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Abstract

We study a class of Lorentz violating quantum field theories that contain higher space derivatives,

but no higher time derivatives, and become renormalizable in the large N expansion. The fixed points of

their renormalization-group flows provide examples of exactly “weighted scale invariant” theories, which

are noticeable Lorentz violating generalizations of conformal field theories. We classify the scalar and

fermion models that are causal, stable and unitary. Solutions exist also in four and higher dimensions,

even and odd. In some explicit four dimensional examples, we compute the correlation functions to the

leading order in 1/N and the critical exponents to the subleading order. We construct also RG flows

interpolating between pairs of fixed points.
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1 Introduction

Lorentz violating quantum field theory can be useful for several purposes. It contains non-

relativistic field theory, and has applications to nuclear physics [1], effective field theory [2, 3],

critical phenomena [4], and possibly high energy physics [5]. It can describe higher temperature

superconductors, ferroelectric liquid cristals, polymers and magnetic materials [6, 7], as well as

extensions of the Standard Model [8] and beyond.

Moreover, Lorentz violating field theory is interesting in its own right as a laboratory to study

ideas about renormalization and learn about quantum field theory. Recently [9], it has been

proved that the set of local, unitary, renormalizable quantum field theories can be considerably

enlarged if Lorentz invariance is not assumed to hold exactly at arbitrarily high energies. Higher

space derivatives are used to improve the behavior of propagators in Feynman diagrams. At the

same time, if the vertices and quadratic terms are arranged according to a certain “weighted power

counting” criterion, no higher time derivatives are generated by renormalization, which guarantees

(perturbative) unitarity. A “weighted scale transformation” assigns different weights to the time

and space components of momenta and coordinates, in a way compatible with Feynman diagrams,

and is used to classify the counterterms (into weighted marginal, weighted relevant and weighted

irrelevant) and so the renormalizable models.

The weighted scale invariance is explicitly broken by the super-renormalizable terms and

dynamically broken by the running of couplings. It is exactly recovered at the fixed points of the

(weighted) renormalization group flow. Such fixed points are worth of investigation, because they

are remarkable Lorentz violating generalizations of conformal field theories.

In this paper we continue this investigation studying Lorentz violating four-fermion and sigma

models that are renormalizable by weighted power counting in the large N expansion, in various

dimensions. Here N denotes the number of field copies. In particular, we classify the renor-

malizable theories that are unitary, causal and stable. Solutions exist also in four and higher

dimensions. Some four dimensional models are studied explicitly up to the subleading order in

1/N .

We recall that Lorentz invariant unitary conformal field theories of scalars and/or fermions

exist in three spacetime dimensions, but not four. Well-known examples are the three-dimensional

four fermion model [10] and the O(N) sigma model [11], in the large N expansion. On the other

hand, in four dimensions a considerable number of interacting conformal field theories are known,

from the Bank-Zaks fixed points [12], to the fixed points of supersymmetric theories [13], but all

of them involve gauge fields.

The models constructed in this paper contain only scalars and fermions. The investigation of

gauge theories is left to a separate paper [14]. Within the ordinary power counting framework,

the renormalization of gauge theories containing Lorentz violating terms has been studied in ref.s
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[15].

For definiteness, we consider models where the d-dimensional spacetime manifold Md is split

into the product M
d̂
⊗ Md of two submanifolds, a d̂-dimensional submanifold M

d̂
, containing

time and possibly some space coordinates, and a d-dimensional space submanifold Md. The d-

dimensional Lorentz group O(1, d−1) is broken to a residual Lorentz symmetry O(1, d̂−1)⊗O(d).

The generalization of our arguments to the most general breaking is straightforward (see [9] for

details).

The paper is organized as follows. In section 2 we review the weighted power counting criterion.

In section 3 we study unitarity and stability in Lorentz violating theories. In section 4 we study

causality at the classical and quantum levels. In sections 5 and 6 we classify the O(N) sigma

models, the four-fermion models and their interacting fixed points (Lifshitz type and Parisi type)

in the large N expansion. In section 7 we analyze the consequences of the weighted scale invariance

and work out restrictions on the form of the correlations functions at the fixed points. In sections

8 and 9 we calculate the subleading corrections in a class of four-dimensional scalar and fermion

models. In section 10 we construct running models that interpolate between pairs of fixed points.

Section 11 contains our conclusions. In Appendices A-D we calculate the bubble and triangle

diagrams in scalar and fermion models. In Appendix E we describe the calculations of the critical

exponents to the subleading order.

We use the dimensional-regularization technique, although in most formulas we do not make

it explicit. Moreover, we freely switch back and forth from and to the Euclidean and Minkowskian

frameworks, often using the same notation.

2 Weighted power counting

In this section we briefly review the weighted power counting criterion of ref. [9]. Consider a

scalar theory with quadratic lagrangian

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2 (2.1)

(in the Euclidean framework), where ΛL is an energy scale and n is an integer ≥ 1. Up to total

derivatives it is not necessary to specify how the 2n derivatives ∂ are contracted among themselves.

The coefficient of (∂
n
ϕ)2 must be positive to have a positive energy in the Minkowskian framework.

The theory (2.1) is invariant under the weighted rescaling

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(đ/2−1), (2.2)

where đ= d̂ + d/n. Indeed, each lagrangian term scales with the factor đ, compensated by the

scaling factor of the integration measure ddx of the action. Note that ΛL is not rescaled.

3



08
A

1
R

en
or

m
To classify the vertices, counterterms and other quadratic terms it is useful to assign weights

to coordinates, momenta and fields as follows:

[∂̂] = 1, [∂] =
1

n
, [ϕ] =

đ − 2

2
, (2.3)

while ΛL is weightless. The interacting theory is defined as a perturbative expansion around the

free theory (2.1). Strictly renormalizable vertices have weights equal to đ, super-renormalizable

vertices have weights smaller than đ, non-renormalizable vertices have weights greater than đ.

The first condition to have renormalizability is that the ϕ-weight be strictly positive, therefore đ

must be greater than 2.

The theory is renormalizable by weighted power counting if it contains all vertices and quadratic

terms with weights ≤đ and only those. This bound excludes higher-time derivative terms. The

degree of divergence ω(G) of a Feynman diagram G is bounded by the inequality

ω(G) ≤ đ − Es
đ − 2

2
, (2.4)

where Es is the number of external scalar legs. Formula (2.4) ensures that the counterterm has a

weight not larger than đ, therefore it can be subtracted renormalizing the fields and couplings of

the lagrangian, and no new vertex needs to be introduced.

Strictly renormalizable theories are called “homogeneous”. The propagator of homogeneous

theories coincides with the one of (2.1). The bound đ> 2 ensures that in homogeneous theories

the Feynman diagrams do not have infrared divergences at non-exceptional external momenta.

The RG flow measures how correlation functions depend on the overall weighted rescaling

factor. When some couplings run, the weighted scale transformation is anomalous. The “weighted

trace anomaly” is parametrized by the beta functions. At the fixed points of the RG flow the

weighted scale invariance is recovered as an exact symmetry.

In the ordinary perturbative framework, stable renormalizable interacting theories exist for

đ≤ 4. Unstable renormalizable theories, such as the ϕ3 models, exist for đ≤ 6. The simplest

examples of stable, homogeneous theories are the ϕ4, đ= 4 models

Lđ=4 =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

λ

4!Λd−4
L

ϕ4 (2.5)

and the ϕ6, đ= 3 models

Lđ=3 =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

1

4!Λ
2(n−1)
L

∑

α

λα

[
∂
n
ϕ4
]
α
+

λ6

6!Λ
2(n−1)
L

ϕ6, (2.6)

where
[
∂
n
ϕ4
]
α

denotes a basis of inequivalent terms constructed with n derivatives ∂ acting on

four ϕ’s (because of O(d)-invariance, these exist no such terms if n is odd).
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The considerations just recalled are easily generalized to fermions. The weight of a fermion field

is (đ−1)/2, so renormalizability demands đ> 1. Again, this bound ensures also that the Feynman

diagrams are free of infrared divergences at non-exceptional external momenta in homogeneous

theories. Renormalizable theories are those that contain all vertices and quadratic terms with

weight not larger than đ and only those. Nontrivial stable renormalizable theories containing

only fermions exist for đ≤ 2. The simplest homogeneous examples are the đ= 2, four-fermion

models

Lđ=2 = ψ

(
∂̂/+

∂/
n

Λn−1
L

)
ψ − λ2

2Λd−2
L

(
ψψ
)2
. (2.7)

Stable coupled scalar and fermion theories exist for đ≤ 4. Formula (2.4) becomes

ω(G) ≤ đ − Es
đ − 2

2
− Ef

đ − 1

2
,

where Ef is the number of external fermionic legs.

Non-homogeneous renormalizable theories contain also super-renormalizable quadratic terms

and vertices. For convenience, the coefficient of each vertex is arranged as the product of three

factors: a) a suitable power of a mass scale M of weight 1, to match the total weight; b) a

suitable power of ΛL, to match the dimensionality; c) a dimensionless weightless coupling λi.

In such a way, super-renormalizable vertices are multiplied by positive powers of M , strictly-

renormalizable vertices are multiplied by M -independent coefficients, while non-renormalizable

vertices are multiplied by negative powers of M .

For example, in 2 <đ< 4 the ϕ4-model is super-renormalizable, with lagrangian

Lđ<4 =
1

2
(∂̂ϕ)2 +

n∑

k=0

′ λkM
2(1−k/n)

2Λ
2k(n−1)/n
L

(∂
k
ϕ)2 +

λM4−đ

4!Λ
d(1−1/n)
L

ϕ4, (2.8)

with λn = 1, and the primed sum is restricted to the k’s such that 2(1−k/n) are integer multiples

of 4−đ. Other examples of super-renormalizable theories are the four-fermion models in 1 <đ< 2

with lagrangian

Lđ<2 = ψ

(
∂̂/+

n∑

k=0

′ λkM
1−k/n∂/

k

Λ
k(n−1)/n
L

)
ψ − λ2M2−đ

2Λ
d(1−1/n)
L

(
ψψ
)2
, (2.9)

where now the primed sum is restricted to the k’s such that 1− k/n are integer multiples of 2−đ.

The RG flow that we consider in this paper is more precisely the “weighted RG flow”, defined

by the weights of the fields and couplings, rather than by their dimensionalities. In particular,

the infrared limit is the limit where both M and the RG scale µ tend to infinity, while ΛL is kept

fixed. Analogously, the ultraviolet limit is defined as the limit where both M and µ tend to zero,

at fixed ΛL. As a consequence, the fixed points of the weighted RG flow do depend on ΛL.

5



08
A

1
R

en
or

m
3 Källen-Lehmann representation and unitarity

In this section we study unitarity and stability in Lorentz violating quantum field theory, gener-

alizing the usual notions.

Let |n〉 be a complete set of eigenstates of the momentum, with eigenvalues kn. Consider the

sum ∑

n

δ(d)(k − kn) |〈0|ϕ(0) |n〉|2 , (3.1)

where ϕ is any (real) scalar field, elementary or composite. By O(1, d̂− 1)⊗O(d) invariance this

sum can depend only on k̂2, k
2

and, for k̂2 > 0, on θ(k0). Moreover, by stability it is zero for

k̂2 < 0 and for k0 ≤ 0, because k̂2n ≥ 0, k0 > 0 for every contributing n (we assume that ϕ has no

vacuum expectation value, so 〈0|ϕ(0) |0〉 = 0). If we write

∑

n

δ(d)(k − kn) |〈0|ϕ(0) |n〉|2 = θ(k0)ρ(k̂
2, k

2
) (3.2)

unitarity tells us that the spectral function ρ(k̂2, k
2
) is real and positive. The two-point function

of ϕ can be written as

〈0|ϕ(x)ϕ(0) |0〉=
∑

n

e−ikn·x |〈0|ϕ(0) |n〉|2 =
∫

ddk

(2π)d
e−ik·xθ(k0)ρ(k̂

2, k
2
)

=

∫ ∞

0
ds

∫
ddk

(2π)d
e−ik·xθ(k0)δ(k̂

2 − s)ρ(s, k
2
). (3.3)

Using ∫
dd̂k̂

(2π)d̂
e−ik̂·x̂ [θ(x0)θ(k0) + θ(−x0)θ(−k0)] δ(k̂2 − s) =

∫
dd̂k̂

(2π)d̂

ie−ik̂·x̂

k̂2 − s+ iε
,

the time-ordered correlation function reads

∆(x) ≡ 〈0|Tϕ(x)ϕ(0) |0〉 =
∫ ∞

0
ds

∫
ddk

(2π)d
ie−ik·xρ(s, k

2
)

k̂2 − s+ iε
. (3.4)

The spectral function coincides with the imaginary part of i/π times the Fourier transform of

∆(x):

Im

[
i

π
〈ϕ̃(−k)ϕ̃(k)〉

]
= ρ(k̂2, k

2
) ≥ 0. (3.5)

Therefore, the Fourier transform 〈ϕ̃(−k)ϕ̃(k)〉 of the T-ordered two-point function has the spectral

representation

i 〈ϕ̃(−k)ϕ̃(k)〉 =
∫ ∞

0

ρ(s, k
2
)ds

s− k̂2 − iε
. (3.6)

Further, defining

∆±(x) ≡
∫

ddk

(2π)d
e−ik·xθ(±k0)ρ(k̂2, k

2
), (3.7)
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Figure 1: unitarity

we have immediately

∆(x) = θ(x0)∆
+(x) + θ(−x0)∆−(x) (3.8)

and the relations

∆∓(−x) = ∆±(x), ∆±∗(x) = ∆∓(x), ∆∗(x) = θ(x0)∆
−(x) + θ(−x0)∆+(x). (3.9)

The “dressed” propagators ∆±(x) can be used to define cutting Feynman rules and cutting di-

agrams, as usual. The cutting method allows us to calculate the imaginary parts of diagrams,

thanks to the unitarity equation iT − iT † = −T †T , where S = 1 + iT is the S-matrix. The

equation is graphically illustrated in Fig. 1 [16].

For example, the tree-level scalar Minkowskian propagator reads

i

k̂2 − f(k
2
) + iε

(3.10)

for some positive function f . Then (3.5) gives

ρ(k̂2, k
2
) = δ

(
k̂2 − f(k

2
)
)
.

The cutting propagators read in momentum space

(2π)∆̃±(k) = (2π)θ(±k0)δ
(
k̂2 − f(k

2
)
)
=

π√
k̂2 + f(k

2
)

δ

(
k0 ∓

√
k̂2 + f(k

2
)

)
,

depending on the orientation of the energy flow with respect to the cut.

Unitarity bounds The spectral function ρ(s, k
2
) must be regular. In particular, it must be

integrable at s = 0 for every value of k
2

and grow at most as fast as a polynomial in s when s

is large. In this paper we deal with spectral functions that are manifestly regular for k
2 6= 0 and

behave correctly for s large, but the behavior of ρ(s, 0) for s small needs to be carefully checked.

In weighted scale invariant theories we can assume that ρ(s, 0) has a power-like behavior. Then

the integrability of (3.6) demands

ρ(s, 0) ∼ 1

sa
with a < 1 for s→ 0. (3.11)
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The condition a < 1 is a powerful requirement to constrain the range of values of đ for which

unitarity holds.

We recall that the RG fixed points of Lorentz invariant local quantum field theories containing

fields of spin ≤ 1 are also conformal field theories. There, the unitarity bound (3.11) ensures that

the dimensionality of a scalar (primary) field ϕ is not smaller than one. We emphasize that we do

not need conformal invariance to derive the unitarity bound (3.11). As we see, not even Lorentz

invariance is necessary.

Stability In perturbative quantum field theory stability, as well as unitarity, must be checked

at the leading order. In general, this means at the tree level, but in the models of this paper one

field, σ, has a dynamically generated propagator. At the leading order of the large N expansion

the σ-propagator is determined by a one-loop diagram (see fig. 2).

The σ spectral function ρσ(k̂
2, k

2
) must vanish for k̂2 < 0 and be non-negative for k̂2 > 0. We

can prove in complete generality that these requirements are automatically fulfilled. Call σM and

iT the Minkowskian σ field and bubble diagram, respectively. The unitarity relation of fig. 1 tells

us that the imaginary part of T can be calculated using the cutting technique, it is convergent

and non-negative. Therefore, at the leading order in 1/N we have 〈σ̃M(−k)σ̃M(k)〉 = i/T (k), so

the σ spectral function reads

ρσ(k̂
2, k

2
) ≡ Im

[
i

π
〈σ̃M(−k)σ̃M(k)〉

]
=

ImT (k)

π|T (k)|2 ≥ 0

and is necessarily non-negative. Moreover, writing the cutting diagram of ImT (k) explicitly, it

is straightforward to check that ρσ(k̂
2, k

2
) vanishes for k̂2 < 0, both in our scalar and fermion

models. The spectral representation (3.6), the other formulas from (3.1) to (3.9) and the cutting

rules apply to the σ field with obvious adjustments.

Because of stability, the bosonic sectors of the classical action and of the generating functional

Γ of one-particle irreducible diagrams must be positive definite in the Euclidean framework. No

general argument guarantees the positivity of the σ-sector of Γ (counterexamples are easy to

construct), therefore this aspect needs to be investigated in detail.

Regularity of the σ propagator To verify the consistency of our theories, it is necessary, in

addition, to check that the σ propagator Pw(k̂, k) be regular everywhere. Here −w denotes its

weight. In particular, in the “ultraviolet” limits k̂ → ∞ and k → ∞, Pw must behave as

Pw(k̂, k) ∼
1

|k̂|w
, Pw(k̂, k) ∼

1

|k|nw
, (3.12)
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respectively, to be consistent with the weighted power counting. For example, the propagator of

(2.1),
1

k̂2 + (k
2
)n

Λ
2(n−1)
L

,

is regular of weight −2, but a propagator of the form

Λn−1
L

|k̂||k|n

is not regular, and could generate spurious ultraviolet sub-divergences in Feynman diagrams when

k̂ tends to infinity at k fixed, or viceversa (see ref. [9] for details). In some of our models (e.g.

the one studied in section 8) regularity can be proved straightforwardly, in other models (e.g. the

one studied in section 9) regularity is not fulfilled and the absence of spurious divergences has to

be proved by direct analysis.

4 Causality

In this section we investigate causality at the classical and quantum levels. We work of course in

the Minkowskian framework.

Classical theory Consider the scalar field theory

L =
1

2
(∂̂ϕ)2 − 1

2
ϕf(−∂2)ϕ+ Jϕ

coupled with an external source J , where f is a positive polynomial function. The field equations

[
−∂̂2 − f(−∂2)

]
ϕ(x) = J(x) (4.1)

are solved as

ϕ(x) =

∫
Gret(x− x′)ϕ(x′)ddx′ (4.2)

where Gret(x− x′) is the retarded Green function. Decomposing k̂ as (k0, k̂), we have

G ret (adv) (x) =

∫
ddk

(2π)d
ie−ik·x

(k0 ± iε)2 − k̂2 − f(k
2
)
.

The retarded (advanced) Green function vanishes for negative (positive) time intervals, for an

arbitrary function f(k
2
). Thus the solution (4.2) of the field equations (4.1) is determined by

the sole knowledge of the source J in the present and in the past, which ensures causality at the

classical level.
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Quantum theory Bogoliubov’s definition of causality reads [17]

δ2S

δg(xi)δg(xj)
S† +

δS

δg(xi)

δS†

δg(xj)
= 0 if xi0 < xj0, (4.3)

where S denotes the S-matrix and g(x) is a coupling constant, made into a function of spacetime.

Formula (4.3) admits a more general single-diagram version [16], which reads

∑

underlinings except xi

F (x1, . . . , xn) = 0 if xi0 < xj0. (4.4)

Here F (x1, . . . , xn) denotes a diagram in coordinate space with vertices in x1, . . . , xn. No integral

over the positions of the vertices is understood. The propagator ∆(xk − xl) connects two non-

underlined points xk and xl, while ∆−(xk − xl) connects a non-underlined point xk with an

underlined point xl , ∆+(xk − xl) connects xk with xl and ∆∗(xk − xl) connects xk with xl.

Finally, every underlined vertex carries an extra minus sign.

The proof of (4.4) is done as follows. Call xk the vertex with the largest time component xk0.

By assumption, xk is not xi. Hence the sum (4.4) can be rearranged into the sum over pairs of

diagrams differing only by xk being underlined or not. We want to show that the diagrams of

each pair sum to zero. Indeed, they differ by an overall minus sign, because of the xk underlining,

and have exactly the same propagators. To see this, let xm denote any vertex connected with xk.

Since xk0 > xm0 the identities

∆(xk − xm) = ∆+(xk − xm), ∆∗(xk − xm) = ∆−(xk − xm), (4.5)

hold. Therefore, within each pair it does not matter whether xk is underlined or not, apart from

the relative minus sign. We conclude that the sum (4.4) vanishes identically.

Finally, formula (4.3) is derived multiplying (4.4) by appropriate source functions, integrating

over all points but xi and xj, and summing over all diagrams. The first term of (4.3) collects

the diagrams where neither xi nor xj are underlined, while the second term of (4.3) collects the

diagrams where xi is not underlined, but xj is.

Our Lorentz violating theories are automatically causal in Bogoliubov’s sense. This is obvious

for the models of [9], which involve no large N expansion, but true also in the models studied

here, because the σ propagator satisfies the cutting rules and formulas (3.4)-(3.9).

On the other hand, the usual operator relation

[ϕ(x), ϕ(y)] = 0, for x− y = spacelike, (4.6)

which is a consequence of (4.3), unitarity and Lorentz invariance [17], is meaningless in our

theories. Yet, (4.6) is not necessary to have causality and unitarity.
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5 Lifshitz type models

In this section we construct scalar models that have nontrivial interacting fixed points in the large

N expansion and study those fixed points. We classify the unitary, stable models and single out

the four dimensional cases.

Consider the O(N) sigma model

Lη =
1

2

N∑

i=1

[
(∂̂ϕi)

2 +
1

Λ2n−2
L

(∂
n
ϕi)

2

]
+

1

2
iλσ

(
N∑

i=1

ϕ2
i − η2

)
, (5.1)

in the Euclidean framework, where η is a positive constant and σ is a field. Integrating over σ

constrains the scalar field to live on a sphere of radius η. The redundant parameter λ is introduced

for convenience. The large N expansion is defined as the expansion in 1/N , where N is sent to

infinity keeping λ2N finite.

The field σ does not have a kinetic term. In the large N expansion the missing σ propagator

is generated dynamically. Precisely, it is equal to minus the reciprocal of the scalar bubble of Fig.

2, whose form is (A.1) (in the case d̂ = 3, d = 1, n = 2). Every other diagram gives a subleading

contribution.

The constant η has a positive weight (for đ> 2) and a positive dimensionality, therefore the

UV fixed point is the same theory with η = 0:

LC =
1

2

N∑

i=1

[
(∂̂ϕi)

2 +
1

Λ2n−2
L

(∂
n
ϕi)

2 + iλσϕ2
i

]
. (5.2)

Moreover, the term −iλση2/2 does not contribute to any non-trivial one-particle irreducible di-

agram, therefore the generating functionals Γη and ΓC of (5.1) and (5.2) differ exactly by that

term. For the same reason, once we prove the renormalizability of (5.2) we prove also the renor-

malizability of (5.1).

The theory (5.2) coincides with the Lifshitz fixed point of the O(N) ϕ4-theory (2.8), which in

the cases n = 2, đ< 4 has been studied in [6, 7]. Here we are interested in more general situations,

so we allow đ to be greater than 4 and keep n generic.

In the Minkowskian framework the lagrangian of the fixed point reads

LM =
1

2

N∑

i=1

[
(∂̂Mϕi)

2 − 1

Λ2n−2
L

(∂
n
ϕi)

2 + λσMϕ
2
i

]
, (5.3)

which is Hermitian if σM = −iσ is real.

Let us describe some basic properties of the theory (5.2), assuming for the moment that it

is renormalizable as it stands. The conditions for renormalizability are worked out below. Since

a renormalization constant in front of the vertex σϕ2 can be interpreted as the σ wave function
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Figure 2: Bubble diagram that gives the σ-propagator

renormalization constant (instead of the λ renormalization constant), the theory has no true

coupling, although it is interacting. As a consequence, there is no running of couplings, so the

model (5.2) is exactly invariant under the weighted scale transformation

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕi → ϕi e
Ω(đ/2−1), σ → σ e2Ω, µ→ µ eΩ, (5.4)

also at the quantum level, once we include the rescaling of the RG scale µ.

Next, since the weight of ϕ must be positive, we have đ> 2, which ensures also, from section

2, that Feynman diagrams do not contain IR divergences at non-exceptional external momenta.

We have observed in section 4 that causality is always guaranteed. Nevertheless, unitarity, renor-

malizability and stability are not obvious and put other restrictions on the allowed values of

đ.

Unitarity In section 3 we have proved in complete generality that the spectral function ρσ(p̂
2, p2)

of the σM field in the Minkowskian framework is non-negative and vanishes for p̂2 < 0. It remains

to study the unitary bound (3.11). Since (5.2) is a homogeneous theory, ρσ(s, 0) is a homogeneous

function. Since s stands for p̂2, the weight of s is equal to 2. On the other hand, the weight of

ρσ(s, 0) is equal to minus the weight of the scalar bubble. We conclude that

ρσ(s, 0) ∼
1

sđ/2−2

for s ∼ 0, so the unitarity bound gives đ< 6.

Renormalizability Now we study the counterterms. Since we use the dimensional-regularization

technique, no power-like divergences are generated. The theory contains no weightful parameter

(recall that ΛL is weightless), therefore every counterterm must be of weight đ. To have exact

weighted scale invariance at the quantum level, (5.2) must be renormalizable as it stands, so no

new vertex should be generated by renormalization. Indeed, a new vertex would be multiplied,

in general, by a running coupling constant, so (5.2) would no longer be a fixed point of the RG

flow. We need to classify all counterterms compatible with locality and weighted power counting.

Consider first the counterterms of the form

σ∂
q
σ. (5.5)
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We must exclude them for every even non-negative integer q. The weight of (5.5) is 4+q/n, which

by homogeneity must be equal to đ. Therefore we have

q = n(đ − 4) = d(1− n) + n(d− 4).

Now, this q is negative for đ< 4, and zero for đ= 4. Thus đ= 4 must be excluded. Moreover, in

the range 4 <đ< 6 we have to exclude every case where q is even. This leaves only two situations:

i) both n and d are odd; ii) n is even and d is odd.

Next, consider

[∂̂p∂
q
]σm, (5.6)

where the square bracket is used as a symbolic notation to denote any action of the derivatives

on the σ fields. Equating the weight of (5.6) to đ we have

p+
q

n
= đ − 2m,

and since đ< 6 either p or q is necessarily negative for every m ≥ 3. Therefore, the absence of

(5.6) does not impose new restrictions on đ.

There exists only one term of weight đ containing both σ’s and ϕ’s, which is σϕ2. Thus

it remains to consider those counterterms that contain only ϕ fields. Any time a counterterm

factorizes a
∑N

i=1 ϕ
2
i it is proportional to the σ field equation, so it can be removed redefining the

field σ. Consider the counterterms containing 2m ϕ’s and a certain number q of derivatives ∂

[∂
q
]ϕi1ϕi1 · · ·ϕimϕim . (5.7)

We do not need to consider derivatives ∂̂ since there would be at least two of them and then the

counterterm would necessarily contain just two ϕ’s and no ∂, otherwise its weight would exceed

đ. It is easy to prove that if q is smaller than 2m the counterterm (5.7) is always proportional to
∑N

i=1 ϕ
2
i , up to total derivatives. Instead, if q is at least 2m, then there exists an arrangement,

namely
m∏

k=1

(∂ϕik)
2,

that is not proportional to
∑N

i=1 ϕ
2
i . Thus, writing q = 2m + ∆q, the counterterm (5.7) should

be forbidden for every non-negative even integer ∆q. The weight condition gives

∆q = 2m(n− 1)− n(m− 1)d+ d(m− 1)(n − 1). (5.8)

This formula implies that the counterterm (5.7) is automatically forbidden, or reabsorbable into

the σ field equation, when

đ >
2m(n− 1)

n(m− 1)
, (5.9)
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because then ∆q is negative. On the other hand, (5.8) also shows that if m is odd ∆q is certainly

even. In particular, the counterterm (5.7) with m = 3 is forbidden or reabsorbable into the σ field

equation if and only if (5.9) holds, namely

đ > 3− 3

n
. (5.10)

Luckily, (5.10) excludes also every counterterm (5.7) with m > 3, because it implies (5.9). Yet, it

remains to exclude the counterterm with m = 2, which requires either

đ > 4− 4

n
,

or one of the situations i)-ii) mentioned before.

Summarizing, we have unitary renormalizable models in the following three situations:

1. đ> 2, 3− 3

n
< đ ≤ 4− 4

n
, and either i) or ii); (5.11)

2. đ> 2, 4− 4

n
< đ < 4; (5.12)

3. 4< đ < 6, and either i) or ii). (5.13)

We recall that i) means that both n and d are odd, while ii) means that n is even and d is odd.

Stability At the leading order in the 1/N expansion stability can be checked verifying that

the σ-quadratic contribution to the generating functional Γ is positive definite in the Euclidean

framework. For đ< 4 the positivity of the σ two-point function is guaranteed. Indeed, the σ

bubble (see (A.1)) is a convergent integral of a negative definite integrand (because of the factor

−λ2N/2), so it is negative. The σ propagator is minus the reciprocal of the σ bubble, so it is

positive. This argument does not apply for 4 <đ< 6. Indeed, in that range the bubble diagram

is formally divergent and stability has to be checked explicitly.

Regularity For analogous reasons, the σ propagator is manifestly regular for đ< 4. Indeed,

since the bubble integral is convergent and its integrand is negative definite, setting k = 0 or

k̂ = 0 gives precisely the power-like behaviors (3.12) with w =đ−4. For 4 <đ< 6 regularity has

to be checked explicitly case by case.

The models that satisfy (5.11) and (5.12) are guaranteed to be unitary, stable and regular.

Let us list the four dimensional solutions. Clearly, d̂ must be 1, 2 or 3. For d̂ = 1, 2 the unique

solution is n = 2, with đ= 5/2, 3, respectively, while for d̂ = 3, n can be an arbitrary even number

greater than one, or equal to 3. The n = 2, đ= 7/2 four dimensional model is studied explicitly

in section 8.
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6 Four-fermion models

In this section we extend our analysis to the four fermion models. Start from the Euclidean four

fermion lagrangian

L =

N∑

i=1

ψi

(
∂̂/+

∂/
n

Λn−1
L

)
ψi −

λ2

2Λ
d(1−1/n)
L Mđ−2

(
N∑

i=1

ψiψi

)2

, (6.1)

for đ> 2. This model is not renormalizable by weighted power counting, but, under certain

conditions, it becomes renormalizable in the large N expansion. Introduce an auxiliary field σ of

weight 1 and rewrite the lagrangian as

L =
N∑

i=1

ψi

(
∂̂/+

∂/
n

Λn−1
L

+ λσ

)
ψi +

σ2

2
Λ
d(1−1/n)
L Mđ−2. (6.2)

In the large N expansion the resummation of the bubble diagrams of Fig. 2 modifies the naive

σ-propagator
1

Λ
d(1−1/n)
L Mđ−2

into
1

Λ
d(1−1/n)
L Mđ−2 +Qf (k̂, k,ΛL)

,

where −Qf (k̂, k,ΛL) is the value of the bubble diagram (see (B.1) for an explicit expression in

a concrete case). Because of the mass M , super-renormalizable terms ∆srL are generated by

renormalization, proportional to integer powers of Mđ−2. For the moment we assume that no

new strictly renormalizable vertex is turned on and later determine the conditions under which

this effectively happens. Under these assumptions the complete renormalizable lagrangian reads

L =

N∑

i=1

ψi

(
∂̂/+

∂/
n

Λn−1
L

+ λσ

)
ψi +

σ2

2
Λ
d(1−1/n)
L Mđ−2 +∆srL. (6.3)

At M = 0 Qf is a homogeneous function of k̂ and k and has the correct weight, equal to đ−2,

to ensure the renormalizability of (6.3) by weighted power counting in the large N expansion

(see (8.2) for an example), if we assume that the σ propagator is regular (the conditions for its

regularity are derived below). Observe that the λ beta function of (6.3) vanishes identically, since

λ is a redundant parameter that can be reabsorbed in σ and M . The renormalization constant

of the vertex σψψ can be interpreted as the σ wave function renormalization constant.

Since ∆srL vanishes at M = 0, we see that in the ultraviolet limit M → 0 the four fermion

theory (6.3) flows to the weighted scale invariant fixed point

LC =
N∑

i=1

ψi

(
∂̂/+

∂/
n

Λn−1
L

+ λσ

)
ψi, (6.4)
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whose Minkowskian lagrangian reads

LM =
N∑

i=1

ψi

(
i∂̂/M +

(i∂/)
n

Λn−1
L

− λσM

)
ψi, (6.5)

with σM = σ. Observe that (6.3) is an interesting example of asymptotically safe theory [18], its

interacting UV fixed point being indeed (6.4)-(6.5).

Let us study the properties of the fixed point. First observe that (6.5) is invariant under

parity:

P : ψ → γ0ψ, σ → σ, x0 → x0, xµ → −xµ for µ 6= 0,

but when n is odd the theory is invariant also under reflection P(µ) with respect to every space

axis µ 6= 0, precisely

P(µ) : ψ → γµψ, σ → −σ, xµ → −xµ, xν → xν for ν 6= µ. (6.6)

Unitarity The positivity of the σ spectral function is always guaranteed, for an argument

analogous to the one of the previous section. The fermion bubble of Fig. 2 has weight equal to

đ−2, so ρ(s, 0) ∼ 1/sa with a = (đ−2)/2. The unitarity bound (3.11) gives đ< 4, therefore we

are going to study the models with

2 < đ < 4. (6.7)

Renormalizability We now study the counterterms and impose that (6.4) be renormalizable

as it stands, in particular that no new strictly renormalizable term be turned on. The conditions

that we find ensure also the renormalizability of (6.3). First, the counterterm

σ∂
q
σ (6.8)

must be forbidden for every non-negative even integer q. Its weight 2 + q/n must be equal to đ,

so

q = n(đ − 2) = d(1− n) + n(d− 2).

Since đ> 2 we must have either i) n, d both odd, or ii) n even and d odd.

We want to forbid also

[∂̂p∂
q
]σ3 (6.9)

for every non-negative integers p, q and every even n. Indeed, when n is odd the counterterm is

already forbidden by the invariance under (6.6). In the other cases we have

p+
q

n
= đ − 3.
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The cases with đ< 3 are fine, because either p or q must be negative. The case đ= 3 (n even) is

forbidden. Finally, when đ> 3, n even implies d odd again.

It is easy to show that other terms such as

[∂̂p∂
q
]σm (6.10)

are automatically forbidden, for every even non-negative integers p and q and for every m ≥ 4.

Next, observe that there is a unique parity-invariant vertex with both σ and fermion legs, that

is σψψ. It remains to consider only the counterterms containing four or more fermions and no σ.

The four-fermion terms are symbolically written as

[∂̂p∂
q
][ψ

2
ψ2]. (6.11)

Every non-negative integers p and q must be excluded. Equating the weight of (6.11) to đ we

have

np+ q = n(2− đ),

so these terms are automatically excluded for đ> 2. The exclusion of counterterms of the form

[∂̂p∂
q
][ψ

m
ψm] with m > 2 is also guaranteed.

Summarizing, we have non-renormalizable models (that become renormalizable in the 1/N

expansion) when

2 < đ < 4, and either i) or ii) hold, (6.12)

where, again, i) means that n, d are both odd, and ii) means that n even and d is odd. However,

the case đ= 3 with n even is excluded.

Let us list the four dimensional solutions to the conditions found so far. We can have d̂ = 1, 2

or 3. When d̂ = 1, the unique solution has n = 2, đ= 5/2. When d̂ = 2 no solution is admitted.

Finally, when d̂ = 3 every even n is a solution. The simplest model of this class has n = 2, đ= 7/2.

It is studied explicitly in section 9, where we show that it is stable and regular, and calculate its

subleading corrections.

Since the fermion bubble is always superficially divergent, in general stability and regularity

have to be studied case by case. Nevertheless, there exists a noticeable class of odd-dimensional

models that can be proved to be stable and regular with a simple argument.

Stability and regularity for odd n Write n = 2m+ 1 and set ΛL = 1 for simplicity. After a

few straightforward steps the Euclidean fermion bubble can be written as

2[d/2]−1λ2N

∫
p̂2 + (p̂+ k̂)2 − k̂2 + (p2 + (p+ k)2 − k

2
)ab

(
p̂2 + p2a2

) (
(p̂ + k̂)2 + (p+ k)2b2

) ,
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where a = (p2)m, b =

(
(p+ k)2

)m
. We can replace p̂2 with −p2a2 and (p̂+ k̂)2 with −(p+ k)2b2

in the numerator, since the difference is a tadpole and vanishes identically using the dimensional-

regularization technique. We get

−2[d/2]−1λ2N

∫
k̂2 + k

2
ab+ (p2a− (p + k)2b)(a− b)

(
p̂2 + p2a2

)(
(p̂+ k̂)2 + (p+ k)2b2

) . (6.13)

Now the numerator is positive definite and the integral is convergent for

đ < 2 +
2

n
(n odd). (6.14)

Therefore, when (6.14) holds the fermion bubble is negative-definite, which implies that the σ

two-point function is positive definite and the theory is guaranteed to be stable. For the same

reason, setting k = 0 or k̂ = 0 in (6.13) gives the power-like behaviors (3.12) with w =đ−2,

proving regularity.

The simplest example of solutions to (6.14) and (6.12) is the Lorentz invariant (n = 1) four-

fermion model in three spacetime dimensions [10]. For d > 3 the solutions must have d̂ = 1, since

for d̂ > 1 (6.14) cannot be fulfilled. Then we find d = n+ 2. These solutions generalize the four-

fermion models of ref. [10] to arbitrary odd dimensions. Since n is odd, the reflection symmetry

P(µ) (6.6) ensures that diagrams with an odd number of external σ-legs and no external ψ-leg

vanish identically. Therefore, in these models only the diagrams (a) and (b) of Fig. 3 contribute

to the renormalization group flow up to the next-to-leading order.

7 Renormalization group

The fixed points of our Lorentz violating models are not conformal field theories, but they are

exactly weighted scale invariant. They depend on the scale ΛL and have two correlation lengths

(if the Lorentz group is split into two subfactors, more otherwise). The symmetry under weighted

scale transformations is not sufficient to determine the two-point and three-point functions up to

a finite number of constants. In this section we study the form of the two-point functions in the

Lifshitz type models (5.2). The treatment is general and applies to the fermion models of section

6 with minor modifications.

We have wave-function renormalization constants for ϕ and σ and a renormalization constant

for ΛL. They are just functions of N . The bare quantities are

ϕiB = Z1/2
ϕ ϕi, ΛBL = ZΛΛL, σB = σZ1/2

σ , λB = λ. (7.1)

The Callan-Symanzik equation reads
(
µ
∂

∂µ
+ ηLΛL

∂

∂ΛL
+ kγϕ +mγσ

)
〈ϕ(x1) · · ·ϕ(xk) σ(y1) · · · σ(ym)〉 = 0, (7.2)
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where

γϕ =
1

2

d lnZϕ
d lnµ

, γσ =
1

2

d lnZσ
d lnµ

, ηL = −d lnZΛ

d lnµ
.

Consider the two-point function G(|x̂|, |x|;N,ΛL, µ) ≡ 〈ϕ(x) ϕ(0)〉. Because of the residual

Lorentz invariance O(1, d̂ − 1) ⊗ O(d) the correlation function depends only on |x̂|, |x|. The RG

equations tell us that

G(|x̂|, |x|;N, ξηLΛL, ξµ) = ξ−2γϕG(|x̂|, |x|;N,ΛL, µ). (7.3)

On the other hand, the invariance with respect to (5.4) gives

G(ξ|x̂|, ξ1/n|x|;N,ΛL, ξ−1µ) = ξ2−đG(|x̂|, |x|;N,ΛL, µ). (7.4)

Finally, dimensional analysis gives

G(ξ|x̂|, ξ|x|;N, ξ−1ΛL, ξ
−1µ) = ξ2−dG(|x̂|, |x|;N,ΛL, µ). (7.5)

There is only one dimensionless combination of |x̂|, |x|, ΛL and µ that is RG invariant and

invariant under (5.4), namely
|x̂|

|x|nΛn−1
L

(|x̂|µ)ηL(n−1),

therefore the solution contains an arbitrary function Gr of it. The other dependencies can be

fixed straightforwardly and the result is

G(|x̂|, |x|;λ,ΛL, µ) =
1

|x̂|đ−2(µ|x̂|)2γϕ

( |x|n
|x̂|

)(đ−d)/(n−1)

Gr

(
N,

|x̂|
|x|nΛn−1

L

(|x̂|µ)ηL(n−1)

)
.

Even simpler is the form of the two-point function in momentum space, which is

G̃(|p̂|, |p|;λ,ΛL, µ) =
1

|p̂|2(1−γϕ)µ2γϕ G̃
′
r

(
N,

|p̂|Λn−1
L

|p|n
( |p̂|
µ

)ηL(n−1)
)
.

From the zeroth order propagator we have

G̃′
r (∞, u) =

u2

1 + u2
.

8 Fixed points of scalar theories

In this section we give results about the four dimensional Lifshitz type fixed point (5.2) with

d̂ = 3, d = 1, n = 2, đ=7/2 up to the subleading order in the 1/N expansion. The model is

perturbatively unitary, causal, stable and regular.
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(b) (c) (c’)
(a)

Figure 3: Subleading corrections

The scalar bubble (Fig. 2) is evaluated in appendix A. The σ-propagator has weight 1/2 and

it is equal to minus the reciprocal of (A.3), namely

16π|k̂|
√
2

λ2N

√
F − k

2
(8.1)

where F =

√
k
4
+ 4k̂2Λ2

L. The positivity of (8.1), which guarantees stability, is a direct conse-

quence of the superficial renormalizability of the scalar bubble. The asymptotic behaviors in the

limits |k̂|ΛL � k
2

and |k̂|ΛL � k
2
, namely

16π

λ2N

√
|k̂|
ΛL

,
16π|k|
λ2NΛL

, (8.2)

agree with the regularity conditions (3.12) in the ultraviolet limits k̂ → ∞ and k → ∞, respec-

tively, and also prove smoothness in the infrared regions k → 0 and k̂ → 0, which guarantees the

absence of spurious IR divergences. Finally, it is evident that the propagator (8.1) is manifestly

regular everywhere else.

We now use the propagator (8.1) to compute the subleading corrections.

Subleading corrections The 1/N corrections can be worked out computing the divergent parts

of the diagrams (a), (b) and (c) drawn in Fig. 3. The dashed line is the σ-propagator (8.1). The

continuous line denotes the scalar field. The orientation of the continuous line is immaterial in

the scalar case, so the diagram (c′) is the same as (c) and should not be counted. In the Lorentz-

invariant three-dimensional models [11] the diagram (c) is convergent, but in the four-dimensional

model that we are considering now it is not. Nevertheless, the calculation of its divergent part

can be luckily carried over to the very end, using the strategy illustrated in Appendix E. The

results are

(a) =
1

9πNε
√
3

(
−5p̂2 +

1

3

(p2)2

Λ2
L

)
, (b) =

4iλ

πNε
√
3
, (c) =

14iλ

3πNε
√
3
, (8.3)

whence

γϕ =
5

18πNε
√
3
, ηL = − 8

27πN
√
3
, γσ = − 83

9πN
√
3
. (8.4)
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The results (a), γϕ and ηL agree with the ones found in ref. [7], while (b), (c) and γσ are new.

9 Fixed points of fermion theories

With simple generalizations the techniques used in the previous section apply also to the four-

dimensional fermionic model (6.4) with d̂ = 3, d = 1, n = 2, đ= 7/2. This model is perturbatively

causal, unitary, stable and regular. Since the σ bubble is superficially divergent stability and

regularity can be proved only by explicit computation, done in appendix B.

The σ-propagator has weight −3/2 and can be read from (B.1):

15π
(
k
2
+ F

)3/2

λ2N
√
2ΛLk̂2

(
2k

2
+ 3F

) . (9.1)

Its positivity proves stability. The asymptotic behavior for |k̂|ΛL � k
2
, which is

5π

λ2N |k̂|
√

ΛL|k̂|
, (9.2)

agrees with the regularity condition (3.12) for k̂ → ∞ and, at the same time, proves smoothness

for k → 0. The asymptotic behavior for |k̂|ΛL � k
2
, instead,

6π|k|
λ2NΛLk̂2

(9.3)

does not agree with (3.12) and deserves more attention. When k → ∞ and k̂ is kept fixed (or

grows more slowly than k) the behavior (9.3) could generate a spurious UV “sub”divergence in the

integral over k. Now we prove that it is not so. Consider a diagram G with integrated momenta k,

L loops, V vertices, I = Iσ+Iψ internal legs and E = Eσ+Eψ external legs. Using L = I−V +1,

Eσ +2Iσ = V and Eψ +2Iψ = 2V , we get L = 1+ Iσ −Eψ/2. Since, L ≥ 1 we obtain the bound

Eψ ≤ 2Iσ. Each fermion propagator behaves like 1/k
2
, so the degree of divergence ω(G) of the

subintegral over k is

ω(G) = L+ Iσ − 2Iψ = 1− 2Iσ +
Eψ
2

− 2Eσ ≤ 1− Iσ − 2Eσ .

Spurious UV divergences (ω ≥ 0) can occur only for Eσ = 0, Iσ = 1, which implies Eψ ≤ 2.

The unique diagram with a potential problem is the one-loop fermion self energy (a). However,

because of (9.3) in that case the potentially dangerous behavior reads

∫
d3k̂

(2π)3
1

k̂2

∫

|k|∼∞

dk

2π

1

|k|
.
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While the k-integral is logarithmic divergent, it is multiplied by a k̂-integral that vanishes identi-

cally in dimensional regularization. Thus the behavior (9.3) is not dangerous for k → ∞.

Finally, when k̂ → 0 the behavior (9.3) guarantees that no spurious IR divergences affects the

k̂-integral at non-exceptional external hatted momenta. In every other region the σ propagator

(9.1) is manifestly regular.

Subleading corrections The contributing diagrams are (a), (b), (c) and (c′) of Fig. 2. We

find

(a) =− 1

3844πNε
√
3

(
ip̂/(5085 − 206

√
10) +

3

31
(47625 − 12146

√
10)

p2

ΛL

)
,

(b) =
λ
√
3(495 + 82

√
10)

3844πNε
, (c) + (c′) =

λ
√
3

961πNε
(900 − 113

√
10), (9.4)

whence

γψ =
5085 − 206

√
10

7688πN
√
3

, ηL = −53(2835 − 404
√
10)

59582πN
√
3

, γσ = −8685− 658
√
10

1922πN
√
3

. (9.5)

10 RG interpolation between pairs of fixed points

Following ref.s [19] and [20] in this section we construct RG flows interpolating between pairs of

fixed points of the types studied in sections 8 and 9.

The interpolating theories have lagrangians

Lϕ,φ=
1

2

N∑

i=1

[
(∂̂ϕi)

2 +
1

Λ2
L

(∂
2
ϕi)

2 + iσϕ2
i

]
+

1

2

M∑

j=1

[
(∂̂φj)

2 +
f2

Λ2
L

(∂
2
φj)

2 + igσφ2j

]
,

Lψ,χ =
N∑

i=1

ψi

(
∂̂/+

∂
2

ΛL
+ σ

)
ψi +

M∑

j=1

χj

(
∂̂/+ f

∂
2

ΛL
+ gσ

)
χj.

It is straightforward to prove the renormalizability of such models. The only caveat, with respect

to the analysis of counterterms performed section 5 (for scalar fields) is that we must exclude also

new counterterms proportional to
∑N

i=1 ϕ
2
i , because they are no longer proportional to the σ field

equations. Since đ=7/2 the weight of ϕ, φ is 3/4, so counterterms with four or more scalars are

forbidden by locality.

In practice, the interpolating theories are made by pairs of models (5.2) or (6.4) sharing the

same field σ. Here the parameter λ is suppressed (reabsorbed inside σ) and the running couplings

are f and g. The fixed points are the zeros of the f and g beta functions. There is an evident

duality

g ↔ 1

g
, f ↔ 1

f
, ΛL ↔ ΛL

f
, N ↔M. (10.1)
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The phase diagrams contain some remarkable fixed points. When g → 0 the models tend to

the fixed points (5.2) or (6.4) plus some free fields. When f, g → 1 the models tend to the selfdual

fixed points (5.2) or (6.4) with N → N +M . Because of the duality (10.1), when g → ∞ the

models tend to the fixed points (5.2) or (6.4) with N →M , plus free fields. The phase diagrams

might contain also some new fixed points.

The bubble diagrams of the interpolating models can be easily calculated using the results of

the fixed points. We have the sum of two terms: the first contribution is due to circulating ϕ,ψ

fields and coincides with (A.3) or (B.1) (at λ = 1); the second contribution is due to circulating

φ,χ fields and is equal to rg2 times (A.3) or (B.1), but with ΛL replaced by ΛL/f , where r =M/N .

In total we have

−Q(k̂, k,ΛL)− rg2Q(k̂, k,ΛL/f).

This formula proves stability and regularity in both interpolating models.

Only finitely many graphs contribute at each order of the large N expansion, so the subleading

corrections can be calculated exactly in f , g at every order in 1/N .

11 Conclusions

In this paper we have studied several properties of Lorentz violating quantum field theories of

scalars and fermions and constructed fixed points of renormalization-group flows using a large N

expansion. Such fixed points have an exact weighted scale invariance and are the best generaliza-

tions of conformal field theories when the Lorentz symmetry is violated.

Unitarity, causality and stability can be generalized straightforwardly to Lorentz violating

theories, because, strictly speaking, none of these notions demands Lorentz invariance. We have

classified the models that are guaranteed to be unitary, causal and stable. In other models stability

needs to be verified explicitly case by case. Solutions exist also in four and higher dimensions,

while Lorentz invariant models of this type are known to exist only in lower dimensions. This

makes our new models potentially interesting for applications to high-energy physics.

In some fixed points the calculations can be analytically carried over up to the subleading

corrections. Using a simple trick it is also easy to construct running quantum field theories that

interpolate between pairs of fixed points.

The models constructed here and in ref. [9] enlarge considerably the realm of renormalizable

theories. They have a variety of potential physical applications and provide a large laboratory to

test ideas about quantum field theory and renormalization.

Appendix A: Scalar bubble

Since some calculations in Lorentz violating theories have unusual aspects we collect details

and results in these appendices.
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We study the σ two-point function for the model (5.2) with d̂ = 3, d = 1, n = 2, đ=7/2 at the

leading order in 1/N . We first evaluate the bubble diagram of fig. 1 in the Euclidean framework.

Later we compute the imaginary part in the Minkowskian framework using the cutting method.

The graph reads

−λ
2N

2

∫
d3p̂

(2π)3

∫ +∞

−∞

dp

2π

1
(
p̂2 + p4

Λ2
L

)((
p̂− k̂

)2
+ (p−k)4

Λ2
L

) . (A.1)

We integrate over p̂ using Feynman parameters and find

− λ2N

8π|k̂|

∫ +∞

−∞

dp

2π
arctan

ΛL|k̂|
p2 + (p− k)2

.

The integrand can be conveniently expanded in powers of k̂2. Using

∫ +∞

−∞

dp

2π

1(
p2 + (p− k)2

)m =
2m−2Γ

(
m− 1

2

)

π1/2|k|2m−1Γ(m)
, m >

1

2
, (A.2)

and resumming the series, we arrive at

− λ2N

16π|k̂|
√
2

√√
k
4
+ 4k̂2Λ2

L − k
2 ≡ −Q(k̂, k,ΛL), (A.3)

which agrees with the result of [7]. The contribution to the generating functional Γ of one-particle

irreducible diagrams is positive definite:

∫
d4k

(2π)4
1

2
σ̃(−k)Q(k̂, k,ΛL)σ̃(k) ≥ 0, (A.4)

in agreement with stability.

We now rotate the correlation function to the Minkowskian framework and study the imaginary

part of the scalar bubble. The lagrangian (5.2) is turned into (5.3). We find a cut on the real axis

for k̂2M ≥ k
4
/(4Λ2

L). The imaginary part of the σM bubble multiplied by −2i results

λ2N

16π
√
k̂2M

θ

(
k̂2M − k

4

4Λ2
L

)√
2ΛL

√
k̂2
M

− k
2

(A.5)

and can be checked also directly computing the cutting diagram of the σ self energy.

Appendix B: Fermion bubble

In this appendix we study the σ-two-point function of the model (6.4) with d̂ = 3, d = 1,

n = 2, đ= 7/2 at the leading order in 1/N . The strategy of the calculation is the same as in the

previous section. The main difference with respect to the scalar case is that now the integral is
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formally divergent. The divergence is however power-like and so vanishes using the dimensional-

regularization technique. First we integrate over the momentum p̂ using standard techniques.

The result is

−λ
2N

2π

∫ +∞

−∞

dDp

2π

[
a+ b+

1

|k̂|

(
k̂2 + (a+ b)2

)
arctan

|k̂|
a+ b

]
, a =

p2

ΛL
, b =

(p− k)2

ΛL
.

Next, it is convenient to expand the integrand in powers of |k̂| and integrate the series term-by-

term. The zeroth order term of the expansion, equal to 2(a + b), is killed by the dimensional

integral over p. The integral of every other term is convergent in D = 1 and can be calculated

again using (A.2). Resumming the series we obtain

−λ
2N

√
2

15π
ΛLk̂

2 2k
2
+ 3F

(
k
2
+ F

)3/2 ≡ −Qf (k̂, k,ΛL). (B.1)

Again, the contribution to the generating functional Γ of one-particle irreducible diagrams is

positive definite, ∫
d4k

(2π)4
1

2
σ̃(−k)Qf (k̂, k,ΛL)σ̃(k),

which proves stability.

The imaginary part of the Minkowskian σ bubble multiplied by −2i is

λ2N

30πΛ2
L

√
k̂2M

θ

(
k̂2M − k

4

4Λ2
L

)(
2ΛL

√
k̂2M − k

2
)3/2(

3ΛL

√
k̂2M + k

2
)
.

Being positive definite, this result is a check that the theory is perturbatively unitary.

Appendix C: Scalar triangle

In this section we compute the scalar triangle with one vanishing external momentum. The

triangle is necessary to compute the divergent part of the diagram (c). Denote the external

momentum with k and the loop momentum with p. To avoid IR problems, we add a mass

changing the scalar propagator as follows:

1

p̂2 + (p2 +m2)2/Λ2
L

. (C.1)

The diagram is ultraviolet convergent. First we integrate over p̂ using Feynman parameters, then

over p. The p̂-integral gives

iλ3N

8πa
[
k̂2 + (a+ b)2

] , with a =
p2 +m2

ΛL
, b =

(p− k)2 +m2

ΛL
.
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Next, the integral over p is easily done using the residue theorem. The result can be expanded in

powers of m as

iλ3NΛ3
L

16π|m|
[
k̂2Λ2

L +
(
k
2
+m2

)2] +

iλ3NΛ3
L

[(
k
4 − Λ2

Lk̂
2
)√

F + k
2 − 2|k̂|ΛLk

2
√
F − k

2
]

8π
√
2

√
4k̂2Λ2

L +
(
k
2
+m2

)2 [
k̂2Λ2

L +
(
k
2
+m2

)2]2 , (C.2)

up to O(m), where F is defined in section 8. The masses in the denominators have been left,

again, to avoid IR problems in the calculation of the two-loop diagram (c), which is performed in

Appendix E.

Appendix D: Fermion triangle

Now we calculate the fermion triangle with one vanishing external momentum. The integral

has no IR problem, so we do not need to introduce a mass. On the other hand, the diagram

is formally ultraviolet divergent. The UV divergence is linear, so it vanishes in dimensional

regularization. Equivalently, we can work in the physical dimension and subtract an appropriate

local term. Again, the integration over the loop momentum p is first done over p̂ using Feynman

parameters, then over p. Call k the external momentum. The p̂-integral gives

λ3N

2π2|k̂|ΛL

∫ +∞

−∞
dp

[
(
p2 + (p − k)2

)
arctan

|k̂|ΛL
p2 + (p − k)2

]
.

The integral over p is easily done expanding the arctangent in powers of its argument, eliminating

the first contribution to the sum (which subtracts the UV divergence) and using (A.2). Finally,

resumming the series back, we find the result

− λ3N
√
2k̂2Λ2

L

3π
(
k
2
+ F

)3/2 .

Appendix E: Calculation of the diagrams (a), (b) and (c)

Here we describe the strategy to calculate the divergent parts of the diagrams (a), (b) and (c)

of Fig. 3. We begin with the scalar self energy (a). By locality, O(1, d̂− 1)⊗O(d) invariance and

weighted power counting, its divergent part is parametrized as

ak̂2 + b
(k

2
)2

Λ2
L

.

The constants a and b are calculated appropriately differentiating with respect to k̂ and k and

later setting k = 0. To avoid spurious IR divergences at k = 0 it is useful to introduce a small
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mass, e.g. using modified propagators of the form (C.1). The coefficients a and b can be expressed

as integrals ∫
d3q̂

(2π)3

∫ +∞

−∞

dq

2π
F(q̂2, q2 +m2),

where F(q̂2, q2 +m2) is a certain homogeneous function of degree −7/2 (giving a weight 1/2 to

m). Calling x = q̂2Λ2
L/(q

2 +m2)2 and changing variables from |q̂| to x we get an expression of

the form ∫ ±∞ dq√
q2 +m2

∫ ∞

0
dx f(x), (E.1)

where f(x) is a function whose integral over x is convergent. The factorized integral over q gives

instead the logarithmic divergence. Observe that in dimensional regularization the divergences

are poles in ε = ε1 + ε2/2 [9], where d̂ − ε1 and d − ε2 are the complex continuations of the

dimensions d̂ and d. In our calculation ε1 can be kept equal to zero to the very end, while the

integral over q needs to be continued in order to extract its UV divergence. We have

∫
d1−ε2q√
q2 +m2

=
2

ε2
+ finite =

1

ε
+ finite,

so in (E.1) the residue of the pole is the value of the x-integral of f(x).

The same strategy is used to calculate the other diagrams, both in the scalar and fermion

models. Basically, a logarithmic divergent integral over q is factored out. It multiplies a convergent

integral over x that can be evaluated exactly. In the case of fermions no IR divergence occurs at

vanishing external momenta, so there is no need to introduce the mass m.

Following these guidelights, the calculations proceed straightforwardly in all cases but one: the

diagram (c) for scalar fields. As usual, its divergent part can be worked out setting its external

momenta to zero and introducing an auxiliary mass. The triangle diagram with one vanishing

external momentum, calculated in Appendix C, is sufficient for the evaluation. We know that

the scalar triangle is IR divergent, as shown by formula (C.2). The first term of (C.2), however,

vanishes when inserted in the rest of (c) and integrated. Indeed, this operation gives a result of

the form I/|m|, where I is the value of some integral of weight 1/2. By weighted power counting,

I can only diverge linearly, and by locality its divergence can only have the form m/ε (not |m|/ε
!). Therefore the divergent contribution due to the first term of (C.2) would depend on the sign

of m, which is absurd, since m is introduced via the modified propagator (C.1). So, it is sufficient

to keep the second term of (C.2). Once that term is inserted in the rest of (c) its manipulation is

straightforward following the strategy described for diagram (a).
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