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Abstract

We construct local, unitary gauge theories that violate Lorentz symmetry explicitly at high energies

and are renormalizable by weighted power counting. They contain higher space derivatives, which improve

the behavior of propagators at large momenta, but no higher time derivatives. We show that the regularity

of the gauge-field propagator privileges a particular spacetime breaking, the one into into space and time.

We then concentrate on the simplest class of models, study four dimensional examples and discuss a

number of issues that arise in our approach, such as the low-energy recovery of Lorentz invariance.
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1 Introduction

Lorentz symmetry has been verified in many experiments with great precision [1]. However,

different types of arguments have lead some authors to suggest that it could be violated at very

high energies [2, 3, 4]. This possibility has raised a considerable interest, because, if true, it would

substantially affect our understanding of Nature. The Lorentz violating extension of the Standard

Model [3] contains a large amount of new parameters. Bounds on many of them, particularly those

belonging to the power-counting renormalizable subsector, are available. Their updated values

are reported in ref. [5].

In quantum field theory, the classification of local, unitarity, polynomial and renormalizable

models changes dramatically if we do not assume that Lorentz invariance is exact at arbitrarily

high energies [6, 7]. In that case, higher space derivatives are allowed and can improve the

behavior of propagators at large momenta. A number of theories that are not renormalizable by

ordinary power counting become renormalizable in the framework of a “weighted power counting”

[6], which assigns different weights to space and time, and ensures that no term containing higher

time derivatives is generated by renormalization, in agreement with unitarity. Having studied

scalar and fermion theories in ref.s [6, 7], here we begin the study of gauge theories, focusing on

the simplest class of models. The investigation is completed in a second paper [8], to which we

refer as paper II, which contains the classification of renormalizable gauge theories.

The theories we are interested in must be local and polynomial, free of infrared divergences in

Feynman diagrams at non-exceptional external momenta, and renormalizable by weighted power

counting. We find that in the presence of gauge interactions the set of renormalizable theories

is more restricted than in the scalar-fermion framework. Due to the particular structure of the

gauge-field propagator, Feynman diagrams are plagued with certain spurious subdivergences. We

are able to prove that they cancel out when spacetime is broken into space and time, and certain

other restrictions are fulfilled.

A more delicate physical issue is the low-energy recovery of Lorentz symmetry. Once Lorentz

symmetry is violated at high energies, its low-energy recovery is not guaranteed, because renormal-

ization makes the low-energy parameters run independently. One possibility is that the Lorentz

invariant surface is RG stable [9], otherwise a suitable fine-tuning must be advocated.

In other domains of physics, such as the theory of critical phenomena, where Lorentz symmetry

is not a fundamental requirement, certain scalar models of the types classified in ref. [6] have

already been studied [10] and have physical applications.

The paper is organized as follows. In section 2 we review the weighted power counting for

scalar-fermion theories. In section 3 we extend it to Lorentz violating gauge theories and define the

class of models we focus on in this paper. We study the conditions for renormalizability, absence

of infrared divergences in Feynman diagrams and regularity of the propagator. In section 4 we
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prove that the theories are renormalizable to all orders, using the Batalin-Vilkovisky formalism. In

section 5 we study four dimensional examples and the low-energy recovery of Lorentz invariance.

In section 6 we discuss strictly renormalizable and weighted scale invariant theories. In section

7 we study the Proca Lorentz violating theories, and prove that they are not renormalizable.

Section 8 contains our conclusions. In appendix A we classify the quadratic terms of the gauge-

field lagrangian and in appendix B we derive sufficient conditions for the absence of spurious

subdivergences.

2 Weighted power counting

In this section we briefly review the weighted power counting criterion of refs. [6, 7]. The simplest

framework to study Lorentz violations is to assume that the d-dimensional spacetime manifold

M = R
d is split into the product M̂ × M̄ of two submanifolds, a d̂-dimensional submanifold M̂ =

R
d̂, containing time and possibly some space coordinates, and a d̄-dimensional space submanifold

M̄ = R
d̄, so that the d-dimensional Lorentz group O(1, d − 1) is broken to a residual Lorentz

group O(1, d̂ − 1) × O(d̄). In this paper we study renormalization in this simplified framework.

The generalization to the most general breaking is done in paper II.

The partial derivative ∂ is decomposed as (∂̂, ∂̄), where ∂̂ and ∂̄ act on the subspaces M̂ and

M̄ , respectively. Coordinates, momenta and spacetime indices are decomposed similarly. Consider

a free scalar theory with (Euclidean) lagrangian

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂̄nϕ)2, (2.1)

where ΛL is an energy scale and n is an integer > 1. Up to total derivatives it is not necessary to

specify how the ∂̄’s are contracted among themselves. The coefficient of (∂̄nϕ)2 must be positive

to have a positive energy in the Minkowskian framework. The theory (2.1) is invariant under the

weighted rescaling

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(đ/2−1), (2.2)

where đ= d̂+ d̄/n is the “weighted dimension”. Note that ΛL is not rescaled.

The interacting theory is defined as a perturbative expansion around the free theory (2.1).

For the purposes of renormalization, the masses and the other quadratic terms can be treated

perturbatively, since the counterterms depend polynomially on them. Denote the “weight” of an

object O by [O] and assign weights to coordinates, momenta and fields as follows:

[x̂] = −1, [x̄] = −
1

n
, [∂̂] = 1, [∂̄] =

1

n
, [ϕ] =

đ

2
− 1, (2.3)

while ΛL is weightless. Polynomiality demands that the weight of ϕ be strictly positive, so we

assume đ> 2.
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We say that Pk,n(p̂, p̄) is a weighted polynomial in p̂ and p̄, of degree k, where k is a multiple

of 1/n, if Pk,n(ξ
np̂, ξp̄) is a polynomial of degree kn in ξ. A diagram G with L loops, V vertices

and I internal legs gives an integral of the form

IG(k) =

∫
ddLp

(2π)d

I∏

i=1

Pi(p, k)

V∏

j=1

Vj(p, k),

where p are the loop momenta, k are the external momenta, Pi(p, k) are the propagators and

Vj(p, k) are the vertices. The momentum integration measure ddp has weight đ. The propagator

is equal to 1 divided by a weighted polynomial of degree 2. We can assume that, as far as their

momentum dependence is concerned, the vertices are weighted monomials of certain degrees δj .

Rescaling k and as (k̂, k̄) → (λk̂, λ1/nk̄), the integral IG(k) rescales with a factor equal to its total

weight ω(G). By locality, the divergent part of IG(k) is a weighted polynomial of degree ω(G).

Assume that the lagrangian contains all vertices that have weights not greater than đ and only

those. This bound excludes terms with higher time derivatives. Then we find

ω(G) ≤ đ − Es
đ − 2

2
, (2.4)

where Es is the number of external scalar legs. Formula (2.4) and đ> 2 ensure that every

counterterm has a weight not larger than đ, therefore it can be subtracted renormalizing the

fields and couplings of the lagrangian, and no new vertex needs to be introduced.

The lagrangian terms of weight đ are strictly renormalizable, those of weights smaller than

đ super-renormalizable and those of weights greater than đ non-renormalizable. The weighted

power counting criterion amounts to demand that the theory contains no parameter of negative

weight.

Simple examples of renormalizable theories are the ϕ4, đ= 4 models

Lđ=4 =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

λ

4!Λd−4
L

ϕ4 (2.5)

and the ϕ6, đ= 3 models

Lđ=3 =
1

2
(∂̂ϕ)2 +

1

2Λ
2(n−1)
L

(∂
n
ϕ)2 +

1

4!Λ
2(n−1)
L

∑

α

λα

[
∂
n
ϕ4
]
α
+

λ6

6!Λ
2(n−1)
L

ϕ6. (2.6)

where
[
∂
n
ϕ4
]
α

denotes a basis of inequivalent terms constructed with n derivatives ∂ acting

on four ϕ’s1. Only the strictly-renormalizable terms have been listed in (2.5) and (2.6). It is

straightforward to complete the actions adding the super-renormalizable terms, which are those

that contain fewer derivatives and/or ϕ-powers.

1Because of O(d)-invariance, these exist no such terms if n is odd.
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The considerations just recalled are easily generalized to fermions. The weight of a fermion

field is (đ−1)/2, so polynomiality is ensured, because đ is necessarily greater than 1 (if d > 1).

Formula (2.4) becomes

ω(G) ≤ đ − Es
đ − 2

2
− Ef

đ − 1

2
,

where Ef is the number of external fermionic legs.

Our investigation focuses on the theories that do contain higher space derivatives (n ≥ 2).

Indeed, the theories with n = 1, which can be either Lorentz invariant or Lorentz violating, obey

the usual rules of power counting.

3 Lorentz violating gauge theories

Having decomposed the partial derivative operator as ∂ = (∂̂, ∂̄), the gauge field has to be

decomposed similarly. We write A′ = (Â′, Ā′) ≡ gA = g(Â, Ā), where g is the gauge coupling and

Aµ = AaµT
a, with T a anti-Hermitian. The covariant derivative is decomposed as

D = (D̂, D̄) = (∂̂ + Â′, ∂̄ + Ā′). (3.1)

With the weight assignments

[Â′] = [D̂] = 1, [Ā′] = [D̄] =
1

n
,

the decomposition (3.1) is compatible with the weighted rescaling. The field strength is split into

three sets of components, namely

F̂µν ≡ Fµ̂ν̂ , F̃µν ≡ Fµ̂ν̄ , F̄µν ≡ Fµ̄ν̄ . (3.2)

Since the kinetic lagrangian must contain (∂̂Â)2, the weight of Â is đ/2 − 1, hence [g] = 2−đ/2.

We can read [Ā] from [F̃ ] = [∂̄] + [Â] = [∂̂] + [Ā]. In summary,

[Â] =
đ

2
−1, [Ā] =

đ

2
−2+

1

n
, [F̂ ] =

đ

2
, [F̃ ] =

đ

2
−1+

1

n
, [F̄ ] =

đ

2
−2+

2

n
. (3.3)

Since the weight of g cannot be negative, we must have

đ ≤ 4. (3.4)

In this paper we focus on the “1/α theories”, namely those that have a lagrangian of the form

L =
1

α
Lr(gA, gϕ, gψ, gC̄ , gC, λ). (3.5)

Here C and C̄ are the ghosts and antighosts, ϕ are the scalar fields and ψ are the fermions.

Moreover, the reduced lagrangian Lr depends polynomially on g and the other parameters λ, and

[λ] ≥ 0. The renormalizability of the structure (3.5) is easy to prove (see (3.24)).
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When đ= 4 the gauge coupling g is weightless and the theory can always be written in the

1/α form with a suitable redefinition of parameters. Instead, when đ< 4 the 1/α theories are a

small subset of the allowed theories. For example, in d = 4 the weights of Lr, ∂̂, gÂ, gϕ, gC̄,

gC and gψ coincide with their dimensions in units of mass, and only the weights of ∂̄ and gĀ,

which are equal to 1/n, differ from their dimensions. Then the lagrangian contains just the usual

power-counting renormalizable terms, plus the terms that can be constructed with D̄, F̄ and F̃ .

The form of the lagrangian does not change in d 6= 4. Polynomiality is always ensured.

Even if the 1/α theories are not particularly interesting from the physical point of view, it is

convenient to start from them, because the simplified structure (3.5) allows us to illustrate the

basic properties of Lorentz violating gauge theories without unnecessary complicacies. The most

general case is studied in paper II.

Observe that the theories (3.5) cannot contain higher time derivatives, as desired. Indeed, by

O(1, d̂ − 1)-invariance a term with three ∂̂’s in Lr must contain at least another ∂̂, or a gÂ, or a

fermion bilinear such as g2ψ̄γ̂ψ. However, the weights of ∂̂4 and g∂̂3Â are already equal to four,

so no other leg can be attached to such objects, and the weight of g2∂̂3ψ̄γ̂ψ is equal to six.

It is convenient to write the action

S0 =

∫
ddx (LQ + LI) ≡ SQ + SI , (3.6)

as the sum of two gauge-invariant contributions, the quadratic terms SQ plus the vertex terms

SI . By “quadratic terms” we mean the terms constructed with two field strengths and possibly

covariant derivatives. By “vertex terms” we mean the terms constructed with at least three field

strengths, and possibly covariant derivatives.

In Appendix A we prove that, up to total derivatives, the quadratic part LQ of the lagrangian

reads (in the Euclidean framework)

LQ =
1

4

{
F 2
µ̂ν̂ + 2Fµ̂ν̄η(Ῡ)Fµ̂ν̄ + Fµ̄ν̄τ(Ῡ)Fµ̄ν̄ +

1

Λ2
L

(Dρ̂Fµ̄ν̄)ξ(Ῡ)(Dρ̂Fµ̄ν̄)

}
. (3.7)

Here Ῡ ≡ −D̄2/Λ2
L and η, τ and ξ are polynomials of degrees n−1, 2n−2 and n−2, respectively.

We have expansions

η(Ῡ) =

n−1∑

i=0

ηn−1−iῩ
i, [ηj ] =

2j

n
, (3.8)

and similar, where ηi are dimensionless constants of non-negative weights.

In momentum space we see that the free action is positive definite if and only if

η > 0, η̃ ≡ η +
k̄2

Λ2
L

ξ > 0, τ > 0, (3.9)

where now η, τ and ξ are functions of k̄2/Λ2
L.
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In the parametrization (3.7) the scale ΛL is a redundant parameter. It is mainly used to match

the dimensions in units of mass, so that the other parameters (e.g. the ηj’s) can be assumed to

be dimensionless, but possibly weightful. The ΛL-redundancy implies that ΛL is RG invariant,

so its beta function vanishes by definition.

BRST symmetry and gauge fixing The usual BRST symmetry [12]

sAaµ=Dab
µ C

b = ∂µC
a + gfabcAbµC

c, sCa = −
g

2
fabcCbCc,

sC̄a=Ba, sBa = 0, sψi = −gT aijC
aψj ,

etc., where Ba are Lagrange multipliers for the gauge-fixing, is automatically compatible with the

weighted power counting. The quadratic terms of the ghost Lagrangian contain C̄∂̂2C and B2,

and have weight đ, so we have the weight assignments

[C] = [C̄] =
đ

2
− 1, [s] = 1, [B] =

đ

2
. (3.10)

The most convenient gauge-fixing Ga is linear in the gauge potential and gives

Lgf = sΨ, Ψ = C̄a
(
−
λ

2
Ba + Ga

)
, Ga ≡ ∂̂ · Âa + ζ (ῡ) ∂̄ · Āa, (3.11)

where λ is a dimensionless, weightless constant, ῡ ≡ −∂̄2/Λ2
L and ζ is a polynomial of degree

n− 1. We demand

ζ > 0, (3.12)

to include the “Coulomb gauge-fixing” ∂̄ · Āa.

The total gauge-fixed action is finally

S =

∫
ddx (LQ + LI + Lgf) ≡ S0 + Sgf. (3.13)

Propagator The (Euclidean) gauge-field propagator can be worked out from the free subsector

of (3.13), after integrating Ba out, which amounts to add

1

2λ
(Ga)2 (3.14)

to LQ. The result is2

〈A(k) A(−k)〉 =

(
〈ÂÂ〉 〈ÂĀ〉

〈ĀÂ〉 〈ĀĀ〉

)
=

(
uδ̂ + sk̂k̂ rk̂k̄

rk̄k̂ vδ̄ + tk̄k̄

)
, (3.15)

2A similar propagator, in a different context, has already appeared in ref. [11].
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with

u=
1

D(1, η)
, s =

λ

D2(1, ζ)
+

−k̂2 + ζ
(
ζ
η − 2

)
k̄2

D(1, η)D2(1, ζ)
, r =

λ− ζ
η

D2(1, ζ)
,

v=
1

D(η̃, τ)
, t =

λ

D2(1, ζ)
+

(
τ̃
η − 2ζ

)
k̂2 − ζ2k̄2

D(η̃, τ)D2(1, ζ)
,

where

D(x, y) ≡ xk̂2 + yk̄2, η̃ = η +
k̄2

Λ2
L

ξ, τ̃ = τ +
k̂2

Λ2
L

ξ,

and now η, τ , ξ and ζ, as well as x and y, are meant as functions of k̄2/Λ2
L. The ghost propagator

is
1

D(1, ζ)
. (3.16)

A simple gauge choice (“Feynman gauge”) is

λ = 1, ζ = η. (3.17)

Then, both 〈ÂĀ〉 and s vanish, so

u =
1

D(1, η)
, s = r = 0, v =

1

D(η̃, τ)
, t =

τ̃ − η2

ηD(η̃, τ)D(1, η)
. (3.18)

Physical degrees of freedom and dispersion relations To study the physical degrees of

freedom we choose the Coulomb gauge-fixing

GaC = ∂̄ · Āa.

It can be reached from the more general gauge-fixing (3.11) taking the limit λ → ∞, ζ → ∞

in (3.11), (3.14) and (3.15), with ς ≡ λ/ζ2 fixed, and rescaling the antighosts and the Lagrange

multiplier as C̄a → C̄a/ζ, Ba → Ba/ζ. The quadratic lagrangian LQ + (∂̄ · Āa)2/(2ς) gives the

propagators

〈Â(k) Â(−k)〉=
1

D(1, η)

(
δ̂ +

k̂k̂

k̄2η

)
+

ςk̂k̂

(k̄2)2
, 〈Â(k) Ā(−k)〉 =

ςk̂k̄

(k̄2)2
,

〈Ā(k) Ā(−k)〉=
1

D(η̃, τ)

(
δ̄ −

k̄k̄

k̄2

)
+

ςk̄k̄

(k̄2)2
.

Writing k̂ = (iE, k̂) and studying the poles, we see that the Ā-sector propagates d̄− 1 degrees of

freedom with energies

E =

√
k̂2 + k̄2

τ(k̄2/Λ2
L)

η̃(k̄2/Λ2
L)
,
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while the Â-sector propagates d̂− 1 degrees of freedom with energies

E =

√
k̂2 + k̄2η(k̄2/Λ2

L).

Indeed, the matrix δ̂ + k̂k̂/(k̄2η) has one null eigenvector on the pole, since its determinant is

equal to D(1, η)/(k̄2η). The residues are positive in the Minkowskian framework. This can be

immediately seen using SO(1, d̂ − 1) invariance to set k̂ = 0 (at k̄ 6= 0) and SO(d̄) invariance to

set all k̄-components but one to zero.

Finally, the ghost propagator becomes 1/k̄2, which has no pole. In total, the physical degrees

of freedom are d− 2, as expected.

Regularity of the propagator A propagator is regular if it is the ratio

Pr(k̂, k̄)

P ′

2s(k̂, k̄)
(3.19)

of two weighted polynomials of degrees r and 2s, where r and s are integers, such that the

denominator P ′

2s(k̂, k) is non-negative (in the Euclidean framework), non-vanishing when either

k̂ 6= 0 or k 6= 0, and has the form

P ′

s(k̂, k̄) = ω̂(k̂2)s + ω̄(k̄2)ns + · · · , (3.20)

with ω̂ > 0, ω̄ > 0, where the dots collect the terms (k̂2)j−m(k̄2)mn with j < s, 0 ≤ m ≤ j, and

j = s, 0 < m < s.

The regularity conditions just stated ensure that: a) the derivatives with respect to k̂ improve

the large-k̄ behavior (because ω̄ 6= 0), besides the large-k̂ and overall ones; and b) the derivatives

with respect to k̄ improve the large-k̂ behavior (because ω̂ 6= 0), besides the large-k̄ and overall

ones. The overall divergences of the k̂-subintegrals are local in k̄ and the overall divergences of

the k̄-subintegrals are local in k̂ (once subdiagrams have been inductively subtracted).

In this paper we use the dimensional-regularization technique. We recall [6] that it is necessary

to continue both d̂ and d̄ to complex values, say d̂− ε1 and d̄− ε2, respectively. In the framework

of the dimensional regularization the absence of k̂- and k̄-subdivergences is immediate to prove:

being local, the k̂-subdivergences are killed by the (dimensionally continued) k̄-subintegrals and

the k̄-subdivergences are killed by the k̂-subintegrals. More explicitly, at one loop we have integrals

of the form ∫
dd̂−ε1 k̂

(2π)d̂

[∫
dd̄−ε2 k̄

(2π)d̄
V (k̂, k̄; p̂, p̄)

∏I
i=1 P

′

2s(k̂, k̄; p̂i, p̄i)

]
,

where I denotes the number of propagators, pi are linear combinations of the external momenta

and the numerator collects both the vertices and the polynomials Pr of (3.19). Consider first the

integral contained in the square braket. Here k̂ can be treated as an external momentum. The
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regularity of the propagator ensures that differentiating the integrand with respect to k̂ (or p̂i, or

p̄i) a sufficient number of times the k̄-integral becomes convergent. Thus, the divergent part of

the k̄-integral is a polynomial Q in k̂ (and p̂i, p̄i). However,

∫
dd̂−ε1 k̂

(2π)d̂
Q(k̂; p̂, p̄) = 0

in dimensional regularization, because it is the integral of a polynomial. Thus the (sub)divergence

of the k̄-integral is killed by the k̂-integral. An analogous conclusion holds exchanging the roles

of k̂ and k̄. The arguments can be generalized to higher loops after including the counterterms

corresponding to the proper subdiagrams.

In a more general regularization setting the absence of k̂- and k̄-subdivergences is proved as

follows. The overall divergences of the k̂-k-integrals are subtracted, for example, by the first terms

of the “weighted Taylor expansion” around vanishing external momenta [6]. When the regularity

conditions stated above are fulfilled, those counterterms automatically cure also the k̂-subintegrals

and the k-subintegrals. Indeed, the subintegrals cannot behave worse than the full integrals over

k̂ and k, because (3.20) ensures that the propagators tend to zero with maximal velocity also in

the subintegrals, the loop-integration measures grow less rapidly and the vertices grow not more

rapidly than in the k̂-k-integrals.

The scalar and fermion propagators are clearly regular. On the other hand, a propagator of

the form
Λn−1
L

|k̂||k|n

is not, and could generate “spurious subdivergences” when k̂ tends to infinity at k fixed, or

viceversa. The problem appears in certain large N fermion models [7], and becomes crucial

whenever gauge fields are present, as we now discuss.

The propagators (3.15) and (3.16) are regular at non-vanishing momenta, because the condi-

tions (3.9) and (3.12) ensure that the denominators are positive-definite in the Euclidean frame-

work. To have the best ultraviolet behaviors we must strengthen those conditions requiring also

η0 > 0, τ0 > 0, η̃0 = η0 + ξ0 > 0, ζ0 > 0, (3.21)

which we assume from now on. However, attention must be paid to the behaviors of propagators

when k̂ is sent to infinity at fixed k, and when k is sent to infinity at fixed k̂.

The conditions (3.21) ensure that all gauge and ghost propagators are regular in the Feynman

gauge (3.17)-(3.18), except 〈ĀĀ〉, which has ω̄ 6= 0, but ω̂ = 0, so it is regular when k tends

to infinity at k̂ fixed, but not when k̂ tends to infinity at k fixed: in that region of momentum

space 〈ĀĀ〉 behaves like ∼ 1/k̂2. To ensure that no spurious subdivergences are generated by

the k̂-subintegrals, we have to perform a more careful analysis, which is done in appendix B and
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generalized in paper II. The result is that the spurious subdivergences can be proved to be absent

for

d̂ = 1, đ < 2 +
2

n
, d = even, n = odd, (3.22)

which we are going to assume from now on, unless explicitly stated. Observe that the case (3.22)

is a physically interesting one, since spacetime is split into space and time. In four dimensions,

(3.22) are equivalent to just d̂ = 1, n =odd (at n > 1).

The absence of spurious subdivergences ensures the locality of counterterms. Consider a

diagram Gr equipped with the subtractions that take care of its diverging proper subdiagrams.

Differentiating Gr a sufficient number of times with respect to any components p̂i, p̄i of the

external momenta pi, we can arbitrarily reduce the overall degree of divergence and eventually

produce a convergent integral. Therefore, overall divergences are polynomial in all components of

the external momenta.

Weighted power counting In the rest of this section we consider renormalizable and super-

renormalizable theories. We postpone the analysis of strictly-renormalizable theories, namely the

theories that contain only weightless parameters, to section 8.

A generic vertex of (3.5) has the structure

λig
ni−2∂̂k∂̄mÂpĀqC̄rCrϕsψ̄tψt, (3.23)

where ni = p+ q+2r+ s+2t and p, q, r, k,m, s and t are integers. Formula (3.23) and analogous

expressions in this paper are meant “symbolically”, which means that we pay attention to the

field- and derivative-contents of the vertices, but not where the derivatives act and how Lorentz,

gauge and other indices are contracted.

Every counterterm generated by (3.23) fits into the structure (3.23). Indeed, consider a L-loop

diagram with E external legs, I internal legs and vi vertices of type i. Counting the legs we have∑
i nivi = E + 2I = E + 2(L+ V − 1), so the diagram is multiplied by a product of couplings

g
∑
i(ni−2)vi

∏

i

λvii = αLgE−2
∏

i

λvii . (3.24)

We see that a gE−2 factorizes, as expected. Moreover, each loop order carries an additional weight

of at least 2[g] = 4−đ.

We have already mentioned that when conditions (3.22) are fulfilled we do not need to worry

about the k̂- and the k-subintegrals, so we concentrate on the k̂-k-integrals. The positivity

conditions (3.9) and (3.12) ensure that the denominators appearing in the Euclidean propagators

(3.15) and (3.16) never vanish at non-exceptional momenta. Thus we have to study the integrals

only in the ultraviolet and infrared regions. We begin with the ultraviolet behavior. We show that
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the 1/α theories that satisfy (3.4) are renormalizable by weighted power counting, assuming that

spurious subdivergences are absent and that gauge (BRST) invariance is preserved. In the next

subsection we discuss the infrared behavior, while in the next section we prove the preservation

of BRST invariance.

In the analysis of renormalization based on weighted power counting, we can treat the weightful

parameters ηi, τi, ξi and ζi, i > 0, perturbatively, because the divergent parts of Feynman diagrams

depend polynomially on them. Then the propagators are (3.15) and (3.16) with the replacements

η → η0

(
k̄2

Λ2
L

)n−1

, τ → τ0

(
k̄2

Λ2
L

)2(n−1)

, ξ → ξ0

(
k̄2

Λ2
L

)n−2

, ζ → ζ0

(
k̄2

Λ2
L

)n−1

.

and every other term is treated as a vertex. Intermediate masses can be added to the denomina-

tors, to avoid IR problems, and removed immediately after calculating the divergent parts. Recall

that (3.21) are assumed.

The propagators have weights

[〈ÂÂ〉] = [〈CC̄〉] = [〈ϕϕ〉] = −2, [〈ψψ̄〉] = −1, [〈ÂĀ〉] = −3 +
1

n
, [〈ĀĀ〉] = −4 +

2

n
.

(3.25)

Consider the vertex (3.23). Since the weight of (3.23) must be equal to đ, we have the inequality

ni + k +
m+ q

n
− q + t ≤ 4. (3.26)

The degree of divergence ω(G) of a diagram G with L loops, Î , Ĩ and Ī internal legs of type ÂÂ,

ÂĀ and ĀĀ, respectively, Igh, Iϕ and Iψ internal ghost, scalar and fermion legs, Ê, Ē, Egh, Eϕ

and Eψ external Â-, Ā-, ghost, scalar and fermion legs, and vi vertices (3.23), where i stands for

(k,m, p, q, r, s, t), is

ω(G) = Lđ − 2(Î + Igh + Iϕ)− Iψ −

(
3−

1

n

)
Ĩ −

(
4−

2

n

)
Ī +

∑

i

vi

(
k +

m

n

)
.

Using L = I − V + 1, (3.26) and the leg-countings

Ê + 2Î + Ĩ =
∑

i

pvi, Ē + 2Ī + Ĩ =
∑

i

qvi, Egh + 2Igh =
∑

i

2rvi,

Eϕ + 2Iϕ=
∑

i

svi, Eψ + 2Iψ =
∑

i

2tvi,

we get

ω(G) ≤ đ− (Ê +Egh +Eϕ)

(
đ

2
− 1

)
− Ē

(
đ

2
− 2 +

1

n

)
−Eψ

(
đ − 1

2

)
− (4− đ)

(
L+

E

2
− 1

)
,

(3.27)
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where E is the total number of external legs. The divergent part of G is a weighted polynomial of

degree ω(G) in the external momenta. Recalling (3.24), the counterterms have the form (3.23),

precisely

(
∏

i

λnii

)
αLgE−2∂̂K ∂̄M ÂÊĀĒ(C̄C)Egh/2ϕEϕ(ψ̄ψ)Eψ/2, with K +

M

n
= ω(G),

and therefore are subtracted renormalizing an appropriate coupling λi. This proves that the

theory is renormalizable by weighted power counting assuming that BRST invariance is preserved

and that the spurious subdivergences are absent.

Absence of infrared divergences Now we study the infrared behavior of correlations func-

tions. Correlation functions have to be understood as distributions and calculated off-shell at

non-exceptional external momenta. Exceptional configurations of momenta can be reached by

analytical continuation. However, the continuation exists if the theory does not contain super-

renormalizable vertices and massless fields, otherwise infrared divergences occur in Feynman dia-

grams at high orders, even off-shell [13]. We work out the conditions under which such problems

do not occur in our models.

All theories with a non-trivial super-renormalizable subsector look alike at low energies. Up

to terms of higher dimensions, they are described by the lagrangian (for generic d̂)

LIR =
1

4

[
(F aµ̂ν̂)

2 + 2ηn−1(F
a
µ̂ν̄)

2 + τ2n−2(F
a
µ̄ν̄)

2
]
, (3.28)

where ηn−1 and τ2n−2 are constants. Moreover the gauge-fixing becomes GaIR = ∂̂ · Âa+ζn−1∂̄ · Ā
a.

We assume, compatibly with (3.9) and (3.12),

ηn−1 > 0, τ2n−2 > 0, ζn−1 > 0.

In general, the theory LIR is Lorentz violating, but has an ordinary power counting, so we

can use the results known from ordinary quantum field theory, which tell us that the Feynman

diagrams of LIR have no IR divergences (at non-exceptional external momenta) if and only if

d ≥ 4. (3.29)

Observe that if d > 4 the theory LIR is non-renormalizable, but this fact does not concern our

present discussion, since our models are not just LIR, but contain terms of higher dimensionalities

that cure the UV behavior.

In strictly renormalizable theories different conditions apply (see section 6).

Massless fields are responsible for another type of IR divergences, those that occur in cross

sections of non-confining gauge theories (infrared catastrophe). Such divergences are usually
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treated with the Bloch-Nordsieck resummation method [14]. This issue is beyond the scope of

the present paper, yet we expect that the argument of Bloch and Nordsieck can be adapted also

to Lorentz violating theories.

In conclusion, recalling (3.4), (3.22) and (3.29), the conditions to have consistent renormaliz-

able 1/α gauge theories with a non-trivial super-renormalizable subsector are

d = even ≥ 4, d̂ = 1, đ < 2 +
2

n
, n = odd. (3.30)

In four dimensions they reduce to just d̂ = 1, n =odd (for n > 1).

4 Renormalizability to all orders

So far we have concentrated on the renormalizability of our theories by weighted power counting.

It remains to prove that the subtraction of divergences is compatible with gauge invariance. We use

the Batalin-Vilkovisky formalism [15]. For simplicity, we concentrate on pure gauge theories and

use the minimal subtraction scheme and the dimensional-regularization technique. In particular,

the functional integration measure is automatically BRST invariant.

Classical proofs of the renormalizability of (Lorentz invariant) Yang-Mills theories can be found

in most textbooks [16]. Complete classifications of the BRST cohomology of local operators

[17] and local functionals of arbitrary ghost number [18] are available. The generalization of

such classification theorems to Lorentz violating theories appears to be conceptually simple, but

technically involved, and is beyond the scope of this paper.

Batalin-Vilkovisky formalism The fields are collectively denoted by Φi = (Aaµ, C
a
, Ca, Ba).

Add BRST sources Ki = (Kµ
a ,Ka

C
,Ka

C ,K
a
B) for every field Φi and extend the action (3.13) as

Σ(Φ,K) = S(Φ)−

∫
ddx

[(
sAaµ

)
Kµ
a +

(
sC

a)
Ka
C
+ (sCa)Ka

C + (sBa)Ka
B

]
, (4.1)

From (4.1) we can read the weights of the BRST sources:

[K µ̂
a ] = [Ka

C
] = [Ka

C ] =
đ

2
, [K µ̄

a ] =
đ

2
+ 1−

1

n
, [Ka

B ] =
đ

2
− 1. (4.2)

Define the antiparenthesis

(X,Y ) =

∫
ddx

{
δrX

δΦi(x)

δlY

δKi(x)
−

δrX

δKi(x)

δlY

δΦi(x)

}
. (4.3)

BRST invariance is generalized to the identity

(Σ,Σ) = 0, (4.4)
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which is a straightforward consequence of (4.1), the gauge invariance of S0 and the nilpotency of

s. Define also the generalized BRST operator

σX ≡ (Σ,X), (4.5)

which is nilpotent (σ2 = 0), because of the identity (4.4). Observe that σ, as well as s, raises the

weight by one unit.

The generating functionals Z, W and Γ are defined, in the Euclidean framework, as

Z[J,K] =

∫
DΦexp

(
−Σ(Φ,K) +

∫
ΦiJi

)
= eW [J,K], (4.6)

Γ[ΦΓ,K] =−W [J,K] +

∫
ΦiΓJi, where ΦiΓ =

δrW [J,K]

δJi
.

Below we often suppress the subscript Γ in ΦΓ. Performing a change of variables

Φ′ = Φ+ θsΦ, (4.7)

in the functional integral (4.6), θ being a constant anticommuting parameter, and using the

identity (4.4), we find

(Γ,Γ) = 0. (4.8)

A canonical transformation of fields and sources is defined as a transformation that preserves

the antiparenthesis. It is generated by a functional F(Φ,K ′) and reads

Φi ′ =
δF

δK ′

i

, Ki =
δF

δΦi
.

The generating functional of the identity transformation is

I(Φ,K ′) =

∫
ddx

∑

i

ΦiK ′

i.

As usual, renormalizability is proved proceeding inductively. The inductive assumption is that

up to the n-th loop included the divergences can be removed redefining the physical parameters

αi and performing a canonical transformation of the fields and BRST sources. Call Σn and Γ(n)

the action and generating functional renormalized up to the n-th loop included. The inductive

assumption ensures that Σn and Γ(n) satisfy (4.4) and (4.8), respectively.

Locality and (4.8) imply that the (n + 1)-loop divergences Γ
(n)
n+1 div of Γ(n) are local and σ-

closed, namely σΓ
(n)
n+1 div = 0. We have to work out the most general solution to this condition.

First, observe that Γ
(n)
n+1 div cannot contain Ba, Ka

B and Ka
C
, because the action (4.1) provides

no vertices with Ba, Ka
B or Ka

C
on the external legs. In particular, the absence of vertices with

B-legs is due to the linearity of the gauge-fixing Ga (3.11) in the gauge field A. Second, observe

15
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that the vertices that contain an antighost C̄ contain also a ∂̂ or a ζ (ῡ) ∂̄ acting on C̄. The vertex

containing ∂̂C has an identical vertex-partner where ∂̂C is replaced by K̂A, while the vertex

containing ζ (ῡ) ∂̄C has an identical vertex-partner where ζ (ῡ) ∂̄C is replaced by K̄A. Therefore

Γ
(n)
n+1 div can depend on C, K̂A and K̄A only through the combinations

K µ̂
a + ∂µ̂C

a
, K µ̄

a + ζ (ῡ) ∂µ̄C
a
.

Using the facts just proved, invariance under global gauge transformations and the weighted

power counting, we find that in the 1/α theories Γ
(n)
n+1 div has the form

Γ
(n)
n+1 div =

∫
ddx

[
G̃n(A) +

(
K µ̂
a + ∂µ̂C

a
)(

a′n∂µ̂C
a + habcn Abµ̂C

c
)

+
(
K µ̄
a + ζ (ῡ) ∂µ̄C

a) (
b′n∂µ̄C

a + kabcn Abµ̄C
c
)
+ engf

abcKa
CC

bCc
]
, (4.9)

where G̃n depends only on Aaµ and has weight đ, while a′n, b
′

n, en, h
abc
n and kabcn are weightless con-

stants. Considering the terms proportional to (∂µ̂C
a
)(∂µ̂C

b)Cc and (∂µ̄C
a
)(∂µ̄C

b)Cc contained

in σΓ
(n+1)

div = 0, we see that habcn and kabcn must be proportional to fabc. Then (4.9) can be

reorganized in the more convenient form

Γ
(n)
n+1 div =

∫
ddx

[
G̃n(A) +

(
K µ̂
a + ∂µ̂C

a
)
(an∂µ̂C

a + cnDµ̂C
a)

+
(
K µ̄
a + ζ (ῡ) ∂µ̄C

a)
(bn∂µ̄C

a + dnDµ̄C
a) + engf

abcKa
CC

bCc
]
, (4.10)

with new constants an, bn, cn and dn. Working out the condition σΓ
(n+1)

div = 0 in detail we find

cn = dn = 2en and

G̃n = Gn − an
δS0

δAaµ̂
Aaµ̂ − bn

δS0

δAaµ̄
Aaµ̄,

where Gn is gauge invariant and S0 is given by formula (3.6). We have used the property that the

gauge-field equations δS0/δA
a
µ̂ and δS0/δA

a
µ̄ transform covariantly. The result can be collected

into the compact form

Γ
(n)
n+1 div =

∫
ddx (Gn + σRn) , (4.11)

with

Rn(Φ,K) =

∫
ddx (−anI1 − bnI2 + cnI3) , (4.12)

where

I1(Φ,K) = (K µ̂
a + ∂µ̂C

a
)Aaµ̂, I2(Φ,K) =

(
K µ̄
a + ∂µ̄ζ (ῡ)C

a)
Aaµ̄, I3(Φ,K) = Ka

CC
a,

(4.13)

Now, Gn is local, gauge-invariant, constructed with A and its derivatives, and has weight đ.

Since, by assumption, S0 contains the full set of such terms, Gn can be reabsorbed renormalizing

the physical couplings αi contained in S0. We denote these renormalization constants by Zαi .
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The σ-exact counterterms are reabsorbed with a canonical transformation generated by

Fn(Φ,K
′) = I(Φ,K ′)−Rn(Φ,K

′). (4.14)

More explicitly, C
a
, Ba and Ka

B are non-renormalized and the only non-trivial redefinitions are

Âa→ Ẑ
1/2
nA Â

a, Āa → Z̄
1/2
nA Ā

a, Ca → Z
1/2
nCC

a, Ka
C → Z

−1/2
nC Ka

C ,

K µ̂
a → Ẑ

−1/2
nA (K µ̂

a + ∂µ̂C
a
)− ∂µ̂C

a
, K µ̄

a → Z̄
−1/2
nA (K µ̄

a + ζ (ῡ) ∂µ̄C
a
)− ζ (ῡ) ∂µ̄C

a
,

Ka
C
→Ka

C
+ ∂̂ · Âa(Ẑ

1/2
nA − 1) + ζ (ῡ) ∂̄ · Āa(Z̄

1/2
nA − 1), (4.15)

where

Ẑ
1/2
nA = 1 + an, Z̄

1/2
nA = 1 + bn, Z

1/2
nC = 1− cn. (4.16)

Call f(Zn) the map (4.15), where Zn = (ẐnA, Z̄nA, ZnC). It is straightforward to check that

it satisfies the group property

f(Zp) ◦ f(Zq) = f(ZpZq), ZpZq ≡ (ẐpAẐqA, Z̄pAZ̄qA, ZpCZqC). (4.17)

The (n + 1)-loop divergences (4.11) are reabsorbed by a map h(Znα, Zn) obtained composing

the renormalizations of the physical couplings αi with f(Zn). Clearly, also h satisfies the group

property (4.17). Moreover, the basis (4.13) is h- and f -invariant.

Being a composition of a canonical transformation and redefinitions of the physical couplings,

h(Znα, Zn) preserves both (4.4) and (4.8). This proves the inductive hypothesis to the order n+1,

and therefore promotes (4.4) and (4.8) to all orders.

The complete renormalization of divergences is performed by the map

h∞ =

∞∏

n=1

h(Znα, Zn) = h(Zα, Z), Zα =

∞∏

n=1

Znα, Z =

∞∏

n=1

Zn.

Applying h∞ to the action Σ, it is easy to prove that the renormalization can be equivalently

performed in a more standard multiplicative fashion, namely

Âa→ Ẑ
1/2
A Âa, Āa → Z̄

1/2
A Āa, Ca → Z

1/2
C Ca, C

a
→ Ẑ

−1/2
A C

a
,

Ba→ Ẑ
−1/2
A Ba, λ→ λẐA, ζ → Ẑ

1/2
A Z̄

−1/2
A ζ, αi → αiZαi . (4.18)

The renormalization constants of the BRST sources are the reciprocals of the renormalization

constants of the fields: Φi → ΦiZ
1/2
i ⇔ Ki → KiZ

−1/2
i .

The relatively simple structure of the counterterms is due to the simple form of the gauge

fixing (3.11), which is linear in the gauge potential. Had we chosen a non-linear gauge fixing, for

example the most general local function Ga of weight 2 constructed with the gauge potential and

its derivatives, there would be vertices with B-external legs, and therefore also counterterms with
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B’s on the external legs. Then Rn would be much less constrained, to allow for the most general

renormalization of the gauge-fixing parameters contained in Ga.

At the practical level, computations considerably simplify using the background field method

[19], which can be applied straightforwardly to our theories.

5 Renormalizable theories

In this section we investigate the four dimensional renormalizable theories and study the low-

energy recovery of Lorentz invariance.

We start with the 1/α theory with d̂ = 1, n = 2, đ= 5/2. Its (Euclidean) lagrangian reads

L1/α=
1

4

[
2η0
Λ2
L

(Dab
ρ̄ F

b
µ̂ν̄)

2 +
τ0
Λ4
L

(D̄2F aµ̄ν̄)
2 +

ξ0
Λ2
L

(Dρ̂Fµ̄ν̄)(Dρ̂Fµ̄ν̄) + 2η1(F
a
µ̂ν̄)

2

+
τ1
Λ2
L

(Dab
ρ̄ F

b
µ̄ν̄)

2 + τ2(F
a
µ̄ν̄)

2

]
+

g

Λ2
L

fabc

(
λF aµ̂ν̄F

b
µ̂ρ̄ + λ′F aµ̄ν̄F

b
µ̄ρ̄

)
F cν̄ρ̄

+
g

Λ4
L

∑

j

λjD̄
2F̄ 3

j +
α

Λ4
L

∑

k

λ′kF̄
4
k, (5.1)

where j labels the independent gauge invariant terms constructed with two covariant derivatives

D̄ acting on three field strengths F̄ , and k labels the terms constructed with four F̄ ’s. The last

two terms are symbolic, while the rest contains the precise list of allowed terms.

In every super-renormalizable 1/α theory we have βΛL = βτ0 = βη0 = βξ0 = βα = 0. Indeed,

we know that ΛL is RG invariant, by construction. So are η0, τ0 and ξ0, because they are

weightless. The α-beta function vanishes, because each vertex carries at least a factor of g.

The parameters of the model (5.1) are actually finite. Indeed, we have the weights [g] = 3/4,

[η1] = [τ1] = [λ′] = 1, [τ2] = 2, [λ] = [λj ] = [λ′k] = 0 and by (3.24) every diagram is multiplied

by αLgE−2. Therefore, no counterterm can fit into the structure (5.1). However, the model (5.1)

has an even n, so it may have spurious subdivergences. Going through the analysis of Appendix

B it is possible to show that such subdivergences appear only at three loops.

The low energy limit of (5.1) can be studied taking ΛL to infinity. We get

LIR =
1

4

[
2η1(F

a
µ̂ν̄)

2 + τ2(F
a
µ̄ν̄)

2
]
. (5.2)

Lorentz invariance is recovered, because the redefinition

x̂′ = x̂, Â′ = (η1τ2)
1/4Â, x̄′ = η

1/2
1 τ

−1/2
2 x̄, Ā′ = η

−1/4
1 τ

3/4
2 Ā,

α′ = (η1τ2)
−1/2α, µ′ = µ, Λ′

L = η−1
1 τ2ΛL, (5.3)

converts the low-energy action into the manifestly Lorentz invariant form

SIR =

∫
d4x LIR =

∫
d4x′

1

4
(F a ′

µν )
2. (5.4)
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In (5.3) we have included the µ- and ΛL-transformations so the redefinition can be applied also

to the high-energy theory, if the remaining couplings are rescaled appropriately. The divergences

of the low-energy theory include those due to the ΛL → ∞ limit. Moreover, to have Lorentz

invariance at low energies, the (low-energy) subtraction scheme has to be properly adjusted.

Observe that (5.3) is a combination of a gauge-field normalization,

A′ = η1τ
−1/2
2 A, α′ = η−2

1 τ2α, (5.5)

a usual rescaling,

x′ = η1τ
−1
2 x, A′ = η−1

1 τ2A, α′ = α, µ′ = η−1
1 τ2µ, Λ′

L = η−1
1 τ2ΛL, (5.6)

and a weighted rescaling [6],

x̂′ = η−1
1 τ2x̂, Â′ = η

1/4
1 τ

−1/4
2 Â, x̄′ = η

−1/2
1 τ

1/2
2 x̄, Ā′ = η

−1/4
1 τ

1/4
2 Ā,

α′ = η
3/2
1 τ

−3/2
2 α, µ′ = η1τ

−1
2 µ, Λ′

L = ΛL. (5.7)

Moreover, note that (5.3) leaves µ unchanged (although it changes ΛL), therefore it generates no

anomalous contributions at high energies. On the other hand, anomalous effects are generated

at low energies. Because of (5.6) and (5.7), such effects are the difference between the trace

anomaly and the weighted trace anomaly, and correspond to a ΛL-running with no µ-running.

They amount to a low-energy scheme change and are taken into account in the scheme adjustment

mentioned above, necessary to restore Lorentz invariance at low energies. The gauge-fixing sector

of the theory can remain Lorentz violating with no observable consequence.

In general, to recover Lorentz invariance at low energies we are free to perform just one

redefinition, which amounts, ultimately, to a particular x̄-rescaling. In the case (5.2) the Lorentz

recovery is possible thanks to the simple structure of the theory. Consider a more general situation,

for example the theory (5.2) coupled to fermions. Its lagrangian is Lgf = L1/α + Lf , where

Lf = ψ̄

(
D̂/+

η0f
ΛL

D̄/
2
+ η1fD̄/+mf +

τfg

ΛL
iT aF̄ aµ̄ν̄σ

µ̄ν̄

)
ψ. (5.8)

The low-energy lagrangian reads now

LIR gf =
1

4

[
2η1(F

a
µ̂ν̄)

2 + τ2(F
a
µ̄ν̄)

2
]
+ ψ̄(D̂/+ η1f D̄/+mf )ψ. (5.9)

The transformations (5.5), (5.6) and (5.7) extend to fermions as

ψ′ = ψ, ψ′ = η
−3/2
1 τ

3/2
2 ψ, ψ′ = η

3/4
1 τ

−3/4
2 ψ,

respectively, so
∫

d4x LIR gf =

∫
d4x′

[
1

4
(F a ′

µν )
2 + ψ̄′

(
D̂/

′

+ η′1f D̄/
′

+mf

)
ψ′

]
,
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where

η′1f = η1f

(
η1
τ2

)1/2

.

Therefore, Lorentz invariance cannot be recovered at low energies unless the low-energy couplings

are located on the “Lorentz invariant surface”

τ2 = η21fη1. (5.10)

If that does not happen the effects of the violation become observable also at low energies.

The Lorentz invariant surface (5.10) is also RG invariant, which means that there exists a

low-energy subtraction scheme such that the beta function of δL ≡ τ2 − η21fη1 is proportional to

δL. RG invariance guarantees that it is not necessary to specify at which low-energy scale the

relation (5.10) must hold: if it holds at some low-energy scale it holds at all low-energy scales.

Perturbative calculations suggest [9] that in CPT-invariant theories the Lorentz invariant surface

might also be RG stable, i.e. the couplings that parametrize the displacement from the surface,

such as δL, are IR free3. When the Lorentz invariant surface is not RG stable, Lorentz invariance

can be recovered at low energies only by means of an appropriate fine-tuning. With great accuracy

experiments show [5] that the Standard Model is located on the Lorentz invariant surface.

If we look at the issue of Lorentz-invariance recovery from a low-energy viewpoint, it is more

natural to consider (5.1) plus (5.8), equipped with (5.10), as a (partial) regularization of the

Lorentz-invariant Yang-Mills theory

∫
d4x

[
1

4
(F aµν)

2 + ψ̄ (D/+mf )ψ

]
.

In this description, the existence of a Lorentz-preserving subtraction scheme is obvious and the

fine-tuning (5.10) appears more natural. Then, however, low-energy Lorentz invariance is assumed

from the start. Moreover, we insist that our theories should not be viewed as regularization

devices, but as true, fundamental theories, to be experimentally tested.

The model (5.1) is not free of spurious subdivergences, because n is even. The first completely

consistent model is thus the 1/α theory with d̂ = 1, n = 3, đ= 2, which is studied in detail

in paper II. Its simplest renormalizable lagrangian is the sum of the quadratic part (3.7) plus

F̄ 3. Other consistent four dimensional solutions to (3.30) exist for every odd n ≥ 3. The low-

energy considerations of this section are very general and apply to the odd-n models with obvious

modifications.

3Other results [20] give evidence that CPT-violating couplings exhibit the opposite behavior.
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6 Strictly renormalizable theories

For the sake of completeness, we investigate strictly renormalizable and weighted scale invariant

theories. We recall that there exists a class of subtraction schemes in which no power-like di-

vergences are generated. In those schemes super-renormalizable parameters are not turned on

by renormalization. Moreover, such class of schemes is automatically chosen by the dimensional-

regularization technique, which we assume in this paper.

In strictly-renormalizable theories the quadratic part LQ of the lagrangian must have

η(Ῡ) = η0Ῡ
n−1, τ(Ῡ) = τ0Ῡ

2(n−1), ξ(Ῡ) = ξ0Ῡ
n−2.

For convenience we can choose a strictly-renormalizable gauge fixing, with ζ(ῡ) = ζ0ῡ
n−1. The

inequalities (3.21) must hold.

The IR behavior of Feynman diagrams is still dominated by the weighted power counting, so

the analysis of potential IR divergences differs from the one of section 3. Now η(0) = τ(0) = 0,

so the gauge-field propagator contains additional denominators ∼ 1/k̄2(n−1) in the
〈
ĀĀ
〉
-sector.

The loop integrals over k and the loop sub-integrals over k̄ are IR divergent unless

đ > 4−
2

n
, d̄ > 2(n− 1), (6.1)

respectively. The former condition follows from (3.25). The latter condition and n ≥ 2 imply

d̄ ≥ 3.

We can now distinguish two cases: if đ= 4 the gauge coupling is strictly-renormalizable, while

if đ< 4 the theory can be strictly-renormalizable only if it is Abelian, but not 1/α. However, the

models with đ= 4 do not satisfy (3.22), so we cannot ensure that they are free of subdivergences,

even at d̂ = 1. Moreover, such models exist only in dimensions greater than 6. Indeed, it is easy

to see that n ≥ 2, đ= 4 and (3.22) imply

d̄ = 3n, d = 1 + 3n ≥ 7,

and (6.1) are automatically satisfied. The simplest example of this kind is the seven-dimensional

theory with n = 2, d̄ = 6. Its lagrangian reads, in symbolic form

L = LQ +
λ

Λ
7/2
L

F̃ 2F̄ +
λ′

Λ
11/2
L

D̄2F̄ 3 +
λ′′

Λ7
L

F̄ 4. (6.2)

Other examples of strictly renormalizable theories are the fixed points of the RG flow, which

are exactly weighted scale invariant. Following [7], we can attempt to construct four dimensional

weighted scale invariant theories in the large N expansion, where N is the number of fermion
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copies. However, we can easily prove that this attempt fails in the presence of gauge fields.

Consider the model with lagrangian

L =

N∑

i=1

ψ̄i

(
D̂/+

D̄/ n

Λn−1
L

)
ψi. (6.3)

For simplicity we assume that the gauge field is Abelian, but the argument generalizes straightfor-

wardly to non-Abelian gauge fields. The gauge fields do not have a kinetic term, which is provided

by a one-loop diagram. Since the gauge-field propagator is dynamically generated, the regularity

conditions (3.22) might have to be replaced by more sophisticated restrictions. We assume (6.1)

to ensure that Feynman diagrams are free of IR divergences. We study under which conditions

the theory (6.3) is renormalizable in the form (6.3). Observe that if d̄ > 1 there always exist

counterterms of the form

1

Λn−1
L

N∑

i=1

ψ̄iFµ̄ν̄σ
µ̄ν̄D̄/ n−2ψi, (6.4)

that make the theory (6.3) not renormalizable. Then we must require d̄ = 1, so that the coun-

terterms (6.4) are trivial. However, this condition is incompatible with (6.1).

We conclude that Lorentz violating gauge theories with strictly renormalizable gauge couplings

are problematic at n > 1.

7 Proca theories

We conclude considering Proca versions of our theories and study the UV behaviors of their

propagators. Instead of being gauge-fixed, now the lagrangian (3.7) is equipped with a mass term

Lm =
m2

2

(
Â2 + Āζ̃ (ῡ) Ā

)

for the gauge fields, where ζ̃ is a polynomial of degree n− 1. At the free-field level, acting with a

derivative on the field equations we get the identity

∂̂ · Â+ ζ̃ (ῡ) ∂̄ · Ā = 0,

which kills one degree of freedom.

Expressing the propagator of LQ + Lm in the form (3.15) we find

u=
1

D(1, η) +m2
, v =

1

D(η̃, τ) +m2ζ̃
, r =

η

m2
(
ηD(1, ζ̃) +m2ζ̃

) ,

s=
ur

η

(
ηD(1, η) +m2ζ̃

)
, t =

vr

η

(
ηD(η̃, τ) +m2τ̃

)
.
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While u and v have regular behaviors, we have

r, s, t ∼
1

m2k̂2
, for k̂2 → ∞, r, s, t ∼

1

m2ζ̃k̄2
, for k̄2 → ∞.

We see that the large-momentum behaviors of u and v agree with weighted power counting,

but those of r, s and t dot not. We conclude that the Lorentz violating Proca theories are not

renormalizable.

8 Conclusions

In this paper we have constructed Lorentz violating gauge theories that can be renormalized by

weighted power counting. The theories contain higher space derivatives, but are arranged so that

no counterterms with higher time derivatives are generated by renormalization. The absence of

spurious subdivergences privileges the models where spacetime is split into space and time. We

have focused on the simplest class of models, leaving the general classification of renormalizable

theories to a separate paper.

If Lorentz invariance is violated at high energies there remains to explain why it should be

recovered at low energies, since generically renormalization makes the couplings run independently

and there is no apparent reason why the parameters of the low-energy theory should belong to the

Lorentz invariant surface. It is of course possible to restore Lorentz invariance at low energies by

means of a fine tuning, which is easier to justify when the Lorentz invariant surface is RG stable.
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Appendix A: Classification of the quadratic terms

In this appendix we derive the form (3.7) of the quadratic lagrangian LQ. It contains all terms

of weights ≤đ, constructed with two field strengths and possibly covariant derivatives. Clearly

there exists a single such term with two F̂ ’s, that is F̂ 2
µν . Consider now the terms constructed

with two F̄ ’s and possibly derivatives D̄. We start from

Fµ̄ν̄Dλ̄ · · ·Dτ̄Fρ̄σ̄ (A.1)

and study all possible contractions. Up to addition of vertices, we can freely commute the covariant

derivatives, since [Dᾱ,Dβ̄ ] = gFᾱβ̄. From now on every formula of this appendix is meant up to
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vertices and total derivatives. Clearly, contracting four derivatives of (A.1) with the indices

µ̄, ν̄, ρ̄, σ̄ we obtain a vertex. Contracting two derivatives with field-strength indices we obtain

Ip ≡ Fµ̄ν̄(D̄
2)pDρ̄Dµ̄Fρ̄ν̄ .

Using the Bianchi identity on Dµ̄Fρ̄σ̄ we easily get

Ip =
1

2
Fµ̄ν̄(D̄

2)p+1Fµ̄ν̄ .

This is the unique independent contraction of (A.1). By weighted power counting, p can be at

most 2n− 3. The terms of this type are those corresponding to the function τ of (3.7).

Next, consider terms with two F̄ ’s and derivatives D̄ and D̂. By O(1, d̂ − 1) invariance these

terms can contain two D̂’s, which must be contracted among themselves, or no D̂, which is the

case already considered. Arguing as before, we get new terms of the form

I ′

p =
1

2
Fµ̄ν̄D̂

2(D̄2)pFµ̄ν̄ , p ≤ n− 2,

which correspond to the function ξ in (3.7).

The terms with one F̄ and one F̃ are

I ′′

p = Fµ̂ν̄Dµ̂(D̄
2)pDσ̄Fν̄σ̄.

Using the Bianchi identities we get I ′′

p = −I ′

p, therefore nothing new. The terms with two F̃ ’s are

I ′′′

p = Fµ̂ν̄Dλ̄1 · · ·Dλ̄2p+2
Fµ̂σ̄.

No D̂ derivatives can have place here, by weighted power counting. Contracting two derivatives

with the field-strength indices ν̄ and σ̄ we get the unique new contraction

I ′′′

p − I ′′

p = Fµ̂ν̄(D̄
2)p+1Fµ̂ν̄ , p ≤ n− 2, (A.2)

which gives the terms corresponding to η in (3.7). Finally, it is easy to see that no term with one

F̂ and one F̃ , or one F̂ and one F̄ , are allowed by weighted power counting.

Appendix B: Absence of spurious subdivergences

In this appendix we study the spurious subdivergences. We first need to classify the lagrangian

terms that contain derivatives ∂̂. We know that no term can contain more than two ∂̂’s. Moreover,

vertices with two ∂̂’s cannot contain fermions and ghosts, because their weights would exceed đ.

For the same reason, they cannot contain more than one scalar and do not depend on Â. Moreover,
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vertices with one ∂̂ cannot contain fermions. Summarizing, ∂̂-dependent vertices have necessarily

the forms

X1 ≡ ∂̂f1(Â, Ā, ϕ, C̄, C, ∂̄), X2 ≡ f2(Ā, ϕ, ∂̄)(∂̂Ā)(∂̂Ā), X ′

2 ≡ f ′2(Ā, ϕ, ∂̄)(∂̂
2Ā), (B.1)

where the ∂̄-derivatives are allowed to act anywhere, as well as the ∂̂-derivative in X1. The

functions f1, f2 and f ′2 are constrained by locality, weighted power counting and BRST invariance,

and their structure depends on n. However, their form is not relevant for the proof that follows.

The quadratic terms that do not fall in the classes (B.1) are

(∂̂Â)2, C̄∂̂2C, ϕ∂̂2ϕ, ψ̄∂̂ψ. (B.2)

Every other lagrangian term is ∂̂-independent.

Our purpose is to derive sufficient conditions to ensure that all integrals are free of subdiver-

gences, once counterterms for proper divergent subdiagrams are included. In particular, spurious

subdivergences must be absent, because they do not correspond to any subdiagram, so there exist

no counterterms that can subtract them. We work in the Feynman gauge (3.17)-(3.18) and as-

sume that the spacetime dimension is even, together with d̂ = 1, n =odd. We use the dimensional

regularization and proceed inductively in the loop order. The proof is considerably involved, and

we have to split it in three steps.

First step: structure of integrals Consider a generic N -loop integral

∫
dk̂1

(2π)d̂

∫
dd̄k̄1

(2π)d̄
· · ·

∫
dk̂N

(2π)d̂

∫
dd̄k̄N

(2π)d̄
, (B.3)

with loop momenta (k1, . . . , kN ). We have to prove that all subintegrals, in all parametriza-

tions (k′1, . . . , k
′

N ) of the momenta, are free of subdivergences. By the inductive assumption, all

subintegrals
M∏

j=1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄
, (B.4)

where M < N , are subtracted, if divergent, by appropriate counterterms. We need to consider

integrals where some hatted integrations are missing and the corresponding barred integrations

are present, and/or viceversa. Start from subintegrals Ī containing (B.4) and one integral

∫
dd̄k̄′a
(2π)d̄

(B.5)

for some a, but no integration over k̂′a. The form of propagators (3.18) and (3.16) ensures that

differentiating Ī a sufficient number of times with respect to k̂′a the subintegral Ī becomes overall
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convergent. Thus, its overall (spurious) Ī-subdivergence is polynomial in k̂′a. However, in the

complete integral (B.3) Ī must eventually be integrated over k̂′a. This operation kills the spurious

subdivergence, because in dimensional regularization the integral of a polynomial vanishes.

Next, consider subintegrals Ī containing (B.4) and a product

∏

a

∫
dd̄k̄′a
(2π)d̄

,

but no integration over the corresponding k̂′as. Then there exists a combination of derivatives

∏

a

∂na

∂k̂′ naa

,

for suitable nas, that cures not only the overall divergence of Ī, but also its subdivergences (e.g.

those of type (B.5)). Thus, the spurious subdivergences are a combination of contributions, each

of which is local in at least one k̂′a: again, such spurious subdivergences are killed by the integrals

over the k̂′as.

We see that we do not need to worry about subintegrals Ī containing an excess of barred

integrations. On the other hand, we do need to worry about subintegrals Î containing an excess

of hatted integrations or excesses of both types. We start from the subintegrals containing only

hatted integrations.

Second step: k̂-subintegrals Consider the k̂-subintegral of a diagram G with L loops, v1

vertices of type X1, v2 vertices of type X2 and X ′

2, ∆v vertices of other types, IB internal bosonic

legs (including ghosts) and IF internal fermionic legs. We have seen in section 3 that every bosonic

propagator behaves at least like 1/k̂2, for k̂ large, while the fermionic propagator behaves like 1/k̂.

The k̂-subintegral behaves like

∫
dLd̂k̂

k̂v1+2v2

(k̂2)IB k̂IF
, ω̂(G) = Ld̂+ v1 + 2v2 − 2IB − IF , (B.6)

ω̂(G) denoting its degree of divergence. Using L = 1 + IB + IF − v1 − v2 −∆v, we can write

ω̂(G) = L(d̂− 2) + 2 +∆ω̂(G), ∆ω̂(G) = IF − v1 − 2∆v.

We know that no vertices with four or more fermionic legs are allowed in 1/α theories. Because

of this fact, the fermionic internal lines must end at different vertices of the set ∆v. Therefore,

we have IF ≤ ∆v and ∆ω̂(G) ≤ 0. Then the integral (B.6) is certainly convergent for d̂ = 1 and

L > 2. Instead, for d̂ > 1 there exist divergent diagrams with arbitrarily many loops.

From now on we assume d̂ = 1. We must consider the one- and two-loop diagrams more

explicitly. Observe that no logarithmic divergence exists at one loop in odd (i.e. d̂) dimensions.
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More precisely, ∫

dd̂k̂
k̂µ̂1 · · · k̂µ̂2m−1

(k̂2)m

is UV convergent by symmetric integration. Here we have kept d̂ generic to emphasize that it is

continued to complex values. Moreover, power-like divergences are absent using the dimensional-

regularization technique.

We remain only with two-loop diagrams. Setting d̂ = 1 and L = 2 we find ω̂(G) = IF −

v1 − 2∆v ≤ −v1 − ∆v ≤ 0. The potential divergence is logarithmic and can only occur for

IF = v1 = ∆v = 0. Let us leave the quadratic terms (B.2) aside for a moment. Divergent

diagrams can contain only vertices of types X2 and X ′

2. Moreover, the ∂̂’s of X2 and X ′

2 must act

on internal legs and the external momenta can be set to zero. The internal legs can only be of

type ĀĀ, plus possibly one internal ϕ-leg. At L = 2 we have v2 + 1 internal legs, so the diagram

has the form of Fig. 1, (a) or (b). However, diagram (a) is the product of two one-loop diagrams,

so it does not diverge. Consider now the vertex F of diagram (b). It can be an X2 or an X ′

2.

The two k̂’s shown in the figure are those belonging to F. If F is an X2, the vertex and the two

propagators attached to it make in total k̂ · k̂/(k̂2)2 = 1/k̂2. The same conclusion holds if F is an

X ′

2. Therefore, the divergent part of diagram (b) coincides (apart from external factors) with the

one of the modified diagram where F is suppressed. Similarly, we can suppress the vertices A, B,

C, D, E and G, and reduce to the diagram of Fig. 1, (b′), which has the form

∫
dd̂k̂ dd̂p̂

P4(k̂, p̂)

k̂2p̂2(k̂ + p̂)2
, (B.7)

where P4(k̂, p̂) is a scalar degree-4 polynomial in k̂ and p̂. Clearly, P4(k̂, p̂) can also be written as

a degree-2 polynomial P2 in k̂2, p̂2 and (k̂+ p̂)2. We see that P2 is a linear combination of terms,

each of which simplifies at least one denominator of (B.7), leaving a sum of integrals of the form

∫
dd̂k̂ dd̂p̂

ak̂2 + bp̂2 + ck̂ · p̂

k̂2p̂2

(possibly after a k̂- or p̂-translation), where a, b and c are constants. The first two contributions

are zero in dimensional regularization, while the third contribution factorizes into the product

of two one-loop integrals, which cannot have logarithmic divergences for the reasons explained

before.

The two-leg vertices (B.2) leave ω̂(G) unchanged. On the other hand, we have seen that

potentially divergent diagrams have only Ā- or ϕ-internal legs, so only the scalar term of (B.2)

can be used. However, it simplifies a scalar propagator, so we end up again with (B.7).
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Diagram (a) Diagram (b) Diagram (b’)

A
B

C

D E

G
k

F
k

Figure 1: Analysis of the spurious subdivergences

Third step: mixed subintegrals Now we consider subintegrals of the form

L∏

i=1

∫
dk̂′i

(2π)d̂



L+M∏

j=L+1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄


 , (B.8)

which are “incomplete” in L barred directions. The complete subintegrals in square brakets can

be regarded as products of (nonlocal, but one-particle irreducible) “subvertices”. Let ṽr be the

number of subvertices of type r, with ñÂr, ñĀr, ñCr, ñfr, ñsr external legs of types Â, Ā, ghost,

fermion and scalar, respectively. Since subvertices are at least one-loop, each leg has a factor g

attached to it (see (3.24)). Thus, the weight δ̃r of the subvertex of type r satisfies the bound

δ̃r ≤ đ − ñÂr −
ñĀr
n

− ñCr −
3

2
ñfr − ñsr. (B.9)

Now we repeat the argument leading to (B.6) for diagrams that may contain such subvertices.

We have

ω̂(G) = L+ v1 + 2v2 − 2IB − IF +
∑

r

ṽr δ̃r. (B.10)

Moreover, the topological identity L− I + V = 1 gives

L = 1 + IB + IF − v1 − v2 −∆v −
∑

r

ṽr. (B.11)

We can write ∆v = ∆vB+∆vF , to distinguish the ∆vB vertices containing no fermionic legs from

the ∆vF vertices containing two fermionic legs. Counting the fermionic legs of our subdiagram

we have

2IF + EF = 2∆vF +
∑

r

ṽrñfr, (B.12)

where EF denotes the number of external fermionic legs. Combining (B.10), (B.11) and (B.12)

we get

ω̂(G) = 2− L− v1 − 2∆vB −∆vF −
EF
2

+
∑

r

ṽr

(
δ̃r − 2 +

1

2
ñfr

)
. (B.13)
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We know that in the realm of the usual power counting, odd-dimensional integrals do not have

logarithmic divergences. In the realm of the weighted power counting, such a property generalizes

as follows: if d̂ = 1, d =even and n =odd, then odd-dimensional (weighted) integrals do not have

logarithmic divergences. The proof is simple and left to the reader. Thus, the case L = 1 is

excluded. Sufficient conditions to have ω̂(G) ≤ 0 are then

δ̃r − 2 +
1

2
ñfr < 0 for every r. (B.14)

Indeed, if (B.14) hold (B.13) gives ω̂(G) < 0 unless subvertices are absent, which is the case

considered previously.

Finally, the most general mixed subintegrals have the form

L∏

i=1

∫
dk̂′i

(2π)d̂



L+M∏

j=L+1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄

L+M+P∏

m=L+M+1

∫
dd̄k̄′m
(2π)d̄


 .

They can be treated as above, considering the integrals between square brakets as subvertices.

Now formula (B.13) has an extra −P on the right-hand side, since P hatted intergations are

missing. The situation, therefore, can only improve. The only caveat is that now L can also be

one (if P is odd). Even in that case, however, 2− L− P ≤ 0, since P ≥ 1.

Restrictions Using (B.9), sufficient conditions for (B.14) are

đ − ñÂ −
ñĀr
n

− ñCr − ñfr − ñsr < 2.

The worst case is ñĀr = 2, ñÂ = ñCr = ñfr = ñsr = 0, which gives

đ < 2 +
2

n
.

This condition is always satisfied in four dimensions (for n > 1). Summarizing, we have been able

to prove the absence of spurious subdivergences under the sufficient conditions (3.22).

Some final remarks are in order. The conclusions of this appendix do not apply to the case

n = 1, because then τ , η and ζ are constant and ξ vanishes, so the propagators (3.15) are regular.

Thus for n = 1 all types of Lorentz breakings are allowed, which is well-known. Since (3.22)

are sufficient, but not necessary, conditions, we cannot exclude all models that violate them. In

specific cases other types of cancellations can take place, because of symmetries or peculiar types

of expansions or resummations (e.g. large N). Generically speaking, even some theories with

d̂ > 1, n > 1 might work, although we are unable to give explicit examples of that kind right now.
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