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Abstract

We classify the local, polynomial, unitary gauge theories that violate Lorentz symmetry explicitly at

high energies and are renormalizable by weighted power counting. We study the structure of such theories

and prove that renormalization does not generate higher time derivatives. We work out the conditions to

renormalize vertices that are usually non-renormalizable, such as the two scalar-two fermion interactions

and the four fermion interactions. A number of four dimensional examples are presented.
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1 Introduction

Lorentz symmetry is a fundamental assumption behind the Standard Model of particle physics.

Experimental bounds on the parameters of the Lorentz violating Standard-Model extension [1]

are often very precise [2]. Nevertheless, several authors, inspired by different considerations, have

suggested that Lorentz symmetry and CPT could be broken at very high energies [3]. The problem

of Lorentz violation has attracted a lot of interest, in cosmology, astrophysics, high-energy physics.

If Lorentz symmetry were not exact our understanding of Nature would change considerably.

We can imagine that the Standard Model is corrected by Lorentz violating terms of higher

dimensions, multiplied by inverse powers of a scale ΛL, which can be understood as the scale

of Lorentz violation. If ΛL is sufficiently large, the corrected model can be organized so that it

agrees with all present experimental data, yet it predicts violations of Lorentz symmetry starting

from energies ∼ ΛL.

If we do not assume exact Lorentz invariance at arbitrarily high energies, yet demand locality

and unitarity, several theories that are not renormalizable by the usual power counting become

renormalizable in the framework of a “weighted power counting” [4], which assigns different weights

to space and time. The large momentum behavior of propagators is improved by quadratic

terms containing higher space derivatives. The set of vertices is arranged so that no higher time

derivatives are generated by renormalization, in agreement with (perturbative) unitarity. Scalar

and fermion theories of this type have been studied in [4, 5]. In ref. [6], to which we refer as

“paper I” from now on, the basic properties of Lorentz violating gauge theories have been derived.

Here we give an exhaustive classification of gauge theories, investigate their structure and study

a number of four dimensional examples.

We search for theories that are local and polynomial, free of infrared divergences in the Feyn-

man diagrams, and renormalizable by weighted power counting. To avoid the presence of certain

spurious subdivergences, originated by the peculiar form of the gauge-field propagator, spacetime

is split into space and time and other restrictions are imposed.

The paper is organized as follows. In section 2 we review the weighted power counting. In

section 3 we study the structure of renormalizable theories containing gauge fields and matter.

We work out the conditions for polynomiality and renormalizability, and prove that higher time

derivatives are absent. In section 4 we derive sufficient conditions for the absence of spurious

subdivergences. In section 5 we study the conditions to renormalize vertices that are usually

non-renormalizable, in particular the two scalar-two fermion interactions and the four fermion

interactions, and illustrate a number of four dimensional examples. In section 6 we consider the

most general type of Lorentz violations. Section 7 contains our conclusions. In appendix A we

recall the form of the gauge-field propagator and the dispersion relations. In appendix B we study

the renormalizability of our theories to all orders, using the Batalin-Vilkovisky formalism.
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2 Weighted power counting

In this section we review the weighted power counting criterion of refs. [4, 5] and a number of

results from paper I. The simplest framework to study the Lorentz violations is to assume that the

d-dimensional Lorentz group O(1, d−1) is broken to a residual symmetry O(1, d̂−1)×O(d̄). The

d-dimensional spacetime manifold M = R
d is split into the product M̂ × M̄ of two submanifolds,

a d̂-dimensional submanifold M̂ = R
d̂, containing time and possibly some space coordinates, and

a d̄-dimensional space submanifold M̄ = R
d̄. The partial derivative ∂ is decomposed as (∂̂, ∂̄),

where ∂̂ and ∂̄ act on the subspaces M̂ and M̄ , respectively. Coordinates, momenta and spacetime

indices are decomposed similarly. We first study renormalization in this simplified framework and

later generalize our results to more general breakings (see section 6). For simplicity, we assume

separate invariances under C, P and T throughout this paper.

Consider a free scalar theory with (Euclidean) lagrangian

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂̄nϕ)2, (2.1)

where ΛL is an energy scale and n is an integer > 1. It is invariant under the weighted rescaling

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(đ/2−1), (2.2)

where đ= d̂+ d̄/n is the “weighted dimension”. Note that ΛL is not rescaled.

The interacting theory is defined as a perturbative expansion around (2.1). For the purposes

of renormalization, the masses and the other quadratic terms can be treated perturbatively, since

the counterterms depend polynomially on them. Denote the “weight” of an object O by [O] and

assign weights to coordinates, momenta and fields as follows:

[x̂] = −1, [x̄] = −
1

n
, [∂̂] = 1, [∂̄] =

1

n
, [ϕ] =

đ

2
− 1, (2.3)

while ΛL is weightless. The lagrangian terms of weight đ are strictly renormalizable, those of

weights smaller than đ super-renormalizable and those of weights greater than đ non-renormalizable.

The weighted power counting criterion amounts to demand that the theory contains no parame-

ter of negative weight. The considerations just recalled are easily generalized to fermions, whose

weight is (đ−1)/2.

The gauge field Aµ = AaµT
a, with T a anti-Hermitian, is decomposed as A = (Â, Ā). The

covariant derivative

D = (D̂, D̄) = (∂̂ + gÂ, ∂̄ + gĀ) (2.4)

induces the weight assignments

[gÂ] = [D̂] = 1, [gĀ] = [D̄] =
1

n
,
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where g is the gauge coupling. On the other hand, the weight-đ kinetic term ∼ (∂̂Â)2 gives

[Â] =đ/2− 1, so [g] = 2−đ/2. The field strength is split as

F̂µν ≡ Fµ̂ν̂ , F̃µν ≡ Fµ̂ν̄ , F̄µν ≡ Fµ̄ν̄ . (2.5)

We find

[Â] =
đ

2
−1, [Ā] =

đ

2
−2+

1

n
, [F̂ ] =

đ

2
, [F̃ ] =

đ

2
−1+

1

n
, [F̄ ] =

đ

2
−2+

2

n
. (2.6)

In the presence of gauge interactions the renormalizable theories are still those that do not

contain parameters of negative weights. To single out the super-renormalizable theories we can

refine this requirement, demanding that no parameters have weights smaller than some non-

negative constant χ. Indeed, if that happens Feynman diagrams are certainly multiplied by

coefficients of weights greater than or equal to χ, so no new counterterms are turned on by

renormalization. Applying the refined requirement to the gauge coupling g we find

0 ≤ χ ≤ 2− đ/2. (2.7)

In particular, we must have đ≤ 4.

It is convenient to write the gauge-field action

S0 =

∫
ddx (LQ + LI) ≡ SQ + SI , (2.8)

as the sum of two contributions SQ and SI : SQ collects the gauge-invariant quadratic terms

of weight ≤đ, constructed with two field strengths and possibly covariant derivatives, while SI

collects the vertex terms of weights ≤đ−χ, constructed with at least three field strengths and

possibly covariant derivatives.

Up to total derivatives the quadratic part LQ of the lagrangian reads (in the Euclidean frame-

work)

LQ =
1

4

{
F̂ 2
µν + 2Fµ̂ν̄η(Ῡ)Fµ̂ν̄ + Fµ̄ν̄τ(Ῡ)Fµ̄ν̄ +

1

Λ2
L

(Dρ̂Fµ̄ν̄)ξ(Ῡ)(Dρ̂Fµ̄ν̄)

}
. (2.9)

The proof can be found in paper I. Here Ῡ ≡ −D̄2/Λ2
L and η, τ and ξ are polynomials of degrees

n− 1, 2n− 2 and n− 2, respectively. We have expansions

η(Ῡ) =

n−1∑

i=0

ηn−1−iῩ
i, [ηj ] =

2j

n
, (2.10)

and similar, where ηi are dimensionless constants of non-negative weights.

The free action is positive definite if and only if

η > 0, η̃ ≡ η +
k̄2

Λ2
L

ξ > 0, τ > 0, (2.11)
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where now η, τ and ξ are functions of k̄2/Λ2

L. Furthermore, we assume

η0 > 0, τ0 > 0, η̃0 = η0 + ξ0 > 0, ηn−1 > 0, τ2n−2 > 0. (2.12)

The first three conditions ensure that the propagators have the best UV behaviors. The other

two conditions, together with

d ≥ 4, (2.13)

ensure that the Feynman diagrams are free of IR divergences at non-exceptional external momenta,

despite the fact that the gauge fields are massless. The reason is that, under the mentioned

assumptions, the IR behavior of Feynman diagrams is governed by the low-energy theory

LIR =
1

4

[
(F aµ̂ν̂)

2 + 2ηn−1(F
a
µ̂ν̄)

2 + τ2n−2(F
a
µ̄ν̄)

2
]
, (2.14)

which has an ordinary power counting.

The BRST symmetry [7] coincides with the usual one,

sAaµ=Dab
µ C

b = ∂µC
a + gfabcAbµC

c, sCa = −
g

2
fabcCbCc,

sC̄a=Ba, sBa = 0, sψi = −gT aijC
aψj ,

etc., with the weight assignments

[C] = [C̄] =
đ

2
− 1, [s] = 1, [B] =

đ

2
. (2.15)

We choose the gauge-fixing

Lgf = sΨ, Ψ = C̄a
(
−
λ

2
Ba + Ga

)
, Ga ≡ ∂̂ · Âa + ζ (ῡ) ∂̄ · Āa, (2.16)

where λ is a dimensionless, weightless constant, ῡ ≡ −∂̄2/Λ2
L and ζ is a polynomial of degree

n− 1. Compatibly with (2.12) we assume

ζ > 0, ζ0 > 0, ζn−1 > 0. (2.17)

The total gauge-fixed action is

S =

∫
ddx (LQ + LI + Lgf) ≡ S0 + Sgf. (2.18)

The propagator is reported in appendix A, together with the dispersion relations.

For the purposes of renormalization, we can treat the weightful parameters ηi, τi, ξi and ζi,

i > 0, perturbatively, because the divergent parts of Feynman diagrams depend polynomially on
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them. In this framework, the propagators we use in the high-energy analysis of the diagrams are

(A.2)-(A.4) with the replacements

η → η0

(
k̄2

Λ2
L

)n−1

, τ → τ0

(
k̄2

Λ2
L

)2(n−1)

, ξ → ξ0

(
k̄2

Λ2
L

)n−2

, ζ → ζ0

(
k̄2

Λ2
L

)n−1

,

every other term being treated as a vertex. Intermediate masses can be added to the denominators,

to avoid IR problems, and removed immediately after calculating the divergent parts.

We recall that Pk,n(p̂, p̄) is a weighted polynomial in p̂ and p̄, of degree k, where k is a multiple

of 1/n, if Pk,n(ξ
np̂, ξp̄) is a polynomial of degree kn in ξ. A propagator is regular if it is the ratio

Pr(k̂, k̄)

P ′
2s(k̂, k̄)

(2.19)

of two weighted polynomials of degrees r and 2s, where r and s are integers, such that the

denominator P ′
2s(k̂, k) is non-negative (in the Euclidean framework), non-vanishing when either

k̂ 6= 0 or k 6= 0 and has the form

P ′
s(k̂, k̄) = ω̂(k̂2)s + ω̄(k̄2)ns + · · · , (2.20)

with ω̂ > 0, ω̄ > 0, where the dots collect the terms (k̂2)j−m(k̄2)mn with j < s, 0 ≤ m ≤ j,

and j = s, 0 < m < s. The regularity conditions ensure that the derivatives with respect to

k̂ improve the large-k̄ behavior (because ω̄ 6= 0), besides the large-k̂ and overall ones, and the

derivatives with respect to k̄ improve the large-k̂ behavior (because ω̂ 6= 0), besides the large-k̄

and overall ones. For this reason, the k̂-subdivergences are local in k̄ and the k̄-subdivergences

are local in k̂. The k̂-subintegrals and the k-subintegrals, which cannot behave worse than the

k̂-k-integrals, are automatically cured by the counterterms that subtract the overall divergences

of the k̂-k-integrals. Such counterterms are, for example, the first terms of the “weighted Taylor

expansion” around vanishing external momenta [4].

A propagator that does not satisfy (2.19) can generate spurious ultraviolet subdivergences in

Feynman diagrams when k̂ tends to infinity at k fixed, or viceversa. The gauge and ghost prop-

agators (A.2), (A.3) are regular at non-exceptional momenta, because the positivity conditions

(2.11) and (2.17) ensure that the denominators are positive-definite in the Euclidean framework.

Moreover, the conditions (2.12) ensure that all such propagators but 〈ĀĀ〉 satisfy (2.19)-(2.20)

in the Feynman gauge (A.4). Instead, 〈ĀĀ〉 is regular when k tends to infinity at k̂ fixed, but

not when k̂ tends to infinity at k fixed, where it behaves like ∼ 1/k̂2. To ensure that no spurious

subdivergence is generated by the k̂-subintegrals, a more careful analysis must be performed, to

which we devote section 4. The result is that the sufficient conditions to ensure the absence of

spurious subdivergences include

d̂ = 1, d = even n = odd, (2.21)
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plus other restrictions stated at the end of section 4. In particular, spacetime is split into space

and time. In section 6 we prove that, because of the spurious subdivergences, more general type

of Lorentz violations (d̂ > 1) are disfavored.

The absence of spurious subdivergences ensures the locality of counterterms. Consider a

diagram Gr equipped with the subtractions that take care of its diverging proper subdiagrams.

Differentiating Gr a sufficient number of times with respect to any components p̂i, p̄i of the

external momenta pi, we can arbitrarily reduce the overall degree of divergence and eventually

produce a convergent integral. Therefore, overall divergences are polynomial in all components of

the external momenta.

3 Structure of renormalizable theories

In this section we investigate renormalizable and super-renormalizable theories in detail. We

study the conditions for renormalizability and polynomiality, and investigate the time-derivative

structure. In section 4 we study the spurious subdivergences, while section 5 is devoted to explicit

examples, mainly four dimensional.

We know that the theories contain only parameters of weights ≥ χ, where χ satisfies (2.7).

Call λi the coupling multiplying the i-th vertex belonging to the physical sector and denote the

number of its external legs by ni. Clearly, ni ≥ 3 and [λi] ≥ χ. By polynomiality, the number of

physical vertices is finite, so we can take χ ≡ mini[λi]. Define

κ ≡ min
i

[λi]

ni − 2
.

Since the gauge coupling multiplies three-leg vertices, we have

[λi] ≥ (ni − 2)κ ∀i, and 0 ≤ κ ≤ 2−
đ

2
, (3.1)

and χ > 0 if and only if κ > 0. Introduce a coupling ḡ of weight κ and write λi = λ̄iḡ
ni−2. Then

(3.1) ensures [λ̄i] ≥ 0. The theory can be reformulated in the “1/ᾱ form” (ᾱ = ḡ2), namely as

L1/ᾱ =
1

ᾱ
L̄r(ḡA, ḡϕ, ḡψ, ḡC̄, ḡC, λ̄), (3.2)

where ϕ and ψ are matter fields (scalars and fermions, respectively) and the reduced lagrangian

L̄r depends polynomially on ḡ and the λ̄’s. The gauge coupling can be parametrized as g = ḡρ,

where ρ has a non-negative weight and is included in the set of the λ̄’s. A generic vertex of (3.2)

has the structure

λ̄iḡ
ni−2∂̂k∂̄mÂpĀqC̄rCrϕsψ̄tψt, (3.3)

where ni = p+ q + 2r+ s+ 2t and p, q, r, k,m, s and t are integers. Formula (3.3) and analogous

expressions in this paper are meant “symbolically”, which means that we pay attention to the

7
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field- and derivative-contents of the vertices, but not where the derivatives act and how Lorentz,

gauge and other indices are contracted.

Every counterterm generated by (3.2) fits into the structure (3.2). Indeed, consider a L-loop

diagram with E external legs, I internal legs and vi vertices of type i. The leg-counting gives
∑

i nivi = E + 2I = E + 2(L+ V − 1), so the diagram is multiplied by a product of couplings

ḡ
∑
i(ni−2)vi

∏

i

λ̄vii = ᾱLḡE−2
∏

i

λ̄vii . (3.4)

We see that a ḡE−2 factorizes, as expected. Moreover, each loop order carries an additional weight

of at least 2κ.

When κ = 2−đ/2 we can take ḡ = g, which gives the 1/α theories considered in paper I. They

have a lagrangian of the form

L1/α =
1

α
Lr(gA, gϕ, gψ, gC̄ , gC, λ). (3.5)

The class (3.2) is much richer than the class (3.5), yet it is does not cover the most general case.

To move a step forward towards the most general class of theories, it is useful to show how to

gauge scalar-fermion theories. Express the matter theory in 1/ᾱ form, namely

Lmatter =
1

ᾱ
L̄sf (ḡϕ, ḡψ, λ̄sf ). (3.6)

We assume that [g] ≥ [ḡ] and write g = ḡρ, with [ρ] ≥ 0. In this way, the gauge interactions can

be switched off letting ρ tend to zero. Covariantize the derivatives contained in (3.6) and add the

1/α pure gauge theory, plus extra terms allowed by the weighted power counting. We obtain a

mixed theory of the form

L =
1

α
Lg(gA, gC̄, gC, λg) +

1

ᾱ
L̄sf(ḡϕ, ḡψ, λ̄sf ) +

1

ᾱ
∆L(gA, gC̄, gC, ḡϕ, ḡψ, λ). (3.7)

Here ∆L contains both the terms necessary to covariantize L̄sf and the mentioned extra terms.

Consider a diagram G with E external legs and L loops. Using the ḡ-ρ parametrization and

repeating the argument that leads to (3.4) we find that G is multiplied by ᾱLḡE−2, so it agrees

with the structure (3.7). On the other hand, every vertex of Lg used to construct G provides at

least two internal legs. Therefore, every external A-, C̄- and C-leg of G is multiplied by at least

one power of ρ. This proves that the structure (3.7) is renormalizable. The theory is polynomial

if [ḡϕ], [ḡψ] > 0, namely đ> 2 − 2κ if scalar fields are present, đ> 1 − 2κ if the matter sector

contains only fermions.

Now we are ready to introduce the most general class of theories, where different fields can

carry different ḡ’s. Call ḡi, i = 1, 2, 3, the ones of vectors, fermions and scalars, respectively1.

1A more general situation where different subsets of fields with the same spin have different ḡ’s is also possible.

This generalization is straightforward and left to the reader.
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As in (3.2), ḡ1 needs not coincide with g. Call γ̄k, k = 1, 2, 3, the coupling of minimum weight

between ḡi and ḡj , where k 6= i, j. Call ḡ the coupling of minimum weight among the ḡi’s. Define

ᾱi = ḡ2i , āi = γ̄2i .

The lagrangian has the weight structure

L=
1

ᾱ1
L1(ḡ1A) +

1

ᾱ2
L2(ḡ2ψ) +

1

ᾱ3
L3(ḡ3ϕ) +

1

ā3
L12(ḡ1A, ḡ2ψ)

+
1

ā2
L13(ḡ1A, ḡ3ϕ) +

1

ā1
L23(ḡ2ψ, ḡ3ϕ) +

1

ᾱ
L123(ḡ1A, ḡ2ψ, ḡ3ϕ). (3.8)

In A we collectively include also ghosts and antighosts. Any other parameters λ contained in

(3.8) must have non-negative weights. The ḡi-factors appearing in formula (3.8) are mere tools to

keep track of the weight structure. For example, instead of ḡ2ψ we can have any ḡiψ, as long as

[ḡi] ≥ [ḡ2]. Similarly, the denominators 1/ᾱi, 1/āi and 1/ᾱ are devices that lower the weights of

appropriate amounts.

Every L on the right-hand side of (3.8) must be polynomial in the fields and parameters.

Moreover, we assume

[g] ≥ [ḡ1], [gḡ1] ≥ [ḡ22 ], [gḡ1] ≥ [ḡ23 ]. (3.9)

These inequalities ensure that (3.8) is compatible with the covariant structure. Indeed, because

of (3.9), the vertices generated by covariant derivatives are multiplied by factors of weights not

smaller than the ones appearing in (3.8), so they can fit into one of the structures (3.8). Observe

that (3.9) implies [g] ≥ [ḡi] for every i.

Again, it is easy to prove that the structure (3.8) is preserved by renormalization. Assume, for

example, that [ḡ1] ≥ [ḡ2] ≥ [ḡ3] (the other cases can be treated symmetrically, because (3.9) plays

no role here) and write ḡ1 = ρσḡ, ḡ2 = σḡ, ḡ3 = ḡ, with [ρ] ≥ 0, [σ] ≥ 0. In the parametrization

ḡ-ρ-σ the ḡ-powers in front of counterterms can be counted as in (3.4). Moreover, vertices contain

a factor σ for every A- and ψ-leg, save two legs in ϕ-independent vertices. Since at least two legs

of every vertex enter the diagrams, counterterms contain at least a factor σ for every external A-

and ψ-leg. A similar argument applies to ρ-factors and external A-legs. Thus, every diagram with

L ≥ 1 loops, E external legs, EA external A-legs and Eψ external ψ-legs is multiplied at least by

a factor ᾱLḡE−2ρEAσEA+Eψ and therefore fits into the structure (3.8).

This argument proves also that the one-loop counterterms generated by (3.8) have the weight

structure

∆1L(ḡ1A, ḡ2ψ, ḡ3ϕ), (3.10)

while at L loops there is an additional factor of ᾱL−1. Simplified versions of our theories can be

obtained dropping vertices and quadratic terms of (3.8) that are not contained in (3.10), because

renormalization is unable to generate them back. The quadratic terms that cannot be dropped

are those that control the behavior of propagators. Of course, the simplified model must also

contain the vertices related to such quadratic terms by covariantization.
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Polynomiality Now we derive the conditions to have polynomiality. Consider first the physical

(i.e. non gauge-fixing) sectors of the lagrangian (3.8). Apart from the factors 1/ᾱi, 1/āi and 1/ᾱ,

they depend only on the products ḡ1F , ḡ2ψ, ḡ3ϕ, and their covariant derivatives, so polynomiality

is ensured when these objects have positive weights. Let us focus for the moment on the gauge

sector. From (2.6) we see that if d̄ > 1 the most meaningful condition is [ḡ1F̄ ] > 0. If instead

d̄ = 1 the most meaningful condition is [ḡ1F̃ ] > 0, because F̄ ≡ 0. However, because of (2.21)

and (2.13) we have to concentrate on the former case. We conclude that pure gauge theories are

polynomial in the physical sector if and only if

4−
4

n
− 2κ1 < đ,

having written [ḡi] = κi. In the presence of scalars and fermions we must have

4−
4

n
− 2κ1 < đ, 1− 2κ2 < đ, 2− 2κ3 < đ. (3.11)

Observe that (3.11) and n ≥ 2 ensure that the weight of ḡ1Â is strictly positive. Thus the

theory is certainly polynomial in Â. For the same reason, it is polynomial also in C̄ and C. On

the other hand, the weight of ḡ1Ā can be negative, because (3.11) ensures only [ḡ1Ā] > −1/n.

This means that, in principle, the gauge-fixing sector can be non-polynomial. Now we show that

if the tree-level gauge fixing is (2.16), then the theory is polynomial also in the gauge-fixing sector.

Note that is some cases (see appendix B) the gauge-fixing sector does not preserve the simple

form (2.16), but can acquire new types of vertices by renormalization.

We need to prove that beyond the tree level, in both the physical and gauge-fixing sectors,

the field Ā appears only in the combinations

gĀ, ḡ1∂̂Ā, ḡ1gÂĀ, ḡ1∂̄Ā, ḡ1gĀĀ. (3.12)

First observe that at the tree level this statement is true up to the factors 1/ᾱi, 1/āi and 1/ᾱ

appearing in (3.8). Indeed, Ā appears only in the following locations: i) in (Ga)2, which contributes

only to the propagator; ii) inside the covariant derivative D̄ (also in the ghost action); iii) inside

the field strength. In case ii) Ā is multiplied by g and gives the first term of (3.12). In case iii)

the field strength carries an extra factor ḡ1: ḡ1F̃ gives the second and third terms of (3.12), while

ḡ1F̄ gives the forth and fifth terms.

Next, consider an L-loop Feynman diagram G and assume that the Ā-structure of the renor-

malized action is (3.12) up to the order L− 1 included, with the tree-level caveat just mentioned.

The factors 1/ᾱi, 1/āi and 1/ᾱ of (3.8) are simplified by the internal legs of G, which are at least

two for every vertex. Consider the Ā-external legs of G. In the first case of (3.12) the Ā-leg is

accompanied by a factor g and in the second case by a ḡ1 and a derivative ∂̂ acting on it. In the

third case it carries a factor g (the ḡ1 being left for the Â-leg, in case it is external), in the forth

10
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case a ḡ1 and a derivative ∂̄. In the fifth case both Ā’s or just one Ā can be external, with factors

ḡ1g and g, respectively. Therefore, diagrams and counterterms contain Ā only in the combinations

(3.12), so the property (3.12) is inductively promoted to all orders.

Under the conditions (3.11) ḡ1Â and each combination (3.12) have positive weights. The Ā

external legs are always equipped with enough ḡ1-g-factors and/or derivatives to raise the weight

by a finite amount. Thus, the total renormalized lagrangian is polynomial, gauge-fixing sector

included.

In conclusion, recalling (2.13), (2.21) and (3.11), consistent renormalizable gauge theories with

a non-trivial super-renormalizable subsector require

n = odd, d = even ≥ 4, d̂ = 1, 4−
4

n
< đ + 2κ1, 1 < đ + 2κ2, 2 < đ + 2κ3,

(3.13)

plus other restrictions summarized at the end of section 4 to ensure the absence of spurious

subdivergences. Moreover, (3.9) gives

κ1 ≤ 2−
đ

2
, κ2,3 ≤ 1 +

κ1
2
−

đ

4
, (3.14)

and of course we must have κi ≥ 0.

The same argument that leads to (3.12) proves that the counterterms contain the field Â only

in the combinations

gÂ, ḡ1∂̂Â, ḡ1gÂÂ, ḡ1∂̄Â, ḡ1gÂĀ. (3.15)

Again, at the tree level this statement is true up to the factors 1/ᾱi, 1/āi and 1/ᾱ appearing in

(3.8).

Time-derivative structure To ensure (perturbative) unitarity it is crucial to prove that the

lagrangian contains no terms with higher time derivatives. We now prove that it is so and give a

complete classification of the ∂̂-structure.

Using the information encoded in (3.12) and (3.15) a generic lagrangian term can be schemat-

ically written as

λ̄i
ḡ′2

(∂̂ + gÂ)k(∂̄ + gĀ)m(ḡ1∂̂Â+ ḡ1gÂÂ)
p(ḡ1∂̂Ā+ ḡ1∂̄Â+ ḡ1gÂĀ)

q

(ḡ1∂̄Ā+ ḡ1gĀĀ)
h(ḡ21C̄C)r(ḡ3ϕ)

s(ḡ22ψ̄ψ)
t, (3.16)

where [λ̄i] ≥ 0 and ḡ′ is the ḡ of minimum weight among those appearing in the vertex. We find

the inequality

k + m
n + (2p + q)

(
1− 1

n

)
+ (p+ q + h)

(
đ
2 − 2 + 2

n + κ1
)

+r (đ− 2 + 2κ1) + s
(

đ
2 − 1 + κ3

)
+ t (đ− 1 + 2κ2)− đ− 2κ′ ≤ 0. (3.17)
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Moreover, we know that κ′ = [ḡ′] is not larger than any of the other κ’s appearing in the inequality.

Observe that every quantity between parenthesis is non-negative.

First we study the vertices, then the quadratic terms. Consider the vertices containing fermions

(t ≥ 1). We have two possibilities: i) p = q = h = r = s = 0, t = 1 and k +m/n ≤ 1; or ii)

k +
m

n
+ (2p+ q)

(
1−

1

n

)
< 1.

Case i) gives no vertex with time derivatives. In case ii) we have immediately k = p = 0, q ≤ 1.

Time derivatives are contained only in terms of the form

X ′
1 ≡ f

′
1(Ā, ϕ, ψ, C̄, C, ∂̄)(∂̂Ā), (3.18)

where ∂̄ can act anywhere.

From now on we can neglect the fermions. Consider the vertices with two or more scalars.

Again, we have two cases: iii) p = q = h = r = 0, s = 2 and k +m/n ≤ 2; or iv)

k +
m

n
+ (2p+ q)

(
1−

1

n

)
< 2. (3.19)

In case iii) vertices can have at most one time derivative and fall in the class

X1 ≡ ∂̂f1(Â, Ā, ϕ, C̄, C, ∂̄), (3.20)

where the ∂̂-and ∂̄-derivatives are allowed to act anywhere. In case iv) we must have k ≤ 1. For

k = 1, we have either p = 0, q = 1, m = 0, which is not O(d̄)-invariant, or p = q = 0, which is

not O(1, d̂ − 1)-invariant. For k = 0 we have p = 1, q = 0, which is of the form (3.20), or p = 0,

q = 2, which is of the form (3.20) or

X2 ≡ f2(Ā, ϕ, C̄, C, ∂̄)(∂̂Ā)(∂̂Ā), (3.21)

where only the ∂̄-derivatives can act anywhere.

Next, consider the vertices with one scalar. If r ≥ 1 we have again (3.19), therefore vertices

of the form (3.20) or (3.21). If r = 0 consider first the case p+ q + h ≥ 2. Then we have

k +
m

n
+ (2p + q − 4)

(
1−

1

n

)
< 0, (3.22)

so either p = 1 or p = 0. If p = 1 we can have only k = q = 0, which has the form (3.20). If p = 0

we can have k = 1, 0. If k = 1 then q = 1, so the vertex is of the form (3.20), (3.21) or

X ′
2 ≡ f

′
2(Ā, ϕ, ∂̄)(∂̂

2Ā). (3.23)

If k = 0 then q ≤ 2 so the vertex is of the form (3.20) or (3.21). It it easy to see that also the

vertices with s = 1, r = 0 and p+ q + h < 2 fall in the classes (3.20), (3.21) or (3.23).
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Now consider the vertices with neither scalars nor fermions. Here κ′ = κ1. If r ≥ 1 we have

either v) p = q = h = 0, r = 1; or vi) (3.19). These cases are the same as iii) and iv) above,

with two scalar fields replaced by ghosts. The vertices they give fall in the classes listed so far.

We remain with the vertices with s = r = t = 0. We have the cases: vii) p + q + h > 2; viii)

p+ q+ h ≤ 2. In case vii) we have (3.22) again, therefore k ≤ 3, 2p+ q < 4. If k = 3 then q = 1,

by O(1, d̂ − 1) invariance, but it violates (3.22). If k = 2 we have p = q = 0, while if k = 1 we

have q = 1, p = 0. In either case the vertices fall in the classes (3.20), (3.23) and (3.23). If k = 0

then p = 1, q = 0, which gives (3.20), or p = 0, q = 2, which gives (3.20) or (3.21). It is easy to

show that case viii) does not produce new types of vertices with time derivatives.

Finally, the quadratic terms that do not fall in the classes (3.20), (3.21) and (3.23) have the

forms

(∂̂Â)2, C̄∂̂2C, ϕ∂̂2ϕ, ψ̄∂̂ψ, (3.24)

as expected. Every other term is ∂̂-independent. We conclude, in particular, that the theory is

free of higher time derivatives.

4 Absence of spurious subdivergences

In this section we derive sufficient conditions to ensure the absence of spurious subdivergences.

We generalize the proof given in paper I, which was specific for 1/α theories. We use the Feynman

gauge (A.4) and the dimensional-regularization technique. We proceed by induction and assume

that counterterms corresponding to diverging proper subdiagrams are included. Moreover, we

assume d̂ = 1, n =odd and that the spacetime dimension is even. We also assume that the theory

does not contain vertices of type X ′
1 , see 3.18), which is true in most physical applications. Other

restrictions will emerge along with the analysis. The complete sets of sufficient conditions are

recapitulated at the end of the section.

Consider a generic N -loop integral

∫
dk̂1

(2π)d̂

∫
dd̄k̄1

(2π)d̄
· · ·

∫
dk̂N

(2π)d̂

∫
dd̄k̄N

(2π)d̄
, (4.1)

with loop momenta (k1, . . . , kN ). We have to prove that all subintegrals, in all parametriza-

tions (k′1, . . . , k
′
N ) of the momenta, are free of subdivergences. By the inductive assumption, all

divergent subintegrals
M∏

j=1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄
, (4.2)

where M < N , are subtracted by appropriate counterterms. We need to consider subintegrals

where some hatted integrations are missing and the corresponding barred integrations are present,

and/or viceversa.

13



08
A

3
R

en
or

m
The proof given in paper I is divided in three steps: structure of integrals, k̂–subintegrals and

mixed subintegrals. The first step does not have to be repeated here, since it applies unchanged.

It proves that we can focus on the subintegrals containing some k̂′a-integrations without the

corresponding k̄′a-integrations. We generalize the second step of the proof and the third one.

k̂-subintegrals Now we prove that the subintegrals over hatted components of momenta have

no spurious subdivergences. More precisely, we prove, under very general assumptions, that one-

dimensional integrals have no logarithmic divergences, namely their renormalization-group flow

is trivial. This property ensures that using the dimensional-regularization technique, which kills

the power-like divergences automatically, the k̂-subintegrals are convergent.

Consider “Feynman integrals” in one dimension, and assume that: i) the propagators are

regular everywhere; ii) when p is large they behave as 1/(p2)N times some polynomial in p, for

some N < ∞; iii) they tend to a constant for p → 0. In Lorentz violating gauge theories such

assumptions hold with N equal to 1, but our proof is more general. Consider a diagram G with

L loops, V vertices and I internal legs. Denote the loop momenta with pi. We have an integral

that for large pi’s looks like

I(L, V, ω) =

∫ L∏

i=1

dpi
P ′
ω(p)(∏L

j=1(p
2
i )
N
)
PV−1 ((∆p2)N )

.

We have used I = L+V −1. Here PV−1 is a polynomial of degree V −1 in (∆p2)N , where ∆p are

linear combinations of the p’s with coefficients ±1. The numerator P ′
ω is a polynomial of degree

ω in the p’s. To have a potential overall divergence we need

ω ≥ L(2N − 1) + 2N(V − 1). (4.3)

If V = 1 the integral factorizes into L one-loop integrals, which cannot contain logarithmic

divergences. Assume V > 1. Then (4.3) implies that each monomial of P ′
ω(p) contains at least

2N powers of some pi, say p1, which “simplify” a propagator. Actually they produce a regular

function of the form

p2N1

p2N1 +
∑2N

j=1 cjp
2N−j
1

= 1−

∑2N
j=1 cjp

2N−j
1

p2N1 +
∑2N

j=1 cjp
2N−j
1

. (4.4)

Consider first the “1” on the right-hand side of this equation. It gives

∫ L∏

i=1

dpi
P ′
ω−2N (p)(∏L

j=2(p
2
i )
N
)
PV−1 ((∆p2)N )

.

We can distinguish two cases: i) PV−1 does not depend on p1; ii) PV−1 depends on p1. In

case i) the p1-integral factorizes and cannot produce logarithmic divergences. We remain with a
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I(L− 1, V, ω − 2N). In case ii), after a p1-translation we obtain an integral I(L, V − 1, ω − 2N).

The translation can cost at worst another I(L− 1, V, ω − 2N). Now consider the second term on

the right-hand side of (4.4): it gives iii) a I(L, V, ω′) with ω′ < ω.

In all cases we can repeat the arguments made so far, with fewer loops or vertices, or with a

smaller ω. At each step either an integral factorizes, or a propagator simplifies, or ω decreases.

We end up with zero loops, namely no integral, or one vertex, namely L factorized integrals, or

an ω violating (4.3), i.e. an overall convergent integral. Proceeding this way we find that there

cannot be logarithmic divergences. If there are no logarithmic divergences at d̂ = 1 there are no

divergences at all reaching d̂ = 1 from complex dimensions 1− ε1.

Mixed subintegrals Consider subintegrals of the form

L∏

i=1

∫
dk̂′i

(2π)d̂



L+M∏

j=L+1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄


 , (4.5)

which are “incomplete” in L barred directions. The complete subintegrals in square brakets can

be regarded as products of (nonlocal, but one-particle irreducible) “subvertices”. Let r label the

subvertices with ñÂr, ñĀr, ñCr, ñfr, ñsr external legs of types Â, Ā, ghost, fermion and scalar,

respectively. Since subvertices are at least one-loop, each leg has a factor ḡ1,2,3 attached to it (see

(3.10)). Thus, the weight δ̃r of the subvertices of type r satisfies the bound

δ̃r ≤ đ− (ñÂr + ñCr)

(
đ

2
− 1 + κ1

)
− ñĀr

(
đ

2
− 2 +

1

n
+ κ1

)

−ñfr

(
đ− 1

2
+ κ2

)
− ñsr

(
đ

2
− 1 + κ3

)
. (4.6)

Consider a subintegral (4.5) corresponding to a subdiagram with L loops, v1 vertices of type

X1, v2 vertices of type X2 and X ′
2, ∆vi vertices of other types with 2i fermionic legs, IB internal

bosonic legs (including ghosts) and IF internal fermionic legs, EF external fermionic legs and ṽr

subvertices of type r. We know that every bosonic propagator behaves at least like 1/k̂2, for k̂

large, while the fermionic propagator behaves like 1/k̂. The subintegral has a superficial degree

of divergence equal to

ω̂(G) = L+ v1 + 2v2 − 2IB − IF +
∑

r

ṽr δ̃r. (4.7)

Moreover, the topological identity L− I + V = 1 gives

L = 1 + IB + IF − v1 − v2 −

imax∑

i=0

∆vi −
∑

r

ṽr. (4.8)
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Counting the fermionic legs of the subdiagram we have

2IF + EF =

imax∑

i=0

2i∆vi +
∑

r

ṽrñfr. (4.9)

Combining (4.7), (4.8) and (4.9) we get

ω̂(G) = 2− L− v1 −
EF
2

+

imax∑

i=0

(i− 2)∆vi +
∑

r

ṽr

(
δ̃r − 2 +

ñfr
2

)
. (4.10)

We know that in the realm of the usual power counting, odd-dimensional integrals do not have

logarithmic divergences. In the realm of the weighted power counting, such a property generalizes

as follows: if d̂ = 1, d =even and n =odd, then odd-dimensional (weighted) integrals do not have

logarithmic divergences. The proof is simple and left to the reader. Thus, the case L = 1 is

excluded. Sufficient conditions to have ω̂(G) ≤ 0 are then imax ≤ 2 (i.e. vertices with more than

four fermionic legs should be absent) and

δ̃r − 2 +
1

2
ñfr < 0 for every r. (4.11)

Indeed, if such conditions hold (4.10) gives ω̂(G) < 0 unless all subvertices are absent, which is

the case considered previously. Using (4.6), sufficient conditions to have (4.11) are

đ− (ñÂr + ñCr)c1 − ñĀr c̄1 − ñfrc2 − ñsrc3 < 2, (4.12)

where

ci =
đ

2
− 1 + κi, c̄1 =

đ

2
− 2 +

1

n
+ κ1. (4.13)

Finally, the most general mixed subintegrals have the form

L∏

i=1

∫
dk̂′i

(2π)d̂



L+M∏

j=L+1

∫
dk̂′j

(2π)d̂

∫
dd̄k̄′j

(2π)d̄

L+M+P∏

m=L+M+1

∫
dd̄k̄′m
(2π)d̄


 .

They can be treated as above, considering the integrals between square brakets as subvertices.

Now formula (4.10) has an extra −P on the right-hand side, since P hatted intergations are

missing. The situation, therefore, can only improve. The only caveat is that now L can also be

one (if P is odd). Even in that case, however, 2− L− P ≤ 0, since P ≥ 1.

Sufficient conditions for the absence of spurious subdivergences Now we work out

sufficient conditions to fulfill (4.11). First, we require that the coefficients ci, c̄1 in (4.12) be

strictly positive, so that the bound (4.12) improves when the number of legs increases. It is easy

to check that under such conditions vertices X ′
1 and vertices with more than four fermionic legs are
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automatically forbidden. We can have various cases, according to which of the ci, c̄1 is minimum.

i) If

2−
1

n
−

đ

2
< κ1 ≤ κ2,3 + 1−

1

n
(4.14)

the minimum coefficient is c̄1. Then the worst case for the bound (4.6) is ñĀr = 2, ñÂr = ñCr =

ñfr = ñsr = 0, so sufficient conditions to ensure (4.12) are

1−
1

n
< κ1. (4.15)

The combination of (4.14) and (4.15) is

1−
1

n
< κ1 ≤ κ2,3 + 1−

1

n
, κ1 > 2−

1

n
−

đ

2
. (4.16)

Repeating the argument for the other cases, we find ii)

1−
đ

2
< κ2 ≤ κ3, 1−

1

n
+ κ2 ≤ κ1, (4.17)

with minimum coefficients c2, and iii) (4.17) with κ2 and κ3 interchanged, with minimum coeffi-

cient c3.

The case đ≤ 2 is important for physical applications, so we treat it apart. We prove that

sufficient conditions for the absence of spurious subdivergences are

đ ≤ 2, κ1 > 2−
1

n
−

đ

2
, κ2 ≥ 1−

đ

2
. (4.18)

The second and third inequalities of this list ensure c̄1 > 0 and c2 ≥ 0, respectively, while

c3 > 0 is already ensured by the last inequality of (3.13). Again, it is easy to prove that under

such conditions neither vertices X ′
1, nor vertices with more than four fermionic legs are allowed.

Moreover, four fermion vertices cannot have other types of legs.

Now, (4.18) imply ω̂(G) ≤ 0. If đ< 2 or κ2 > 1−đ/2, then ω̂(G) = 0 only for ṽr = 0. Instead,

if đ= 2 and κ2 = 0, then ω̂(G) = 0 for ṽr = 0 or

L = 2− P, v1 = EF = ∆v0 = ∆v1 = ñÂr = ñĀr = ñCr = ñsr = 0, ñfr, v2,∆v2 = arbitrary.

The subdiagrams with such features do not contain vertices with both fermionic and bosonic legs,

have no external fermionic leg and their subvertices have only fermionic legs. Thus, either ṽr = 0

and the diagram falls in the k̂-subintegral class discussed above, or v2 = 0 and the diagram has

no external leg, therefore it is trivial.

Concluding, if d̂ = 1, n =odd and d is even spurious subdivergences are absent if either (4.16),

or (4.17), or (4.17) with κ2 ↔ κ3, or (4.18) hold.
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5 Renormalizable theories

In this section we study examples of renormalizable theories and look for four dimensional models

that contain two scalar-two fermion interactions and four fermion interactions.

The simplest models are those that have the smallest values of n (≥ 2) and the largest values

of κ1,2,3. Compatibly with (3.14) the largest value of all κi’s is 2−đ/2, which gives the 1/α

theories considered in paper I. Those models exhibit, in a simplified framework, several properties

of Lorentz violating gauge theories, but are not particularly rich from a phenomenological point

of view, because they cannot renormalize vertices that are otherwise non-renormalizable, apart

from those that contain some unusual dependences on Ā and ∂̄.

The simplest four dimensional 1/α theory [6] has n = 2, đ= 5/2 and the (Euclidean) lagrangian

L1/α = LQ +
g

Λ2
L

fabc

(
λF̃ aµ̂ν̄ F̃

b
µ̂ρ̄ + λ′F̄ aµ̄ν̄F̄

b
µ̄ρ̄

)
F̄ cν̄ρ̄ +

g

Λ4
L

∑

j

λjD̄
2F̄ 3

j +
α

Λ4
L

∑

k

λ′kF̄
4
k, (5.1)

where j labels the independent gauge invariant terms constructed with two covariant derivatives

D̄ acting on three field strengths F̄ , and k labels the terms constructed with four F̄ ’s. The last

two terms are symbolic.

Let us investigate the 1/ᾱ extensions of (5.1). The maximal extension is the one with κ = 0.

The theory contains the additional vertices

4∑

p=2

λp

Λ
9p/2
L

F̃ 2F̄ p +
6∑

q=4

λ′q

Λ
9q/2−7
L

D̄2F̄ q +
10∑

r=5

λ′′r

Λ
9r/2−9
L

F̄ r. (5.2)

Larger values of κ can reduce the set of vertices in various ways. For example, for 5/12 < κ ≤ 3/4

the theory is still (5.1). For 1/4 < κ ≤ 5/12 we have a unique additional vertex, F̄ 5. For

3/20 < κ ≤ 1/4 we have also F̃ 2F̄ 2, D̄2F̄ 4 and F̄ 6. For 1/12 < κ ≤ 3/20 we have also F̄ 7, and

so on. However, because n is even the model (5.1) and its extensions (5.2) may have spurious

subdivergences. Going through the previous section it is possible to show that such subdivergences

appear only at three loops. The first completely consistent model is thus the theory with d̂ = 1,

n = 3, đ= 2. Its simplest renormalizable lagrangian is the sum of LQ plus F̄ 3.

Theories with two scalar-two fermion vertices Two scalar-two fermion interactions

ḡ22 ḡ
2
3

ā1
ϕ2ψ̄ψ

are renormalizable if and only if

κ2,3 ≤
3

2
−

đ

2
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and of course κ2,3 ≥ 0. Let us choose the largest values of κ1,2,3 compatible with this bound and

(3.13)-(3.14), namely

ḡ1 = g, ḡ2 = ḡ3 = ḡ, κ2 = κ3 =
3

2
−

đ

2
.

We can take, for example, n = 2, đ= 5/2, with gauge group SU(2) × U(1) and matter fields

in the fundamental representation of SU(2). Then we have the theory

L=L1/α + ψ̄

(
D̂/+

ηf
ΛL

D̄/
2
+ η′fD̄/+mf

)
ψ +

+|D̂ϕ|2 +
ηs
Λ2
L

|D̄2ϕ|2 + η′s|D̄ϕ|
2 +m2

s|ϕ|
2 +

λ4ḡ
2

4
|ϕ|4

+
ḡ2

4Λ2
L

[
λ6
9
ḡ2|ϕ|6 + λ

(3)
4 |ϕ|

2|D̄ϕ|2 + λ
(2)
4 |ϕ

†D̄ϕ|2 + λ
(1)
4

(
(ϕ†D̄ϕ)2 + h.c.

)]

+
Y ḡ2

ΛL
|ϕ|2ψ̄ψ +

Y ′ḡ2

ΛL
(ψ̄ϕ)(ϕ†ψ) +

τfg

ΛL
iF̄ aµ̄ν̄(ψ̄T

aσµ̄ν̄ψ)

+
g

Λ2
L

[
τsF̄

a
µ̄ν̄((Dµ̄ϕ)

†T aDν̄ϕ) + τ ′sg|ϕ|
2F̄ 2

]
. (5.3)

where L1/α is given in (5.1). For simplicity, we have assumed U(1) charge assignments that forbid

terms containing ψ̄cψ.

We see that the list of new vertices contains also scalar self-interactions of type ϕ6, ϕ4-vertices

with spatial derivatives, Pauli terms and several other types of vertices that are not renormalizable

in the framework of the usual power counting.

The couplings λ6, λ
(i)
4 , Y , Y ′, τf , τs and τ ′s are weightless. Since κi > 0 their beta func-

tions vanish identically. Following the arguments explained around formula (3.10), the couplings

that are not generated back by renormalization can be consistently switched off, which produces

simplified renormalizable models. The simplest one reads

1

2
Fµ̂ν̄η(Ῡ)Fµ̂ν̄ +

1

4
Fµ̄ν̄τ(Ῡ)Fµ̄ν̄ + ψ̄

(
D̂/+

ηf
ΛL

D̄/
2
+ η′fD̄/+mf

)
ψ +

+|D̂ϕ|2 +
ηs
Λ2
L

|D̄2ϕ|2 + η′s|D̄ϕ|
2 +m2

s|ϕ|
2 +

λ4ḡ
2

4
|ϕ|4,

which can be cast in 1/α form. Again, because n is even the theory may contain spurious

subdivergences.

Theories with four fermion vertices Four fermion interactions ḡ22ψ̄
2ψ2 are renormalizable

if and only if

κ2 ≤ 1−
đ

2
,
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which can happen only for đ≤ 2, therefore 4 ≤ d ≤ n+ 1. In four dimensions the simplest case is

n = 3, đ= 2, κ2 = 0. We can still choose ḡ1 = g, and, in the presence of scalar fields, κ3 = 1/2.

Then the model satisfies (2.21) and (4.18), so it is free of spurious subdivergences.

Turning scalar fields off and choosing G = SU(N), with a Dirac fermion in the fundamental

representation, the lagrangian is the sum of the pure gauge terms LQ+LI plus the fermion kinetic

terms, some Pauli-type terms and the four fermion vertices. Precisely,

L=LQ + LI + ψ̄

(
D̂/+

2∑

i=0

ηif

Λ2−i
L

D̄/
3−i

+mf

)
ψ +

g

Λ2
L

F̄ aµ̄ν̄

[
τf (ψ̄T

aγµ̄
←→
D ν̄ψ) + τ ′f iD̄ν̄(ψ̄T

aγµ̄ψ)
]

+
τ ′′f g

ΛL
iF̄ aµ̄ν̄(ψ̄T

aσµ̄ν̄ψ) +
1

Λ2
L

[
λ1(ψ̄ψ)

2 + λ2(ψ̄γ5ψ)
2 + λ3(ψ̄γµ̂ψ)

2 + λ4(ψ̄γµ̄ψ)
2
]

+
1

Λ2
L

[
λ5(ψ̄γµ̂γ5ψ)

2 + λ6(ψ̄γµ̄γ5ψ)
2 + λ7(ψ̄σµ̂ν̄ψ)

2 + λ8(ψ̄σµ̄ν̄ψ)
2
]
. (5.4)

We have

LI =
gλ3
Λ2
L

fabcF̃
a
µ̂ν̄F̃

b
µ̂ρ̄F̄

c
ν̄ρ̄ +

gλ′3
Λ4
L

D̄2F̃ 2F̄ +
gλ′′3
Λ4
L

D̂D̄F̃ F̄ 2 +
gλ′′′3
Λ4
L

D̂2F̄ 3 +
g2λ4
Λ4
L

F̃ 2F̄ 2

+
g

Λ2
L

3∑

m=0

λ(1)m
D̄2m

Λ2m
L

F̄ 3 +
g2

Λ4
L

2∑

m=0

λ(2)m
D̄2m

Λ2m
L

F̄ 4 +
g3

Λ6
L

1∑

m=0

λ(3)m
D̄2m

Λ2m
L

F̄ 5 +
g4

Λ8
L

λ(4)F̄ 6.

It is straightforward to check that the ∂̂-structures of the theories listed so far agrees with the

results of section 3.

The model (5.4) is fully consistent. In particular, it is free of spurious subdivergences. It is

straightforward to include scalar fields and two scalar-two fermion interactions.

Abelian strictly renormalizable theories We conclude with the analysis of a peculiar class

of strictly renormalizable theories. The quadratic part LQ of the lagrangian must have

η(Ῡ) = η0Ῡ
n−1, τ(Ῡ) = τ0Ῡ

2(n−1), ξ(Ῡ) = ξ0Ῡ
n−2.

For convenience we can choose a strictly-renormalizable gauge fixing, with ζ(ῡ) = ζ0ῡ
n−1. The

IR analysis of Feynman diagrams is still dominated by the weighted power counting, however

η(0) = τ(0) = 0, so the gauge-field propagator contains additional denominators ∼ 1/k̄2(n−1) in

the
〈
ĀĀ
〉
-sector. The loop integrals over k and the loop sub-integrals over k̄ are IR divergent

unless

đ > 4−
2

n
, d̄ > 2(n− 1), (5.5)

respectively. The latter condition and n ≥ 2 imply d̄ ≥ 3. We have also to require (3.11) and

(3.14), and check the absence of spurious subdivergences.
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If đ= 4 the gauge coupling itself is strictly-renormalizable and the theory can be cast in a 1/α

form. This case, considered in paper I, is not guaranteed to be free of spurious subdivergences.

On the other hand, if đ< 4 the theory can be strictly-renormalizable only if it is Abelian and

contains vertices constructed with the field strength and its derivatives. In four dimensions no

strictly renormalizable theory with d̂ = 1 exists, since đ is smaller then 4, and (2.21) and (3.13)

imply n < 5/3. Thus, we have to consider higher dimensional theories. The conditions (2.21) and

(5.5) give d ≥ 3n, but đ< 4 gives also d ≤ 3n, so we must have d = 3n ≥ 6. However, it is easy

to check that the six-dimensional theory with n = 2, d̄ = 5, đ= 7/2, is trivial, since no strictly

renormalizable interaction can be constructed. Then we have the nine dimensional theory with

n = 3, d̄ = 8, đ= 11/3, and lagrangian

L = LQ +
λ

Λ20
L

D̄2F̄ 6.

However, since this theory is odd-dimensional, at present we cannot guarantee that it is free of

spurious subdivergences.

6 More general Lorentz violations

So far we have broken the Lorentz group O(1, d− 1) into the product of two subfactors O(1, d̂ −

1) × O(d̄), which means, for d̂ = 1, that we have preserved time reversal, parity and rotational

invariance. It is of course possible to break also such symmetries, but that breaking is not going

to affect the results of our present investigation. The structure of the theory with respect to the

weighted power counting is unmodified as long as each space coordinate has the same weight.

A more general possibility is to break the Lorentz group into the product of more subfactors,

so that different space coordinates may have different weights. Invariance under spatial rotations

is necessarily lost. To cover the most general case, we can break the spacetime manifold M into

a submanifold M̂ of dimension d̂, containing time, and ` space submanifolds M̄i of dimensions di,

i = 1, . . . `:

M = M̂ ×
∏̀

i=1

M̄i. (6.1)

Denote the space derivatives of the ith space subsector by ∂i and assume that they have weights

1/ni. We can assume also n1 < n2 · · · < n`. Then the weighted dimension đ, which is also the

weight of the momentum-space integration measure ddp, is equal to

đ = d̂+
∑̀

i=1

di
ni
.

Again, đ can be at most 4. If the super-renormalizable subsector is non-trivial d must at least be

equal to 4, otherwise Feynman diagrams can have IR divergences.
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The weight of a scalar field ϕ is still đ/2 − 1, because its kinetic term must contain (∂̂ϕ)2.

Similarly, the weight of a fermion is đ/2 − 1/2 and the weight of the Â-component of the gauge

field is đ/2 − 1. Since ∂̄iÂ and ∂̂Āi belong to the same field-strength component, the weight of

Āi is đ/2− 2 + 1/ni.

Every argument of this paper can be generalized straightforwardly to the breaking (6.1), except

for the analysis of spurious subdivergences, which is a more delicate issue. The conditions d̂ = 1,

d =even, combined with suitable other restrictions, are still sufficient to ensure that no spurious

subdivergences occur in the k̂-subintegrals. Now, however, the propagator behaves irregularly

also when k̄i →∞ for any i < `.

Consider for example a three-factor splitting. The quadratic part of the lagrangian is a

quadratic form in the momenta k̂, k̄1 and k̄2, and contains appropriate polynomial functions

of k̄21 , or k̄22, or both. In particular, the Ā2-quadratic term has the form, in momentum space,

Ā2µ(−k)Q22(k)Ā2µ(k) + Ā2µ(−k)k̄2µQ
′
22(k)k̄2νĀ2ν(k),

where Q22(k) is a polynomial of weight 4− 2/n2. The propagator 〈Ā2Ā2〉 reads

〈Ā2(k)Ā2(−k)〉 = Q−1
22 (k)δ̄2 + P22(k)k̄2k̄2,

for some unspecified function P22(k). The weight of Q22 cannot be saturated just by k̄1, because

Q22 ∼ (k̄21)
X would give

X = 2n1 −
n1
n2
,

which is not integer. Consequently the propagator 〈Ā2Ā2〉 cannot behave regularly in the limit

k̄1 →∞ with k̂ and k̄2 fixed, so the k̄1-subintegrals may contain spurious subdivergences of new

types. If we assume d̄1 = 1 (in addition to d̂ = 1) then the k̄1-integrals do not have spurious

divergences, as explained in section 4. However, this is not enough, because the k̂-k̄1-subintegrals

themselves, which are two dimensional, can generate spurious subdivergences. In this case the

arguments of section 4 do not apply. We do not know at present if the problem of spurious

subdivergences can be solved in general. Our present results seem to suggest that the unique

consistent spacetime splitting in the one into space and time.

Before concluding this section it is worth to emphasize that the models to which our proofs

of renormalizability, or absence of spurious subdivergences, do not apply cannot be completely

excluded. Some of them might work because of unexpected cancellations, which can occur because

of symmetries (e.g. supersymmetry) or peculiar types of expansions or resummations (e.g. large

N).
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7 Conclusions

In this paper we have completed the program of constructing and classifying the Lorentz violating

gauge theories that are renormalizable by weighted power counting. The theories contain higher

space derivatives, but no higher time derivatives. We have shown that it is possible to renormalize

vertices that are non-renormalizable in the usual power counting framework, such as the two scalar-

two fermion interactions and the four fermion interactions. We have studied the time-derivative

structure of the theories and the absence of spurious subdivergences in detail. Spacetime is split

into space and time.

We recall that once Lorentz symmetry is violated at high energies, its low energy recovery

is not automatic, because renormalization makes the low-energy parameters run independently.

One possibility is that the Lorentz invariant surface is RG stable (see [8] and [9]). Otherwise, a

suitable fine-tuning must be advocated.
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Appendix A: Propagators and dispersion relations

After integrating Ba out, the gauge-field quadratic terms are contained in

LQ +
1

2λ
(Ga)2, (A.1)

which gives the propagator

〈A(k) A(−k)〉 =

(
〈ÂÂ〉 〈ÂĀ〉

〈ĀÂ〉 〈ĀĀ〉

)
=

(
uδ̂ + sk̂k̂ rk̂k̄

rk̄k̂ vδ̄ + tk̄k̄

)
, (A.2)

with

u=
1

D(1, η)
, s =

λ

D2(1, ζ)
+
−k̂2 + ζ

(
ζ
η − 2

)
k̄2

D(1, η)D2(1, ζ)
, r =

λ− ζ
η

D2(1, ζ)
,

v=
1

D(η̃, τ)
, t =

λ

D2(1, ζ)
+

(
τ̃
η − 2ζ

)
k̂2 − ζ2k̄2

D(η̃, τ)D2(1, ζ)
,

where

D(x, y) ≡ xk̂2 + yk̄2, η̃ = η +
k̄2

Λ2
L

ξ, τ̃ = τ +
k̂2

Λ2
L

ξ,
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and now η, τ , ξ and ζ, as well as x and y, are functions of k̄2/Λ2

L. The ghost propagator is

1

D(1, ζ)
. (A.3)

In the Feynman gauge λ = 1, ζ = η we have

u =
1

D(1, η)
, s = r = 0, v =

1

D(η̃, τ)
, t =

τ̃ − η2

ηD(η̃, τ)D(1, η)
. (A.4)

The physical degrees of freedom can be read in the Coulomb gauge ∂̄ · Āa = 0, which can

be reached taking the limit ζ → ∞ in (A.2) and (A.3). In such a gauge the ghosts are non-

propagating, the Â-sector propagates d̂− 1 physical degrees of freedom with energies

E =

√
k̂2 + k̄2η(k̄2/Λ2

L)

and the Ā-sector propagates d̄− 1 physical degrees of freedom with energies

E =

√
k̂2 + k̄2

τ(k̄2/Λ2
L)

η̃(k̄2/Λ2
L)
.

Appendix B: Renormalizability to all orders

In this appendix we study the renormalizability of Lorentz violating gauge theories to all

orders, using the Batalin-Vilkovisky formalism [10]. For simplicity we concentrate on pure gauge

theories and use the minimal subtraction scheme and the dimensional-regularization technique.

Note that the functional integration measure is automatically BRST invariant.

The fields are collectively denoted by Φi = (Aaµ, C
a
, Ca, Ba). Add BRST sources Ki =

(Kµ
a ,Ka

C
,Ka

C ,K
a
B) for every field Φi and extend the action (2.18) as

Σ(Φ,K) = S(Φ)−

∫
ddx

[(
sAaµ

)
Kµ
a +

(
sC

a)
Ka
C
+ (sCa)Ka

C + (sBa)Ka
B

]
, (B.1)

Define the antiparenthesis

(X,Y ) =

∫
ddx

{
δrX

δΦi(x)

δlY

δKi(x)
−

δrX

δKi(x)

δlY

δΦi(x)

}
. (B.2)

BRST invariance is generalized to the identity

(Σ,Σ) = 0, (B.3)

which is a straightforward consequence of (B.1), the gauge invariance of S0 and the nilpotency of

s. Define also the generalized BRST operator

σX ≡ (Σ,X), (B.4)
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which is nilpotent (σ2 = 0), because of the identity (B.3).

The generating functionals Z, W and Γ are defined, in the Euclidean framework, as

Z[J,K] =

∫
DΦexp

(
−Σ(Φ,K) +

∫
ΦiJi

)
= eW [J,K], (B.5)

Γ[ΦΓ,K] =−W [J,K] +

∫
ΦiΓJi, where ΦiΓ =

δrW [J,K]

δJi
.

Below we often suppress the subscript Γ in ΦΓ. Performing a change of variables

Φ′ = Φ+ θsΦ, (B.6)

in the functional integral (B.5), θ being a constant anticommuting parameter, and using the

identity (B.3), we find

(Γ,Γ) = 0. (B.7)

A canonical transformation of fields and sources is defined as a transformation that preserves

the antiparenthesis. It is generated by a functional F(Φ,K ′) and reads

Φi ′ =
δF

δK ′
i

, Ki =
δF

δΦi
.

As usual, renormalizability is proved inductively. The inductive assumption is that up to the

n-th loop included the divergences can be removed redefining the physical parameters αi contained

in S0 and performing a canonical transformation of the fields and the BRST sources. Call Σn

and Γ(n) the action and generating functional renormalized up to the n-th loop included. The

inductive assumption ensures that Σn and Γ(n) satisfy (B.3) and (B.7), respectively.

Locality and (B.7) imply that the (n + 1)-loop divergences Γ
(n)
n+1 div of Γ(n) are local and σ-

closed, namely σΓ
(n)
n+1 div = 0. We have to find the most general solution to this cohomological

condition. In Lorentz invariant theories the problem has been solved for local functionals with

arbitrary ghost number [11]. Since Lorentz invariance does not play a major role in those proofs,

we conjecture that the Lorentz invariant result generalizes naturally to Lorentz violating theories,

namely that Γ
(n)
n+1 div can be decomposed as

Γ
(n)
n+1 div =

∫
ddx (Gn(A) + σRn) , (B.8)

where Gn(A) is gauge-invariant.

The functional Gn is local, gauge-invariant, constructed with A and its derivatives, and has

weight đ. Since, by assumption, S0 contains the full set of such terms, Gn can be reabsorbed renor-

malizing the physical couplings αi contained in S0. We denote these renormalization constants by

Zαi . On the other hand, the counterterms σRn are reabsorbed by the canonical transformation

Fn(Φ,K
′) =

∫
ddx

∑

i

ΦiK ′
i −Rn(Φ,K

′). (B.9)
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Concluding, the (n+1)-loop divergences are renormalized redefining the physical couplings αi

and performing a canonical transformation on the fields and the BRST sources. Such operations

preserve the identities (B.3) and (B.7), which are therefore promoted to all orders.
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