legitimate only if the denominators never vanish, which is not

guaranteed by a nonvanishing M . Indeed, we may find fractions like11

1

E − Ω1 − Ω̄2 + iε
, (11.10)

where E is a linear combination of energies and possibly (real) frequencies. The denomi-

nator of (11.10) is singular in extended regions that may intersect the Minkowskian region

(which is the real subspace PR of the space Pext of the complexified external momenta), as

can be seen in the bubble diagram studied in ref. [14] (see also [7] and [11]). In particular,

this may happen when the legs 1 and 2 propagate the same particle (same µ and same

M). The iε does not help and can be ignored here.

The point is that, as shown in [14], the LW integration path is an incomplete prescrip-

tion. We need to complete it by deforming the integration domain on the space components

of the loop momenta. The domain deformation generates Cauchy principal values inside

the integrals [14, 7]. Since the spectral optical identities concern the integrands, they

formally do not change.

The algebraic manipulations that remove D̃pseudo are legitimate in the Euclidean region

of Pext, which extends to the Minkowskian subregion below each threshold: there the

denominators of the integrands never vanish. The other regions are reached from the

Euclidean one either analytically (if we need to cross a physical threshold or a fakeon

threshold that does not fall on PR) or by means of the domain deformation (if we need to

cross a fakeon threshold that falls on PR).

Recapitulating, step 3) of subsection 2.5 is performed in the Euclidean region. As far

as step 4) is concerned, we move from the Minkowskian subregion that lies below each

threshold to the regions above the thresholds, reaching them one by one, in all directions.

When the threshold involves fakeon frequencies and falls on PR, we proceed by means

of the domain deformation, which incorporates also the fakeon projection of step 5). When

the threshold is physical (i.e., it involves no fakeon frequencies), we apply the threshold

decomposition as before. Finally, when the threshold involves fakeon frequencies and does

not fall on PR, it is not a true threshold (precisely because it is located away from PR), so

it poses no obstacle.

11This is the part of the argument where we need at least 2 fakeons.
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Next, we apply the manipulations of point 4.b) and finally step 5). Formally, the

manipulations of step 4.b) remain the same, since the domain deformation, as recalled

above, generates principal values inside the integrals on the space components of the loop

momenta. To leave the previous formulas the same, it is convenient to extend the meaning

of the principal value sign P to include the operations just described.

In the end, we get exactly (11.8). The procedure just outlined returns the correct

diagram, as well as its complex conjugate and the cut diagrams. So doing, we have spectral

optical identities for theories of particles and fakeons of all types.

The coincidence splitting method is also required in the presence of thick fakeons, to

deal with powers of fractions like (11.10): since the domain deformation may generate

principal values, powers of those may appear in involved diagrams.

If some situations it may be necessary to take into account the effects of the experi-

mental apparatus on fakeons, like the energy resolution ∆E of the processes mediated by

them. We can achieve this goal by turning an ordinary fakeon into a thick one, switching

to a propagator of type (11.4) with M = ∆E. Similarly, we can turn a thick fakeon into

a thicker one by increasing M . Since ∆E does not enter the Lagrangian, it can have a

different impact on different thresholds, which means that we can have a different ∆E in

each level of the threshold decomposition of a diagram and each spectral optical identity

(as long it is the same throughout the identity). Assuming an “optimized” experimental

situation, we can take a nonzero ∆E only in the thresholds that concern the experiment

we are making. For example, if we are studying the production of a µ+µ− pair and the

theory includes a fakeon channel fc mediating that production, we just need ∆E in the

contributions interested by fc. Anywhere else, we can keep ∆E = 0 and use the coinci-

dence splitting method, when needed. The spectral optical theorem continues to hold at

∆E 6= 0.

Note that it is nontrivial to be able to include the energy resolution without violating

the optical theorem. The interaction with the experimental apparatus is not required to

be unitary, since the system can no longer be viewed as an isolated one.

12 Massless fields and infrared divergences

In this section we explain how to handle the threshold decomposition and the fakeon

prescription in the presence of massless fields.
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Massless fields are responsible for infrared divergences in scattering amplitudes [16].

The divergences only appear on shell, when we integrate on the space components of the

loop momenta and the phase spaces. To identify potential sources of divergences, we study

the infrared behaviors of the skeletons. We first discuss the issue with physical particles

only, then include fakeons. For definiteness, we assume that the massless fields are photons.

Collinear gluons and gravitons can be treated the same way (with angular resolutions and

other types of resolutions, in addition to the energy resolutions).

The diagram G and its conjugate Ḡ are well defined, since they are off-shell, but the

cut diagrams Gc may not be separately well defined, since the cuts put various particles

on shell. The cancellation of the infrared divergences in the sum

∑

c

Gc = −G− Ḡ (12.1)

is due to the usual compensation between soft and virtual photons. We can regulate each

Gc by equipping the photons with small fictitious masses m. Then we obtain the identity

∑

c

Gc(m) = −G(m)− Ḡ(m), (12.2)

with self-evident notation.

The energy resolution ∆EIR of the detectors can be taken into account to make the

limits m → 0 well defined. If a cut diagram Gc(m) involves the integral on the phase space

of a given photon γ, with momentum kγ and mass mγ , we write it as G<
c (m) + G>

c (m),

where G<
c (m) is the integral on |kγ | 6 ∆EIR and G>

c (m) is the integral on |kγ| > ∆EIR.

If the leg γ is uncut in Gc(m), we take G<
c (m) = Gc(m) and G>

c (m) = 0. By construction,

G>
c (m) has a well-defined limit mγ → 0. We obtain

G(m) + Ḡ(m) +
∑

c

G>
c (m) +

∑

c

G<
c (m) = 0. (12.3)

In the presence of massless fields, we cannot imagine the asymptotic state of a particle

(such as the electron) as just made of the particle itself. We have to think of it as made

of the particle and a cloud of soft photons radiated by it. Guided by this, we can attach

G<
c (m) to some other G<

c′(m) and reorganize the last sum of (12.3) into a sum of terms

with well-defined limits mγ → 0. We can also view the last sum as a unique, convergent

contribution. We repeat this construction for all the photons. At the end, the limit where

the photons become massless gives the optical theorem in the presence of massless fields.
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Now, consider the case of massless fields ϕ0 in the presence of fakeons. The fields ϕ0

themselves must be physical (not fakeons). Indeed, massless fakeons are excluded, because

they violate causality at arbitrarily large distances (instead of just microcausality, see for

example [8]). As before, we equip each ϕ0 with a small fictitious mass m. In the massless

limit m → 0, some (multi)thresholds ∆i that are distinct at m 6= 0 may tend to the same

threshold ∆0 for low ϕ0 energies
12. This means that the ∆i can interfere with one another

after the massless limit, even if they do not interfere before. In section 10 we have shown

that the limit of coinciding thresholds is regular, because it allows us to define powers of

principal values and δ functions13.

We know that the starting uncut diagram G (defined by the Feynman prescription

everywhere) does not have infrared divergences. This is enough to guarantee that the

every threshold ∆0 of its threshold decomposition is separately convergent. The reason is

that the potentially divergent behaviors of different levels cannot compensate one another,

for example through identities such as (2.19). Indeed, the infrared divergences, like the

ultraviolet ones, are due to power counting behaviors of the integrands and do not have

imaginary parts. Without imaginary parts, they cannot propagate to lower or higher levels.

Thus, the compensations must occur among the contributions of the same level. Ulti-

mately, they occur within the same threshold ∆0, because each threshold is independent.

What happens can be described as follows. We know that ∆0 can come from different

thresholds ∆i of the m 6= 0 diagram G(m). Each ∆i can separately have infrared diver-

gences in the limit m → 0. However, G is free of them, so the infrared divergences due to

∆i must cancel out in ∆0.

Moreover, if ∆0 contains a fakeon frequency, all the thresholds ∆i it comes from contain

fakeon frequencies: since the massless field ϕ0 is not a fakeon, it cannot change the nature

(physical vs fake) of the thresholds it enters. If two thresholds ∆i tend to coincide for low

ϕ0 energies in the m → 0 limit, they must either be both physical or both fake. Therefore,

the cancellation of infrared divergences survives the fakeon prescription/projection and the

12For example, consider the second diagram of fig. 5 with ϕ0 in the vertical internal line and identical

massive fields in the other internal lines. We can view this case as the third diagram of fig. 4 with

m1 = m2 = m4 = m5, m3 = 0 and p3 = p1 + p4 = p2 + p5. Then it easy to check that ∆135 ' ∆12 for low

ϕ0 energies (ω3 ' 0).
13There, we had powers of principal values and δ functions with the same momenta. In the case of

coinciding thresholds due to the massless limit m → 0, the powers originate from different loops. The

extra loop integrals have further smearing effects.
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limit m → 0, as we wished to show. The optical theorem, in the form explained above,

continues to hold.

The cancellation need not occur if the massless field is a fakeon. The argument just

given cannot guarantee that all the ∆i are treated the same by the fakeon projection in

that case.

13 Conclusions

We have shown that the whole unitarity problem in quantum field theory can be reduced

to a set of algebraic identities, which do not require to integrate on the space components

of the loop momenta, or the phase spaces in cut diagrams, and hold for each threshold

separately, for diagrams with arbitrary derivative vertices (as long as the Lagrangian of the

theory is Hermitian) and for propagators with arbitrary residues, masses and frequencies.

The key ingredient is a proper threshold decomposition, since different thresholds do

not interfere with one another. First, we integrate on the loop energies by means of the

residue theorem, which is an algebraic operation. Second, we ignore the integrals on the

space components of the loop momenta or phase spaces and work on the skeleton of the

diagram. Third, we eliminate the pseudothresholds, which are unphysical, because they

involve differences of frequencies. Fourth, we perform the threshold decomposition, which

provides a separate optical identity for each (multi)threshold. Fifth, we drop the thresholds

involving frequencies associated with the legs that we want to quantize as fakeons.

The threshold decomposition must be done with due care. For example, it is not known

a priori how to extract the purely virtual content of a diagram, which is defined by the

procedure itself.

The gain in insight is important. The spectral optical identities hold for thick as well

as non thick fakeons, with arbitrary residues on the poles of the propagators. We can treat

massless physical fields and even introduce certain details of the experimental apparatus,

like the energy resolution around the fakeon peak, without violating the identities and,

ultimately, unitarity. In the whole analysis we never need to make a single non algebraic

operation.

Summing the spectral optical identities associated with a loop diagram, we derive the

spectral optical theorem obeyed by its skeleton. As soon as we resume the integrals on the

space components of the loop momenta and the phase spaces, we obtain the usual optical
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theorem for amplitudes.

We have given explicit examples to show how the threshold decomposition works and

how the spectral optical identities are derived. At one loop we have analyzed the bubble,

the triangle, the box, the pentagon and the hexagon. At two loops we have studied

the triangle with “diagonal” and the box with diagonal. Whole classes of diagrams with

arbitrarily many loops are included straightforwardly. The calculations provide formulas

for the loop integrals with fakeons and relate them to the known formulas for the loop

integrals with physical particles. It is possible to use the results of this paper to implement

the fakeon prescription in softwares like FeynCalc, FormCalc, LoopTools and Package-X.

Finally, the strategy we have elaborated also provides a general proof of the identities

for arbitrary diagrams.
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and M. Raidal, A fake doublet solution to the muon anomalous magnetic moment,

Phys. Rev. D 104 (2021) 035009, 21A4 Renormalization.com and arXiv:2104.03249

[hep-ph].

[21] G. J. van Oldenborgh and J. A. M. Vermaseren, New Algorithms for One Loop Inte-

grals, Z. Phys. C 46 (1990) 425.

J. Kublbeck, M. Bohm, and A. Denner, Feyn Arts: Computer Algebraic Generation

of Feynman Graphs and Amplitudes, Comput. Phys. Commun. 60 (1990) 165;

A. Denner, Techniques for calculation of electroweak radiative corrections at the one

loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 and

arXiv:0709.1075;

T. Hahn, Loop calculations with FeynArts, FormCalc, and LoopTools,

Acta Phys. Polon. B30 (1999) 3469 and arXiv:hep-ph/9910227;

48

https://dx.doi.org/10.1007/JHEP03(2020)142
http://renormalization.com/20a1/
https://arxiv.org/abs/2001.01942
https://doi.org/10.1007/JHEP07(2020)211
http://renormalization.com/20a2/
http://arxiv.org/abs/2005.10293
https://dx.doi.org/10.1007/JHEP10(2021)132
http://renormalization.com/21a3/
http://arxiv.org/abs/2104.02071
https://dx.doi.org/10.1103/PhysRevD.104.035009
http://renormalization.com/21a4/
http://arxiv.org/abs/2104.03249
https://doi.org/10.1007/BF01621031
https://doi.org/10.1016/0010-4655(90)90001-H
https://doi.org/10.1002/prop.2190410402
https://arxiv.org/abs/0709.1075
https://www.actaphys.uj.edu.pl/fulltext?series=Reg&vol=30&page=3469
https://arxiv.org/abs/hep-ph/9910227


21
A
5
R
en
or
m

T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3,

Comput. Phys. Commun. 140 (2001) 418 and arXiv:hep-ph/0012260;

A. Alloul, N. D. Christensen, C. Degrande, C. Duhr and B. Fuks,

FeynRules 2.0 - A complete toolbox for tree-level phenomenology,

Comput. Phys. Commun. 185 (2014) 2250 and arXiv:1310.1921;

H.H. Patel, Package-X: AMathematica package for the analytic calculation of one-loop

integrals, Comput. Phys. Commun. 197 (2015) 276 and arXiv:1503.01469 [hep-ph].

[22] D. Anselmi, Algebraic cutting equations, Ann. Phys. (NY) 394 (2018) 294,

16A3 Renormalization.com and arXiv:1612.07148 [hep-th].

[23] R. E. Cutkosky, Anomalous thresholds, Rev. Mod. Phys. 33 (1961) 448;

R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The analytic S matrix,

Cambridge University Press, 1966.

[24] G. Passarino and M. J. Veltman, One Loop Corrections for e+ e- Annihilation Into

mu+ mu- in the Weinberg Model, Nucl. Phys. B 160 (1979) 151.

[25] C.G. Bollini and J.J. Giambiagi, Lowest order divergent graphs in nu-dimensional

space, Phys. Lett. B40 (1972) 566;

G.t Hooft and M.Veltman, Regularization and renormalization of gauge fields,

Nucl. Phys. B 44 (1972) 189;

G.M. Cicuta and E. Montaldi, Analytic renormalization via continuous space dimen-

sion, Lett. Nuovo Cimento 4 (1972) 329.

[26] D. Anselmi, Fakeons and the classicization of quantum gravity: the FLRW metric,

J. High Energy Phys. 04 (2019) 61, 19A1 Renormalization.com and arXiv:1901.09273

[gr-qc].

49

https://doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
https://doi.org/10.1016/j.cpc.2014.04.012
https://arxiv.org/abs/1310.1921
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1503.01469
https://dx.doi.org/10.1016/j.aop.2018.04.034
http://renormalization.com/16a3/
http://arxiv.org/abs/1612.07148
https://doi.org/10.1103/RevModPhys.33.448
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0370-2693(72)90483-2
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1007/BF02756527
https://dx.doi.org/10.1007/JHEP04(2019)061
http://renormalization.com/19a1/
http://arxiv.org/abs/1901.09273

	Introduction
	Definitions and strategy
	Skeletons
	Diagrammatic rules
	Threshold decomposition
	Identities for principal values
	Strategy
	Proper diagrammatic form and proper decomposition

	Bubbles
	Triangle
	Fakeons

	Box
	Formulas
	Fakeons

	Simple multiloop diagrams
	Box with diagonal
	Fakeons

	Further insight into the algebraic structure of the spectral optical identities
	Generalization to propagators with arbitrary real residues
	Diagrams with nontrivial numerators and degenerate diagrams
	Thick fakeons
	Massless fields and infrared divergences
	Conclusions

