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Abstract

If Lorentz symmetry is violated at high energies, interactions that are usually non-renormalizable

can become renormalizable by weighted power counting. Recently, a CPT invariant, Lorentz violating

extension of the Standard Model containing two scalar-two fermion interactions (which can explain neutrino

masses) and four fermion interactions (which can explain proton decay) was proposed. In this paper we

consider a variant of this model, obtained suppressing the elementary scalar fields, and argue that it

can reproduce the known low energy physics. In the Nambu–Jona-Lasinio spirit, we show, using a large

Nc expansion, that a dynamical symmetry breaking takes place. The effective potential has a Lorentz

invariant minimum and the Lorentz violation does not reverberate down to low energies. The mechanism

generates fermion masses, gauge-boson masses and scalar bound states, to be identified with composite

Higgs bosons. Our approach is not plagued by the ambiguities of approaches based on non-renormalizable

vertices. The low-energy effective action is uniquely determined and predicts relations among parameters

of the Standard Model.
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1 Introduction

Lorentz symmetry is a basic ingredient of the Standard Model of particle physics. However, the

possibility that it might be violated at very high energies is still open [1, 2] and has inspired

several investigations about the new physics that could emerge, at low and high energies [3].

In quantum field theory, the violation of Lorentz symmetry at high energies allows us to

renormalize otherwise non-renormalizable interactions [4, 5, 6], such as two scalar-two fermion

vertices and four fermion vertices. Terms with higher space derivatives modify the dispersion

relations and generate propagators with improved ultraviolet behaviors. A “weighted” power

counting, which assigns different weights to space and time, allows us to prove that the theory

is renormalizable and consistent with (perturbative) unitarity, namely that no counterterms with

higher time derivatives are generated.

Using these tools, we have recently proposed [7] a Standard Model extension with the following

properties: it is CPT invariant, but Lorentz violating at high energies, it is unitary and renor-

malizable by weighted power counting; it contains the vertex (LH)2/ΛL, which gives Majorana

masses to the neutrinos after symmetry breaking, but no right-handed neutrinos, nor other extra

fields; it contains four fermion vertices, which can explain proton decay. The scale ΛL ∼ 1014GeV

is interpreted as the scale of Lorentz violation. Below that scale, Lorentz symmetry is recovered.

The model has two “weighted” dimensions, which means that at high energies its power count-

ing resembles the one of a two-dimensional quantum field theory. In particular, only the four

fermion vertices are strictly renormalizable, while the gauge and Higgs interactions are super-

renormalizable. This means that at energies & ΛL all gauge bosons and the Higgs field become

free and decouple, and what remains is a (Lorentz violating) four fermion model in two weighted

dimensions. It is then natural to inquire what physical effects are induced, at lower energies, by a

dynamical symmetry breaking mechanism, in the Nambu–Jona-Lasinio spirit [8]. If we suppress

the elementary scalar field, we obtain a model that is candidate to reproduce the observed low

energy physics, predict relations among otherwise independent parameters, and possibly predict

new physics detectable at LHC.

Adapting an old suggestion due to Nambu [9], Miransky et al. [10] and Bardeen et al. [11]

to our case, we explore the following scenario. When gauge interactions are switched off, the

dynamical symmetry mechanism produces fermion condensates 〈q̄q〉. The effective potential can

be calculated in the large Nc limit and has a Lorentz invariant (local) minimum, which gives

masses to the fermions. Massive scalar bound states (composite Higgs bosons) emerge, together

with Goldstone bosons [12]. At a second stage, gauge interactions are switched back on, so the

Goldstone bosons associated with the breaking of SU(2)L × U(1)Y to U(1)Q are “eaten” by the

W± and Z bosons, which become massive.

The low-energy effective action is Lorentz invariant and uniquely determined. It predicts
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relations among parameters of the Standard Model. The naivest predictions are obtained in the

leading order of the large Nc expansion, with gauge interactions switched off, and considering

just the top and bottom quarks. In this simplified situation neutral composite Higgs bosons

have masses ∼ 2mt and ∼ 2mb, and charged Higgs bosons have masses ∼
√
2mt. The ordinary

single-Higgs situation can be retrieved choosing the four fermion vertices appropriately, namely

squaring the Yukawa coupling to the Higgs field. More complicate formulas relate mt to the W -

and Z-masses. The leading order of the 1/Nc expansion carries a large theoretical error, say

50%. Curiously, the relation between mt and the Fermi constant turns out to be in “too-good”

agreement with the experimental value.

The Nambu–Jona-Lasinio mechanism induces low-energy physics from otherwise highly sup-

pressed interactions. Since our model is Lorentz violating at high energies, we can worry that

the Lorentz violation might be reverberated down to low energies. We show that this does not

happen, since the minimum of the effective potential is Lorentz invariant and no Lorentz violating

interactions are drawn down to low energies.

The advantage of our approach with respect to ordinary Nambu–Jona-Lasinio approaches

is that our model is renormalizable, so its high energy behavior is given, and depends on a

certain finite set of free parameters. The predictivity of non-renormalizable approaches [10, 11]

is questionable [13]. For example in ref. [14], the complete set of independent Standard Model

parameters was generated introducing other non-renormalizable terms, besides the usual four

fermion vertices. Our model, on the contrary, has an unambiguous high-energy behavior, and can

be used to justify results previously obtained in uncertain theoretical frameworks. With respect

to other approaches to composite Higgs bosons, such as technicolor [15], or the introduction of

extra heavy gauge bosons to renormalize four fermion vertices [13], it has the advantage of being

conceptually more economic.

The paper is organized as follows. In section 2 we recall the model of ref. [7], present a

variant with a simplified gauge sector and introduce the scalarless model. In section 3 we study

the dynamical symmetry breaking in Lorentz violating four fermion models. In section 4 we study

the phenomenological consequences of this mechanism in our scalarless model, in particular the

generation of fermion masses, bound states, gauge-boson masses, and so on. In section 5 we

study Goldstone’s theorem in Lorentz violating theories. Section 6 contains our conclusions. In

Appendix A we show that a suitable weight rearrangement simplifies the gauge-field sector of

our model (but produces new vertices in the matter sector). In Appendix B we prove certain

mathematical relations that are used in the paper. We work in Minkoswki spacetime and Wick

rotate to Euclidean space when necessary.
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2 The model

We assume that invariance under rotations in preserved. We decompose coordinates xµ as (x̂µ, x̄µ),

where x̂µ, or simply x̂, denotes the time component (keeping an index is useful to use the dimen-

sional regularization), and x̄µ denote the space components. Similarly, we decompose the space

time index µ as (µ̂, µ̄), the partial derivative ∂µ as (∂̂µ, ∂̄µ), and gauge vectors Aµ as (Âµ, Āµ).

The Lorentz violating theory is renormalizable by weighted power counting [4, 5, 6] in đ= 1+3/n

“weighted dimensions”, where energy has weight 1 and the space components of momenta have

weight 1/n. Scalar propagators have weight −2 and fermion propagators have weight −1. Details

on gauge fields are given in the Appendix.

The “Standard-Extended Model” of ref. [7] has n = 3 and therefore weighted dimension 2.

The lagrangian of its simplest version reads

L = LQ + Lkinf + LH + LY − ḡ2

4ΛL
(LH)2 −

5
∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I γ̄χI) +
Yf
Λ2
L

ψ̄ψψ̄ψ − g

Λ2
L

F̄ 3, (2.1)

where

LQ=
1

4

∑

G

(

2FGµ̂ν̄η
G(Ῡ)FGµ̂ν̄ − FGµ̄ν̄τ

G(Ῡ)FGµ̄ν̄
)

,

Lkinf =

3
∑

a,b=1

5
∑

I=1

χ̄aI i

(

δabD̂/− bIab0

Λ2
L

D̄/ 3 + bIab1 D̄/

)

χbI ,

LH = |D̂µ̂H|2 − a0
Λ4
L

|D̄2D̄µ̄H|2 − a1
Λ2
L

|D̄2H|2 − a2|D̄µ̄H|2 − µ2H |H|2 − λ4ḡ
2

4
|H|4,

LY =−ḡΩiH i + h.c., Ωi =
3
∑

a,b=1

Y ab
1 L̄ai`bR + Y ab

2 ūaRQ
bj
L ε

ji + Y ab
3 Q̄aiL d

b
R, (2.2)

i,j are SU(2)L indices, χa1 = La = (νaL, `
a
L), χ

a
2 = QaL = (uaL, d

a
L), χ

a
3 = `aR, χa4 = uaR and χa5 = daR.

Moreover, νa = (νe, νµ, ντ ), `
a = (e, µ, τ), ua = (u, c, t) and da = (d, s, b). The sum

∑

G is over

the gauge groups SU(3)c, SU(2)L and U(1)Y , and the last three terms of (2.1) are symbolic.

Finally, Ῡ ≡ −D̄2/Λ2
L, where ΛL is the scale of Lorentz violation, and ηG, τG are polynomials of

degree 2 and 4, respectively. Gauge anomalies cancel out exactly as in the Standard Model [7].

The “boundary conditions” such that Lorentz invariance is recovered at low energies are that bIab1

tend to δab and a2, η
G and τG tend to 1 (four such conditions can be trivially fulfilled normalizing

the gauge fields and the space coordinates x̄).

The dispersion relations are modified, because propagators contain higher powers of the space

components of momenta. This improves their ultraviolet behaviors and makes the theory renor-

malizable. Since the weight of a scalar field vanishes in đ= 2 a constant ḡ of weight 1/2 is attached

to the scalar legs to ensure renormalizability. The gauge coupling g has weight 1. The weights
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of all other parameters are determined so that each lagrangian term has weight 2 (=đ). We have

neutrino masses ∼ v2/ΛL, v being the Higgs vev, assuming that all other parameters involved in

the vertex (LH)2/ΛL are of order 1. Reasonable estimates of the neutrino masses (a fraction of

eV) give ΛL ∼ 1014GeV.

An alternative model can be obtained rearranging the weight assignments as explained in

Appendix A, which allows us to simplify the gauge sector. Specifically, we replace ηG with unity

and τG with a polynomial of degree 2, which we denote by τ ′G. In a suitable “Feynman” gauge

the gauge-field propagator becomes reasonably simple to be used in practical computations. The

price is a more complicated Higgs sector, because g and ḡ get a lower weight (1/3). The simplest

version of the alternative model (see the Appendix for details) has lagrangian

L′ = L′
Q + Lkinf + L′

H + LY − ḡ2

4ΛL
(LH)2 −

5
∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I γ̄χI) +
Yf
Λ2
L

ψ̄ψψ̄ψ − g

Λ2
L

F̄ 3

− 1

Λ2
L

gḡψ̄ψF̄H − 1

Λ2
L

(

ḡ3ψ̄ψH3 + ḡ2ψ̄D̄ψH2 + ḡψ̄D̄2ψH
)

− 1

Λ4
L

(

gD̄2F̄ + g2F̄ 2
)

H†H, (2.3)

where

L′
Q=

1

4

∑

G

(

2FGµ̂ν̄F
G
µ̂ν̄ − FGµ̄ν̄τ

′G(Ῡ)FGµ̄ν̄
)

,

L′
H =LH − λ

(3)
4 ḡ2

4Λ2
L

|H|2|D̄µ̄H|2 − λ
(2)
4 ḡ2

4Λ2
L

|H†D̄µ̄H|2 − ḡ2

4Λ2
L

[

λ
(1)
4 (H†D̄µ̄H)2 + h.c.

]

− λ6ḡ
4

36Λ2
L

|H|6,

Scalarless model Our scalarless Standard-Extended Model reads

LnoH = L′
Q + Lkinf −

5
∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I γ̄χI) +
Yf
Λ2
L

ψ̄ψψ̄ψ − g

Λ2
L

F̄ 3, (2.4)

and is obtained suppressing the Higgs field in (2.3). Obviously, the gauge anomalies of (2.4) still

cancel. We see that the simplification is considerable.

If we suppress the Higgs field in (2.1), the only difference is that LQ appears instead of L′
Q in

(2.4). We keep the simpler model (2.4), but the conclusions of this paper do not depend on this

choice.

At high energies gauge and Higgs fields become free and decouple, because their interactions

are super-renormalizable, so all theories (2.1), (2.3) and (2.4) become a four fermion model in two

weighted dimensions, with lagrangian

L4f =

3
∑

a,b=1

5
∑

I=1

χ̄aI i

(

δab∂̂/− bIab0

Λ2
L

∂̄/ 3 + bIab1 ∂̄/

)

χbI +
Yf
Λ2
L

ψ̄ψψ̄ψ. (2.5)

We have kept also the terms multiplied by bIab1 , since they are necessary to recover Lorentz

invariance at low energies.

5



09
A

1
R

en
or

m
Our purpose is to investigate whether (2.4) can describe the known low-energy physics by

means of a dynamical symmetry breaking mechanism triggered by the four fermion vertices,

where some quark-antiquark bilinears acquire expectation values.

Let us list the candidate condensates. Observe that left- and right-handed spinors transform

in the same way under spatial rotations. Thus, the most general fermionic bilinears that are

scalars under spatial rotations are

(ψ†
1Rψ2L), (ψc†1Lψ2L), (ψc†1Rψ2R), (2.6)

and their Hermitian conjugates, which are Lorentz invariant, plus

(ψ†
1Lψ2L), (ψ†

1Rψ2R), (ψc†1Rψ2L), (ψ†
1Rψ

c
2L), (2.7)

which violate both Lorentz symmetry and CPT. We see that every fermion condensate or mass

term that violates Lorentz symmetry violates also CPT. Thus, at low energies the dynamical

symmetry breaking can either preserve Lorentz symmetry, or break it together with CPT. We

show that the effective potential has a Lorentz invariant minimum.

Consider now the four fermion vertices. The Fierz identity can be used to convert the struc-

ture (ψ†
1σiψ2)(ψ

†
3σiψ4) into the structure (ψ†

1ψ
′
2)(ψ

†
3ψ

′
4). Thus, the most general U(1)L × U(1)R-

invariant, rotationally invariant four fermion interactions are

(ψ†
1Lψ2R)(ψ

†
3Rψ4L), (ψ†

1Lψ2L)(ψ
†
3Lψ4L), (ψ†

1Rψ2R)(ψ
†
3Rψ4R), (ψ†

1Lψ2L)(ψ
†
3Rψ4R).

(2.8)

The Lorentz invariant combinations are

(ψ†
1Lψ2R)(ψ

†
3Rψ4L), (ψ†

1Lψ
c
2L)(ψ

c†
3Lψ4L), (ψ†

1Rψ
c
2R)(ψ

c†
3Rψ4R), (ψ†

1Lψ
c
2R)(ψ

†c
3Lψ4R).

All combinations are CPT invariant. Lorentz violating four fermion vertices remain highly sup-

pressed, while the Lorentz invariant ones determine interactions of the low energy effective theory.

At energy scales much smaller than ΛL the low-energy effective theory resembles a Standard

Model with one or more Higgs doublets. However, the masses of composite Higgs bosons, as well

as their self-couplings and couplings to quarks and gauge fields, are not free, but unambiguously

determined by the model (2.4).

Predictivity The ordinary Nambu–Jona-Lasinio framework [8] makes use of non-renormalizable

interactions. The dynamical symmetry breaking in scalarless models was studied in ref.s [10,

11]. The predictivity of this approach was questioned in ref. [14], where it was shown that the

unknown high-energy physics, duly parametrized, can add enough extra parameters to the low-

energy effective action, and make it completely equivalent to the Standard Model (with elementary
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Higgs field), equipped with all its free constants. The virtue of our approach is that the high-

energy physics of our model is unambiguous, encoded in (2.5). Since (2.5), as well as (2.4), (2.1)

and (2.3), are renormalizable by weighted power counting, we do not need to consider other sectors

of unknown physics beyond them. In particular, (2.4) does not contain the interactions used in

[14] to show the predictivity loss. Thus, our model is predictive, and actually provides a viable

renormalizable environment for the Nambu–Jona-Lasinio mechanism.

On the other hand, we have a new source of worry. The dynamical symmetry breaking is a

non-perturbative mechanism to generate low-energy effects from otherwise suppressed high-energy

interactions. In our model (2.4) this mechanism is triggered by four fermion vertices, which are

renormalizable only thanks to the Lorentz violation. The scale of Lorentz violation ΛL cannot

be treated as a cut-off in an otherwise renormalizable Lorentz invariant theory (in that case, it

would be possible to completely recover Lorentz symmetry at low energies in an obvious way).

The dynamical symmetry breaking might reverberate the Lorentz violation down to low energies.

If that happened, our scalarless model (2.4) would be in trouble. One of our goals is to prove that

the violation of Lorentz symmetry remains highly suppressed even when the dynamical symmetry

breaking takes place. Crucial for the proof is the fact, noted above, that Lorentz violating fermion

condensates violate also CPT. In some sense, this raises the price of low-energy Lorentz violation

enough to disfavour it.

CPT In this paper, as in [7], we assume exact CPT invariance. While (in local, Hermitian)

theories a CPT violation implies also the violation of Lorentz symmetry, the converse is not true,

in general, except for special subclasses of terms, such as the fermionic bilinears (2.6) and (2.7).

Thus, we have to introduce two a priori different energy scales, a scale of Lorentz violation ΛL,

and a scale of CPT violation ΛCPT, with ΛCPT > ΛL. Our estimate ΛL ∼ 1014GeV is obtained

without using the recent bounds on Lorentz violation suggested by the analysis of γ-ray bursts

[16], which claim that the first correction

c(E) ∼ c

(

1− E

M̄

)

(2.9)

to the velocity of light involves an energy scale M̄ > 1.3·1018GeV. In the realm of local perturbative

quantum field theory, a dispersion relation giving (2.9) must contain odd powers of the energy,

therefore it must also violate CPT. Thus, we are lead to interpret the results of [16] as bounds on

ΛCPT = M̄ rather than ΛL. It is conceivable that there exists an energy region ΛL 6 E 6 ΛCPT

where Lorentz symmetry is violated but CPT is still conserved. Assuming ΛCPT > MP l, we

expect that this region spans at least four or five orders of magnitude. This argument justifies

our assumption of CPT invariance.
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3 Dynamical symmetry breaking

In this section we illustrate the dynamical symmetry breaking in a simple Lorentz violating four

fermion model. We show that there exists a Lorentz invariant minimum, and that the Lorentz

violation remains highly suppressed. In the next section we derive phenomenological consequences

for the scalarless model (2.4).

We consider the model

Lq =
N
∑

I=1

ψ̄I

(

γµi

(

∂̂µ + ∂̄µ − ∂̄µ
∂̄2

Λ2
L

)

−M

)

ψI − V2(M), (3.1)

in the leading order of the large N expansion. We have introduced real auxiliary fields ρ± and a

complex auxiliary field τ , such that, in the basis ψ = (ψL, ψR),

M =

(

τ ρ+ − ρ−

ρ+ + ρ− τ̄

)

, (3.2)

and

V2(M) =
Λ2
L

λ2
|τ |2 + Λ2

L

2g2+
ρ2+ +

Λ2
L

2g2−
ρ2− +

Λ2
L

g2+−

ρ+ρ−.

The four fermion vertices are obtained integrating ρ± and τ out. We keep only the combinations

of the form (ψ†
1Iψ2I)(ψ

†
3Jψ4J), which contribute to scalar intermediate channels in the leading

order.

We could introduce also parameters b0R, b0L and b1R, b1L in front of ∂̄/ 3 and ∂̄/, as in (2.5).

However, the ψ self-energy receives no renormalization to the lowest order. Thus, in our approx-

imation b1R and b1L must be set equal to 1, to have Lorentz invariance at low energies. We also

make the simplifying assumption b0R = b0L ≡ b0 and reabsorb b0 inside ΛL. The model (3.1) is

renormalizable as it stands in the leading order.

A non-vanishing τ vacuum expectation value gives the fermions a Dirac mass. On the other

hand, non-trivial ρ± expectation values correspond to Lorentz and CPT violating mass terms of

the form ψ̄Iγ
0ψI and ψ̄Iγ

0γ5ψI .

The M -effective potential V (M) can be calculated assuming that ρ± and τ are constants. The

leading contributions come from fermion loops with ρ± and τ external legs. We have

V (M) = V2(M) + iN

∫

d4p

(2π)4
ln det(−γµp′µ +M),

having defined

p̂′µ = p̂µ, p̄′µ = p̄µ
(

p̄2

Λ2
L

+ 1

)

. (3.3)

Using invariance under rotations, we can orient p̄′µ along the z direction. Then we find

det
(

−γµp′µ +M
)

= T+T−, T± ≡ |τ |2 − (p̂ − ρ+)
2 + (|p̄′| ± ρ−)

2.
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Splitting the integral as the sum of two integrals, one for each contribution T±, and translating

p̂, we find, after the Wick rotation,

V (M) = V2(M) + v(ρ−, τ) + v(−ρ−, τ), v(ρ, τ) = −N
∫ Λ d4p

(2π)4
ln
(

|τ |2 + p̂2 + (|p̄′|+ ρ)2
)

.

The integral is divergent and regulated with a cut-off Λ � ΛL. Observe that the corrections to

V2(M) are ρ+-independent.

We first work at ρ− = 0, find the tentative minimum and later prove that it does remain a

minimum once ρ− is switched on. Rescaling the momentum p to pΛL (and the cut-off Λ to Λ/ΛL)

and defining |σ|2 = |τ |2/Λ2
L, we find, up to an irrelevant additive constant,

V (0, τ) = Λ2
L

|τ |2
λ2

+ 2NΛ4
Lv(|σ|2),

where the function v is defined in Appendix B, formula (B.1). Differentiating once with respect to

τ , using (B.6) and subtracting the logarithmic divergence (which amounts to replace the cut-off

Λ with the dynamical scale µ), we obtain the gap equation

Λ3
RG =

Λ2
L

2

√

〈|τ |2〉 exp(12π2v̄′(〈|σ|2〉)) > 0, ΛRG = µ exp

(

− 2π2

λ2N

)

, (3.4)

for the non-trivial vacuum expectation value 〈|σ|2〉, where v̄′ is the finite function defined in (B.7).

Since ΛRG is a free parameter, 〈|σ|2〉 cannot be determined, and equation (3.4) just relates 〈|σ|2〉
and ΛRG. Choosing ΛRG appropriately, the gap equation has any solution 〈|σ|2〉 we like. This

arbitrariness is going to disappear from every other physical quantity. Observe that the τ -sector

is asymptotically free in the large N expansion.

The ratio 〈|σ|〉 = 〈|τ |〉/ΛL between the fermion mass 〈|τ |〉 and the scale of Lorentz violation is

very small. Typical values are 〈|τ |〉 ∼ mt ∼ 171GeV and ΛL ∼ 1014GeV, so 〈|σ|〉 ∼ 10−12. Thus,

it is meaningful to expand for 〈|σ|2〉 � 1, which can be done with the help of formula (B.9). The

gap equation becomes
Λ2
RG

Λ2
L

− 1 ∼ 1

2

〈|τ |2〉
Λ2
L

ln
Λ2
L

〈|τ |2〉 ∼ 10−22,

which exhibits a fine-tuning problem, associated with the quadratic divergences arising for large

ΛL. Nevertheless, this problem is isolated to the gap equation, since all other quantities we are

going to work with depend on ΛL only logarithmically.

Expanding around |τ |2 = 〈|τ |2〉, the potential at vanishing ρ± reads

V (0, τ) ∼ 2N |τ − 〈τ〉|2〈|τ |2〉v′′(〈|σ|2〉), (3.5)

which is finite and positive (see (B.4)). This proves that |τ |2 = 〈|τ |2〉 is indeed a minimum at

ρ± = 0. For 〈|σ|2〉 � 1 we have, using (B.8),

V (0, τ) ∼ |τ − 〈τ〉|2N〈|τ |2〉
8π2

ln
Λ2
L

〈|τ |2〉 .
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Finally, we switch the fields ρ back on and prove that |τ |2 = 〈|τ |2〉, ρ± = 0 remains a

minimum. The first derivative of V (ρ, τ) with respect to ρ, calculated at ρ = 0, must necessarily

vanish, since ρ is CPT odd. The same is true for the second derivatives with respect to ρ and τ .

On the other hand, the second derivative of v(ρ, τ) with respect to ρ, calculated at ρ = 0, is finite

and g-independent (and actually, “small”). Precisely, we find, using (B.10),

∂2v

∂ρ2

∣

∣

∣

∣

min

= −4N〈|τ |2〉v′′(〈|σ|2〉) < 0. (3.6)

Although negative, this is a finite quantity, independent of g−, so it can always be beaten by

V2(M), choosing the coupling g− sufficiently small. Under this assumption, |τ |2 = 〈|τ |2〉, ρ± = 0

does remain a minimum after switching ρ± on.

Using (B.8) again, the effective potential around the minimum reads for 〈|τ |2〉 � Λ2
L,

V (ρ, τ) ∼ Λ2
L

2g2+
ρ2+ +

Λ2
L

2g2−
ρ2−

(

1− g2−N

2π2
〈|τ |2〉
Λ2
L

ln
Λ2
L

〈|τ |2〉

)

+
Λ2
L

g2+−

ρ+ρ− + |τ − 〈τ〉|2N〈|τ |2〉
8π2

ln
Λ2
L

〈|τ |2〉 .

(3.7)

We see that the coefficient of ρ2− receives a very small correction, of the order 10−23, even taking

g2LN and g2−N of order 1. The Lorentz invariant minimum could be spoiled only if g2−N had an

inordinate value.

Before proceeding, a comment is in order. We have so far worked in the large N expansion,

concentrating on the leading order. In the case of the Standard Model, we are going to expand for

large number of colors Nc [11]. The reason is that, because of the intrinsically non-perturbative

nature of minima such as the one encoded in (3.4), we have control on them only in an expansion

of this type. For example, (3.4) implies, using (B.9),

− 1

2λ2N
= v′(〈|σ|2〉) = − 1

4π2
lnµ+ · · · .

The left-hand side of this expression is singular in the ordinary perturbative expansion (λ � 1),

but regular in the large N expansion (λN2 ∼ 1). At finite N , higher order corrections contain

arbitrarily high powers of λ2 lnµ (“leading logs”), plus powers of λ2 lnµ multiplied by one extra

factor of λ2 (“next-to-leading logs”), and so on. The resummation of leading logs involves only

one-loop results, and can be easily done. Useful references for such kind of resummations applied

to the Coleman-Weinberg mechanism are for example [17, 18]. However, it is known [17] that in

general the so-corrected potential does not exhibit the nice features of the one calculated in the

large N expansion. Most of the times the minimum suggested by a one-loop truncation (which

cannot be trusted unless it is combined with a large N expansion or a dimensional transmutation

[19]) is spoiled by the resummation, depending on the model. Although we can generically expect

that the exact potential will have a non-trivial minimum in most theories, here we want to have

some explicit control on the vacuum, for example check that it preserves Lorentz symmetry. At

present we can answer our questions only in the large N expansion.
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4 Masses and bound states in scalarless model

In this section we show how the masses of quarks and gauge bosons, as well as composite Higgs

bosons, emerge in the scalarless model (2.4). We start with the t-b model

Lq =
Nc
∑

I=1

ψ̄I

(

Γµi

(

∂̂µ + ∂̄µ − ∂̄µ
∂̄2

Λ2
L

)

−M

)

ψI − V2(M), (4.1)

where

M =

(

τ ρR

ρL τ †

)

, ψ =

(

QiL
QkR

)

,

Q = (t, b), i, j, . . . are indices of SU(2)L or SU(2)R, depending on the case, (Γµ)ijαβ = γµαβδ
ij , τ ,

ρR and ρL are 2×2 matrices of fields, and ρR, ρL are Hermitian. The most general SU(2)L ×
U(1)Y × U(1)B × U(1)A-invariant quadratic potential is

Λ−2
L V2(M) = tr[ττ †C] +

1

2g2L
tr[ρ2L] +

1

2g′2L
(tr[ρL])

2 + gklR tr[ρL]ρ
kl
R +

1

2
gklmnRR ρklRρ

mn
R , (4.2)

where Cij, gL, g′L, gklR and gklmnRR are constants, Cij and gklR are diagonal and gklmnRR are non-

vanishing only for k = l,m = n and k = n, l = m. Although we do not assume any “custodial”

SU(2)R-invariance, which is indeed violated by V2(M), note that Lq + V2(M) is invariant under

U(2)L×U(2)R (transforming τ , ρR and ρL appropriately), therefore so is the one-loop correction

to the effective potential.

We want to prove that

τ =

(

mt 0

0 mb

)

≡ τ0, ρL = ρR = 0. (4.3)

is a minimum, where mt > mb can be identified with the top and bottom masses, respectively, and

are related to the C entries (see below). The vacuum (4.3) breaks SU(2)L×U(1)Y ×U(1)B×U(1)A

to U(1)Q × U(1)B .

Again, we first work at ρL = ρR = 0, find the tentative minimum of the effective potential and

later prove that it remains a minimum when ρL and ρR are switched back on. At ρR = ρL = 0

the determinant of −γµp′µ +M is a Lorentz invariant polynomial of the four-vector p′µ and can

be easily calculated first at p̄′µ = 0, then replacing p̂2 with p′µp
′µ. We find

det(−γµp′µ +M) =

[

(p′2)2 − p′2t1 +
1

2
(t21 − t2)

]2

, t1 = tr[ττ †], t2 = tr[ττ †ττ †].

It is easy to prove the inequalities

t21 > t2 >
1

2
t21.
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The second inequality follows from tr[N2] > tr[N]2/2, where N is any Hermitian 2× 2 matrix. We

find the one-loop effective potential

V (τ) = Λ2
Ltr[ττ

†C] + 2NcΛ
4
L (v(r+) + v(r−)) ,

where

r± =
1

2Λ2
L

(

t1 ±
√

2t2 − t21

)

> 0,

and v(r) is defined in formula (B.1). The minimum (4.3) has r+ = m2
t /Λ

2
L ≡ rt, r− = m2

b/Λ
2
L ≡ rb.

Taylor-expanding v(r) around (4.3), we can write, neglecting additive constants,

V (τ) =Λ2
LVa(τ) + Λ4

LVb(τ),

Va(τ) = tr[ττ †C] + 2Λ2
LNc

(

r+v
′(rt) + r−v

′(rb)
)

,

Vb(τ) =Nc(r+ − rt)
2v′′(rt) +Nc(r− − rb)

2v′′(rb).

Setting the first derivatives of Va(τ) to zero gives the gap equations

ct = −2Ncv
′(rt), cb = −2Ncv

′(rb), (4.4)

where C = diag(ct, cb). Since ct and cb are free parameters, they can always be chosen so that the

gap equations have solutions. Now, (4.3) is a minimum of Vb(τ), because v′′(r) > 0. Moreover,

expanding Va(τ) around (4.3), we find

Va(τ) ∼ 2Nc
v′(rt)− v′(rb)

m2
t −m2

b

|mtτ21 +mbτ̄12|2 > 0.

The coefficient is positive because of (B.5). Thus, (4.3) is a minimum of the effective potential

at ρL = ρR = 0. There are of course flat directions mtδτ21 +mbδτ̄12 = 0 corresponding to the

charged Goldstone bosons (see below).

When ρL and ρR are switched on, we can proceed as in the previous section. The first

derivatives of the effective potential around (4.3) still vanish, by CPT invariance, as well as the

second derivatives with respect to one τ -entry and one ρ-entry. On the other hand, the second

derivatives with respect to ρ-entries are finite, and can always be made positive choosing the

arbitrary constants gL, g′L, gklR and gklmnRR in (4.2) appropriately. The reason why the second

ρ-derivatives have no UV divergences is that in the corresponding integrals γµp′µ is sandwiched

between two γ0’s. Then, using (B.11) with k = 2, we have, in Euclidean space,
∫

d4p

(2π)4
γ0γµp′µγ

0γνp′ν
(p′2 +m2

1)(p
′2 +m2

2)
=

∫

d4p

(2π)4
p̂2 − p̄′2 − 2p̂γ0γν̄ p̄′ν̄
(p′2 +m2

1)(p
′2 +m2

2)

=

∫ 1

0
dx
[

m2
1x+m2

2(1− x)
]

∫

d4p

(2π)4
1

(p′2 +m2
1x+m2

2(1− x))2
<∞. (4.5)

Thus, we have proved that (4.3) is indeed a minimum of the effective potential. Because of

the arbitrariness of ct and cb, the top and bottom masses cannot be predicted. However, they can

be related to other known quantities.
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Bound states We write τ = τ0+η. The contributions Γηη and Γρρ to the generating functional

Γ that are quadratic in η and ρ give the dynamically generated propagators of such fields, from

which we can read the bound states. We expect four massless scalars in the τ -sector, which are

the Goldstone bosons associated with the broken generators of SU(2)L×U(1)Y and U(1)A. Using

the solutions (4.4) to the gap equations, every Λ-divergences cancel out and both Γηη and Γρρ are

given by finite integrals. If we are interested in the low-energy limit with respect to ΛL, then we

can view our (finite, but Lorentz violating) integrals as usual Lorentz invariant integrals regulated

by the cut-off ΛL. Such a cut-off is Lorentz violating, but invariant under translations, spatial

rotations and CPT. Using power counting, it can be easily checked that the ΛL-divergences are

linear or logarithmic. However, linear divergences are absent by CPT and rotational invariance.

On the other hand, logarithmic divergences do not depend on the regulator. In particular, they

are Lorentz invariant, as are the finite parts. Thus, to study the large ΛL limit we can regulate

our integrals in the most convenient way, e.g. integrating suitable Lorentz invariant integrands

over momenta p 6 ΛL. Specifically, we can perform the replacement

∫

d4p

(2π)4
f(p,ΛL) →

∫ ΛL d4p

(2π)4
f(p,∞)

and use a symmetric integration to kill linear divergences.

We first calculate the leading contributions to Γηη . Using the tricks mentioned above, we find,

in momentum space,

Γηη = Nc

∑

i,j=t,b

{

2ηij(p)η̄ij(−p)(p2f ′ij −m2
jfij)−mimjfij [ηij(p)ηji(−p) + η̄ij(p)η̄ji(−p)]

}

,

the functions fij(p
2) and f ′ij(p

2) being defined in (B.12). Studying the poles of the effective

η-propagators we find:

1) two neutral massive bound states of squared masses

2m2
t

ftt
f ′tt

= 4m2
t , 2m2

b

fbb
f ′bb

= 4m2
b ;

2) two neutral and two charged massless states, which are the Goldstone bosons;

3) two charged massive bound states of squared masses

ftb

(

m2
t

f ′bt
+
m2
b

f ′tb

)

∼ 2m2
t .

We have used (B.13) for the approximate values.

The ρ–self-energies do not give bound states at low energies. Using tricks similar to those
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leading to (4.5) we find

Γρρ=− Λ2
L

2g2L
tr[ρ2L]−

Λ2
L

2g′2L
(tr[ρL])

2 − Λ2
Lg

kl
R tr[ρL]ρ

kl
R − Λ2

L

2
gklmnRR ρklRρ

mn
R +

+Nc

∑

i,j=t,b

[(

ρijLρ
ji
L + ρijRρ

ji
R

)

(

2p2f ′′ij +m2
i f

′
ij +m2

jf
′
ji

)

− 2ρijLρ
ji
Rmimjfij

]

.

The spatial squared momentum p2 appears instead of p2, which signals the absence of bound

states. Moreover, no gap equation reabsorbs the O(Λ2
L)-terms of V2(M). This means that all

corrections to V2(M) are negligible at low energies, so even if some ρ-bound state existed, it would

have masses of the order ∼ ΛL. We conclude that the Lorentz violation does not reverberate down

to low energies.

Masses of the gauge bosons As usual, when gauge interactions are switched on the three

Goldstone bosons φ± and φ0 associated with the broken generators of SU(2)L×U(1)Y are “eaten”

by the gauge bosons W± and Z, which become massive. To see how that happens in our case, we

proceed as follows. We first calculate the leading contributions to the W -η, Z-η and A-η two-point

functions. They are given by the diagrams constructed with one fermion loop, one vertex ψ̄Mψ

and one vertex

g(W+
µ J

µ
+ +W−

µ J
µ
−) + g̃ZµJ

µ
Z + eAµJ

µ
em, (4.6)

where g̃ =
√

g2 + g′2. We find

ΓAη = −gNc(∂
µφ−)W+

µ − gNc(∂
µφ+)W−

µ −Ncg̃(∂
µφ0)Zµ, (4.7)

where

φ+ = i
√
2(mtf

′
tbηtb −mbf

′
btη̄bt), φ0 =

i

2
(mtftt(ηtt − η̄tt)−mbfbb(ηbb − η̄bb)),

and φ− = φ̄+. This result identifies the bosons φ± and φ0. Then we search for constants fW and

fZ such that these Goldstone bosons disappear from the difference Γ′
ηη = Γηη − Γφφ, where

Γφφ =
Nc

fW
(∂µφ

+)(∂µφ−) +
Nc

2fZ
(∂µφ

0)(∂µφ0).

We find

fW = m2
t f

′
tb +m2

bf
′
bt, fZ =

1

2
(m2

t ftt +m2
bfbb).

Next, we determine the linearized gauge transformations of the Goldstone bosons, demanding

that Γφφ + ΓAη be invariant up to O(A), where A denotes a generic gauge field. We find

δW±
µ = ∂µC

±, δZµ = ∂µC
0, δφ± = gfWC

±, δφ0 = g̃fZC
0. (4.8)
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Finally, we add A2-terms to have gauge invariance at the linearized level. In total, the relevant

quadratic contributions ∆2Γ to the Γ functional read

∆2Γ = Γ′
ηη +

Nc

fW
(∂µφ

+ − gfWW
+
µ )(∂µφ− − gfWW

µ−) +
Nc

2fZ
(∂µφ

0 − g̃fZZµ)(∂
µφ0 − g̃fZZ

µ).

Choosing the unitary gauge-fixing φ± = φ0 = 0, we can read the gauge-boson squared masses

m2
W = Ncg

2fW ∼ Ncg
2

32π2
m2
t ln

Λ2
L

m2
t

, m2
Z = Ncg̃

2fZ ∼ g̃2

g2
m2
W . (4.9)

The first formula can be converted into a relation between the Fermi constant and the mass of

the top quark, namely
1

GF
=

Ncm
2
t

4π2
√
2
ln

Λ2
L

m2
t

. (4.10)

Using our estimated value ΛL = 1014GeV, we find mt = 171.6GeV. This “too-good” agreement

has no simple explanation, as far as we know, also taking into account that from a quantitative

point of view our rough large Nc approximation contains a good 50% margin of error1.

The quantities fW and fZ are related in a non-straightforward way. We find

ρ ≡ g̃2m2
W

g2m2
Z

=
fW
fZ

= 2
m2
t f

′
tb +m2

bf
′
bt

m2
t ftt +m2

bfbb
.

The explicit computation for ΛL � mt � mb shows that the values of fW and fZ are actually

close. Indeed, the relation ρ ∼ 1 is fulfilled not only when there is an approximate custodial sym-

metry (which would imply approximately equal quark masses), but also in the opposite situation,

namely when one quark mass is much larger than the other one. In this case the deviations from

ρ = 1 are, at low energies, just those predicted by the usual Standard Model results, as already

noted in [11].

The vertices of the effective action can be derived calculating diagrams with one fermion loop

and more external A and η legs. Once the gap equations (4.4) are used, every other contribution

is convergent and unambiguously determined. In principle, using the large Nc expansion we can

calculate the effective action with the desired precision.

We have shown that a forth Goldstone boson is associated with the breaking of U(1)A. This

boson becomes massive because of the U(1)A-anomaly. On the other hand, quark masses, which

are not due to an explicit symmetry breaking, do not contribute to the mass of this boson.

1Call “1” the leading order of the large Nc expansion. Resumming powers of 1/3 from 1 to infinity we get 1/2,

so, generically speaking, a “1” could be anything between 1/2 and 3/2.
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Composite Higgs bosons So far, we have assumed that all η-entries were independent, which

amounts to have two independent composite Higgs doublets. The situation with a single composite

Higgs doublet can be retrieved choosing

τ =
mt

v

√
2

(

H2 −H1

κH̄1 κH̄2

)

, κ =
mb

mt
, (4.11)

where v/
√
2 is the Higgs vev. Substituting (4.11) in Γττ we find the three Goldstone bosons

associated with the breaking of SU(2)L × U(1)Y , plus one neutral massive scalar with squared

mass

4
m4
t ftt +m4

bfbb
m2
t ftt +m2

bfbb
∼ 4m2

t ,

to be identified with the composite Higgs scalar. Its mass is 2mt, as originally suggested by

Nambu [9]. This value is far from the expected Higgs mass, but taking into account of our 50%

margin of error, the final, exact formula could still give mH ∼ mt, which would be compatible

with present expectations.

More generally, we can introduce three doublets for each family (if there exist no right-handed

neutrinos): two for the quarks and one for the leptons. Actually, to allow for mixing among families

we can just take the Yukawa vertices LY and promote every product Y H to an independent field

τ :

Lτψψ + Lττ = −
3
∑

a,b=1

(

L̄aiτab,i` `bR + Q̄aiR τ
ab,ij
q QbjL + h.c.

)

+ V`q(τ`, τq),

where V2 is the most general quadratic polynomial compatible with the symmetries of the theory.

To generate Majorana masses for neutrinos we need extra four fermion vertices encoded in [20]

L′
τLL + L′

ττ = −
3
∑

a,b=1

(L̄c)aiεijτab,jkL Lbk + h.c. + V ′
``(τL).

We can add analogous Lorentz violating terms containing fields ρ, but we know that we can

neglect such terms both for the search of the minimum of the potential and to derive the induced

low-energy effective action.

Note that in the lepton sector we have no analogue of the large Nc expansion to justify our

arguments. We still expect, however, that the minimum exists and the dynamical symmetry

breaking takes place.

5 Goldstone theorem in Lorentz violating theories

In the previous section we have used the large Nc expansion to prove the dynamical symmetry

breaking and study bound states, among which the Goldstone bosons. However, the Goldstone
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theorem is an exact result, that can be derived without making use of expansions or approxima-

tions. In this section we show how to generalize it to Lorentz violating theories. We assume that

the theory becomes Lorentz invariant at large distances. We do not need to assume that the scale

of symmetry breaking is much smaller than the scale of Lorentz violation.

Let ω(x) denote a generic field operator and Jµ = (J µ̂, J µ̄) the conserved current associated

with a continuous global symmetry. Current conservation ∂µJ
µ = ∂µ̂J

µ̂ + ∂µ̄J
µ̄ = 0 still implies

d

dt
[Q(t), ω(0)] = 0, Q(t) =

∫

d3xJ0(t,x). (5.1)

Indeed, the last term of the equality

0 =

∫

d3x[∂µJ
µ(x), ω(0)] =

d

dt
[Q(t), ω(0)] +

∫

S∞

ds · [J(t,x), ω(0)]

is equal to zero, because for large space-like separations the commutator [J(t,x), ω(0)] vanishes.

This property holds also in our Lorentz violating theories, since they become Lorentz invari-

ant at large distances, if the vacuum is Lorentz invariant. For generic space-like separations a

commutator does not need to vanish.

The symmetry is spontaneously broken if the commutator [Q(t), ω(0)] has a non-vanishing ex-

pectation value u. Then, inserting a complete set of intermediate states |n〉 and using translational

invariance we have

u =
∑

n

(2π)3δ(3)(pn)
[

e−iEnt〈0|J0(0)|n〉〈n|ω(0)|0〉 − eiEnt〈0|ω(0)|n〉〈n|J0(0)|0〉
]

.

Since u is constant, because of (5.1), there must exist a state |n̄〉 such that En̄ = pn̄ = 0 and

〈0|J0(0)|n̄〉 6= 0, 〈n̄|ω(0)|0〉 6= 0.

Now, consider the case of SU(2)L×U(1)Y spontaneously broken to U(1)Q. We have composite

fields ω±,0 and Goldstone bosons φ±,0, such that

〈0|ω±,0(0)|φ±,0〉 6= 0, 〈0|J±,0
0 (0)|φ±,0〉 6= 0, (5.2)

where J±,0
µ are the currents associated with the broken generators. The form of 〈0|J±,0

0 (0)|φ±,0〉
is no longer constrained by Lorentz invariance. Instead, we have, in momentum space,

〈0|J±,0
µ (0)|φ±,0(p)〉 = if±,0(p̂µ + ζ±,0p̄µ), (5.3)

where f±,0 and ζ±,0 may depend on p̄2. Current conservation implies p̂2 − ζ±,0p̄
2 = 0 on shell,

which determines the φ-kinetic terms. It also eliminates the p̂2-dependence and ensures that ζ±,0

are real. The conservation of electric charge implies f+ = f∗−, ζ+ = ζ− ≡ ζ and that f0 is also
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real. The effective lagrangian incorporating such pieces of information reads in the quadratic

approximation

Leff = (∂̂µφ
+ − gŴ+

µ f+)(∂̂µφ
− − gf−Ŵ

−
µ )− (∂̄µφ

+ − gW̄+
µ f+)ζ(∂̄µφ

− − gf−W̄
−
µ )

+
1

2
(∂̂µφ

0 − g̃Ẑµf0)
2 − 1

2
(∂̄µφ

0 − g̃Z̄µf0)ζ0(∂̄µφ
0 − g̃f0Z̄µ).

We have the linearized gauge symmetry

δW±
µ = ∂µC

±, δZµ = ∂µC
0, δφ± = gf±C

±, δφ0 = g̃f0C
0. (5.4)

Choosing the gauge-fixing φ±,0 = 0, we find the W and Z mass terms

Lm = g2(Ŵ+
µ f+f−Ŵ

−
µ − W̄+

µ f+ζf−W̄
−
µ ) +

1

2
g̃2(Ẑµf

2
0 Ẑµ − Z̄µf0ζ0f0Z̄µ),

as in the Proca version of Lorentz violating gauge theories [5].

Observe that at this level, our construction is unable to relate the W and Z masses. At low

energies, when Lorentz symmetry is restored (ζ = ζ0 = 1) and f±, f0 can be taken to be constant,

we have

Lm = g2f+f−W
+
µ W

−µ +
1

2
g̃2f20ZµZ

µ, (5.5)

so on general grounds we are unable to predict ρ = 1, actually

ρ =
f+f−
f20

, (5.6)

In the Standard Model, ρ = 1 follows from f+f− = f20 = v2/4. In the model of the previous

section, it follows from explicit calculation in the large Nc expansion, for quarks with very different

masses.

When there exists a symmetry SU(2)R, for example a “custodial” symmetry [21], the right-

handed quarks can be collected into SU(2)R doublets, and the quark sector becomes SU(2)L ×
SU(2)R-invariant. If the vacuum preserves SU(2)L+R, (5.3) is modified to

〈0|J±,0
µ (0)|φ±,0(p)〉 = if̃(p̂µ + ζ̃ p̄µ), (5.7)

with unique f̃ and ζ̃ for W± and Z. Then ρ = 1 follows (at the tree level).

6 Conclusions

The Standard-Extended Model (2.1) proposed in ref. [7], and its variants, such as (2.3), contain

interactions that are non-renormalizable by ordinary power counting, but are renormalizable by

weighted power counting, thanks to the high-energy Lorentz violation. An interesting feature of
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those models is that they become very simple at high energies (& 1014GeV), because all gauge and

Higgs interactions, being super-renormalizable, disappear. There survives a four fermion model

in two weighted dimensions, which admits a dynamical symmetry breaking. In spite of the fact

that such a four fermion model is Lorentz violating, the dynamically generated vacuum and the

low energy effective action are Lorentz invariant. We have therefore focused our attention on the

scalarless variant (2.4) of the model of [7], which contains no elementary scalar field. In the large

Nc expansion we have seen that the dynamical symmetry breaking generates composite massive

Higgs bosons and gives masses to fermions and gauge bosons. The model is predictive, in the

sense that it does not contain the ambiguities of previous approaches, which relied on the non-

renormalizable Nambu–Jona-Lasinio mechanism, and is candidate to explain the observed low

energy physics. The leading order of the large Nc expansion, with gauge interactions switched

off, does not allow us to make very precise quantitative predictions, although the relation (4.10)

between the Fermi constant and the top mass turns out to be mysteriously right.

A step forward towards more precise predictions is to include the effects of the RG flow from

energies ∼ mt to ΛL, and study the condition of compositeness at energies ∼ ΛL [11]. However,

in our Lorentz violating theories the RG flow is considerably different from the usual one: it

coincides with the usual one at energies ∼ mt, since the low energy theory (with composite Higgs

bosons included) is renormalizable by ordinary power counting; on the other hand, it changes

completely as we move to energies ∼ ΛL, because there, gauge interactions do not run. Work is

in progress in this direction.

What we have done in this paper is not only to describe low energy effects of high energy

Lorentz violations, but also show that they can be consistent with low energy Lorentz invariance.

This fact was not obvious a priori.

Our mechanism can of course take place also in the Higgsed models (2.1) and (2.3), if the four

fermion vertices are chosen appropriately. There, its effects sum to those of the elementary Higgs

doublet. It can also be applied to Standard Model extensions that contain new types of fermions,

interacting by four fermion vertices, such as those considered in ref.s [22].
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Appendix A: Simplification of the pure gauge sector

In this appendix we describe a weight reassignment that is useful to simplify the gauge sector.
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Indeed, the quadratic gauge field lagrangian LQ generates an involved propagator [5]. Recall that

in Lorentz violating gauge theories the BRST symmetry is the same as usual,

sAaµ=Dab
µ C

b = ∂µC
a + gfabcAbµC

c, sCa = −g
2
fabcCbCc,

sC̄a=Ba, sBa = 0, sψi = −gT aijCaψj ,

etc., where Ba are Lagrange multipliers for the gauge-fixing. The most convenient gauge-fixing is

Lgf = sΨ, Ψ = C̄a
(

−λ
2
Ba + Ga

)

, Ga ≡ ∂̂ · Âa + ζ (ῡ) ∂̄ · Āa, (A.1)

where λ is a dimensionless, weightless constant, ῡ ≡ −∂̄2/Λ2
L and ζ is a polynomial of degree

n− 1. The total gauge-fixed action is

S =

∫

ddx (LQ + LI + Lgf) , (A.2)

where LI collects the terms that are at least cubic in the field strength.

The gauge-field propagator can be worked out from the free subsector of (A.2), after integrating

Ba out, which amounts to add (Ga)2/(2λ) to the quadratic lagrangian LQ2. We find, in Euclidean

space,

〈A(k) A(−k)〉 =
(

〈ÂÂ〉 〈ÂĀ〉
〈ĀÂ〉 〈ĀĀ〉

)

=

(

u rk̂k̄

rk̄k̂ vδ̄ + tk̄k̄

)

, (A.3)

where

u =
λk̂2 + ζ2

η k̄
2

D2(1, ζ)
, r =

λ− ζ
η

D2(1, ζ)
, v =

1

D(η, τ)
, t =

(

ηλ+ τ
η − 2ζ

)

k̂2 +
(

τλ− ζ2
)

k̄2

D(η, τ)D2(1, ζ)
,

and D(x, y) ≡ xk̂2 + yk̄2. Now η, τ and ζ, as well as x and y, are functions of k̄2/Λ2
L. The ghost

propagator is 1/D(1, ζ).

If η 6= 1 the propagator is not regular [5, 6], because for k̂ large 〈ĀĀ〉 behaves like 1/(ηk̂2) and

η depends only on k̄2. Thus the k̂-integrals may contain “spurious” subdivergences. A separate

power-counting analysis is necessary to show that such subdivergences are absent under certain

conditions [6], fulfilled by the model (2.1).

An alternative solution, which avoids the problem from the start, is to set η = 1, in which case

the propagator clearly becomes regular. We show that this choice is consistent with renormal-

ization, if combined with a rearrangement of the weight assignments and other choices, such as

2With respect to the LQ of (2.2), the most general quadratic gauge field lagrangian [5, 6] can contain another

polynomial ξ(Υ). Here we set it to zero, since the weight reassignment excludes it anyway from the theory with

simplified gauge sector.
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restricting τ to be a polynomial of degree n− 1 (which we then denote by τ ′). The new quadratic

gauge field lagrangian reads

L′
Q =

1

2
F 2
µ̂ν̄ −

1

4
Fµ̄ν̄τ

′(Ῡ)Fµ̄ν̄ (A.4)

and admits a nice diagonal propagator

(

〈ÂÂ〉 〈ÂĀ〉
〈ĀÂ〉 〈ĀĀ〉

)

=
1

D(1, τ ′)

(

τ ′ 0

0 δ̄

)

, (A.5)

in the “Feynman” gauge

ζ = λ = τ ′. (A.6)

After integrating B out, the propagator (A.5) is obtained adding

1

2
(Ga) 1

τ ′
(Ga) (A.7)

to L′
Q. Note that (A.7) is non-local, because the gauge condition λ = τ ′ contained in (A.6) implies

that the constant λ is replaced with a function of k̄2/Λ2
L. This replacement is legitimate, since

the action (A.2) is local before integrating B out, and B is non-propagating (see (A.1)).

The consistency of (A.4) is explained by a simple weight rearrangement, with gauge field

components acquiring higher weights and the gauge coupling acquiring a lower weight, such that

the product gA maintains the same weight. Denoting weights with square brakets, we have, by

covariance, [gÂ] = [∂̂] = 1 and [gĀ] = [∂̄] = 1/n. The field strength is split into F̃µν ≡ Fµ̂ν̄

and F̄µν ≡ Fµ̄ν̄ . The kinetic lagrangian L′
Q contains F̃ 2, so F̃ must have weight đ/2. Since

[F̃ ] = [∂̄] + [Â] = [∂̂] + [Ā], we have

[Â] =
đ

2
− 1

n
, [Ā] =

đ

2
− 1, [F̃ ] =

đ

2
, [F̄ ] =

đ

2
− 1 +

1

n
. (A.8)

The weight of the gauge coupling is

[g] = 1 +
1

n
− đ

2
. (A.9)

Observe that [g] > 0 in four dimensions, for n > 1, where gauge interactions are always super-

renormalizable. We also find [ζ] = [λ] = [τ ′] = 2 − 2/n, which implies that τ ′ must be of order

n− 1 and makes the gauge choice (A.6) renormalizable.

The quadratic terms of the ghost Lagrangian contain C̄∂̂2C and λB2, which have weight đ,

so we have the weight assignments

[C] = [C̄] =
đ

2
− 1, [s] =

1

n
, [B] =

đ

2
− 1 +

1

n
. (A.10)
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In our case (đ= 2, n = 3) we have [g] = 1/3. By covariance, the coupling ḡ attached to

the scalar legs must satisfy [ḡ] ≤ [g] [6], so we lower [ḡ] from 1/2 to 1/3. All other weights are

unchanged. Then the most general lagrangian is (2.3) plus the extra terms

ḡ6H8, ḡ4D̄2H6, ḡ2D̄4H4, gḡ2D̄2F̄H4, gD̄4F̄H2, g2ḡ2F̄ 2H4, g2D̄2F̄ 2H2, g3F̄ 3H2,

g2F̄ 4, gD̄2F̄ 3, gε̄F̃ D̄2H2, g2ε̄F̃ F̄H2, ε̄F̃ D̄2F̄ , gε̄F̄ F̃ F̄ , ε̄F̄ D̂D̄F̄ ,

gḡψ̄ψF̄H, ḡψ̄ψD̄2H, ḡ2ψ̄ψD̄H2, ḡ3ψ̄ψH3, (A.11)

and those obtained suppressing some fields and/or derivatives, where ε̄ is the ε-tensor with three

space indices. The extra terms (A.11) can be consistently dropped, because they are not generated

back by renormalization.

The two models (2.1) and (2.3) correspond to the basic weight assignments [s] = 1 and

[s] = 1/n, respectively. All intermediate situations [s] = k/n, k = 1, . . . n are actually allowed,

with suitable weight reassignments. Observe that the construction of this Appendix is possible

only because spacetime is broken into space and time. Indeed, other types of breakings are

disfavored [5, 6].

Appendix B: Useful mathematical formulas

In this appendix we collect a number of mathematical formulas and relations that are used in

the paper.

Define the function

v(r) = −
∫ Λ/ΛL d4p

(2π)4
ln(p′′2 + r), (B.1)

where r > 0, the integral is in Euclidean space,

p̂′′µ = p̂µ, p̄′′µ = p̄µ(p̄2 + 1) (B.2)

and Λ is a UV cut-off. We want to study the Taylor expansion

v(r) = v(r0) + (r − r0)v
′(r0) +

1

2
(r − r0)

2v′′(r0) +O((r − r0)
3) (B.3)

of this function in the neighborhood of a generic point r0. Observe that the second derivative

v′′(r0) =

∫

d4p

(2π)4
1

(p′′2 + r0)2
(B.4)

is convergent and strictly positive. On the other hand, the first derivative is logarithmically

divergent. By weighted power counting, its divergent part is independent of r0. We have

v′(r0)− v′(r1)

r0 − r1
=

∫

d4p

(2π)4
1

(p′′2 + r0)(p′′2 + r1)
> 0. (B.5)
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Adding and subtracting 1/(p̂2 + (p̄2)3 + r0) to the integrand of v′(r0) we can also write

v′(r0) = v̄′(r0)−
1

12π2
ln

2Λ3

Λ3
L

√
r0
, (B.6)

up to O(1/Λ), where

v̄′(r0) =

∫

d4p

(2π)4
p̄2(2p̄2 + 1)

(p′′2 + r0)(p̂2 + (p̄2)3 + r0)
(B.7)

is finite and positive.

Now we approximate the expansion (B.3) for r0 � 1. To study the right-hand side of (B.4)

we note that the integral diverges logarithmically for small r0, so it is sufficient to look for the

corresponding logarithm. We find

v′′(r0) ∼ − 1

16π2
ln r0, for r0 � 1. (B.8)

Integrating this expression, we also find

v′(r0) = −
∫ Λ/ΛL d4p

(2π)4
1

p′′2 + r0
∼ − 1

16π2

(

2 ln
Λ2

Λ2
L

+ r0 ln r0

)

. (B.9)

up to O(1/Λ). The arbitrary constant can be determined calculating v′(0).

Another useful integral is

I1 =

∫

d4p

(2π)4
p̂2 − p̄′′2

(p′′2 + r0)2
= r0v

′′(r0) > 0. (B.10)

This formula is proved using the identity

∫ +∞

−∞

dp̂

2π

p̂2 − akx

(p̂2 + x)k
= 0, ak =

Γ
(

k − 3
2

)

2Γ
(

k − 1
2

) , x > 0, k >
3

2
, (B.11)

for k = 2.

Next, define the functions

(

fij, f
′
ij , f

′′
ij

)

(p2) =
1

(4π)2

∫ 1

0
dx (1, x, x(1 − x))

[

ln
Λ2
L

m2
ix+m2

j(1− x)− p2x(1− x)
− 1

]

,

(B.12)

where i, j can have the values t and b. While fij is clearly symmetric, f ′ij satisfies

f ′ij + f ′ji = fij.

In the range 0 6 p 6 mt the functions (B.12) do not depend on p very much and can be treated

as constants, calculated for p = 0. Using mb � mt � ΛL, we have

fii ∼
1

(4π)2
ln

Λ2
L

m2
i

, ftb = fbt ∼ ftt, f ′ij ∼
1

2
fij, f ′′ij ∼

1

6
fij. (B.13)
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