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Abstract

We study the Standard-Model extensions that have the following features: they violate Lorentz invari-

ance explicitly at high energies; they are unitary, local, polynomial and renormalizable by weighted power

counting; they contain the vertex (LH)2, which gives Majorana masses to the neutrinos after symmetry

breaking, and possibly four fermion interactions; they do not contain right-handed neutrinos, nor other

extra fields. We study the simplest CPT invariant Standard-Model extension of this type in detail and

prove the cancellation of gauge anomalies. We investigate the low-energy recovery of Lorentz invariance

and comment on other types of extensions.
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1 Introduction

Lorentz symmetry is a basic ingredient of the Standard Model of particle physics. However, several

authors have argued that at high energies Lorentz symmetry and CPT could be broken [1, 2, 3].

The problem has been attracting a lot of interest. In the power-counting renormalizable sector

the parameters of the Lorentz violating Standard-Model extension [2] have been tested with great

precision [4] and found in agreement with Lorentz invariance. However, if Lorentz symmetry were

explicitly violated at very high energies our understanding of Nature would change substantially.

If we do not assume Lorentz invariance, yet demand unitarity, we discover that the set of local

renormalizable theories is considerably larger than usual. Interactions that are not renormalizable

by ordinary power counting become renormalizable in a more general framework, called “weighted

power counting” [5], where space and time have different weights. Because of unitarity no terms

containing higher time derivatives are allowed. Yet, since Lorentz symmetry is violated, terms

containing higher space derivatives can be present. Quadratic terms of this type can improve the

behaviors of propagators at large momenta and allow us to renormalize interactions that otherwise

would be non-renormalizable, saving polynomiality. At the same time, weighted power counting

ensures that renormalization does not regenerate terms containing higher time derivatives. Clearly,

the high-energy behavior of the theory is modified in an essential way. For this reason, the Lorentz

violation we are talking about cannot be spontaneous, but must be explicit.

It is interesting to inquire what physics beyond the Standard Model emerges in this approach,

assuming that Lorentz symmetry is violated by terms of higher dimensions and restored at low en-

ergies. In non-gauge theories several types of Lorentz breakings are allowed [5, 6]. The presence of

gauge interactions puts more severe restrictions [7, 8], for example it privileges the Lorentz break-

ing where spacetime is split into space and time. Lorentz invariance can be violated preserving or

not preserving CPT [9]. We concentrate the major part of our attention on the “minimal breaking”

of Lorentz symmetry, which preserves CPT and invariance under space rotations. We construct

CPT invariant Standard-Model extensions that contain two scalar-two fermion interactions and

four fermion interactions. In particular, the models contain the vertex (LH)2 [10], which gives

Majorana masses to the neutrinos after symmetry breaking. No right-handed neutrinos, nor other

extra fields, are present.

Once Lorentz symmetry is violated at high energies, its low-energy recovery is not automatic,

because renormalization makes the low-energy parameters run independently. We have to advo-

cate a fine tuning that relates such parameters in a suitable way. It is not apparent how to justify

this fine-tuning, unless the Lorentz invariant surface is RG stable [11].

The relation between neutrino oscillations and Lorentz violation has been widely explored in

the literature. Cohen and Glashow formulated a theory of “very special relativity” [12] according

to which the exact symmetry group of Nature includes space-time translations and a proper
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subgroup of the Lorentz group. In this framework, they proposed a Lorentz-violating origin

for lepton-number conserving neutrino masses [13], without need for right-handed neutrinos. In

the Cohen-Glashow approach the neutrinoless double beta decay is forbidden. Kostelecký and

Mewes [14] proposed that the observed data about neutrino oscillations be explained by Lorentz

and CPT violations rather than mass differences. They studied the neutrino behavior in the

framework of the minimal Standard-Model extension of Colladay and Kostelecký [2] without

neutrino masses. Their investigation was extended by Katori, Kostelecký and Tayloe [15], who

showed that when the neutrino mass terms are included more data about neutrino oscillations can

be accommodated. Another mechanism to explain neutrino oscillations without neutrino masses,

due to Klinkhamer, is based on a Fermi-point-splitting method, suggested by an analogy with

condensed-matter physics [16].

In this paper our main concern is to show that the violation of Lorentz symmetry allows us

to extend the Standard Model to include two scalar-two fermion vertices, as well as four fermion

vertices, in a renormalizable way, and that to achieve this goal it is not necessary to violate CPT.

Closure under renormalization requires that several other vertices and quadratic terms be present.

The model predicts a departure from the Standard Model starting from energies of the order of

∼1014GeV and a completely new kind of UV behavior. Further work is necessary to search for

experimentally detectable effects.

The paper is organized as follows. In section 2 we review the weighted power counting. In

section 3 we classify the Lorentz violating extensions of the Standard Model, focusing on the

CPT invariant solutions that contain two scalar-two fermion vertices and four fermion vertices.

In section 4 we write the simplest model with such features in detail. In section 5 we prove that

the gauge anomalies of our extended model coincide with those of the Standard Model, therefore

they cancel out to all orders. Our analysis provides also an alternative, general proof of the

Adler-Bardeen theorem [17, 18]. Section 6 contains our conclusions. In the appendix we recall

the form of the gauge-field propagator and the problem of spurious subdivergences.

2 Weighted power counting

The simplest framework to study Lorentz violations is to assume that the d-dimensional spacetime

manifold M = R
d is split into the product M̂ × M̄ of two submanifolds, a d̂-dimensional subman-

ifold M̂ = R
d̂, containing time and possibly some space coordinates, and a d̄-dimensional space

submanifold M̄ = R
d̄, so that the d-dimensional Lorentz group O(1, d− 1) is broken to a residual

Lorentz group O(1, d̂− 1)×O(d̄). The formalism developed for the two-factor splitting of M can

be generalized to treat the most general Lorentz violation. However, in ref.s [7, 8] it is shown

that the absence of certain spurious divergences in Feynman diagrams selects a two-factor split

with d̂ = 1, which we are going to assume henceforth. This split is the physically most interesting
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one, since it states that at high energies there is no “spacetime”, but just space and time. In this

section we assume separate C, P and T invariances. We later relax these assumptions to study

the Standard Model.

The partial derivative ∂ is decomposed as (∂̂, ∂̄), where ∂̂ and ∂̄ act on the subspaces M̂ and

M̄ , respectively. Coordinates and momenta are decomposed similarly. Consider a scalar theory

with quadratic (Euclidean) lagrangian

Lfree =
1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂̄nϕ)2, (2.1)

where ΛL is an energy scale and n is an integer > 1. The theory (2.1) is invariant under the

weighted rescaling

x̂→ x̂ e−Ω, x̄→ x̄ e−Ω/n, ϕ→ ϕ eΩ(đ/2−1), (2.2)

where đ= d̂+ d̄/n is called “weighted dimension”. Note that ΛL is not rescaled.

The interacting theory is defined as a perturbative expansion around (2.1). For the purposes

of renormalization, the masses and other quadratic terms can be treated perturbatively, since

the counterterms depend polynomially on them. Denote the “weight” of an object O by [O] and

assign weights to coordinates, momenta and fields as follows:

[x̂] = −1, [x̄] = −
1

n
, [∂̂] = 1, [∂̄] =

1

n
, [ϕ] =

đ

2
− 1, [ψ] =

đ − 1

2
, (2.3)

while ΛL is weightless.

The vertices of weight đ are strictly renormalizable, those of weight smaller than đ super-

renormalizable and those of weight greater than đ non-renormalizable. A theory is renormalizable

if it contains no non-renormalizable vertices. This condition ensures also that the theory does not

contain higher time derivatives, which guarantees perturbative unitarity.

Having decomposed the partial derivative ∂ as (∂̂, ∂̄), the gauge field has to be decomposed

similarly. We write A = (Â, Ā), so the covariant derivative reads

D = (D̂, D̄) = (∂̂ + gÂ, ∂̄ + gĀ). (2.4)

where g is the gauge coupling. Then, we have the weight assignments

[gÂ] = [∂̂] = 1, [gĀ] = [∂̄] =
1

n
. (2.5)

The field strength is decomposed into

F̃µν ≡ Fµ̂ν̄ , F̄µν = Fµ̄ν̄ . (2.6)

while F̂µν = 0 at d̂ = 1.
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The BRST symmetry [19] is the same as usual,

sAaµ = Dab
µ C

b, sCa = −
g

2
fabcCbCc, sC̄a = Ba, sBa = 0, sψi = −gT aijC

aψj ,

etc. The simplest gauge-fixing is

Lgf = sΨ, Ψ = C̄a
(
−
λ

2
Ba + Ga

)
, Ga ≡ ∂̂ · Âa + ζ (ῡ) ∂̄ · Āa (2.7)

where λ is a dimensionless, weightless constant, ῡ ≡ −∂̄2/Λ2
L and ζ is a polynomial of degree

n− 1.

At d̂ = 1 the field strength does not contain terms of the form ∂̂Â, which however enter the

gauge fixing. Once the Lagrange multiplier Ba is integrated out the gauge-fixed action contains

(∂̂Â)2, which must have weight đ. Therefore, the weight of Â is đ/2 − 1. Then, (2.5) gives

[g] = 2−đ/2. From F̃ we get [∂̄] + [Â] = [∂̂] + [Ā], so we derive [Ā]. In summary,

[Â] =
đ

2
−1, [Ā] =

đ

2
−2+

1

n
, [F̂ ] =

đ

2
, [F̃ ] =

đ

2
−1+

1

n
, [F̄ ] =

đ

2
−2+

2

n
. (2.8)

The gauge-field action

S0 =

∫
ddx (LQ + LI) ≡ SQ + SI , (2.9)

is the sum of two contributions: the quadratic terms SQ, which are constructed with two field

strengths and possibly covariant derivatives; the vertex terms SI , which are constructed with at

least three field strengths, and possibly covariant derivatives.

Up to total derivatives the form of the quadratic part LQ of the lagrangian reads (in the

Euclidean framework) [7]

LQ =
1

4

{
2Fµ̂ν̄η(Ῡ)Fµ̂ν̄ + Fµ̄ν̄τ(Ῡ)Fµ̄ν̄ +

1

Λ2
L

(Dρ̂Fµ̄ν̄)ξ(Ῡ)(Dρ̂Fµ̄ν̄)

}
. (2.10)

Here Ῡ ≡ −D̄2/Λ2
L and η, τ and ξ are polynomials of degrees n−1, 2n−2 and n−2, respectively.

Finally, the gauge-fixed action reads

S =

∫
ddx (LQ + LI + Lgf) ≡ S0 + Sgf. (2.11)

In the appendix we recall the form of the gauge-field propagator and the origin and disap-

pearance of spurious subdivergences. The two physical degrees of freedom have the dispersion

relation

E =

√
k̄2
τ(k̄2/Λ2

L)

η̃(k̄2/Λ2
L)
, (2.12)

where η̃ = η + ξk̄2/Λ2
L.
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The renormalizability requirement can be refined to single out the super-renormalizable the-

ories. Observe that the gauge coupling is always super-renormalizable in four dimensions, for

n > 1. Introduce a coupling ḡ of non-negative weight κ and demand that every vertex with,

say, N legs be multiplied by λcḡ
N−2, and that the weight of λc be non-negative. It is easy

to see that the counterterms generated by such vertices are multiplied by coefficients that have

the same structure, so no new counterterms are turned on by renormalization and the theory is

renormalizable.

The requirement can be further refined allowing different fields to have different ḡ’s. For

example, call ḡi, i = 1, 2, 3, the ones of vectors, fermions and scalars, respectively. The most

general lagrangian has the weight structure [8]

L=
1

ᾱ1
L1(ḡ1A) +

1

ᾱ2
L2(ḡ2ψ) +

1

ᾱ3
L3(ḡ3ϕ) +

1

ā3
L12(ḡ1A, ḡ2ψ)

+
1

ā2
L13(ḡ1A, ḡ3ϕ) +

1

ā1
L23(ḡ2ψ, ḡ3ϕ) +

1

ᾱ
L123(ḡ1A, ḡ2ψ, ḡ3ϕ). (2.13)

Here γ̄k, k = 1, 2, 3, denote the couplings of minimum weight between ḡi and ḡj , where k 6= i, j.

Instead, ḡ is the coupling of minimum weight among the ḡi’s. We have defined ᾱi = ḡ2i , āi = γ̄2i .

In A we have collectively included also ghosts and antighosts. Every other parameter λ contained

in (2.13) must have a non-negative weight. The ḡi-factors appearing in formula (2.13) are mere

tools to keep track of the weight structure. For example, instead of ḡ2ψ we can have any ḡiψ,

as long as [ḡi] ≥ [ḡ2]. Similarly, the denominators 1/ᾱi, 1/āi and 1/ᾱ are devices that lower the

weights of appropriate amounts.

The one-loop counterterms generated by (2.13) have the weight structure

∆1L(ḡ1A, ḡ2ψ, ḡ3ϕ), (2.14)

while at L loops there is an additional factor of ᾱL−1. A simplified version of the theory can be

obtained dropping vertices and quadratic terms of (2.13) that are not contained in (2.14), because

renormalization is unable to generate them back. Of course, the quadratic terms that are crucial

for the behaviors of propagators, and the vertices related to them by covariantization, must be

kept in any case.

Every L on the right-hand side of (2.13) must be polynomial in the fields and parameters,

which happens if

4−
4

n
− 2κ1 < đ, 1− 2κ2 < đ, 2− 2κ3 < đ. (2.15)

having written [ḡi] = κi ≥ 0. Compatibility with the covariant structure demands

[g] ≥ [ḡ1], [gḡ1] ≥ [ḡ22 ], [gḡ1] ≥ [ḡ23 ], (2.16)

namely

κ1 ≤ 2−
đ

2
, κ2,3 ≤ 1 +

κ1
2

−
đ

4
. (2.17)
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Moreover, we must have d ≥ 4 to ensure the absence of IR divergences in Feynman diagrams,

and d̂ = 1, d =even, n =odd, together with some extra restrictions [8], to ensure the absence of

spurious subdivergences. The set of extra restrictions we are interested in is

đ ≤ 2, κ1 > 2−
1

n
−

đ

2
, κ2 ≥ 1−

đ

2
. (2.18)

The absence of spurious subdivergences ensures the locality of counterterms.

Finally, the time-derivative structure of the theory is under control [8]. No terms with more

than two time derivatives are allowed by weighted power counting.

3 Lorentz violating extensions of the Standard Model

In this section we search for Lorentz violating renormalizable extensions of the Standard Model.

In particular, we investigate the existence of “more economic” alternatives to it. Three interesting

problems come to mind: i) give masses to the gauge bosons without Higgs fields; ii) give masses

to the left-handed neutrinos without introducing right-handed neutrinos or other extra fields, and

without violating CPT; iii) include proton decay. Option i) is not viable, because the Proca

versions of our theories do not have well-behaved propagators at infinity [7]. Instead, options ii)

and iii) are allowed, together with other types of Lorentz violating extensions.

Since the Standard Model violates parity and time reversal (assuming that CPT is exact)

we must start from the proper, orthochronous Lorentz group SO+(1, 3). The minimal Lorentz

breaking preserves full invariance under rotations and CPT. In four dimensions we have

đ = 1 +
3

n
. (3.1)

Inserting (3.1) in (2.15), (2.17) and (2.18) we get

n = odd ≥ 3,
3

2
−

5

2n
< κ1 ≤

3

2
−

3

2n
,

1

2
−

3

2n
≤ κ2,

1

2
−

3

2n
<κ3, κ2,3 ≤

3

4
−

3

4n
+
κ1
2
. (3.2)

Solutions exist for every odd n. The simplest models are those that have the smallest values of n

and the largest values of κ1,2,3.

A two scalar-two fermion vertex, which has the form (ḡ22 ḡ
2
3/ā1)ϕ

2ψψ, is renormalizable if its

weight is not greater than đ, namely if

κ2,3 ≤ 1−
3

2n
. (3.3)

A four fermion vertex is renormalizable if

κ2 ≤
1

2
−

3

2n
. (3.4)
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Combining (3.2), (3.3) and (3.4) we get

n = odd ≥ 3,
3

2
−

5

2n
< κ1 ≤

3

2
−

3

2n
, κ2 =

1

2
−

3

2n
,

1

2
−

3

2n
< κ3 ≤ 1−

3

2n
. (3.5)

Again, solutions exist for every odd n ≥ 3.

Consider options ii) and iii). Candidate neutrino mass terms such as

aµψ̄LγµψL, ψαLMαβψ
β
L + h.c., (3.6)

where aµ is a constant vector, α, β are Lorentz indices and Mαβ is a constant matrix, violate either

CPT, or hermiticity, or hypercharge conservation. The hypercharge of ψαLψ
β
L can be compensated

by two Higgs fields. It is well-known that the unique vertex with two Higgses and two leptons is

[10]

(LH)2 ≡

3∑

a,b=1

Yab εijL
αa
i Hj εαβ εklL

βb
k Hl + h.c., (3.7)

where Hi denotes the complex Higgs doublet and Lai = (νaL, `
a
L) is the lepton doublet. The indices

a and b label the generations and Yab are constants.

The vertex (3.7) gives Majorana masses to the neutrinos after symmetry breaking, but is

not renormalizable by ordinary power counting. Normally, it is introduced with the minimal

seesaw mechanism [20] as an effective vertex obtained integrating out right-handed neutrinos νR

with large Majorana masses, Yukawa-coupled to L and H. Alternative seesaw mechanisms [21]

postulate the existence of intermediate fermionic or scalar SU(2)L triplets. Instead, here we are

interested in Lorentz violating models that contain the vertex (3.7) at the fundamental level.

We know that n must be odd. Another reason why even n’s are excluded is CPT invariance.

Indeed, if n is even, n = 2k, no fermionic quadratic term ∼ L̄∂̄2kL, which is crucial for renor-

malizability, is allowed. Even if Lorentz invariance is maximally violated, SU(2)×U(1) invariant

quadratic terms such as

bµL̄γµ∂̄
2kL (3.8)

are forbidden by CPT invariance or hermiticity.

The simplest choice is n = 3. Then đ= 2 and (3.2) and (3.3) become

2

3
< κ1 ≤ 1, 0 ≤ κ2 ≤

1

2
, 0 < κ3 ≤

1

2
. (3.9)

On the other hand, (3.4) tells us that a four fermion vertex is renormalizable only if

κ2 = 0. (3.10)

The simplest choices for option ii) are

đ = 2 n = 3, κ1 = 1, κ2 = κ3 =
1

2
. (3.11)
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The simplest choices for option iii) are

đ = 2, n = 3, κ1 = 1, κ2 = 0, κ3 =
1

2
. (3.12)

The solution (3.11) can be obtained from (3.12) switching some vertices off. Observe that ḡ1 = g

in both cases.

In the remainder of this section we describe the structure of such solutions. First we focus on

the terms that do not contain the tensor εµ̄ν̄ρ̄.

The quadratic part of the lagrangian is the sum of S0 (2.9) for the gauge fields, plus

Lkin Hψ = ψ̄L(D̂/+ P1(Ῡ)D̄/)ψL + ψ̄R(D̂/+ P ′
1(Ῡ)D̄/)ψR + |D̂H|2 +H†P3(Ῡ)H,

for the fermions and Higgs field H, where the Pi’s are polynomials of degree i. The vertices have

the form
ḡq+r1 ḡ2s2 ḡ

t
3

ḡ′2
D̂kD̄mF̃ qF̄ rψ2sHt, (3.13)

where ḡ′ is the ḡ of minimum weight among those appearing in the vertex, and Ht includes both

powers of H and H†. The weight of (3.13) must not be larger than đ. We find

k +
m+ 4q + 2r

3
+ s(1 + 2κ2) +

t

2
≤ 2 + 2κ′, (3.14)

where κ′ = 1 if s = t = 0, κ′ ≤ 1/2 otherwise.

Let us start from the pure gauge sector. We find 3k+m+4q+2r ≤ 12. By CPT and rotational

invariance, k and q must have the same parity. We have only k = 2, q = 0, or k = q = 1, or

k = 0, q ≤ 2, which gives the vertices

gD̂2F̄ 3, gD̂D̄F̃ F̄ 2, gD̄2F̃ 2F̄ , g2F̃ 2F̄ 2,

gD̄6F̄ 3, g2D̄4F̄ 4, g3D̄2F̄ 5, g4F̄ 6.

Here and in the formulas below we list only the vertices with the largest numbers of legs and

derivatives.

Next, consider the sector containing scalar fields, but no fermions. The maximum number of

scalar legs is 6. We have the vertices

ḡ4H6, ḡ2D̄2H4, ḡg2F̄ 2H3, ḡgD̄2F̄H3, ḡD̄4H3, g3F̄ 3H2,

g2D̄2F̄ 2H2, gD̄4F̄H2,

where ḡ ≡ ḡ3.

Four fermion terms exist only for κ2 = 0, as already mentioned, and must have k = m = q =

r = 0, so their form is simply

ḡ22ψ̄ψψ̄ψ.
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These are the only strictly-renormalizable vertices contained in our model. Switching them off

turns solution (3.12) into solution (3.11).

The vertices containing two fermions are

ḡ2H2ψ̄ψ, ḡD̄Hψ̄ψ, gD̄F̄ ψ̄ψ.

Now we consider the CPT invariant terms that do contain the tensor ε̄ ≡ εµ̄ν̄ρ̄, which have

not been studied in ref.s [7, 8]. Since ε̄ can be converted into γ matrices, the terms containing

fermions have already been covered, so we can study objects of the form

ḡq+r1 ḡt3
ḡ′2

ε̄D̂kD̄mF̃ qF̄ rHt,

where k+ q and m+ q must be odd, by CPT and rotational invariance. Proceeding as before, we

find

ε̄D̂2F̃ F̄ , ε̄D̂D̄F̃ 2, gε̄F̃ 3, ε̄D̂D̄5F̄ 2, ε̄D̄6F̃ F̄ ,

gε̄D̂D̄3F̄ 3, gε̄D̄4F̃ F̄ 2, gε̄D̂D̄F̄H2, gε̄D̄2F̃H2,

g2ε̄D̂D̄F̄ 4, g2ε̄D̄2F̃ F̄ 3, g2ε̄F̃ F̄H2, g2ε̄D̄F̃ F̄H,

g3ε̄F̃ F̄ 4,
g

ḡ
ε̄D̂D̄F̄H. (3.15)

The first two terms of this list are proportional to each other, which can be proved using the

Bianchi identities. In spite of its appearance, the first term, which can be written as

εµνρσFµνD̂
2Fρσ,

does not contain higher time derivatives, since

εµ̄ν̄ρ̄∂̂A
a
µ̄∂̂

2F aν̄ρ̄ = gεµ̄ν̄ρ̄f
abc∂̂Aaµ̄∂̂A

b
ν̄ ∂̂A

c
ρ̄ + total derivatives.

It is also easy to see that no term of the list (3.15) affects the propagators.

The remaining vertices are obtained from the ones listed so far, suppressing some fields or

derivatives, or replacing a fermion with its conjugate (and then adding the Hermitian conjugate).

Finally, we must impose invariance under SU(3)× SU(2) × U(1) (see next section).

The terms ε̄D̂2F̃ F̄ , ε̄D̂D̄F̃ 2 and gε̄F̃ 3 of (3.15) are particular, because they have three ∂̂’s,

one too much to fit into the proof given in [8] about the absence of spurious subdivergences.

Fortunately, they can consistently be dropped, because (2.14) ensures that they are not generated

back by renormalization.

Dropping all vertices and quadratic terms that renormalization cannot generate back we obtain

a simplified model. Of course, we cannot drop the quadratic terms that control the ultraviolet
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behavior of propagators and the vertices related to them by covariantization. According to (2.14)

renormalization potentially generates back only terms of the form

ḡq+r1 ḡ2s2 ḡ
t
3D̂

kD̄mF̃ qF̄ rψ2sHt,

which make a much shorter list, precisely the fermionic quadratic terms and

g2ε̄F̃ F̄ , ḡ2H2ψ̄ψ, (ψ̄ψ)2, ḡD̄Hψ̄ψ, gD̄F̄ ψ̄ψ,

ḡ2HD̄2H, ḡ4H4, g2ḡF̄ 2H, g2F̄ D̄2F̄ , g3F̄ 3 (3.16)

(at κ2 = 0). The first term is a total derivative.

There exist other types of Standard Model extensions, actually infinitely many, since according

to (3.5) every odd n is allowed (assuming CPT invariance). However, at present those alternatives

appear to be less interesting than the one singled out here. If we break also CPT invariance, we

can have neutrino mass terms like the first of (3.6). It is of course possible to break also rotational

invariance, but this does not change the structure of the theory with respect to the weighted power

counting.

4 The model

In this section we present our model in detail. For practical purposes, we call it the (Lorentz

violating) Standard-Extended Model (SEM).

Gauge-field sector The gauge-field lagrangian reads

Lg = Lkin g + Lint g + Lint εg,

where

Lkin g =
1

4

∑

G

{
2FGµ̂ν̄η

G(Ῡ)FGµ̂ν̄ + FGµ̄ν̄τ
G(Ῡ)FGµ̄ν̄ +

1

Λ2
L

(Dρ̂F
G
µ̄ν̄)ξ

G(Ῡ)(Dρ̂F
G
µ̄ν̄)

}
, (4.1)

and
∑

G denotes the sum over the gauge groups SU(3), SU(2) and U(1). Moreover, Ῡ = −D̄2/Λ2
L

and

ηG(Ῡ) =

2∑

i=0

ηG2−iῩ
i, τG(Ῡ) =

4∑

i=0

τG4−iῩ
i, ξG(Ῡ) =

1∑

i=0

ξG1−iῩ
i,

while, symbolically,

Lint g =
gλ3
Λ2
L

F̃ 2F̄ +
gλ′3
Λ2
L

F̄ 3 + gD̄2F̃ 2F̄ + gD̂D̄F̃ F̄ 2 + gD̂2F̄ 3 + g2F̃ 2F̄ 2

+gD̄6F̄ 3 +
4∑

r=3

gr−2D̄4F̄ r +
5∑

r=3

gr−2D̄2F̄ r +
6∑

r=4

gr−2F̄ r, (4.2)
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and

Lint εg = ε̄D̂D̄5F̄ 2 +

3∑

i=2

gi−1ε̄D̂D̄3F̄ i +

4∑

i=2

gi−2ε̄D̂D̄F̄ i + ε̄D̄6F̃ F̄

+

2∑

i=1

gi−1ε̄D̄4F̃ F̄ i +

3∑

i=1

gi−1ε̄D̄2F̃ F̄ i +

4∑

i=1

gi−1ε̄F̃ F̄ i. (4.3)

Here and in the rest of the paper g collectively stands for any of the SU(3), SU(2) and U(1)

gauge couplings.

Higgs-field sector The Higgs-field lagrangian reads

LH = Lkin H + Lint H ,

where

Lkin H = |D̂µ̂H|2 +
a0
Λ4
L

|D̄2D̄µ̄H|2 +
a1
Λ2
L

|D̄2H|2 + a2|D̄µ̄H|2 + µ2H |H|2, (4.4)

Lint H =
λ6ḡ

4

36Λ2
L

|H|6 +
λ
(3)
4 ḡ2

4Λ2
L

|H|2|D̄µ̄H|2 +
λ
(2)
4 ḡ2

4Λ2
L

|H†D̄µ̄H|2

+
ḡ2

4Λ2
L

[
λ
(1)
4 (H†D̄µ̄H)2 + h.c.

]
+
λ4ḡ

2

4
|H|4, (4.5)

and ai, λ
(j)
i and µH are constants.

Fermions The fermion kinetic terms are

Lkin f =

3∑

a,b=1

5∑

I=1

χ̄aI

(
δabD̂/+

bIab0

Λ2
L

D̄/ 3 + bIab1 D̄/

)
χbI , (4.6)

where χa1 = La = (νaL, `
a
L), χ

a
2 = QaL = (uaL, d

a
L), χ

a
3 = `aR, χa4 = uaR and χa5 = daR. Moreover,

νa = (νe, νµ, ντ ), `
a = (e, µ, τ), ua = (u, c, t) and da = (d, s, b).

The interactions between fermions and the Higgs field can be divided into three sets: the usual

Yukawa interactions

LYukawa = ḡ
3∑

a,b=1

(Y ab
1 L̄ai`bR + Y ab

2 ūaRQ
bj
L ε

ji + Y ab
3 Q̄aiL d

b
R)H

i + h.c., (4.7)

where ḡ stands for ḡ3, the vertex (3.7),

LLH =
ḡ2

4ΛL
(LH)2, (4.8)
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and, if κ2 = 0, the four fermion interactions,

L4f ∼
Yf
Λ2
L

ψ̄ψψ̄ψ, (4.9)

which we do not list here, but can be worked out from ref.s [22], and include the Lorentz violating

structures

(ψ̄1ψ2)(ψ̄3ψ4), (ψ̄1γµ̂ψ2)(ψ̄3γµ̂ψ4), (ψ̄1γµ̄ψ2)(ψ̄3γµ̄ψ4),

(ψ̄1σµ̂ν̄ψ2)(ψ̄3σµ̂ν̄ψ4), (ψ̄1σµ̄ν̄ψ2)(ψ̄3σµ̄ν̄ψ4). (4.10)

Here the ψi’s can stand also the conjugate spinors ψci . In (4.9) Yf generically denotes the four

fermion couplings.

Matter-gauge-field interactions Finally, the lagrangian contains interactions between the

Higgs field and the gauge fields, namely

Lint gH =

(
gD̄4F̄ +

2∑

r=1

grD̄2F̄ r +

3∑

r=2

grF̄ r + gε̄D̂D̄F̄ + gε̄D̄2F̃ + g2ε̄F̃ F̄

)
H†H, (4.11)

plus interactions among fermions and gauge fields,

Lint gf =

5∑

I=1

gD̄F̄ (χ̄I Γ̄χI), (4.12)

where Γ̄ is a matrix γ̄ or a product of three matrices γ̄.

Formulas (4.1), (4.4), (4.5), (4.6), (4.7) and (4.8) contain the precise lists of terms, while

formulas (4.2), (4.3), (4.9), (4.11) and (4.12) are symbolic, which means that they contain the

basic structures of vertices. Derivatives can act on the fields and be contracted in all independent

ways.

The total lagrangian reads

L = Lg + LH + Lkin f + LYukawa + LLH + Lint gH + Lint gf + L4f . (4.13)

The four fermion vertices (4.9) are the only strictly-renormalizable interactions, therefore the Yf

beta function is proportional to Yf . Consequently, it is consistent to set Yf = 0, which gives the

solution (3.11).

Simplified model The simplified model is obtained keeping only the terms that are potentially

generated back by renormalization (plus those that we want in any case, namely (4.8) and (4.9)).
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Note that also ξ can be set to zero, since it is not crucial for the propagator. We have

Lsimpl =
1

4

∑

G

(
2FGµ̂ν̄η

G(Ῡ)FGµ̂ν̄ + FGµ̄ν̄τ
G(Ῡ)FGµ̄ν̄

)
+

3∑

a,b=1

5∑

I=1

χ̄aI

(
δabD̂/+

bIab0

Λ2
L

D̄/ 3 + bIab1 D̄/

)
χbI

+|D̂µ̂H|2 +
a0
Λ4
L

|D̄2D̄µ̄H|2 +
a1
Λ2
L

|D̄2H|2 + a2|D̄µ̄H|2 + µ2H |H|2 +
λ4ḡ

2

4
|H|4

+ḡ




3∑

a,b=1

(Y ab
1 L̄ai`bR + Y ab

2 ūaRQ
bj
L ε

ji + Y ab
3 Q̄aiL d

b
R)H

i + h.c.


+

ḡ2

4ΛL
(LH)2

+

5∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I Γ̄χI) +
Yf
Λ2
L

ψ̄ψψ̄ψ +
g

Λ2
L

F̄ 3, (4.14)

the last three terms being symbolic.

Low-energy Lorentz recovery Observe that in this paper ΛL denotes the energy scale of

Lorentz violations, while in the literature [10] the same symbol is used, precisely in the same

place (4.8), to denote the energy scale of lepton number violation. Assuming that ḡ and Y ab are

of order 1, we have

ΛL ∼ 1014GeV.

The four fermion vertices (4.9) normally have a different scale, called ΛB in case they violate

baryon number conservation. Present experimental data give a bound ΛB & 1015GeV, not so far

from the value of ΛL.

The low-energy limit of the Standard-Extended Model can be studied taking ΛL to infin-

ity, which gives the CPT invariant, rotationally invariant sector of the minimal Standard-Model

extension of Colladay and Kostelecky [2],

LlowE =
∑

G

(
ηG2
2
FGµ̂ν̄F

G
µ̂ν̄ +

τG4
4
FGµ̄ν̄F

G
µ̄ν̄

)
+

3∑

a,b=1

5∑

I=1

χ̄aI

(
δabD̂/+ bIab1 D̄/

)
χbI

+|D̂µ̂H|2 + a2|D̄µ̄H|2 + µ2H |H|2 +
λ4ḡ

2

4
|H|4

+ḡ




3∑

a,b=1

(Y ab
1 L̄ai`bR + Y ab

2 ūaRQ
bj
L ε

ji + Y ab
3 Q̄aiL d

b
R)H

i + h.c.


 . (4.15)

Lorentz invariance is recovered in this limit if the couplings η2, τ4, a2 and bI1 are equal to one

at low energies. Four such conditions can be implemented normalizing the three gauge fields

and suitably rescaling x̄ [7]. Using this freedom, we can set for example η2 = 1 for all gauge

fields and, say, τ4 = 1 for the U(1) gauge field. The Hermitian matrices bIab1 can be diagonalized

by means of unitary transformations χaI → UabI χ
b
I (no sum over I being understood). Let bIa1
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denote the eigenvalues of bIab1 . After such redefinitions, the Lorentz invariant low-energy surface

is parameterized by the equations

τ
SU(2)
4 = τ

SU(3)
4 = a2 = bIa1 = 1. (4.16)

In general, there is no reason why the low-energy couplings should be located on this surface.

Generically speaking, once Lorentz symmetry is violated at some energy, renormalization implies

that it is violated at all lower energies. At worst, we have to advocate an appropriate fine tuning.

Call δi the differences τ
SU(2)
4 −1, τ

SU(3)
4 −1, a2−1 and bIa1 −1. They measure the displacement

from the Lorentz invariant surface in parameter space, normalized so that the Lorentz surface is

δi = 0. Since the surface is RG invariant, the δi beta functions are linear combinations of the

δ’s. For δ � 1, write βiδ = cijδj , cij being a matrix depending on the other couplings. Solving

the RG equations we find δi(µ) = (µ/µ′)c
ij

δj(µ′). Therefore, the Lorentz surface is RG stable if

the matrix cij is positive definite. Evidence that it is so was given in ref.s [11], for CPT invariant

Lorentz violations. There is also evidence that CPT violating terms exhibit the opposite behavior

[23].

Observe that (3.7) is the unique lagrangian term of dimension five. Kinetic terms of dimension

five are not allowed, because the unique candidates, ψ̄LD̄
2ψR, ψ̄cLD̄

2ψL, and so on, are excluded

by SU(2)×U(1) invariance. Candidate dimension-five vertices, such as F̄µν ψ̄Lσ
µ̄ν̄ψR, D̄ψ̄Lγ̄ψLH,

F̄µν ψ̄
c
Lσ

µ̄ν̄ψL, D̄ψ̄cRγ̄ψLH, are again forbidden by SU(2)×U(1) invariance. Therefore, if we assume

the low-energy fine-tuning (4.16), then not only the power-counting renormalizable subsector, but

also the dimension-five subsector are Lorentz invariant. The Lorentz violations predicted by the

SEM can be tested in experiments that are sensitive to the effects of the dimension-six subsector

(or the δi-running).

Energies of the order of 1014GeV are out of reach in present high-energy experiments, so, if

we want to distinguish the SEM from a see-saw mechanism, it is necessary to develop methods

to amplify small effects. One way is to consider situations where it is possible to observe a huge

number of copies of a system at the same time. Examples are the searches for proton decay

and double beta decay. The double beta decay admits a neutrinoless version, which, if observed,

can prove the existence of Majorana masses. The SEM does not predict large modifications to

such phenomena. The four fermion vertices involved in proton decay are in principle sensitive to

Lorentz violations (see formula (4.10)), but measuring one quantity alone (the proton lifetime)

will not be enough to discriminate the SEM from other proposals. Nevertheless, the advantage

of having a comprehensive model is that it might have implications that are not apparent at first

sight. Further work is required to fit a feasible experimental setting to the predictions of the SEM.

Finally, it is worth emphasizing that although other Lorentz violating extensions of the Stan-

dard Model can be constructed with n = 5, 7, etc., the SEM has the right weighted dimension

(đ= 2) to accommodate a Lorentz violating version of quantum gravity. Indeed, in the framework
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of ordinary power counting gravity is renormalizable in d = 2 (where however it is trivial), so it is

reasonable to expect that weighted power counting can renormalize its Lorentz violating version

in đ= 2.

5 Anomalies and anomaly cancellation

In this section we prove that the gauge anomalies of the SEM coincide with those of the Standard

Model, therefore they cancel out to all orders. We use the Batalin-Vilkovisky formalism [24].

The fields are collectively denoted by Φi = (Âaµ̂, Ā
a
µ̄, C

a
, Ca, Ba, ψ, ψ̄, ϕ). Add BRST sources

Ki = (K̂ µ̂
a , K̄

µ̄
a ,Ka

C
,Ka

C ,K
a
B ,Kψ,Kψ̄,Kϕ) for every field Φi and extend the action S(Φ) (the

integral of (4.13) or (4.14)) to

Σ(Φ,K) = S(Φ)−

∫
ddx

∑

i

(
sΦi
)
Ki, (5.1)

Define the antiparenthesis

(X,Y ) =

∫
ddx

{
δrX

δΦi(x)

δlY

δKi(x)
−

δrX

δKi(x)

δlY

δΦi(x)

}
. (5.2)

BRST invariance is generalized to the identity

(Σ,Σ) = 0, (5.3)

which is a straightforward consequence of (5.1), the BRST-invariance of S and the nilpotency

of s. If the regularization preserves the BRST invariance of the functional integration measure,

which we assume here (see below for details), and equation (5.3) holds at the regularized level,

then we have also

(Γ,Γ) = 0, (5.4)

where Γ is the generating functional of one-particle irreducible Green functions. If (5.3) does not

hold at the regularized level, (5.4) can be violated. Gauge anomalies are collected in the functional

A(Φ,K) ≡ (Γ,Γ) = 〈(Σ,Σ)〉. (5.5)

Since (X, (X,X)) ≡ 0 for every functional X, we have

(Γ,A) = 0, (5.6)

which is the Wess-Zumino consistency condition [25], written in BRST language. We also know

that the one-loop contribution A1-loop(Φ,K) to the anomaly is a local functional, precisely the

integral of a local function of dimension five, weight 3 and ghost number 1.
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Regularization The most convenient regularization framework to study anomalies is [26] a

combination of a (Lorentz violating) higher-derivative regularization à la Slavnov [27] with the

dimensional-regularization technique. We recall that d̂ and d̄ have to be analytically continued

independently, say to d̂− ε1 and d̄− ε2, respectively [5, 6]. The tensor εµ̄ν̄ρ̄ and the matrix γ5 are

defined according to the ’t Hooft-Veltman prescription [28].

The (partial) higher-derivative regularization is defined as follows. The pure-gauge sector is

extended replacing LQ with

LQ-HD =
1

4

{
2Fµ̂ν̄Q̃M (D̂2, D̄2)Fµ̂ν̄ + Fµ̄ν̄Q̄M (D̂2, D̄2)Fµ̄ν̄

}
= LQ +O(1/Λ2), (5.7)

where the QM ’s are polynomials of degree M > 2(n − 1) = 4 and Λ denotes the cutoff. The

gauge-fixing Ga is modified as

GaHD = ĜM (∂̂2, ∂̄2)∂̂ · Âa + ḠM (∂̂2, ∂̄2)∂̄ · Āa = Ga +O(1/Λ2),

where the GM ’s are polynomials of degree M . The gauge-field and ghost propagators fall off as

1/k2M+2 for large k. With suitable positivity conditions on the coefficients in QM and GM the

propagators are regular (but violate unitarity). The Higgs field is regularized replacing Lkin H

with

Lkin H-HD = H†QM,H(D̂
2, D̄2)H = Lkin H +O(1/Λ2), (5.8)

where QM,H is a polynomial of degree M + 1. Finally, the fermions are regularized as

Lkin f -HD =

3∑

a,b=1

5∑

I=1

χ̄aI

[
Q̂abM,f (D̂

2, D̄2)D̂/+ Q̄abM,f (D̂
2, D̄2)D̄/)

]
χbI = Lkin f +O(1/Λ), (5.9)

where the QabM,f ’s are polynomials of degree M .

So far, BRST invariance is manifestly preserved (also at ε1,2 6= 0). However, since fermions

have definite chiralities, the quadratic terms of (4.6) or (5.9) dot not give good propagators at

ε1,2 6= 0. We introduce extra fermions χ̃aI with chiralities opposite to those of the χaI ’s and the

same SU(3)×SU(2)×U(1)-representations. Then, we collect χaI and χ̃aI into Dirac fermions ψaI ,

and replace the free fermionic lagrangian with

3∑

a,b=1

5∑

I=1

ψ̄aI

[
Q̂abM,f (∂̂

2, ∂̄2)∂̂/+ Q̄abM,f (∂̂
2, ∂̄2)∂̄/)

]
ψbI . (5.10)

When ε1 = ε2 = 0 the fields χ̃aI are free and decouple, but when ε1 and ε2 are nonzero they couple

with the χaI ’s in “evanescent” ways [29], namely by terms that formally disappear in the physical

space and time dimensions. We know that there exists a subtraction scheme where the χ̃aI ’s stay

decoupled also in Γ, because evanescent operators do not mix into the physical ones [30]. Now,
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the modification (5.10) preserves the global symmetries, but not the local ones, which can be

anomalous. In particular, the violation of (Σ,Σ) = 0 comes only from the new terms contained

in (5.10) and it is proportional to ∂C.

Finally, the physical SEM is defined first renormalizing the higher-derivative theory (which

means that Λ is treated as an ordinary, finite parameter), then taking the limits ε1,2 → 0, then

renormalizing the Λ-divergences, and finally taking the limit Λ → ∞.

It is convenient to introduce tilded quantities as follows:

Φ̃i =
Φi

ΛM
, K̃i = ΛMKi, g̃ = gΛM , ˜̄g2 = ḡ2Λ

M , ˜̄g3 = ḡ3Λ
M .

Note that this map is a canonical transformation combined with a coupling redefinition. At finite

Λ the ultraviolet behavior of the higher-derivative theory is governed by ordinary power counting.

In the tilded parametrization the theory has the form (2.13), is polynomial in Λ and super-

renormalizable. Every parameter not shown explicitly in (2.13) is either of non-negative dimension

and Λ-ΛL-independent, or has the form λΛm/Λm
′

L , where λ has a non-negative dimension and

m > m′. Differentiating propagators and Feynman diagrams with respect to Λ improves their

ultraviolet behaviors.

Anomaly cancellation In Feynman diagrams every external K̃-leg is multiplied by a factor

g̃. This follows from the structure of the vertices contained in Σ. Then, because of (2.14) the

one-loop counterterms have the weight structure

∆1L(g̃Ã, g̃
˜̄C, g̃C̃, ˜̄g2ψ̃, ˜̄g3ϕ̃, g̃K̃i), (5.11)

while at L-loops there are 2L − 2 additional factors of g̃-˜̄g2-˜̄g3. Observe that the dimensions of

g̃Ã, g̃ ˜̄C, g̃C̃, ˜̄g2ψ̃ and ˜̄g3ϕ̃ are M -independent, while those of g̃K̃i, as well as those of g̃, g̃2, g̃3 can

be made arbitrarily large choosing M appropriately. Consequently, for sufficiently large M there

exist no divergent diagram beyond one loop (at finite Λ) and no divergent diagram withK external

legs. The dimensional technique regularizes the few divergent diagrams of the higher-derivative

theory.

The one-loop anomaly A1-loop is the integral of a local function of dimension five. If M is large

enough, A1-loop must be K-independent. Moreover, Σ depends on the antighosts C only via the

combinations K µ̂
a + ĜM∂

µ̂C
a

and K µ̄
a + ḠM∂

µ̄C
a
, so the same must be true of A. We conclude

that A1-loop is also C-independent. By ghost number conservation, it must be linear in C. We

can write

A1-loop =

∫
d4x g̃C̃aAa(g̃Ã, ˜̄g2ψ̃, ˜̄g3ϕ̃), (5.12)

where Aa is a local function of dimension four.
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We can do even better. Replace the polynomials QM,H and QabM,f in (5.8), (5.9) and (5.10)

with polynomials QM ′,H and QabM ′,f of degrees M ′+1 and M ′, respectively, where M ′ is such that

2M + 1

3
< M ′ < M. (5.13)

Since M > 4, this condition admits solutions. Then, define

ψ̃′ =
ψ

ΛM ′
, ϕ̃′ =

ϕ

ΛM ′
, K̃ ′

ψ = ΛM
′

Kψ, K̃ ′
ϕ = ΛM

′

Kϕ,

and leave all other tilded definitions unmodified. It is easy to check that the action is still super-

renormalizable, of the form (2.13) and polynomial in Λ. In particular, the left inequality of (5.13)

still ensures that in the tilded (2.13) parametrization every parameter not shown exlicitly in (2.13)

is either of non-negative dimension and Λ-ΛL-independent, or has the form λΛm/Λm
′

L , where λ

has a non-negative dimension and m > m′. Again, differentiating propagators and Feynman

diagrams with respect to Λ improves their ultraviolet behaviors.

What we have gained is that now also the dimensions of ˜̄g2ψ̃′ and ˜̄g3ϕ̃′ can be arbitrarily

large, if M is large enough and M ′ is chosen appropriately. Then counterterms and the one-loop

anomaly do not depend on matter fields. We can write

A1-loop =

∫
d4x g̃C̃aA′

a(g̃Ã) =

∫
d4x gCaA′

a(gA). (5.14)

Now, assume that the SEM one-loop anomaly vanishes at finite Λ. This result is proved

below. Then locality and the structure (5.14) are inherited by the two-loop anomaly A2-loop,

with 2 additional factors of g̃-˜̄g2-˜̄g3 in front. If M is sufficiently large power counting implies

A2-loop = 0. Iterating the argument we find that the anomaly cancels identically at finite Λ (and

ε1,2 = 0), namely (Γ,Γ) ≡ 0. Therefore the higher-derivative theory has no gauge anomaly.

At this point we can take Λ large, subtract the Λ-divergences and finally send Λ to infinity,

which gives the SEM. Since (Γ,Γ) vanishes for arbitrary finite Λ, the Λ-divergences are BRST

invariant and can be subtracted in a BRST invariant way, therefore preserving the identity (Γ,Γ) =

0 and the anomaly cancellation. In practice, the dimensional/higher-derivative framework is a

manifestly BRST invariant regularization of the SEM. We conclude that the Standard-Extended

Model has no gauge anomalies.

After sending Λ to infinity we can also take the limit ΛL → ∞, which gives the low-energy

model (4.15). Again, the anomaly cancellation survives the limit, because it holds at arbitrary

finite ΛL. Therefore, the model (4.15) has no gauge anomalies. Since the Standard Model is just

the model (4.15) with the relations (4.16), the same argument provides also an alternative proof

of the cancellation of gauge anomalies in the Standard Model to all orders.
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One-loop cancellation It remains to prove that the one-loop anomalies cancel at finite Λ.

Using (5.14) and taking the first order of equation (5.6) we get

sA1-loop = 0. (5.15)

This problem can be solved in a cohomological sense, namely up to functionals that can be

written as BRST variations of other local functionals. Indeed, those types of contributions to

A1-loop can be subtracted away with a simple Σ-redefinition. The function A′
a(gA) is a sum

of terms of dimensions ≤ 4. The non-trivial structures of A1-loop can be studied directly. It

is easy to show that there exist no non-trivial structures of dimension < 4, so Aa is a linear

combination of terms with dimension exactly equal to 4. The coefficients in front of such terms

are dimensionless, therefore they must be Λ- and ΛL-independent. Indeed, we know that the

higher-derivative theory, in the tilded (2.13) parametrization, has only parameters that are of

non-negative dimension and Λ-ΛL-independent, or have the form λΛm/Λm
′

L , where λ has a non-

negative dimension and m > m′. So, we are free to compute the one-loop anomaly in the limit

Λ → ∞, which gives the SEM, but also in the limit Λ → ∞ followed by the limit ΛL → ∞, which

gives (4.15). We conclude that the one-loop anomalies of the higher-derivative theory coincide

with those of the SEM and those of (4.15).

Now we prove that the anomalies of (4.15) coincide with those of the Standard Model, therefore

they vanish. The one-loop anomaly of (4.15) is the sum of separate contributions due to fermions

with actions ∫
d4x

3∑

a,b=1

χ̄aI

(
δabD̂/+ bIab1 D̄/

)
χbI ,

where no sum over I is understood. The matrices bIab1 are Hermitian and can be diagonalized

with unitary transformations χaI → UabI χ
b
I , which further reduces AIa

1-loop to a sum of contributions

AIa
1-loop due to ∫

d4x χ̄aI

(
D̂/+ bIa1 D̄/

)
χaI , (5.16)

where no sums over I and a are understood. Finally, the anomaly of (5.16) has the usual value,

because it does not depend on bIa1 . A quick way to prove this is to note that bIa1 can be reabsorbed

into the redefinitions

x̄→ x̄bIa1 , Ā→
Ā

bIa1
, χaI → χaI (b

Ia
1 )−3/2, (5.17)

after which (5.16) becomes fully Lorentz invariant. After this redefinition AIa
1-loop has the usual

Bardeen structure

cIag3εµνρσ

∫
d4x Tr

[
∂µC

(
Aν∂ρAσ −

g

2
AνAρAσ

)]
. (5.18)
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Now, since (5.18) is invariant under (5.17), it is safe to undo the redefinition (5.17). Thus, the

anomaly AIa
1-loop of (5.16) is (5.18), with bIa1 -independent coefficients cIa. A different analysis

of one-loop anomalies in theories (5.16), leading to the same result, was performed in ref. [31].

We conclude that the one-loop anomalies of (4.15) coincide with those of the Standard Model,

therefore they vanish.

Summary Summarizing, the one-loop anomalies of the SEM coincide with those of the Standard

Model, so they cancel. Since they cancel at one loop, there exists a subtraction scheme where

they cancel to all orders. The dimensional/higher-derivative regularization framework described

above selects the right scheme automatically. Identical arguments and conclusions apply to the

Standard Model and the Lorentz violating Standard Model extension (4.15). Observe that we

have not used the assumption (4.16) that Lorentz invariance is recovered at low energies. Our

argument, which makes no use of complicated cohomological theorems, provides also a general and

economic proof of the Adler-Bardeen theorem [18]. Gauge anomalies and their cancellation are

in some sense universal properties, since they are not affected by Lorentz violations and radiative

corrections.

6 Conclusions

In this paper we have studied the Lorentz violating extensions of the Standard Model that are

renormalizable by weighted power counting. The theories contain higher space derivatives, but

are arranged so that no counterterms with higher time derivatives are generated, which ensures

perturbative unitarity. Spacetime is split into time and space.

We have searched for “interesting” extensions of the Standard Model, namely models that can,

at least, renormalize two scalar-two fermion vertices, and therefore give masses to the (left-handed)

neutrinos without the need to introduce right-handed neutrinos, nor other extra fields, and without

violating CPT. We have found that the simplest model with such properties can contain also four

fermion interactions, and therefore describe proton decay. Finally, the cancellation of anomalies is

inherited from the one of the Standard Model. Our model is predictive and offers a new scenario

for the physics beyond the Standard Model.

If we accept that Lorentz invariance is violated at high energies there remains to explain why

it should be recovered at low energies, since generically renormalization make the couplings run

independently. It is of course possible to restore Lorentz invariance at low energies by means of a

fine tuning, which would be easier to justify if the Lorentz invariant surface were infrared stable.

Why should we believe that Lorentz symmetry might not be exact at very high energies?

One reason is that the set of renormalizable theories is considerably larger once the assumption

of Lorentz invariance is relaxed. Moreover, if CPT is a symmetry of Nature, then the Standard
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Model violates both parity and time reversal. The violations of P and T are Lorentz violations,

because they break the large Lorentz group into the restricted Lorentz group. Maybe they are

indications that at higher energies also the restricted Lorentz group is broken. The smallness of

the T violation with respect to the P violation could be a sign of “hierarchy” among the various

types of Lorentz violations. Neutrino masses could be a further sign of Lorentz violation. Then

the scale of Lorentz violation would be ΛL ∼ 1014GeV.
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Appendix: Gauge-field propagator

The (Euclidean) propagator at d̂ = 1 in the “Feynman gauge” λ = 1, ζ = η, reads [7]

〈A(k) A(−k)〉 =

(
〈ÂÂ〉 〈ÂĀ〉

〈ĀÂ〉 〈ĀĀ〉

)
=

(
uδ̂ 0

0 vδ̄ + tk̄k̄

)
, (A.1)

where

u =
1

D(1, η)
, v =

1

D(η̃, τ)
, t =

τ̃ − η2

ηD(η̃, τ)D(1, η)
.

Here

D(x, y) ≡ xk̂2 + yk̄2, η̃ = η +
k̄2

Λ2
L

ξ, τ̃ = τ +
k̂2

Λ2
L

ξ,

and now η, τ and ξ, as well as x and y, are functions of k̄2/Λ2
L. The ghost propagator is 1/D(1, η).

The physical degrees of freedom can be read in the “Coulomb” gauge ∂̄ · Āa = 0, where

〈ÂÂ〉 =
1

ηk̄2
, 〈ÂĀ〉 = 0, 〈ĀĀ〉 =

1

D(η̃, τ)

(
δ̄ −

k̄k̄

k̄2

)
,

so the dispersion relation is (2.12). The ghosts are non-propagating in this gauge.

The “spurious subdivergences” are the UV divergences of the subintegrals over k̂ or k̄. To

ensure that those are automatically subtracted, the propagators must behave correctly not only

in the compelte k̂-k̄ integrals, but also in the subintegrals where some k̂ and/or k̄ integrations are

missing. The propagators (A.1) behave correctly for k̄ → ∞, and all of them but 〈ĀĀ〉 behave

correctly also for k̂ → ∞. Instead, the propagator 〈ĀĀ〉 behaves like 1/k̂2 for k̂ → ∞, which is

not enough. Therefore, the subintegrals must be studied more closely. When d̂ = 1, d =even,

n =odd and other restrictions are fulfilled they can be proved to be convergent [7, 8]. When those

conditions are not fulfilled, or when the spacetime manifold M is split into the product of more
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than two subfactors, subdivergences are present, in general, and it is not known how to treat

them.
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