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IFUP-TH 2012/09A Master FunctionalFor Quantum Field TheoryDamiano AnselmiDipartimento di Fisica �Enrico Fermi�, Università di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa, Italy,damiano.anselmi@df.unipi.itAbstractWe study a new generating functional of one-particle irreducible diagrams in quantum �eld theory,called master functional, which is invariant under the most general perturbative changes of �eld variables.The usual functional Γ does not behave as a scalar under the transformation law inherited from its veryde�nition as the Lagendre transform of W = lnZ , although it does behave as a scalar under an unusualtransformation law. The master functional, on the other hand, is the Legendre transform of an improvedfunctional W with respect to the sources coupled to both elementary and composite �elds. The inclusionof certain improvement terms in W and Z is necessary to make the new Legendre transform well de�ned.The master functional behaves as a scalar under the transformation law inherited from its very de�nition.Moreover, it admits a proper formulation, obtained extending the set of integrated �elds to so-calledproper �elds, which allows us to work without passing through Z , W or Γ. In the proper formulation theclassical action coincides with the classical limit of the master functional, and correlation functions andrenormalization are calculated applying the usual diagrammatic rules to the proper �elds. Finally, themost general change of �eld variables, including the map relating bare and renormalized �elds, is a linearrede�nition of the proper �elds.
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1 IntroductionRenormalization, as it is usually formulated, is not a change of variables in the functional inte-gral, combined with parameter rede�nitions, but a simple replacement of variables and parametersinside the action. More precisely, the action is correctly transformed according to the �eld rede�-nition, but the term ∫

Jϕ, which identi�es the �elementary �eld� used to write Feynman rules andcalculate diagrams, is not transformed, rather just replaced with ∫

J ′ϕ′, the analogous term forthe new variables. In simple power-counting renormalizable theories, such as ordinary Yang-Millstheory, where the renormalization of �elds and sources is multiplicative, it is straightforward toturn replacements into true changes of �eld variables. Instead, in theories such as Yang-Millstheory with an unusual action, or with composite �elds turned on, as well as e�ective �eld theo-ries and gravity, the relation between bare and renormalized �elds can be non-linear [1]. In thosecases replacements are convenient shortcuts that allow us to avoid certain lengthy manipulations.However, they are not completely satisfactory, since the do not really allow us to write preciseidentities relating generating functionals before and after the changes of variables.A perturbative �eld rede�nition is a �eld rede�nition that can be expressed as the identitymap plus a perturbative series of local monomials of the �elds and their derivatives. In ref. [2] westudied how a general perturbative change of integration variables in the functional integral re�ectson the generating functionals Z and W = lnZ. Due to the intimate relation between composite�elds O
I(ϕ) and changes of �eld variables, it is convenient to include sources LI coupled to the

O
I(ϕ)s, besides the sources J coupled to the elementary �elds ϕ. In a particularly convenientapproach, called linear approach, all perturbative changes of �eld variables, including the BR map,which is the map relating bare and renormalized �elds, are expressed as linear source rede�nitionsof the form

LI = L′

Jz
J
I + bIJ

′, J = J ′, (1.1)where zJI and bI are constants. The Z- and W - functionals behave as scalars,
Z ′(J ′, L′) = Z(J,L), W ′(J ′, L′) = W (J,L). (1.2)The L-J mixing of formula (1.1) re�ects the fact that a general change of �eld variables mixesthe elementary �eld with composite �elds. The transformations (1.1) are associated with cer-tain changes of integration variables ϕ′ = ϕ′(ϕ, J, L) in the functional integral, combined withparameter rede�nitions.We say that the functional integral is written in the conventional form when the entire J-dependence is encoded in the term ∫

Jϕ that appears in the exponent of the Z-integrand. Clearly,a non-linear change of integration variables turns the functional integral into some unconventionalform. However, it was shown in ref. [2] that the conventional form can be recovered applying anontrivial set of manipulations. The renormalization of the theory in the new variables does not2
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need to be calculated anew. It can be derived from the renormalization in the old variables apply-ing the operations that switch the functional integral back to the conventional form. The changeof integration variables undergoes its own renormalization, which is related to the renormalizationof composite �elds.In this paper we extend the investigation of ref. [2] to the generating functionals of one-particleirreducible diagrams. The usual generating functional Γ(Φ, L) is the Legendre transform of Wwith respect to J . This kind of operation, however, must be treated with caution, because itis not covariant. The �rst consequence of this fact is that Γ does not behave as a scalar underthe �eld-transformation law derived from its very de�nition as a W -Legendre transform. Yet, weprove that there exists a corrected �eld-transformation law under which Γ does behave as a scalar.The second consequence is that there must exist a better generating functional of one-particleirreducible diagrams, which does transform as expected. We call itmaster functional and denote itwith Ω(Φ, N). Roughly, it is the Legendre transform ofW with respect to both J and L. However,the naive Legendre transform with respect to L does not exist, so we must �rst �improve� the
W -functional in a suitable way, and then make the Legendre transform of the improved W .We said that the Legendre transform is not covariant under general source rede�nitions. Nev-ertheless, it is covariant under linear source rede�nitions. If we use the linear approach, wherelinear source rede�nitions encode the most general perturbative changes of �eld variables, we donot lose generality. Approaches alternative to the linear one have also been de�ned in ref. [2],but they are less e�cient for the purposes of this paper. For this reason here we mostly use theso-called redundant linear approach, although we also include comments on the other approaches.�Redundant� means that the basis {OI} of composite �elds is unrestricted. In particular, itcontains also descendants, composite �elds proportional to the �eld equations, the identity andthe elementary �eld itself. In the redundant approach divergent terms proportional to the �eldequations can still be subtracted by means of �eld rede�nitions, in the source-independent sector.Doing so is useful, for example, to identify �nite theories, whose divergences can be subtracted bymeans of sole �eld rede�nitions, and renormalizable theories, whose divergences can be subtractedby means of �eld rede�nitions and rede�nitions of a �nite number of physical parameters. In thesource-dependent sector, instead, we take advantage of the redundancy to simplify the formalstructure as much as possible.The master functional admits a convenient proper formulation, where the set of integrated�elds ϕ is extended to the proper �elds ϕ-N , where N are partners of the sources L. In the properformulation the classical action coincides with the classical limit SN of the master functional Ωand radiative corrections are determined from the classical limit with the usual diagrammaticrules. Moreover, the conventional form of the functional integral is manifestly preserved duringany change of �eld variables, including the BR map. In this way, it is possible to work directlyon Ω without referring to its de�nition from W .3
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For de�niteness, we work using the Euclidean notation and the dimensional regularization,but no results depend on these choices. To simplify the presentation, we imagine that the �eldswe are working with are bosonic, but the arguments can be immediately generalized to includefermionic �elds.The paper is organized as follows. In section 2 we investigate how the changes of �eld variables(1.1) re�ect inside the Γ-functional, and show that Γ does not behave as a scalar under thisoperation. We work out the correct �eld-transformation law under which Γ does behave as ascalar. In section 3 we motivate the search for a better generating functional of one-particleirreducible diagrams and describe how to overcome the most basic di�culties. In section 4 wede�ne the master functional and investigate its main properties. We also calculate it in anexplicit example. In section 5 we study the perturbative changes of �eld variables in the masterfunctional, and apply them to the example of section 4. In section 6 we study restrictions on themaster functional, one of which gives the Γ-functional itself. In section 7 we work out the properformulation, while in section 8 we study the renormalization of the master functional. In section9 we describe some generalizations obtained �covariantizing� the notion of Legendre transform.Section 10 contains the conclusions, while in the appendix we recall a theorem used in the paperabout �eld rede�nitions.2 Changes of �eld variables in the Γ-functionalIn this section we study perturbative changes of �eld variables in the Γ-functional Γ(Φ, L) =

−W (J,L) +
∫

JΦ, where Φ = δW/δJ and L are the sources coupled to the composite �elds. We�rst show that the transformation does not work as expected. Precisely, under the transformationlaw derived from its very de�nition, Γ does not behave as a scalar. This fact has an intuitiveexplanation. The notion of one-particle irreducibility is not compatible with general �eld redef-initions, because a non-linear change of �eld variables mixes elementary �elds with composite�elds, therefore one-particle irreducibility with many-particle irreducibility. We show that Γ doestransform as a scalar once we compose the expected change of �eld variables with a further changeof �eld variables.Inside the functional Γ(Φ, L) the change of variables that follows from (1.1), (1.2) and thede�nition of Legendre transform reads
Φ′(Φ, L) =

δW ′(J ′, L′)

δJ ′
=

δW (J,L)

δJ
+ bI

δW (J,L)

δLI
= Φ− bI

δΓ(Φ, L)

δLI
. (2.1)We also have

δΓ(Φ, L)

δLI
= −

δW (J,L)

δLI
= −

δW ′(J, (L− bJ)z−1)

δLI
= −z−1 δW

′(J ′, L′)

δL′

I

= z−1 δΓ
′(Φ′, L′)

δL′

I

. (2.2)4
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To visualize the change of variables more explicitly it is helpful to switch composite �elds o�for a moment, setting L = 0. Then the derivatives with respect to the renormalized sources LIgenerate insertions of renormalized composite �elds OI

R, so we get
Φ′(Φ, 0) = Φ + bI

δW

δLI

∣

∣

∣

∣

L=0

= 〈ϕ+ bIO
I
R(ϕ)〉L=0 .Dropping also radiative corrections we see that the classical change of variables is practically

ϕ′ = ϕ + bIO
I
c(ϕ), where {OI

c} is a basis of classical composite �elds, which coincide with theclassical limits of the OI
Rs. Nevertheless, this result is only partially correct, because the conditions

L = 0 switch composite �elds o� before the change of variables. After the change of variables weshould impose L′ = 0. It can be shown [2] that when we take this fact into account the correctclassical change of variables becomes
ϕ′ = ϕ+ b̃IO

I
c(ϕ),where b̃I = bI + O(b2) is a calculable power series in b.Using (1.1) and J = δΓ/δΦ we can express L′ as a function of Φ and L. To express Φ and Las functions of Φ′ and L′, we can write

Φ=Φ′ + bI
δΓ(Φ, L)

δLI
= Φ′ + bz−1 δΓ

′(Φ′, L′)

δL′

I

= Φ(Φ′, L′), (2.3)
L=L′z + bJ ′ = L′z + b

δΓ′(Φ′, L′)

δΦ′
= L(Φ′, L′). (2.4)Obviously, these relations, as well as (2.1) and (2.2), are not linear and not even local.Using (1.2), (2.1) and the de�nitions of Γ and Γ′ we can work out the relation between the

Γ-functionals. Keeping Φ and L′ �xed and expanding in powers of b we �nd
Γ′(Φ′, L′) =−W (J,L) +

∫

J
δW

δJ
(J,L) +

∫

bIJ
δW

δLI
(J,L) = Γ(Φ, L)−

∫

bIJ
δΓ(Φ, L)

δLI

=Γ(Φ, L′z)−

∞
∑

n=2

n− 1

n!

∫

J(bz−1)I1 · · · J(bz
−1)In

δnΓ(Φ, L′z)

δL′

I1
· · · δL′

In

. (2.5)We could also expand in powers of b keeping Φ and L �xed, instead, but it would give an equivalentresult. The important thing is that the same sources, in our case L′, appear on the left- and right-hand sides of (2.5). Then, setting L′ = 0 we can switch composite �elds o� both in the left- andright-hand sides of the equation and compare Γ′(Φ′, 0) with Γ(Φ, 0).Formula (2.5) shows that the transformation rule we expect, Γ′(Φ′, 0) = Γ(Φ, 0), does nothold, because other terms appear on the right-hand side. Thus the change of variables in the
Γ-functional does not work as expected. 5
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Nevertheless, we can show that the extra terms that appear in the last line of (2.5) can bereabsorbed inside a further change of variables. Recalling that

J = J ′ =
δΓ′(Φ′, L′)

δΦ′
, (2.6)we can manipulate the last line of (2.5) and get

Γ(Φ, L′z) = Γ′(Φ′, L′) +
∞
∑

n=2

n− 1

n!

∫

δΓ′

δΦ′
(bz−1)I1 · · ·

δΓ′

δΦ′
(bz−1)In

δnΓ(Φ, L′z)

δL′

I1
· · · δL′

In

∣

∣

∣

∣

∣

Φ=Φ(Φ′,L′)

. (2.7)Observe that the corrections to Γ′ on the right-hand side are at least quadratic in the �eldequations of Γ′. Thanks to this fact, we can apply a theorem of ref. [3], recalled in the appendix.That theorem ensures that the corrections of (2.7) can be reabsorbed inside Γ′ by means ofa further (still non-local) change of variables Φ̃(Φ′, L′). The change of variables is encoded informulas (A.2) and (A.4) of the appendix, while the structure of the action and the transformationlaw are given by formulas (A.1) and (A.3). We obtain
Γ(Φ, L′z) = Γ′(Φ̃(Φ′, L′), L′). (2.8)De�ning Γ′′(X, L̃) = Γ′(X,L′) and the corrected change of variables
Φ′′(Φ, L̃) ≡ Φ̃(Φ′(Φ, L′), L′), (2.9)where L̃ = L′z and Φ′(Φ, L′) is obtained inverting (2.3), we get

Γ(Φ, L̃) = Γ′′(Φ′′, L̃), (2.10)namely the Γ-functional transforms as a scalar under the corrected transformation law. Now wecan forget about the origin of the sources L̃ and just pay attention to the fact that they are thesame on both sides of the equation.In particular, when composite �elds are switched o� (L̃ = 0) the transformation law for the
Γ-functional reads

Γ(Φ) = Γ(Φ, 0) = Γ′′(Φ′′(Φ, 0), 0) = Γ′′(Φ′′),where in the last expression it is understood that Φ′′ is Φ′′(Φ, 0).Now we prove that (2.9) is the correct change of �eld variables for the functional Γ. To do sowe must carefully analyze the structure of the Γ-functional and the properties of its changes of�eld variables. Non-local �eld rede�nitions are tricky, because they give us an enormous freedomand can even relate theories that are not physically equivalent to each other, if we do not applythem correctly. Acceptable changes of �eld variables are only those that do relate physicallyequivalent theories. 6
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The Γ(Φ, L)-functional can be decomposed into the sum of a local tree-level action ScL(Φ, L),which coincides with the classical action, plus (non-local) radiative corrections ~Γnon-loc. Theradiative corrections are determined by the tree-level action itself. Precisely, ~Γnon-loc collects theone-particle irreducible diagrams that are constructed with the vertices and propagators deter-mined by ScL, multiplied by appropriate coe�cients. We write

Γ(Φ, L) = ScL(Φ, L) + ~Γnon-loc(Φ, L). (2.11)A non-local �eld rede�nition Φ′′ = Φ′′(Φ, L̃) maps physically equivalent theories when it is aperturbative �eld rede�nition at the tree level and Γ′′(Φ′′, L̃) = Γ(Φ, L̃) has a structure analogousto (2.11). We can decompose it as
Φ′′ = Φ′′(Φ, L̃) = Φ′′

c (Φ, L̃) + ~Φ′′non-loc(Φ, L̃),where Φ′′

c (Φ, L̃) is local. Moreover, the �eld rede�nition must be such that the new non-localradiative corrections ~Γ′′non-loc collect the one-particle irreducible diagrams determined by the newclassical action S′′

cL, multiplied by the correct coe�cients.Now we prove that the non-local change of variables (2.9) satis�es these requirements. First,let us recall the form of the classical action ScL in the redundant linear approach, because we aregoing to use it in the proof. It is given by
ScL(ϕ,L) = Sc(ϕ) −

∫

LIO
I
c(ϕ)−

∫

τvIN
v(L)OI

c(ϕ), (2.12)where N
v(L) is a basis of independent local monomials that can be constructed with the sources

L and their derivatives, and are at least quadratic in L, while the τvIs are constants. The reasonwhy composite �elds are multiplied by the most general O(L)-structure is that doing so it ispossible to linearize also the BR map, which can be expressed as a source rede�nition of the form(1.1) combined with parameter rede�nitions.Now, let us consider the map Φ′(Φ, L′). We can work it out inverting formula (2.3) perturba-tively in b. If we are just interested in the tree-level contributions to Φ′(Φ, L′) we can use (2.2)and (2.6) to replace δΓ′/δL′

I and δΓ′/δΦ′ with δΓ/δLI and δΓ/δΦ in (2.3) and (2.4). Then we canreplace Γ with ScL, given by (2.12), then iterate (2.4) to express L as a function of Φ and L′, insertthe result in (2.3), and �nally invert (2.3). Clearly, the result is a perturbative �eld rede�nition.We conclude that Φ′ = Φ′(Φ, L′) is a perturbative �eld rede�nition plus radiative corrections.Next, consider the map Φ̃(Φ′, L′). Observe that, expressed in the variables Φ-L′z the coe�cientsof the δΓ′/δΦ′-powers in (2.7) are local at the tree level, and at higher orders they involve onlyone-particle irreducible diagrams with multiple composite-�eld insertions. These properties holdeven after expressing Φ as a function of Φ′ and L′, which is done using (2.3). Thus, using formulas(A.2) and (A.4), we see that Φ̃′(Φ′, L′) shares the same properties. Composing this transformation7
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with Φ′ = Φ′(Φ, L′), we �nd that Φ′′(Φ, L̃) is the sum of a tree-level perturbative �eld rede�nitionplus radiative corrections that involve only one-particle irreducible diagrams, as we wished toprove.The second requirement, that the radiative corrections are determined by the tree-level actionwith the usual diagrammatic rules, is also satis�ed. Indeed, de�nition Γ′′(X, L̃) = Γ′(X,L′) tellsus that the transformed functional Γ′′(Φ′′, L̃) is just the functional Γ′(Φ′, L′) with Φ′ replaced by
Φ′′. We know that Γ′ has the correct structure, which is the primed version of (2.11), therefore
Γ′′ also has the correct structure.We conclude that (2.9) is an acceptable change of variables for the Γ-functional, which behavesas a scalar.Observe that all non-localities involved in the change of �eld variables are those typical ofone-particle irreducible diagrams. Nowhere the non-localities typical of the W -functional (such aspropagators with external momenta) enter the game. The change of variables itself is one-particleirreducible.So far we have used the linear redundant approach, taking (2.12) as the classical action andassuming that the most general change of �eld variables is encoded in the source rede�nitions(1.1). Nevertheless, the argument can be easily generalized to the essential approach and theother non-linear approaches studied in ref. [2]. In the essential approach, which is inspired bythe classi�cation of couplings made in ref. [4], we work with a basis of composite �elds that doesnot contain descendants (i.e. derivatives of other composite �elds) and objects proportional tothe �eld equations. Then some changes of �eld variables, for example those appearing in the BRmap, require to make non-linear source transformations in W . Something similar occurs with theother approaches of ref. [2]. Consider the most general perturbatively local �nite rede�nitions

L′

I = L′

I(J,L) = L′

I + O(b), J ′ = J, (2.13)that can be expanded in powers of some parameters b and satisfy the initial conditions L′

I(0, 0) = 0.We recall that every transformed functionalW ′(J ′, L′) = W (J,L), obtained applying (2.13), is the
W -functional that we would calculate in some transformed �eld-variable frame. The transformed�elds can be worked out applying the procedure explained in ref. [2] to recover the conventionalform of the functional integral, which is spoiled by any nontrivial J-dependence contained in
L′(J,L).At the level of the Γ-functional, the expected �eld transformation reads

Φ′(Φ, L) = Φ−

∫

δLI(J
′, L′)

δJ ′

δΓ(Φ, L)

δLI
. (2.14)Expanding in powers of J we can write

Γ′(Φ′, L′) = Γ(Φ, L)−

∫

J ′
δLI(J

′, L′)

δJ ′

δΓ(Φ, L)

δLI
= Γ(Φ, L(L′))−

∫

J ′
M(Φ, L′)J ′, (2.15)8
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where L(L′) = L(0, L′) and M(Φ, L′) is an order b2-sum of a tree-level local functional plus one-particle irreducible radiative corrections. Then we use (2.13) and (2.14) to express Φ as a functionof Φ′ and L′ inside M, move the last term (2.15) to the left-hand side, realize that the correctionto Γ′ is quadratically proportional to the Γ′-�eld equations, and reabsorb such a correction into afurther change of variables Φ̃(Φ′), applying the theorem recalled in the appendix. All argumentsproceed as above, with straightforward modi�cations, and lead us to conclude that the �nalchange of variables (2.9) is correct, because it preserves the structure (2.11) of the Γ-functional,which expresses Γ as the sum of a local function plus one-particle irreducible radiative corrections,determined by the tree-level part with the usual diagrammatic rules.Summarizing, the �nal change of variables for Γ is not the one inherited by the very de�nitionof Γ as the Legendre transform of W , namely (2.1) or (2.14), but instead it is (2.9). Nevertheless,the result we have found proves that a correct change of �eld variables for Γ does exist. We justneed to bear in mind that it is not the expected one.In the next sections we show that there exists a better functional that still collects one-particleirreducible diagrams, but also transforms as expected, and very simply (that is to say linearly, inthe linear approach), under arbitrary changes of �eld variables.3 Master functional: motivation and introductory observationsA change of �eld variables in the functionals Z and W is a rede�nition of the sources J and L.Although the functionals Z and W are non-local, the J- and L-rede�nitions must be local, sincethe exponent of the Z-integrand

Z(J,L) =

∫

[dϕ] exp

(

−SL(ϕ,L) +

∫

Jϕ

) (3.1)must remain local. In the linear approach, the J- and L-rede�nitions are local and linear. More-over, since we include the elementary �eld in the set of composite �elds, we can work in a frame-work where J is unmodi�ed and the entire transformation is encoded in the L-rede�nition, asshown in (1.1).On the other hand, we have observed that under changes of �eld variables the generatingfunctional Γ(Φ, L) of one-particle irreducible diagrams does not transform as expected from itsvery de�nition as the Legendre transform of W . We have been able to �nd a more involvedchange of variables that compensates for this fact and that is satisfactory for most purposes.The complete �eld rede�nition is itself non-local. This is not surprising, because Γ is a non-localfunctional.Nevertheless, since the source rede�nitions (1.1) for Z and W are local, and linear in thelinear approach, we are tempted to think that there should exist a better generating functional9
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Ω of one-particle irreducible diagrams that works similarly, namely such that the most general�eld transformations can be expressed locally, and linearly in the linear approach. Moreover, thetransformations should be the ones following from the very de�nition of Ω. In this section wecollect a number of remarks that help us identify the desired generating functional.Intuitively, the problem of Γ is that a non-linear change of variables mixes the elementary�eld with composite �elds, therefore one-particle irreducibility with many-particle irreducibility.This argument suggests that maybe we should work with many-particle irreducible generatingfunctionals [5]. Recall, however, that those generating functionals are de�ned coupling non-local sources Kn(x1, . . . , xn) with strings ϕ(x1) · · ·ϕ(xn) of elementary-�eld insertions located atdistinct points, which are non-local composite �elds. When we want to study local changes ofvariables we need to shift the sources K by local terms proportional to J . For example, the shift

K2(x, y) → K2(x, y) + bδ(x− y)J(x), (3.2)allows us to study the change of variables ϕ → ϕ+bϕ2. However, non-local sources do not capturethe renormalization of local composite �elds. Thus, the local shift of (3.2) causes the appearanceof new divergences, those associated with the composite �eld ϕ2, which need to be calculatedanew in this approach. For this reason, we do not pursue the use of generating functionals ofmany-particle irreducible diagrams and look for a di�erent solution.Since a change of variables mixes the elementary �eld with (local) composite �elds, it soundsnatural to treat all of them on the same footing. This suggests to de�ne a functional Ω(Φ, N) asthe Legendre transform of the functional W (J,L) with respect to all sources J and L, not justwith respect to J . However, the Legendre transform of W with respect to the sources L does notexist, in general. The two-point functions of composite �elds in momentum space form a matrix
GIJ that is not invertible, due to some sort of �gauge� symmetries obeyed by the sources L.Before moving forward, let us illustrate this important point in more detail. Composite �eldsproportional to the �eld equations give zero or a contact term, when they are inserted in atwo-point function. On the other hand, descendants give two-point functions proportional tothe ones of their primaries, so if the matrix GIJ contains both primaries and descendants it isdegenerate. We might think that in the essential approach, where descendants and composite�elds proportional to the �eld equations are not contained in the basis of composite �elds, GIJ isinvertible. This is not true, however.Consider a free massless scalar �eld ϕ in Euclidean space and the composite �elds O

J =

ϕJ/J !. The two-point functions GIJ = 〈OI
O
J〉L=0 can be easily calculated in momentum spaceintegrating one loop after another. The result is, using the dimensional-regularization technique,

〈OI(k) OJ(−k)〉 =
δIJ

J !

Γ
(

J −D J−1
2

) [

Γ
(

D
2 − 1

)]J

(4π)(J−1)D/2Γ
(

JD
2 − J

) (k2)(J−1)D/2−J , (3.3)10
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where D = 4− ε is the continued spacetime dimension. Subtracting the divergent part at coinci-dent points, we �nd

〈OI(k) OJ(−k)〉
∣

∣�nite = δIJ
(−1)J−1(k2)J−2(ln k2 + constant)

(4π)2J−2J !(J − 1)!(J − 2)!
. (3.4)The matrix (3.4) is a diagonal block of GIJ and is invertible. Nevertheless, observe that itwould be problematic to use its inverse. The reason is that the �rst nontrivial contributions to(3.4) are one-loop, so its inverse introduces negative powers of ~. At the bare level, the matrix iseven divergent, so its inverse introduces objects of order ε, very di�cult to handle.Now we calculate theGIJ -block made of the composite �elds {O1,O2} = {(1/2)ϕ2, (1/2)ϕ∂µ∂νϕ}.We �nd, in momentum space,

〈ϕ2 ϕ2〉=−
ln(k2/µ2)

32π2
, 〈ϕ2

OM 〉 = −
ln(k2/µ2)

96π2
Mµνkµkν ,

〈OM OM 〉=−
ln(k2/µ2)

3840π2

(

(k2)2M2
µν − 2k2(Mµνkν)

2 + 14(Mµνkµkν)
2
)

, (3.5)where Mµν is a constant traceless matrix and OM = (Mµν/2)ϕ∂µ∂νϕ. This GIJ -block is notinvertible. A quick way to prove this statement is to check that the vector {(k2)2, δµνk2 − 4kµkν}is a null vector.We can interpret this singularity as the consequence of a gauge symmetry. Although ϕ∂µ∂νϕis not a descendant of ϕ2, the two composite �elds ϕ∂µ∂νϕ and ϕ2 have a descendant in common,up to terms proportional to the �eld equations. Indeed,
∂ν(ϕ∂µ∂νϕ) =

1

4
∂µ2(ϕ

2) + ϕ(∂µ2ϕ)−
1

2
∂µ(ϕ2ϕ).The action

SL =
1

2

∫

(∂ϕ)2 −
1

2

∫

Lϕ2 −
1

2

∫

Lµν(ϕ∂µ∂νϕ) (3.6)is invariant with respect to the in�nitesimal �gauge� transformation
δϕ = −∂ · (ϕ`) +

1

2
ϕ(∂ · `), δLµν = ∂µ`ν + ∂ν`µ, δL = −

1

2
2(∂ · `), (3.7)to the lowest order in L, where `µ are arbitrary functions. This is why the block cannot beinvertible.The symmetry (3.7) can be extended to the complete action

SL =
1

2

∫

(∂ϕ)2 −

∫

LIO
I ,assuming that {OI} is the basis of composite �elds. We must cancel the terms

−

∫

LI
δOI

δϕ
δϕ, (3.8)11
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which can be done as follows. Expanding (3.8) in the basis {OI}, we can write (3.8) as

−

∫

PI(L, `)O
I(ϕ),where PI(L, `) are bilinear local functions of L and `, or their derivatives. Then to reabsorb (3.8)it is su�cient to correct the δLI -transformations of (3.7) as

δLI → δLI − PI(L, `).Note that the L-transformations remain ϕ-independent, as it must be, otherwise it would beimpossible to apply them inside the functional integral.Clearly, similar arguments can be used to relate most of the composite �elds containing deriva-tives. We learn that the renormalized two-point functions GIJ , which are equal to 〈OI
RO

J
R〉L=0plus counterterms taking care of coinciding points, do not form an invertible matrix in momentumspace, not even if the set {OI} is restricted to the essential �elds. Thus, the Legendre transformof the Γ-functional with respect to the sources L does not exist, in general.At the same time, we learn that this problem is due to the presence of a special class of gaugesymmetries. One way to solve it is to gauge-�x those gauge symmetries. However, since thesources L are just formal tools, we do not need to worry about the propagation of unphysical�L-degrees of freedom�. Therefore, more simply, we can just break the symmetries (3.7) explicitly.We need to choose the most convenient symmetry-breaking term. We can show that the uniqueterm that is compatible with all properties we need (some of which we have not mentioned, yet)is

T (L) =
1

2

∫

LI(A
−1)IJLJ , (3.9)where A is a constant invertible matrix. We call (3.9) improvement term. It must be includedin −SL, and therefore also W (J,L), if it is not already present. It provides otherwise missingtree-level quadratic contributions for the L-sector. If we proceed in the way explained below, thistrick is enough to make the W -Legendre transform with respect to the sources L well-de�ned.Now we must face another key problem: the Legendre transform is not a covariant operation.Given a function f(xµ), de�ne yµ = df/dxµ and the Legendre transform g(y) = −f(x(y)) +

xµ(y)yµ. Consider a general change of coordinates x′ = x′(x) and study how it re�ects from f to
g. To do this, it is useful to write g as a function of x:

g = −f(x) + xµ
df

dxµ
. (3.10)If f transforms as a scalar, then df/dxµ transforms as a vector. However, xµ does not transformas a vector, so g is not a scalar. 12



12A2Renorm
There is one exception: the Legendre transform g does behave as a scalar when the change ofcoordinates x′ = x′(x) is linear. If we use the linear approach, where all changes of �eld variablescan be expressed as linear transformations of L and J , we can de�ne a completely invariant Ω.This is encouraging, yet still not enough for our purposes. The main virtue of the functional Γis that its diagrams obey the theorem of locality of counterterms. Because of this, it is relativelyeasy to have control on renormalization working on Γ. It is more di�cult working, for example,directly on W , where local divergences can be multiplied by propagators and generate non-localdivergent expressions.Thus, the functional Ω must be a collection of one-particle irreducible diagrams. Better, itmust be a collection of one-particle irreducible diagrams in all variable frames. To achieve thisresult it is su�cient to require that the �propagators� of the sources L be equal to the identity.In this way, L-insertions are glued together at the same point and no W -type of non-localities aregenerated. More details on this issue are given in the next section.The desired type of L-propagators are given by the improvement term (3.9), therefore it is suf-�cient to state that all other O(L2)-terms belonging to the L-sector must be treated perturbativelywith respect to (3.9). We show below that it is consistent to do so.In the end, we are able to build a functional Ω that meets our requirements. It is invariantwith respect to the most general changes of �eld variables, it is one-particle irreducible in all�eld-reference frames and it obeys the theorem of locality of counterterms. Moreover, it containsall pieces of information we need, since we can always reconstruct W and Z (and also Γ) from Ω.Finally, we can renormalize the theory working directly on Ω instead of Γ.We think that the functional Ω can play a key role in the general �eld-covariant approach toquantum �eld theory. This is the reason why we call it the master functional.We have already noted that the linear approach is very convenient for our purposes, becausethere all changes of �eld variables, including the BR map, are described by linear source rede�ni-tions, which are transparent to the Legendre transform. Moreover, the linear approach providesthe improvement term (3.9) naturally, because it is contained inside the terms τv0

∫

N
v(L) thatmultiply the identity operator in the classical extended action ScL (2.12). In case that term is notalready present, we just add it. Actually, for future use it is better to shift τv0 ∫ N

v(L) by T (L),even if this operation may introduce some redundancy.The classical action (2.12) is now turned into
ScL(ϕ, λ, L) = Sc(ϕ, λ) −

∫

LIO
I
c(ϕ, λ) − T (L)−

∫

τvIN
v(L, λ)OI

c (ϕ, λ), (3.11)where λ are the masses, the coupling constants and all other parameters of the theory. The bareaction is formally identical, with bare quantities replacing classical quantities: SLB(ϕB, λB, LB) =13
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ScL(ϕB, λB, LB), SB(ϕB, λB) = Sc(ϕB, λB), OI

B(ϕB, λB) = O
I
c(ϕB, λB). Finally, let

ϕB = ϕB(ϕ, λ, µ), λB = λB(λ, µ),be the relation between bare and renormalized �elds and couplings when composite �elds areswitched o�. The renormalized action reads [2]
SL(ϕ, λ, µ, L) = S(ϕ, λ, µ) − T (L)−

∫

(LI + τ̂vIN
v(L, λ, µ))OI

R(ϕ, λ, µ), (3.12)where τ̂ = τ plus counterterms, S is the renormalized action at L = 0 and O
I
R are the renormalizedcomposite �elds. We have

S(ϕ, λ, µ) = SB(ϕB, λB), O
I
R = (Z−1)IJO

J (ϕ, λ, µ) = (Z−1)IJO
I
B(ϕB, λB),where ZI

J is the matrix of renormalization constants for the composite �elds. If counterterms oftype T (L) are necessary, we include them in τv0
∫

N
v and keep T (L) unrenormalized.Next, we state that when we make the Legendre transform with respect to the sources L,

τv0
∫

N
v must be treated perturbatively with respect to (3.9). This is achieved as follows. In ref.[2] it was shown that the perturbative expansion is well organized if we assume

λnl
= O(δnl−2), LI = O(δnI−2), AIJ = O(δnI+nJ−2), τvI = O(δnI−nv−2), (3.13)where δ is some reference parameter � 1. Here λnl

is the coupling, or product of couplings, thatmultiplies a monomial with nl ϕ-legs, nI is such that OI(ϕδ−1, λlδ
nl−2) = δ−nIO

I(ϕ, λ) and nv isthe δ-degree of Nv(L). With these assignments all radiative corrections carry an extra factor δ2`,where ` is the number of loops. However, for the present purposes we need to slightly modify theassignment (3.13), in a way that makes A−1 more important than the τs and does not a�ect thestatements derived so far. For example we can assume that τvI is O(δnI−nv−1), while AIJ remains
O(δnI+nJ−2). In this way all τvIs remain leading with respect to their radiative corrections,so the assignment modi�cation is consistent with our previous arguments. Summarizing, theperturbative expansion is properly organized assuming

λnl
= O(δnl−2), LI = O(δnI−2), AIJ = O(δnI+nJ−2), τvI = O(δnI−nv−1), (3.14)instead of (3.13). Consistently with (3.14), we also have J = O(δ−1), since both J and L1 aresources for the elementary �eld. These assignments are easy to remember, because if we rescaleevery object by a factor δn, where n it its δ-degree, and in addition rescale ϕ by 1/δ, then theaction SL rescales as

SL →
1

δ2
S̄L,where S̄L has a factor δ for each τ and a factor δ2 for each loop, but is δ-independent everywhereelse. 14
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Before concluding this section, let us explain why (3.9) is unique for our purposes. Under aLegendre transform the coe�cients of quadratic terms are turned into their reciprocals. If, forexample, (3.9) were replaced with L-quadratic terms containing polynomials in derivatives, the

L-propagators would be non-local. Then the master functional would contain unphysical poles,one-particle irreducibility would be destroyed and the theorem of locality of counterterms wouldbe di�cult to apply. To avoid all this, the L-propagators must be local. Now, assume that(3.9) is replaced with a non-local improvement term, such that the L-propagators are still local.A non-local improvement term of this type is acceptable inside W , which is non-local, but notacceptable in the exponent of the Z-integrand, which must be local. However, in these two placesthe improvement term is just the same. We conclude that both the improvement term and the
L-propagators derived from it should be local, which leaves just (3.9).4 Master functional: de�nition and basic propertiesNow we are ready to de�ne the master functional and study its structure. As said, we use theredundant linear approach. Moreover, we work at the renormalized level, because the argumentsextend to bare quantities with little modi�cations. Let us �rst recall that the Γ-functional is theLegendre transform of W (J,L) with respect to J ,

Γ(Φ, L) = −W (J,L) +

∫

JΦ, Φ =
δW

δJ
.In this operation, the sources L are just spectators, so we have δΓ/δLI = −δW/δLI .Now, assuming that the functional W is the improved one, we de�ne the master functional

Ω(Φ, N) as the Legendre transform of W (J,L) with respect to both J and L, namely
Ω(Φ, N) = −W (J,L) +

∫

JΦ+

∫

LIN
I , (4.1)where

Φ =
δW

δJ
, N I =

δW

δLI
. (4.2)Clearly, Ω is also the Legendre transform of minus Γ(Φ, L) with respect to L:

Ω(Φ, N) = Γ(Φ, L) +

∫

LIN
I , (4.3)where

N I = −
δΓ

δLI
. (4.4)We have the inverse formulas

J =
δΩ

δΦ
, LI =

δΩ

δN I
. (4.5)15
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Let us show that Ω is indeed well-de�ned and collects one-particle irreducible diagrams. Toachieve this goal, it is convenient to view Ω as the Legendre transform (4.3) of minus Γ with respectto L. We can use (4.4) to expand N(Φ, L) in powers of L. The coe�cients of this expansion arethe (renormalized) connected, one-particle irreducible correlation functions 〈OI1

R · · ·OIn
R 〉1PI,L=0(plus counterterms taking care of coinciding points), containing single or multiple insertions ofrenormalized composite operators OI

R. Using (3.12) we get
N I = (A−1)IJLJ + 〈OI

R〉+

∫

τ̂vJ
δNv(L)

δLI
〈OJ

R〉, (4.6)whence
Ñ I ≡ N I −〈OI

R〉1PI,L=0 = (A−1)IJLJ +

∫

〈OI
RO

J
R〉1PI,L=0LJ +

∫

τ̂vJ
δNv(L)

δLI
〈OJ

R〉1PI,L=0+O(L2).(4.7)Formula (3.14) tells us that the quantities Ñ I are O(δ−nI ). The improvement term (3.9) isresponsible for the contribution A−1L appearing on the right-hand side of (4.7), which is crucialfor the invertibility of (4.7). Expanding in orders of δ we can invert (4.7) and �nd
LI(Φ, N) = AIJÑ

J−AIJAKH

∫

〈OJ
RO

K
R 〉1PI,L=0Ñ

H−

∫

τ̂vK
δNv(AÑ)

δÑ I
〈OK

R 〉1PI,L=0+O(A3)O(Ñ).(4.8)Now we are ready to prove that the master functional Ω just contains one-particle irreduciblediagrams glued together as shown in the pictures
A B A

B

C (4.9)Here A, B and C can be any correlation functions 〈OI1
R · · ·OIn

R 〉1PI,L=0, while the symbol × denotesthat two or more composite-�eld insertions are �locally connected� using vertices provided by
N

v(L) and the �identity propagators� provided by (3.9).Consider �rst Ω = Ω(Φ, N(Φ, L)) as a functional of Φ and L, as given by the right-hand side of(4.3). This expression is a generating functional of one-particle irreducible diagrams in the sameway as Γ is. Indeed, because of (4.4), the right-hand side of (4.3) collects the same correlationfunctions that are contained inside Γ, however multiplied by di�erent coe�cients.Now we express the sources L as functions of Φ and N . Using (4.8) we see that we get preciselythe objects depicted in the pictures (4.9). In momentum space we have just products of correlationfunctions 〈OI1
R · · ·OIn

R 〉1PI,L=0 and polynomials. This argument proves that the master functionalobeys the theorem of locality of counterterms. For the moment we are satis�ed with this result.16
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Later, in section 7, we develop a �proper formalism� that allows us to study Ω using diagrammaticrules analogous to the ones we normally use for Γ, in particular calculate the renormalization of
Ω working directly on Ω without using the de�nitions (4.1) and (4.3) based on W and Γ.Let us discuss how Ω depends on A and Ñ . Because of (4.8), L contains only powers AmÑnwith m > n. More precisely, LI = AIJÑ

J plus a sum of powers AmÑn with m > n+ 1. Instead,due to the improvement term (3.9) the Ñ -dependence inside Ω has the form of monomials AmÑnwith m > n− 1. More precisely, we can write
Ω(Φ, N) = Γ(Φ) + TΩ(Ñ) + ∆2Ω(Φ, Ñ). (4.10)where

TΩ(Ñ) =
1

2

∫

Ñ IAIJÑ
J (4.11)is the Ω-improvement term and ∆2Ω is a sum of monomials of the form

(AI1J1Ñ
J1) · · · (AInJnÑ

Jn)XI1···In(Φ)with n > 2, where the Xs are power series in A, and can contain derivatives acting on Φ and onthe Ñs. Of course, ∆2Ω is of higher order in δ than TΩ. Note that the term linear in Ñ is missingin (4.10). Actually, we introduced Ñ precisely to make this happen.The functional Γ(Φ) is the minimum of Ω with respect to the N Is. Indeed, the conditions
δΩ

δN I
= 0 (4.12)are nothing but LI = 0. The solutions of (4.12) determine N I as functions of Φ. Formula (4.10)immediately gives Ñ I = 0, or N I = 〈OI

R〉L=0, so �nally
Γ(Φ) = Ω(Φ, 〈OI

R〉L=0).Another way to derive Γ(Φ) from Ω(Φ, N) is to take the limit A → 0, which is regular in Ω andis equivalent to set LI = 0:
Γ(Φ) = lim

A→0
Ω(Φ, N).So far we have been working with renormalized quantities, but every argument can be appliedto bare quantities with obvious modi�cations.ExampleTo give an explicit example, we consider a free massless scalar �eld and the composite �eld ϕ2/2coupled to the source L2. We want to work out the master functional to the order Ñ3. Let L0and L1 denote the sources coupled with the identity operator and the elementary �eld, as usual.We choose A =diag(a0µ−ε, a1, a2µ

ε), where the factors µε are introduced to make the dimensions17
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of a0, a1 and a2 integer. The functional W is easy to calculate (check for example section 12 of[2]). We �nd

W (J,L) =
1

2

∫
{

(J + L1)
1

−2− L2
(J + L1) + µ−ε

(

1

a2
+ δa

)

L2
2

}

−
1

2
tr ln(−2− L2) +

∫

L0 + µε

∫

L2
0

2a0
+

∫

L2
1

2a1
,where δa = −(16π2ε)−1. Then

Φ =

∫

1

−2− L2
(J + L1), N0 = 1 + µεL0

a0
, N1 = Φ+

L1

a1
,and, in momentum space,

Ñ2(k) = N2(k)−
Φ2(k)

2
=

µ−ε

a2(k)
L2(k) +

1

2

∫

dk′G3(k, k
′)L2(k

′)L2(k − k′) + O(L3
2), (4.13)where G3 = 〈ϕ2ϕ2ϕ2〉/8, dk′ stands for dDk′/(2π)D and we have de�ned the running coupling

1

a2(k)
=

1

a2
−

1

32π2
ln

k2

µ2
.Inverting the N -L relations we �nd L0 = µ−εa0(N0 − 1), L1 = a1(N1 −Φ) and

L2(k) = µεa2(k)Ñ2(k)−
1

2
µ3εa2(k)

∫

dk′G3(k, k
′)a2(k

′)Ñ2(k
′)a2(k−k′)Ñ2(k−k′)+O(a42)O(Ñ

3
2 ).The functional Ω is

Ω(Φ, N) =

∫

1

2
(∂µΦ)

2 +
a0µ

−ε

2

∫

(N0 − 1)2 +
a1
2

∫

(N1 − Φ)2 +
µε

2

∫

dkÑ2(−k)a2(k)Ñ2k

−
µ3ε

6

∫

dkdk′G3(k, k
′)a2(k)Ñ2ka2(k

′)Ñ2k′a2(k − k′)Ñ2(k−k′) + O(a42)O(Ñ
4
2 ). (4.14)Clearly, the limit a → 0 gives back the Γ-functional of the free-�eld theory.5 Changes of �eld variables in the master functionalIn this section we study the changes of �eld variables in the master functional, using the redundantlinear approach. Again, we work with renormalized quantities, since the analysis of bare changesof variables is practically identical.In ref. [2] it was explained that a change of �eld variables is made of the source-rede�nitions(1.1), or

L′

I = (LJ − bJJ)(z
−1)JI , J ′ = J, (5.1)18
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in the Z- and W -functionals, and that such functionals behave as scalars. To make LJ and bJJ ofthe same δ-order in (5.1), we must assume bI = O(δnI−1). It is very simple to work out how (5.1)re�ects in the Ω-functional. From (1.2) we have W ′(J ′, L′) = W (J,L′

Jz
J
I + bIJ), so de�nitions(4.2) give

Φ′ =
δW ′

δJ ′

∣

∣

∣

∣

L′

= Φ+ bIN
I , N I ′ =

δW ′

δL′

I

∣

∣

∣

∣

J ′

= zIJN
J . (5.2)Then (4.1) gives

Ω′(Φ′, N ′) = −W ′(J ′, L′) +

∫

J ′Φ′ +

∫

L′

IN
I ′ = −W (J,L) +

∫

JΦ+

∫

LIN
I = Ω(Φ, N),which shows that the master functional, di�erently from Γ, does transform as expected. Notethat the transformations (5.2) are linear in Φ and N .In [2] it was also shown that rede�nitions (5.1) are associated with a change of variables

ϕ′ = ϕ′(ϕ, λ, J, L) in the functional integral and a number of parameter-rede�nitions, e.g. b′ =

b′(b, τ, λ, µ), τ ′ = τ ′(b, τ, λ, µ). Of course such reparametrizations must be �nite, because they acton a convergent functional.In this paper we have split the set of parameters τ into A−1 plus the rest, and the rest wasstill called τ . The two subsets play a di�erent role, because the improvement term is dominantwith respect to the other terms belonging to the source sector. Because of this, we have alsomodi�ed the δ-assignments into (3.14). Thus, the parameter-rede�nitions associated with (5.1)now read A′−1 = A′−1(b,A−1, τ, λ, µ), τ ′ = τ ′(b,A−1, τ, λ, µ), etc., and must be determinedcarefully, because the change of variables makes A-denominators spread out everywhere. Wemust determine A′ and τ ′ such that all A′-denominators cancel out inside Ω′. Then the limit
A′ → 0 of Ω′ gives Γ′.Separating the improvement term T from the rest let us write

W (J,L) = W̃ (J,L) + T (L), (5.3)where W̃ does not depend on A. When we make the substitutions (5.1) we obtain
W ′(J ′, L′) = W (J,L) = W̃ (J ′, L′z + bJ) +

1

2

∫

(L′z + bJ ′)I(A
−1)IJ(L′z + bJ ′)J . (5.4)The last term of this formula contains powers bmA−n, with m > n. Working out Ω′ from itsde�nition (4.1) these powers spread out everywhere inside the transformed master functional.From the point of view of the expansion in powers of δ, negative A-powers are not a problem,since in any case the orders of δ organize correctly. However, we want to be able to treat the changeof variables perturbatively, while A is also treated perturbatively. For example, it is su�cient toimagine that each bI carries an extra small parameter ζ besides the order of O(δnI−1) assigned toit, and expand in ζ before expanding in δ. 19
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We can also view the problem of negative A-powers in the �eld transformations (5.2). Thosetransformations do leave Ω′ regular for A → 0, but they do not preserve the structure (4.10). Inparticular, they generate terms linear in Ñ , which are absent in (4.10). To recover the primedversion of (4.10) we must rede�ne Ñ . However, it is easy to see that when we do this, powers

bmA−n, with m > n, propagate from the improvement term to Γ′(Φ′), T ′

Ω(Ñ
′) and ∆2Ω

′(Φ′, Ñ ′).To completely determine Ω′(Φ′, N ′) we must determine the parameters b′, A′, τ ′ and the constants
z as functions of A, b, and τ , so that they absorb away all negative A-powers and turn the structureof Ω′(Φ′, N ′) into the primed version of (4.10), where Ñ ′ is worked out solving δΩ′/δN ′ = 0. Notethat the matrix z is not uniquely determined, because after eliminating the negative A-powers wecan always make a further change of composite-�eld basis.Finally, we can also view this problem inside the functional integral, going through section 10of ref. [2]. If the starting functional integral is written in the conventional form, as we assume,the rede�nition (5.1) turns it into some unconventional form. We can recover the conventionalform applying the theorem proved in section 9 of ref. [2], but then it is easy to see that powers
bmA−n, with m > n, propagate inside the change of �eld variables ϕ′ = ϕ′(ϕ, λ, J, L), as well asin z, A′ and τ ′.Now we give a step-by-step procedure to work out the reparametrization that must accompanythe change of �eld variables (5.2) to reabsorb the negative A-powers. We work directly on themaster functional, bypassing Z and W . At the end of this section we illustrate the procedurewith an explicit example.1) First we make the substitutions Φ = Φ′ − bz−1N ′, N = z−1N ′ inside Ω(Φ, N). They dogive the transformed functional Ω′, but this Ω′ is still written in the old parametrization. Next,we solve the conditions δΩ′/δN ′I = 0 and insert the solutions N ′(Φ′) back into Ω′. This operationgives Γ′(Φ′), still written in the old parametrization. We know, from the analysis of section 2,that there exists a non-local change of �eld variables Φ′(Φ) such that Γ′(Φ′) = Γ(Φ). The classicallimits of Γ(Φ) and Γ′(Φ′) are the classical actions Sc(ϕ) and S′

c(ϕ
′), before and after the changeof variables. They are related by the classical limit ϕ′(ϕ) of Φ′(Φ). Inverting this relation andwriting it as

ϕ(ϕ′) = ϕ′ − b′IO
′I
c (ϕ′),we determine the constants b′I . They make S′

c(ϕ
′) free of A-denominators, because Sc(ϕ) isindependent of A.2) At this point, we consider again the solutions N ′(Φ′) of δΩ′/δN ′I = 0. These are the averagevalues 〈OI ′

R 〉
′ in the new variable frame, at L′ = 0, and must also be regular. We determine theconstants z canceling the negative A-powers of the 〈OI ′

R 〉
′-classical limits.3) Finally, we are ready to consider Ω′(Φ′, N ′). The new parameters A′ and τ ′ are determinedmatching its structure with the primed version of (4.10), again in the classical limit. Once we20
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express z and A, b, and τ as functions of A′, b′, and τ ′, everywhere, we obtain the correctlyparametrized Ω′.Observe that at each step we determine the desired reparametrizations working with classicallimits. Indeed, the reparametrization is fully determined by those limits, in the same way as theentire functional Ω is fully determined by the classical action, by means of Feynman rules andFeynman diagrams (see section 7). When the classical limits are matched, radiative correctionsautomatically turn out to be right. Moreover, they are consistent with the perturbative expansionin δ.We could also �nd the desired reparametrizations working with the renormalized actions SLand S′

L, instead of working with Ω. However, it would not make much di�erence: the divergentparts cannot enter the reparametrizations, which are �nite, and once we drop them we end upagain matching the classical limits.Summarizing, a change of variables in the master functional is the linear rede�nition
Φ′ = Φ+ bIN

I , N I ′ = zIJN
J , (5.5)under which Ω behaves as a scalar, Ω′(Φ′, N ′) = Ω(Φ, N). To �nd the correct structure of Ω′ wemust accompany (5.5) with a set of reparametrizations that can be worked out with the procedureoutlined above.Now we illustrate the main issues with the help of an example.ExampleWe consider again the free theory of a massless scalar �eld, with the composite �eld ϕ2/2coupled to the source L2. We want to study the change of variables L = L′z + bJ to the order

b2 in the functionals Ω and Γ and check the results computing the associated Feynman diagrams.We treat Ñ as an O(b)-object and truncate the Ω-functional to the �rst line of (4.14). In thisapproximation the �eld transformation and the functional Γ′ can be calculated up to O(b2), while
Ñ ′ can be worked out up to O(b).The change of variables reads
Φ′ = Φ+ b2N2 + b1N1, N ′

2 = z22N2 + z21N1, N ′

1 = z11N1 + z12N2, N ′

0 = N0, (5.6)and the transformed Ω-functional Ω′ is Ω(Φ, N) once (5.6) are implemented. To �nd the correctreparametrizations, we �rst solve the conditions δΩ′/δN ′

2 = δΩ′/δN ′

1 = δΩ′/δN ′

0 = 0. Insertingthe solutions Ñ ′(Φ′) back inside Ω′ we get Γ′(Φ′). Then it is relatively easy to check that
Γ′(Φ′) =

1

2

∫

dDx (∂µΦ(Φ
′))2, (5.7)where

Φ(Φ′) = Φ′(1− b′1)−
b′2
2
Φ′2 +

b′22
2
Φ′3 −

b′22 µ
−ε

64π2

(

ln
−2

µ2

)

(2Φ′) + O(b3). (5.8)21
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The relations between b and b′ are

b1 = b′1 + b′21 +
1

2

(

b′21
a1

+
b′22 µ

−ε

a2

)

2+ O(b3), b2 = b′2 + 3b′1b
′

2 + O(b3).Boxes appear inside our �constants� because we work in an approach where descendants, suchas 2ϕ, 2ϕ2, 22ϕ, etc., are not viewed as independent composite �elds, but treated altogetherwith their primaries. This amounts to promote the constants to polynomials in derivatives. Notethat formula (5.8) contains also the cubic power of the �eld. Since we have not introduced anindependent source for the composite �eld ϕ3, the coe�cient of Φ′3 in (5.8) is not independent,but a function of b′1 and b′2.Clearly, the classical limits of (5.7) and (5.8) are local. It is easy to check by explicit compu-tation that the radiative corrections of (5.7) are determined by the classical limit of (5.7) in theusual way. There is just one one-loop diagram to compute, the scalar self-energy made with twovertices (b′2/2)ϕ′2
2ϕ′.Observe that (5.8) is also the appropriate non-local variable change of the Γ-functional, thatis to say (2.9) at L′ = 0 (upon converting the notation of that formula to the one used here).We have worked out the reparametrizations b′(b) that make all a-denominators disappear from

Γ′(Φ′). The next task is to �nd the values of zij that reabsorb the a-denominators contained inthe averages 〈OI ′
R 〉′L′=0. This is straightforward, since we already have such averages from thesolutions of δΩ′/δN I ′ = 0. Proceeding order-by-order in b we �nd

O
1′ =ϕ′, O

2′ =
ϕ′2

2
−

b′2
2
µε/2ϕ′3 + O(b2), (5.9)

〈O2′
R 〉′L′=0 =

Φ′2

2
−

b′2
2
Φ′3 +

b′2µ
−ε

32π2

(

ln
−2

µ2

)

(2Φ′) + O(b2), (5.10)together with
z11 = 1+ b′1 +

b′1
a1

2+O(b2), z12 = b′2 +O(b2), z21 =
b′2
a2

µ−ε
2+O(b2), z22 = 1+2b′1 +O(b2).Again, it is easy to check by explicit computation that the radiative corrections contained in(5.10) are those predicted by the new classical action and the new composite �elds (5.9).The �nal task is to �nd the reparametrizations A′ and τ ′ that make Ω′ have the correctdependence on A′ and Ñ ′, which is encoded in the primed version of formula (4.10). In ourapproximation we have to stop at the terms that are quadratic in Ñ ′ and O(b0). We �nd

Ω′(Φ′, N ′) = Γ′(Φ′) +
1

2

∫

Ñ ′IA′

IJÑ
′J + O(b)O(Ñ ′2) + O(Ñ ′3),where A′

IJ =diag(a0µ−ε, a1, a2(k)µ
ε) + O(b).As expected, the new parametrization, obtained matching only tree-level contributions, makesall terms regular inside Ω′, including radiative corrections.22
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6 RestrictionsThe sources LI and their �Legendre-partners� N I are useful tools to study composite �elds and�eld rede�nitions, but at some point we may want to get rid of them choosing suitable restrictionsand de�ne some sort of �quantum action� Ω(Φ) depending only on the �elds Φ. In this section weconsider some options of this kind. The Γ-functional can be viewed as one of them.Choose a restriction N I = N I(Φ), where the functions N I(Φ) are unspeci�ed for the mo-ment, and de�ne Ω(Φ) = Ω(Φ, N(Φ)). Because of (5.5) the transformed restriction is N I(Φ) =

(z−1)IJN
J ′(Φ′). The change of variables reads

Φ′(Φ) = Φ + bIN
I(Φ)and the restricted master functional transforms correctly,

Ω′(Φ′) = Ω′(Φ′, N ′(Φ′)) = Ω(Φ, N(Φ)) = Ω(Φ).A simple restriction is N I ′ = N I = 0, however in this case the �eld rede�nition (5.5) is justthe identity Φ′ = Φ. The restriction LI = 0 or, equivalently, N I = 〈OI
R〉L=0 = N I(Φ), gives thefunctional Γ(Φ). In that case the change of variables becomes

Φ′(Φ) = Φ + bI〈O
I
R〉L=0 (6.1)and we have

Γ(Φ) = Ω(Φ) = Ω(Φ, N(Φ)) = Ω′(Φ′, N ′(Φ′)) = Ω′(Φ′).However, the last expression does not coincide with Γ′(Φ′). Indeed, we know that, although therestricted master functional does transform correctly, Γ does not transform as expected. We getthe correct transformed Γ-functional Γ′(Φ′) when the restriction reads N I ′ = 〈OI ′
R 〉L′=0 in the newvariables, or L′

I = 0, but (1.1) shows that LI = 0 cannot imply L′

I = 0. Applying the change ofvariables we �nd instead that the transformed restriction reads N I ′ = zIJ〈O
J
R〉L=0.To recover the correct transformed Γ-functional we must make an additional step, similar tothe one explained in section 2. Consider the di�erence

Ñ I ′ = zIJ 〈O
J
R〉L=0 − 〈OI ′

R 〉L′=0 = zIJ
δW

δLI

∣

∣

∣

∣

L=0

−
δW ′

δL′

I

∣

∣

∣

∣

L′=0

=
δW ′

δL′

I

∣

∣

∣

∣

L′=−bz−1J

−
δW ′

δL′

I

∣

∣

∣

∣

L′=0

=
δΓ′(Φ′, L′)

δL′

I

∣

∣

∣

∣

L′=0

−
δΓ′(Φ′, L′)

δL′

I

∣

∣

∣

∣

L′=−bz−1J

. (6.2)Now, observe that at LI = 0, J coincides with the �eld equations δΓ(Φ)/δΦ. Using (6.1) wecan view the right-hand side of (6.2) as a function of Φ. Clearly, this function is proportional to23
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J = δΓ(Φ)/δΦ and the �coe�cient� of J is a collection of one-particle irreducible diagrams. Then,by the primed version of (4.10) the di�erence

Γ(Φ)− Γ′(Φ′) = Ω′(Φ′)− Γ′(Φ′) = T ′

Ω(Ñ
′(Φ′)) + ∆2Ω

′(Φ′, Ñ ′(Φ′)).is quadratically proportional to Ñ ′. By (6.2), when expressed as a function of Φ it has the form
−

∫

δΓ(Φ)

δΦ
M(Φ)

δΓ(Φ)

δΦ
,namely it is quadratically proportional to the �eld equations δΓ(Φ)/δΦ. Moreover, the �coe�cientof proportionality� M(Φ) collects one-particle irreducible diagrams and is local at the tree level.Then we can use the theorem recalled in the appendix and absorb the di�erence Γ− Γ′ inside afurther change of variables Φ̃(Φ), which is the sum of a tree-level perturbative �eld rede�nitionplus one-particle irreducible radiative corrections. Finally, we get Γ′(Φ′) = Γ(Φ̃(Φ(Φ′))) = Γ̃(Φ̃),if we de�ne Γ ≡ Γ̃. We �nd, as in section 2, that the functionals Γ and Γ′ are mapped into eachother, but the correct �eld transformation is not just (6.1), rather Φ̃(Φ(Φ′)). Clearly, this mappreserves the structure (2.11).Other restrictions N I(Φ) may be useful for di�erent purposes. For example, if we choose

LI = `I =constants, we turn the classical action Sc(ϕ) into Sc(ϕ) −
∑

I `IO
I(ϕ). In this way wecan study all actions, therefore all theories with the same �eld content, at the same time.7 Proper formulationIn this section we show that with the help of a simple trick we can work with the master functionalin a more economic way. The action SL(ϕ,L) appearing in the Z-integrand is not su�cientlysimilar to the master functional Ω(Φ, N) and the classical action ScL(ϕ,L) does not coincide withthe classical limit of Ω. In particular, SL depends on �mixed� variables, since the sources L are,strictly speaking, arguments of the functionals Z and W , together with J , not arguments of anaction. We want an action SN (ϕ,NS) that coincides with the master functional in the classicallimit, therefore it must depend on ϕ and some new ��elds� NS, such that Φ = 〈ϕ〉 and N = 〈NS〉.We call this formulation the proper formulation of the master functional. Among the other things,it allows us to work directly on the master functional from the very beginning, without passingfrom Z, W or Γ. To study the renormalization of Ω it is su�cient to write the Feynman rulesof the proper action SN (ϕ,NS) and work out their one-particle irreducible Feynman diagrams.Finally, in the proper formulation the conventional form of the functional integral is manifestlypreserved during a general change of �eld variables.To begin with, it is easy to see that the Z-functional (3.1) can be expressed in the form

Z(J,L) =

∫

[dϕdNSdL̃] exp

(

−SL(ϕ, L̃) +

∫

Jϕ+

∫

(LI − L̃I)N
I
S

)

. (7.1)24
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Indeed, the NS-integral gives a functional δ-function δ(LI − L̃I) and the further L̃-integral givesback (3.1). Now, de�ne the proper action SN (ϕ,NS) from the formula

exp (−SN (ϕ,NS)) ≡

∫

[dL] exp

(

−SL(ϕ,L)−

∫

LIN
I
S

)

. (7.2)Inserting (7.2) with L → L̃ in (7.1) we can express the Z- and W -functionals as
Z(J,L) = expW (J,L) =

∫

[dϕdNS] exp

(

−SN(ϕ,NS) +

∫

Jϕ+

∫

LIN
I
S

)

. (7.3)Here each composite �eld is associated with an integrated variable NS and an external source L.Both ϕ and NS are regarded as elementary �elds, called proper �elds.The exponent −SN on the left-hand side of (7.2) can be viewed as the W -functional associatedwith the functional integral appearing on the right-hand side of the same formula, where the �elds
ϕ are treated as external variables and the L-propagators are those provided by the improvementterm contained in SL. The L-functional integral of (7.2) is a purely algebraic operation, becausethe L-propagators are equal to the identity in momentum space. The loop diagrams are integralsof the form

∫

dDp

(2π)D
P (p),where P (p) is a polynomial, so they vanish using the dimensional regularization. Thus the action

SN receives only tree-level contributions, therefore it is local.We can work out SN explicitly using the saddle-point approximation, which is actually exactin the case of the functional integral (7.2). Let LI = L∗

I(ϕ,NS) denote the perturbative solutionsof
N I

S = −
δSL(ϕ,L)

δLI
.Then, writing L̃ = L−L∗ and expanding the integrand of (7.2) around L∗(ϕ,NS), the right-handside of (7.2) becomes

∫

[dL̃] exp

(

−SL(ϕ,L
∗)−

∫

L∗

IN
I
S + O(L̃2)

)

= exp

(

−SL(ϕ,L
∗)−

∫

L∗

IN
I
S

)

.The last expression is proved observing that the L̃-propagators are equal to the identity, andthe L̃-functional integral involves only vertices that have at least two L̃-legs. So, it can receivecontributions only from loop diagrams, which however vanish. Finally, we get
SN (ϕ,NS) = SL(ϕ,L

∗(ϕ,NS)) +

∫

L∗

I(ϕ,NS)N
I
S . (7.4)In practice, SN coincides with the Legendre transform of −SL with respect to L. In particular,we have the relation

δSN

δN I
= L∗

I(ϕ,NS).25
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The inverse of formula (7.2) reads

exp (−SL(ϕ,L)) =

∫

[dNS ] exp

(

−SN (ϕ,NS) +

∫

LIN
I
S

)

.The integral over NS can be calculated like the L-integral of (7.2), and receives only tree-levelcontributions because the NS-propagators are also proportional to the identity. Alternatively, togo from SN to SL we can use the inverse Legendre transform.The proper formulation is convenient for several reasons, which we now illustrate. The gen-erating functionals Z and W associated with the extended action SL (where the �elds ϕ areintegrated and L are external sources) can also be viewed as the generating functionals Z and Wassociated with the proper action SN (where both ϕ and NS are integrated �elds).On the other hand, the master functional Ω can be viewed as the Γ-functional of the properapproach. Indeed, the master functional Ω is the Legendre transform of W with respect to both
J and L. In the proper approach this is precisely the Γ-functional, because now the integrated�elds are both ϕ and NS , while J and L are the sources coupled with them. Clearly, the classicallimit of the master functional Ω(Φ, N) coincides with the classical action ScN(Φ, N) of the properapproach, and Φ = 〈ϕ〉, N = 〈NS〉, as promised. Moreover, the master functional has thestructure (2.11), which means that its radiative corrections follows from its classical limit ScNaccording to the usual rules.When no confusion can arise, we drop the subscript S in NS and use the symbol N for thevariables of SN . Some other times we may denote the N -variables of Ω with NΩ.As a �rst example, we work out SN for the basic SL-action

S0L(ϕ,L) = S(ϕ) −

∫

LIO
I
R(ϕ)−

1

2

∫

LI(A
−1)IJLJ .The functional integral of (7.2) is Gaussian and gives

S0N (ϕ,N) = S(ϕ) +
1

2

∫

Ñ IAIJÑ
J ,where Ñ I = N I − O

I
R(ϕ). More generally, we can work out SN either using (7.4) or expandingaround S0N . Decompose the complete action SL (3.12) as

SL(ϕ,L) = S0L(ϕ,L) −

∫

τvIN
v(L)OI

R(ϕ), (7.5)where S0L is the part we expand around, while the terms τvJN
v
O
J
R are treated perturbatively.The action SN is equal to S0N plus corrections that we now describe. Inserting (7.5) in (7.2) andobserving that each L-insertion can be traded for minus the functional derivative δ/δN and movedoutside of the functional integral, we can write a formula that implicitly gives SN . Precisely,

exp (−SN (ϕ,N)) = exp

(
∫

τvJN
v(−δ/δN)OJ

R(ϕ)

)

exp (−S0N (ϕ,N)) .26
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Next, observe that δS0N/δN I = AIJÑ

J , so the structure of SN is
SN (ϕ,N) = S0N (ϕ,N) +

∑

n>0

(AI1J1Ñ
J1) · · · (AInJnÑ

Jn)X̃I1···In
I O

I
R(ϕ), (7.6)where the X̃s are power series in A and can contain derivatives acting on the Ñs. The terms with

n = 0, 1 do not contribute to the sum and can be dropped. Indeed, write
exp (−SN (ϕ,N) + S(ϕ)) =

∫

[dL] exp

(
∫

T (L) +

∫

τvJN
v(L)OJ

R(ϕ) −

∫

LIÑ
I

)

.It is easy to check that the exponent of the right-hand side vanishes for Ñ I = 0. To see thiswe must focus on connected diagrams that do not have external L-legs. Since all vertices haveat least two L-legs, all such diagrams are at least one-loop, so they vanish. This proves that
SN (ϕ,N) = S(ϕ) when N I = O

I
R(ϕ), therefore the term with n = 0 can be dropped from thesum of (7.6). Similarly, the derivative with respect to N , calculated at Ñ I = 0, collects the setof connected diagrams with one external L-leg, which must also contain at least one loop. Thus,the terms with n = 1 of (7.6) also vanish.We conclude that SN has a structure similar to the structure (4.10) of Ω:

SN (ϕ,N) = S(ϕ) +
1

2

∫

Ñ IAIJÑ
J +

∑

n>2

(AI1J1Ñ
J1) · · · (AInJnÑ

Jn)X̃I1···In
I O

I
R(ϕ). (7.7)This is the general structure of the classical, bare and renormalized actions in the proper approach.Let us compare this action with the action (3.12), which is written using the �improper vari-ables� ϕ,L. The terms of SL linear in LI and the terms of SN linear in AIJN

J are multipliedby (minus) the renormalized composite �elds O
I
R(ϕ), therefore allow us to identify them. Theimprovement terms

T (L) =
1

2

∫

LI(A
−1)IJLJ , TN (Ñ) ≡

1

2

∫

Ñ IAIJÑ
J ,correspond to each other. Similarly, the terms ∫

τ̂vIN
v
O
I
R correspond to the last sum in (7.7).The constants X̃ are equal to the τs plus perturbative corrections. Clearly, there are as many

X̃s as τs, so we can invert the X̃-τ relations and consider the X̃s as independent parameters.Expanding the monomials quadratically proportional to Ñ using the same basis Nv we used forthe monomials quadratically proportional to L, we conclude that the most general proper classicalaction ScN has the form
ScN (ϕ,N) = Sc(ϕ) +

1

2

∫

Ñ I
cAIJÑ

J
c +

∫

ρvIN
v(Ñc)O

I
c(ϕ), (7.8)where ρvI are constants and Ñ I

c = N I − O
I
c(ϕ). The proper renormalized action is then

SN (ϕ,N) = S(ϕ) +
1

2

∫

Ñ IAIJÑ
J +

∫

ρ̂vIN
v(Ñ)OI

R(ϕ), (7.9)27
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where ρ̂vI = ρvI plus perturbative corrections. Recall that all counterterms of type TN (Ñ) aremoved to ∫

ρ̂v0N
v(Ñ), so the matrix A is unrenormalized.From (3.14), we �nd that the perturbative expansion is correctly organized if we assume thatthe constants ρvI are O(δnI−nv−1), where nv is the δ-degree of Nv(Ñ).7.1 Changes of variables in the proper actionNow we study how the proper action SN transforms under a change of variables. Inserting (5.1)into (7.3) the identity W (J,L) = W ′(J ′, L′) follows de�ning

ϕ′ = ϕ+ bIN
I , N I ′ = zIJN

J , (7.10)which gives
S′

N (ϕ′, N ′) = SN (ϕ,N),

∫

Jϕ+

∫

LIN
I =

∫

J ′ϕ′ +

∫

L′

IN
′I .As before, we have dropped the subscript S in the integrated �elds N I

S.We see that using the proper approach a change of variables (7.10) in the functional integrallooks exactly as it looks in the master functional, where we have formula (5.5). Enlarging the setof integrated �elds from ϕ to the proper variables ϕ,N we have linearized the change of variablesalso at the level of integrated �elds, and gained a lot of simplicity and clarity. We call (7.10) aproper �eld rede�nition.Moreover, in the proper approach both the action SN (ϕ,N) and the term ∫

Jϕ +
∫

LIN
Ibehave as scalars, without talking to each other. This means that a proper functional integralwritten in the conventional form remains written that way at all stages of the variable change.Because of this, replacements and true changes of variables are practically the same thing. Werecall that, instead, when we work with improper variables, where we have only ∫

Jϕ insteadof ∫ Jϕ +
∫

LIN
I , lengthy procedures are necessary to retrieve the conventional form after thechange of variables [2].Nevertheless, from (7.10) it is not evident what the ϕ-change of �eld variables truly is, oncewe eliminate the Ns. To make it more explicit it is su�cient to apply (7.10) and then reconvertthe transformed action into its proper form (7.9). The operations necessary to achieve this goalare very similar to the manipulations met in ref. [2], now viewed from the viewpoint of the masterfunctional.Let f(ϕ′) = ϕ′ + O(b) denote the recursive solution to the equation

f(ϕ′) = ϕ′ − bIO
I
R(f(ϕ

′)). (7.11)Using (7.10) and (7.11), we can write
ϕ = f(ϕ′)− bIN̄

I , (7.12)28



12A2Renorm
where

N̄ I ≡ N I − O
I
R(f(ϕ

′)). (7.13)We have
Ñ I = N I − O

I
R(ϕ) = N I − O

I
R(f(ϕ

′)− bJN̄
J) = N̄ I + F I(N̄, ϕ′), (7.14)where F I are local functions of order b and order N̄ .Inserting (7.14) and (7.12) in SN (ϕ,N) and expanding in the basis of composite �elds, we get

SN (ϕ,N) = S(f(ϕ′)) +

∫

N̄ IEI(f(ϕ
′)) +

1

2

∫

N̄ IĀIJN̄
J +

∫

ρ̄vIN
v(N̄)OI

R(f(ϕ
′)), (7.15)where ĀIJ = AIJ +O(b) and ρ̄vI = ρ̂vI +O(b) are new constants and EI are O(b)-local composite�elds proportional to (derivatives of) the �eld equations δS(f(ϕ′))/δϕ′. For later convenience, wefocus our attention on δS(f(ϕ′))/δϕ′ rather than δS(ϕ)/δϕ|ϕ=f(ϕ′).Formula (7.15) is not written in the form we want, since it contains terms linear in N̄ I . Wemust work out Ñ ′I = N̄ I + O(b), so that (7.15) turns into the primed version of (7.9). A crucialfact is that the terms linear in N̄ I are also proportional to the �eld equations of S(f(ϕ′)).Calculate the derivative of (7.15) with respect to N̄ and set it to zero. This condition can bewritten as

N̄ I = −(Ā−1)IJEJ(f(ϕ
′))− (Ā−1)IJ ρ̄vK

∫

δNv(N̄)

δN̄J
O
K
R (f(ϕ′))and solved recursively. The solution N̄ I = Y I(ϕ′) = O(b) is local and proportional to the �eldequations δS(f(ϕ′))/δϕ′. Now, de�ne

N̄ ′I = N̄ I − Y I(ϕ′) (7.16)and use this de�nition to replace N̄ I inside (7.15). We get
SN (ϕ,N) = S̄(ϕ′) +

1

2

∫

N̄ ′IĀ′

IJN̄
′J +

∫

ρ̄′vIN
v(N̄ ′)OI

R(f(ϕ
′)),where Ā′

IJ = AIJ +O(b) and ρ̄′vI = ρvI +O(b) are new constants. The term linear in N̄ ′ is absentby construction and
S̄(ϕ′) = SN (ϕ,N)|N̄=Y I(ϕ′) = S(f(ϕ′)) +

∫

δS(f(ϕ′))

δϕ′
M(f(ϕ′))

δS(f(ϕ′))

δϕ′
,where M(ϕ′) = O(b2) is local and can contain derivatives acting to its left and to its right. Now wecan apply the theorem recalled in the appendix, which tells us that there exists a perturbativelylocal function g(ϕ′) = ϕ′ + O(b2), such that

S̄(ϕ′) = S(f(g(ϕ′))).29
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Write

ϕ(ϕ′) ≡ f(g(ϕ′)) = ϕ′ − bIO
I
R(ϕ

′) + O(b2).This formula is the renormalized variable change associated with (7.10). Inserting the inverse
ϕ′ = ϕ′(ϕ) of this relation in (7.13) and (7.16), expanding in the basis of composite �elds, andthen using the second of (7.10), we can write

N̄ ′I =N I − O
I
R(f(ϕ

′))− Y I(ϕ′) = N I − wI
JO

J
R(ϕ(ϕ

′))

= (z−1)IJ
(

N ′J − (zw)JKO
K
R (ϕ(ϕ′))

)

= (z−1)IJ
(

N ′J − O
′J
R (ϕ′)

)

= (z−1)IJ Ñ
′J ,where wI

J = δIJ + O(b) are constants and the formula
O
′I
R (ϕ′) = (zw)IJO

J
R(ϕ(ϕ

′)) (7.17)tells us how the basis of composite �elds is transformed by the change of variables. Formula (7.17)can also be used to work out how the renormalization constants of composite �elds are a�ected.Finally,
SN (ϕ,N) = S′(ϕ′) +

1

2

∫

Ñ ′IA′

IJÑ
′J +

∫

ρ′vIN
v(Ñ ′)O′I

R (ϕ′) = S′

N (ϕ′, N ′),where S′(ϕ′) = S̄(ϕ′) = S(ϕ(ϕ′)) is the transformed action and A′

IJ = AIJ + O(b) and ρ′vI =

ρvI + O(b) are new constants.Observe that the procedure just described allows us to work out the renormalization of thetheory in the new variables without having to calculate it anew. It is su�cient to know therenormalization (of the action and composite �elds) in some variable frame to derive it in anyother variable frame using the change of variables.We have learned that an operation as simple as (7.10) corresponds to a complex list of op-erations on the action. Nevertheless, those operations are not completely new to us, since theyresemble the operations we had to do in ref. [2] when we studied the changes of �eld variablesworking with the Z- and W -functionals. These observations show once again that the masterfunctional is the correct one-particle-irreducible partner of the Z- and W -functionals, while Γbehaves in its own peculiar way.8 Renormalization of the master functionalIn this section we study the renormalization of the master functional. We �rst derive it fromthe renormalization of W . However, this method does not make us appreciate the virtues ofthe master functional. Moreover, the theorem of locality of counterterms can be applied in amuch simpler way on generating functionals of one-particle irreducible diagrams rather than on30
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W . Therefore, we also derive the renormalization of Ω working directly on Ω, using the properapproach, without referring to the de�nition of Ω from W .The renormalization of W in the linear redundant approach is encoded in formula (7.14) ofref. [2] and amounts to the source transformation

LIB = (LJ − c̃JJ)(Z̃
−1)JI , JB = J, (8.1)plus parameter-rede�nitions that we do not need to report here. Deriving the renormalization of

Ω from the one of W is straightforward. The transformation (8.1) is a particular case of (5.1), sowe know that it corresponds to a linear Φ-N rede�nition of the form (5.5) in Ω and an identicalrede�nition of the form (7.10) in the proper action SN (ϕ,N).This could be the end of the story, but we want to rederive these results working directlyon Ω, to emphasize that the formulation of quantum �eld theory using the master functionalis completely autonomous. The proper approach is very useful for our present purpose. If weforget about the derivation just given, imported from the W -functional, it is not obvious that therenormalization of Ω is just a linear rede�nition of the form (7.10) of the proper variables, plus arede�nition of parameters. It is instructing to see how these properties emerge from Ω.As usual, we proceed inductively. We assume that renormalization works by means of proper�eld rede�nitions
ϕ → ϕ+ bIN

I , N I → zIJN
J ,and parameter rede�nitions up to n-loops and prove that then it works the same way at n + 1loops. Call Ωn the Ω-functional renormalized up to n loops. Denote its proper �elds with ϕn and

Nn, the parameters with λn and ρn, the composite �elds with O
I
n(ϕn) and the n-loop renormalizedproper action with SNn. Using (7.9), we can write

SNn(ϕn, Nn, λn, ρn) = Sn(ϕn, λn, ρn) +
1

2

∫

Ñ I
nAIJÑ

J
n +

∫

ρ̂vInN
v(Ñn)O

I
Rn(ϕn), (8.2)where Ñ I

n = N I
n − O

I
Rn(ϕn). As usual, we do not need to renormalize the constants AIJ , ascounterterms for the improvement term are provided by ∫

ρ̂v0N
v(Ñn).Recalling that the master functional is just the Γ-functional of the proper variables, we canapply the theorem of locality of counterterms, which tells us that the (n+1)-loop divergent part

Ω
(n+1)
ndiv of Ωn is a local functional. Organize Ω

(n+1)
ndiv as an expansion in powers of Ñ I

n:
Ω
(n+1)
ndiv (ϕn, Nn, λn, ρn) = ωn(ϕn) +

∫

δSn(ϕn)

δϕn
qInO

I
Rn(ϕn) +

∫

Ñ I
nζIJnO

J
Rn(ϕn)

+

∫

σvInN
v(Ñn)O

I
Rn(ϕn),where qIn, ζIJn and σvIn are constants of order (n+1)-loop. We have separated the contributionsat Ñ I

n = 0 into two sets: the terms proportional to the �eld equations, whose coe�cients are31
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also expanded in the basis OI

Rn of composite �elds, and the terms ωn(ϕ) that must be reabsorbedrede�ning the parameters λn inside Sc(ϕ). Now, the action SNn+1 that renormalizes the theoryup to n+ 1 loops must be equal to SNn − Ω
(n+1)
ndiv up to higher orders (which means (n+ 2)-loopor higher), and its �elds and parameters must then carry the subscript n+ 1. We write

SNn+1(ϕn+1, Nn+1, λn+1, ρn+1) = SNn(ϕn+1, Nn+1, λn+1, ρn+1)−Ω
(n+1)
ndiv (ϕn+1, Nn+1, λn+1, ρn+1),(8.3)up to higher orders, which for the moment remain unspedi�ed. It is clear that the master func-tional Ωn+1 de�ned by the action (8.3) is convergent up to n+1 loops, since Ωn+1 = Ωn−Ω

(n+1)
ndivup to that order. We want to show that once �eld and parameters are converted to ϕn, Nn, λnand ρn, by means of the proper �eld rede�nitions

ϕn+1 = ϕn + qInN
I
n, N I

n+1 = zInJN
J
n , (8.4)and certain parameter rede�nitions,

λn+1 = λn +∆nλn, ρn+1 = ρn +∆nρn, (8.5)where the unknown constants zInJ − δIJ , ∆nλn and ∆nρn are (n + 1)-loop, then the right-handside of formula (8.3) coincides with SNn(ϕn, Nn, λn, ρn) up to higher orders. Note that we canalso write
ϕn+1 = ϕn + qnIO

I
Rn(ϕn) + qnIÑ

I
n. (8.6)The rede�nitions of �elds and parameters may be implemented writing

SNn(ϕn +∆nϕn, Nn +∆nNn, λn +∆nλn, ρn +∆nρn) = SNn(ϕn, Nn, λn, ρn)

+

(
∫

∆nϕn
δ

δϕn
+

∫

∆nNn
δ

δNn
+∆nλn

∂

∂λn
+∆nρn

∂

∂ρn

)

ScN (ϕn, Nn, λn, ρn) (8.7)plus higher orders. In the corrections that appear on the right-hand side we have replaced SNnwith the classical proper action ScN (7.8). This is allowed since the di�erence is again made ofhigher order terms.As said, there must exist rede�nitions λn+1 of the parameters λn inside Sc(ϕ) that reabsorb
ωn(ϕn). Then, using (8.7) and neglecting higher-orders, we can write the right-hand side of (8.3)in the form

SNn(ϕn, Nn, λn, ζn) +

(
∫

∆nϕn
δ

δϕn
+

∫

∆nNn
δ

δNn
+∆nρn

∂

∂ρn

)

ScN (ϕn, Nn, λn, ρn)

−Ω̃
(n+1)
ndiv (ϕn, Nn, λn, ρn). (8.8)where

Ω̃
(n+1)
ndiv (ϕn, Nn, λn, ρn) =

∫

δSc(ϕn)

δϕn
qInO

I
R(ϕn) +

∫

Ñ I
n ζ̃IJnO

J
R(ϕn) +

∫

σ̃vInN
v(Ñn)O

I
R(ϕn).32
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The constants in front of the last two divergent terms have been modi�ed, since the λn-rede�nitionsapplied to (7.8) may also a�ect those terms if the composite �elds depend on λ. Thus, (8.8)becomes

SNn(ϕn, Nn, λn, ζn)−

∫

Ñ I
n∆̄nIJO

J
R(ϕn) +

∫

(∆nρvIn − σ̄vIn)N
v(Ñn)O

I
R(ϕn), (8.9)plus higher orders, where

∆̄nIJ = AIK (1− zn)
K
J + ρvKnC

vKM
LIJ (1− zn)

L
M + dIJand CvKM

LIJ , dIJ and σ̄vIn are (n + 1)-loop ∆nρvIn-independent constants, CvKM
LIJ and dIJ beingalso zn-independent. Finally, we can choose zn so that ∆̄nIJ = 0 and set ∆nρvIn = σ̄vIn. Then(8.3) coincides with SNn(ϕn, Nn, λn, ζn) up to higher orders, which is the desired result.Now we can upgrade formula (8.3), where higher-order contributions remained unspeci�ed,and de�ne SNn+1 by the exact identity

SNn+1(ϕn+1, Nn+1, λn+1, ζn+1) = SNn(ϕn, Nn, λn, ζn). (8.10)This formula encodes the correct order-by-order renormalization, made of proper �eld rede�nitions(7.10) and parameter rede�nitions.We conclude that renormalization can be worked out directly on the master functional fol-lowing rules entirely similar to the ones we are accustomed to. The advantage is that now wehave a general �eld-covariant approach. Moreover, all �eld rede�nitions, including those that arepart of the BR map, are linear and there is no practical di�erence between replacements and truechanges of �eld variables.9 GeneralizationsThe master functional, as de�ned so far, is well suited for the linear approach. There all changesof �eld variables, including the BR map, are simple linear rede�nitions of Φ and N . We havepointed out that the Legendre transform is indeed invariant only under linear transformations.Nevertheless, in ref. [2] we have also been able to work with the essential approach in the W -functional, and in section 2 we have been able to do that in the Γ-functional. Thus, it must bepossible to generalize the de�nition of master functional to make it work with the most generalapproach and the most general rede�nitions of Φ and N . In this section we elaborate a little biton this issue.Let us go back to formula (3.10). We have pointed out that its lack of covariance is due tothe fact that xµ does not transform as a vector under general coordinate transformations. Let usde�ne a more general transform, where xµ is replaced by a vector vµ(x). We have
g(y) = −f(x) + vµ(x)

df

dxµ
, yµ(x) =

df

dxµ
.33
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Now g(y) does transform correctly as a scalar, if f does.Let VI(J,L) denote perturbatively local functions of the sources. In general, we assume that
VI is equal to LI plus a perturbative series in some expansion parameters. We call such parameters
κ. Moreover, we assume that VI is a vector in source space, which means that it transforms as

V ′

I =

∫

VJ
δL′

I

δLJ
+

∫

J
δL′

I

δJ
, (9.1)under a perturbatively local change of variables (2.13).De�ne Φ and N as in (4.2), but replace the de�nition (4.1) of the master functional with

Ω(Φ, N) = −W (J,L) +

∫

JΦ+

∫

VIN
I . (9.2)On Φ and N the change of variables reads

Φ′ = Φ+

∫

N I δLI

δJ ′
, N I ′ =

∫

δLJ

δL′

I

NJ ,where however L′ and J ′ must still be replaced by the appropriate functions of Φ and N . Since therelations J(Φ, N) and L(Φ, N) are in general non-local, the change of variables is non-local in thespace Φ, N . Of course, it must be the sum of local tree-level functions plus radiative corrections.We have
Ω′(Φ′, N ′) = Ω(Φ, N),as desired. We can also write

Ω(Φ, N) = Γ(Φ, L) +

∫

VIN
I .Since Γ(Φ, L) collects one-particle irreducible diagrams, and VI = LI plus local perturbativecorrections, Ω(Φ, N) also collects one-particle irreducible diagrams. Nevertheless, in general Ωdoes not have the typical structure (2.11), in the sense that its radiative corrections do not followfrom its classical limit with the usual rules, and the classical limit of Ω is not necessarily theclassical action.For example, we can take VI = LI in the essential frame, which is the variable frame wherethe action does not contain terms proportional to the �eld equations, apart from those containingthe free kinetic terms [2]. Then Ω is the Legendre transform of W with respect to J and L inthe essential frame, and has the structure (2.11). In every other frame we de�ne VI as given by(9.1). With this convention the vectors VI are inherited by a change of variables from the essentialframe.The inverse formulas read

J =
δΩ

δΦ
−

δ

δΦ

∫

(VI − LI)N
I , LI =

δΩ

δN I
−

δ

δN I

∫

(VJ − LJ)N
J . (9.3)34
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If Ω were a Legendre transform its inverse would be a Legendre transform. Instead, the procedureto obtain W from Ω is more complicated, and we cannot implement it unless we know the vector
VI(J,L). Assuming that we have this knowledge, and recalling that VI − LI = O(κ), we cansolve formulas (9.3) recursively in powers of κ. This procedure gives us the functions J(Φ, N) and
LI(Φ, N). Once we have them we are ready to invert (9.2) and �nd

W (J,L) = −Ω(Φ, N) +

∫

JΦ+

∫

VIN
I .A similar procedure can be used to extract the expectation values of elementary and composite�elds from the master functional. These are the constant solutions of the conditions J(Φ, N) =

LI(Φ, N) = 0. Formulas (9.3) give
δΩ

δΦ
=

δ

δΦ

∫

(VI − LI)N
I ,

δΩ

δN I
=

δ

δN I

∫

(VJ − LJ)N
J .Since the right-hand sides are O(κ), these equations can be solved recursively in powers of κ. Thezeroth-order expectation values are the constant solutions of δΩ/δΦ = δΩ/δN I = 0.10 ConclusionsIn this paper we have de�ned and studied a new generating functional of one-particle irreduciblediagrams, called master functional, which is invariant with respect to the most general perturba-tive changes of �eld variables.A perturbative change of �eld variables starts with a rede�nition of the �elds ϕ in the action

S. Inside the functionals Z(J,L) and W (J,L) it becomes a local perturbative rede�nition of thesources J and L coupled to elementary and composite �elds, under which Z and W behave asscalars. In a particularly convenient approach, the linear one, such a source rede�nition is linear.The functional Γ(Φ, L), on the other hand, does not behave as a scalar under the transformationlaw inherited from its very de�nition. Nevertheless, there exists an unusual �eld transformationunder which Γ does behave as a scalar. Instead, the master functional Ω(Φ, N) behaves as ascalar under the transformation law derived from its very de�nition, which is linear in Φ and N .We have worked out the relations among these three ways to describe changes of �eld variablesin quantum �eld theory and studied the BR map as a particular case.One obstruction to construct the master functional was that the Legendre transform of Wwith respect to the sources L does not exist, in general. We have solved this problem addinga certain �improvement term� to the functional W , which equips the sources L with suitablequadratic terms. Then the master functional Ω(Φ, N) is de�ned as the Legendre transform of theimproved W (J,L) with respect to both J and L. We must organize the perturbative expansionso that the �L-propagators� are equal to unity. Then the master functional collects one-particle35
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irreducible diagrams. The lack of covariance of the Legendre transform is naturally overcome inthe linear approach, where all �eld rede�nitions, including those of the BR map, can be expressedlinearly.The master functional admits a very economic �proper formulation�, where the set of integrated�elds is extended from ϕ to the proper variables ϕ-N I , the N Is being partners of the sources LIfor composite �elds. In this formulation the master functional is the ordinary Γ-functional forthe proper variables. The proper classical action coincides with the classical limit of the masterfunctional and radiative corrections are the one-particle irreducible Feynman diagrams of theproper formulation. Thus, they can be calculated working directly on the master functional,without passing through Z, W or Γ. Finally, the conventional form of the functional integral ismanifestly preserved during a general change of �eld variables, so replacements and true changesof �eld variables are practically the same thing.An interesting subject for a future investigation is the generalization to non-perturbativechanges of �eld variables, which we have not considered here.Appendix Field rede�nitions and �eld equationsWe know that if we perturb the action adding a local term proportional to the �eld equations,we can reabsorb such a term inside the action by means a local �eld rede�nition to the �rst orderof the Taylor expansion. It is interesting to know that if we perturb the action adding a localterm quadratically proportional to the �eld equations, we can perturbatively reabsorb it insidethe action to all orders by means of a local �eld rede�nition. In this appendix we brie�y rederivethis result and its generalization to non-local functionals and non-local �eld rede�nitions. Thetheorem was proved in ref. [3], where a number of applications and explicit examples can befound.Theorem 1 Consider an action S depending on �elds φi, where the index i labels both the �eldtype, the component and the spacetime point. Add a term quadratically proportional to the �eldequations Si ≡ δS/δφi and de�ne the modi�ed action

S′(φi) = S(φi) + SiFijSj, (A.1)where Fij is symmetric and can contain derivatives acting to its left and to its right. Summationover repeated indices (including the integration over spacetime points) is understood. Then thereexists a �eld rede�nition
φ′

i = φi +∆ijSj, (A.2)with ∆ij symmetric, such that, perturbatively in F and to all orders in powers of F ,
S′(φi) = S(φ′

i). (A.3)36
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Proof. The condition (A.3) can be written as

S(φi) + SiFijSj = S(φi +∆ijSj) = S(φi) +
∞
∑

n=1

1

n!
Sk1···kn

n
∏

l=1

(∆klml
Sml

),after a Taylor expansion, where Sk1···kn ≡ δnS/(δφk1 · · · δφkn). This equality is veri�ed if
∆ij = Fij −∆ik1

[

∞
∑

n=2

1

n!
Sk1k2k3···kn

n
∏

l=3

(∆klml
Sml

)

]

∆k2j , (A.4)where the product is meant to be equal to unity when n = 2. Equation (A.4) can be solvedrecursively for ∆ in powers of F . The �rst terms of the solution are
∆ij = Fij −

1

2
Fik1Sk1k2Fk2j + · · · (A.5)This result is very general. It works both for local and non-local theories. If S(φi) and Fijare perturbatively local, namely they can be perturbatively expanded so that every order of theexpansion is local, the �eld rede�nition (A.2) and the action S′(φi) are perturbatively local. Ifboth S(φi) and Fij are local, in general (A.2) and S′(φi) are only perturbatively local. Actually,the resummation of the expansion can produce a non-local �eld rede�nition. Finally, if S(φi) and

Fij are local or perturbatively local at the classical level, then (A.2) and S′(φi) are perturbativelylocal at the classical level.References[1] In the case of gravity, see for example G. 't Hooft and M. Veltman, One-loop divergences inthe theory of gravitation, Ann. Inst. Poincarè, 20 (1974) 69;M.H. Goro� and A. Sagnotti, The ultraviolet behavior of Einstein gravity, Nucl. Phys. B 266(1986) 709;A.E.M. van de Ven, Two loop quantum gravity, Nucl. Phys. B 378 (1992) 309.[2] D. Anselmi, A general �eld-covariant formulation of quantum �eld theory, Eur.Phys.J. C73(2013) 2338 and arXiv:1205.3279 [hep-th].[3] D. Anselmi, Renormalization and causality violations in classical gravity coupled with quan-tum matter, JHEP 0701 (2007) 062 and arXiv:hep-th/0605205.[4] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in An Einstein cen-tenary survey, Edited by S. Hawking and W. Israel, Cambridge University Press, Cambridge1979. 37
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