## Renormalization

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

The classical action of quantum gravity, determined by renormalization, contains infinitely many independent couplings and can be expressed in different perturbatively equivalent ways. We organize it in a convenient form, which is based on invariants constructed with the Weyl tensor. We show that the FLRW metrics are exact solutions of the field equations in arbitrary dimensions, and so are all locally conformally flat solutions of the Einstein equations. Moreover, expanding the metric tensor around locally conformally flat backgrounds the quadratic part of the action is free of higher derivatives. Black-hole solutions of Schwarzschild and Kerr type are modified in a non-trivial way. We work out the first corrections to their metrics and study their properties.

JHEP 1305 (2013) 028 | DOI: 10.1007/JHEP05(2013)028

We consider renormalizable Standard-Model extensions that violate Lorentz symmetry at high energies, but preserve CPT, and do not contain elementary scalar fields. A Nambu–Jona-Lasinio mechanism gives masses to fermions and gauge bosons, and generates composite Higgs fields at low energies. We study the effective potential at the leading order of the large-$N_{c}$ expansion, prove that there exists a broken phase and study the phase space. In general, the minimum may break invariance under boosts, rotations and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among the parameters of the low-energy theory. We find that such relations are compatible with the experimental data, within theoretical errors. We also study the mixing among generations, the emergence of the CKM matrix and neutrino oscillations.

Phys. Rev. D83 (2011) 056005 | DOI: 10.1103/PhysRevD.83.056005

We study the one-loop renormalization of high-energy Lorentz violating four fermion models. We derive general formulas and then consider a number of specific models. We study the conditions for asymptotic freedom and give a practical method to determine the asymptotic-freedom domain. We also point out that in some models the RG flow contains “rational” Zimmermann trajectories that might hide new symmetries.

Phys. Rev. D81 (2010) 085043 | DOI: 10.1103/PhysRevD.81.085043