19S1 D. Anselmi
Theories of gravitation




D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)

Recent Papers


If Lorentz symmetry is violated at high energies, interactions that are usually non-renormalizable can become renormalizable by weighted power counting. Recently, a CPT invariant, Lorentz violating extension of the Standard Model containing two scalar-two fermion interactions (which can explain neutrino masses) and four fermion interactions (which can explain proton decay) was proposed. In this paper we consider a variant of this model, obtained suppressing the elementary scalar fields, and argue that it can reproduce the known low energy physics. In the Nambu$-$Jona-Lasinio spirit, we show, using a large $N_c$ expansion, that a dynamical symmetry breaking takes place. The effective potential has a Lorentz invariant minimum and the Lorentz violation does not reverberate down to low energies. The mechanism generates fermion masses, gauge-boson masses and scalar bound states, to be identified with composite Higgs bosons. Our approach is not plagued by the ambiguities of approaches based on non-renormalizable vertices. The low-energy effective action is uniquely determined and predicts relations among parameters of the Standard Model.


Eur.Phys.J. C65 (2010) 523-536 | DOI: 10.1140/epjc/s10052-009-1211-z

arXiv:0904.1849 [hep-ph]

We study the Standard-Model extensions that have the following features: they violate Lorentz invariance explicitly at high energies; they are unitary, local, polynomial and renormalizable by weighted power counting; they contain the vertex $(LH)^2$, which gives Majorana masses to the neutrinos after symmetry breaking, and possibly four fermion interactions; they do not contain right-handed neutrinos, nor other extra fields. We study the simplest CPT invariant Standard-Model extension of this type in detail and prove the cancellation of gauge anomalies. We investigate the low-energy recovery of Lorentz invariance and comment on other types of extensions.


Phys.Rev. D79 (2009) 025017 | DOI: 10.1103/PhysRevD.79.025017

arXiv:0808.3475 [hep-ph]

We classify the local, polynomial, unitary gauge theories that violate Lorentz symmetry explicitly at high energies and are renormalizable by weighted power counting. We study the structure of such theories and prove that renormalization does not generate higher time derivatives. We work out the conditions to renormalize vertices that are usually non-renormalizable, such as the two scalar-two fermion interactions and the four fermion interactions. A number of four dimensional examples are presented.


Annals Phys. 324 (2009) 1058-1077 | DOI: 10.1016/j.aop.2008.12.007

arXiv:0808.3474 [hep-th]

We construct local, unitary gauge theories that violate Lorentz symmetry explicitly at high energies and are renormalizable by weighted power counting. They contain higher space derivatives, which improve the behavior of propagators at large momenta, but no higher time derivatives. We show that the regularity of the gauge-field propagator privileges a particular spacetime breaking, the one into into space and time. We then concentrate on the simplest class of models, study four dimensional examples and discuss a number of issues that arise in our approach, such as the low-energy recovery of Lorentz invariance.


Annals Phys. 324 (2009) 874-896 | DOI: 10.1016/j.aop.2008.12.005

arXiv:0808.3470 [hep-th]

We study a class of Lorentz violating quantum field theories that contain higher space derivatives, but no higher time derivatives, and become renormalizable in the large N expansion. The fixed points of their renormalization-group flows provide examples of exactly “weighted scale invariant” theories, which are noticeable Lorentz violating generalizations of conformal field theories. We classify the scalar and fermion models that are causal, stable and unitary. Solutions exist also in four and higher dimensions, even and odd. In some explicit four dimensional examples, we compute the correlation functions to the leading order in 1/N and the critical exponents to the subleading order. We construct also RG flows interpolating between pairs of fixed points.


JHEP 0802 (2008) 051 | DOI: 10.1088/1126-6708/2008/02/051

arXiv:0801.1216 [hep-th]

I prove that classical gravity coupled with quantized matter can be renormalized with a finite number of independent couplings, plus field redefinitions, without introducing higher-derivative kinetic terms in the gravitational sector, but adding vertices that couple the matter stress-tensor with the Ricci tensor. The theory is called “acausal gravity”, because it predicts the violation of causality at high energies. Renormalizability is proved by means of a map M that relates acausal gravity with higher-derivative gravity. The causality violations are governed by two parameters, a and b, that are mapped by M into higher-derivative couplings. At the tree level causal prescriptions exist, but they are spoiled by the one-loop corrections. Some ideas are inspired by the usual treatments of the Abraham-Lorentz force in classical electrodynamics.


JHEP 0701 (2007) 062 | DOI: 10.1088/1126-6708/2007/01/062


I study the problem of renormalizing a non-renormalizable theory with a reduced, eventually finite, set of independent couplings. The idea is to look for special relations that express the coefficients of the irrelevant terms as unique functions of a reduced set of independent couplings $\lambda$, such that the divergences are removed by means of field redefinitions plus renormalization constants for the $\lambda$s. I consider non-renormalizable theories whose renormalizable subsector $R$ is interacting and does not contain relevant parameters. The “infinite” reduction is determined by $i$) perturbative meromorphy around the free-field limit of $R$, or $ii$) analyticity around the interacting fixed point of $R$. In general, prescriptions $i$) and $ii$) mutually exclude each other. When the reduction is formulated using $i$), the number of independent couplings remains finite or slowly grows together with the order of the expansion. The growth is slow in the sense that a reasonably small set of parameters is sufficient to make predictions up to very high orders. Instead, in case $ii$) the number of couplings generically remains finite. The infinite reduction is a tool to classify the irrelevant interactions and address the problem of their physical selection.


JHEP 0508 (2005) 029 | DOI: 10.1088/1126-6708/2005/08/029


Certain power-counting non-renormalizable theories, including the most general self-interacting scalar fields in four and three dimensions and fermions in two dimensions, have a simplified renormalization structure. For example, in four-dimensional scalar theories, $2n$ derivatives of the fields, $n>1$, do not appear before the nth loop. A new kind of expansion can be defined to treat functions of the fields (but not of their derivatives) non-perturbatively. I study the conditions under which these theories can be consistently renormalized with a reduced, eventually finite, set of independent couplings. I find that in common models the number of couplings sporadically grows together with the order of the expansion, but the growth is slow and a reasonably small number of couplings is sufficient to make predictions up to very high orders. Various examples are solved explicitly at one and two loops.


JHEP 0507 (2005) 077 | DOI: 10.1088/1126-6708/2005/07/077


I formulate a deformation of the dimensional-regularization technique that is useful for theories where the common dimensional regularization does not apply. The Dirac algebra is not dimensionally continued, to avoid inconsistencies with the trace of an odd product of gamma matrices in odd dimensions. The regularization is completed with an evanescent higher-derivative deformation, which proves to be efficient in practical computations. This technique is particularly convenient in three dimensions for Chern-Simons gauge fields, two-component fermions and four-fermion models in the large N limit, eventually coupled with quantum gravity. Differently from even dimensions, in odd dimensions it is not always possible to have propagators with fully Lorentz invariant denominators. The main features of the deformed technique are illustrated in a set of sample calculations. The regularization is universal, local, manifestly gauge-invariant and Lorentz invariant in the physical sector of spacetime. In flat space power-like divergences are set to zero by default. Infinitely many evanescent operators are automatically dropped.


Int.J.Mod.Phys. A20 (2005) 1389-1418 | DOI: 10.1142/S0217751X0501983X


I show that under certain conditions it is possible to define consistent irrelevant deformations of interacting conformal field theories. The deformations are finite or have a unique running scale (“quasi-finite”). They are made of an infinite number of lagrangian terms and a finite number of independent parameters that renormalize coherently. The coefficients of the irrelevant terms are determined imposing that the beta functions of the dimensionless combinations of couplings vanish (“quasi-finiteness equations”). The expansion in powers of the energy is meaningful for energies much smaller than an effective Planck mass. Multiple deformations can be considered also. I study the general conditions to have non-trivial solutions. As an example, I construct the Pauli deformation of the IR fixed point of massless non-Abelian Yang-Mills theory with $N_c$ colors and $N_f \lesssim 11N_c/2$ flavors and compute the couplings of the term $F^3$ and the four-fermion vertices. Another interesting application is the construction of finite chiral irrelevant deformations of $N=2$ and $N=4$ superconformal field theories. The results of this paper suggest that power-counting non-renormalizable theories might play a role in the description of fundamental physics.


JHEP 0310 (2003) 045 | DOI: 10.1088/1126-6708/2003/10/045


Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel


14B1 D. Anselmi

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:


1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas