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AbstractWe study the one-loop renormalization of high-energy Lorentz violating four fermion models. Wederive general formulas and then consider a number of speci�c models. We study the conditions forasymptotic freedom and give a practical method to determine the asymptotic-freedom domain. We alsopoint out that in some models the RG �ow contains �rational� Zimmermann trajectories that might hidenew symmetries.
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1 IntroductionAlthough Lorentz symmetry is one of the most precise symmetries in nature [1], the possibilitythat it might be violated at high energies or very large distances is still open and has beenextensively investigated. A Lorentz symmetry violation at high energies allows us, among theother things, to renormalize vertices that are otherwise non-renormalizable. This result is achievedusing a modi�ed power counting criterion, which weights space and time di�erently [2]. Modi�eddispersion relations improve the large-momentum behavior of propagators in such a way that, inthe common perturbative framework, the theory remains unitary, local, polynomial and causal.Using this knowledge, it is possible to formulate a Standard Model extension [3, 4] that is CPTinvariant, but violates Lorentz symmetry at high energies, and contains two scalar-two fermionvertices, as well as four fermion vertices, at the fundamental level. The inclusion of CPT violatingterms is also possible. Four fermion vertices are important for a variety of reasons. On the onehand, they can be used to explain proton decay. On the other hand, they can trigger a Nambu�Jona-Lasinio mechanism and give masses to fermions and gauge �elds even if the elementary Higgsboson is suppressed [4]. In its simplest version, the scalarless Lorentz violating Standard Modelschematically reads

LnoH = LQ + Lkinf − 5
∑

I=1

1

Λ2
L

gD̄F̄ (χ̄I γ̄χI) +
Yf
Λ2
L

χ̄χχ̄χ− g

Λ2
L

F̄ 3, (1.1)where the quadratic terms are
LQ=

1

4

∑

G

(

2FGµ̂ν̄F
G
µ̂ν̄ − FGµ̄ν̄τ

G(Ῡ)FGµ̄ν̄
)

,

Lkinf = 3
∑

a,b=1

5
∑

I=1

χ̄aI i

(

δabD̂/− bIab0

Λ2
L

D̄/ 3 + bIab1 D̄/

)

χbI (1.2)and the vertices are denoted symbolically, namely without listing all possible �eld di�erentiationsand index contractions. In our notation hats are used to denote time, bars to denote space. Theweight of time is equal to −1, while the weight of each space coordinate is −1/3. The gaugecouplings g have weight 1/3. The weighted dimension of space-time is 2, so the Lagrangiancontains only terms of weights 6 2. Moreover, χa1 = La = (νaL, `
a
L), χa2 = QaL = (uaL, d

a
L), χa3 = `aR,

χa4 = uaR and χa5 = daR, νa = (νe, νµ, ντ ), `a = (e, µ, τ), ua = (u, c, t) and da = (d, s, b). The sum
∑

G is over the gauge groups SU(3)c, SU(2)L and U(1)Y . Finally, Ῡ ≡ −D̄2/Λ2
L, where ΛL isthe scale of Lorentz violation, and τG are polynomials of degree 2.The models of [3, 4] are anomaly-free, because gauge anomalies cancel out exactly as in theStandard Model [3]. The �boundary conditions� such that Lorentz invariance is recovered at lowenergies are that bIab1 tend to δab and τG tend to 1 (one such condition can be trivially ful�llednormalizing the space coordinates x̄). 2
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An important consequence of the high-energy Lorentz violation is that all gauge interactionsare super-renormalizable, therefore asymptotically free. Moreover, since fermions have weight1/2, the four fermion interactions are strictly renormalizable. At energies much larger than ΛLvectors decouple and the model (1.1) reduces to a four fermion model in two weighted dimensions,

LHE =
3
∑

a,b=1

5
∑

I=1

χ̄aI i

(

δab∂̂/− bIab0

Λ2
L

∂̄/ 3

)

χbI +
Yf
Λ2
L

χ̄χχ̄χ, (1.3)plus free �elds. The purpose of this paper is to study this type of model, its one-loop betafunctions and the conditions for asymptotic freedom. We stress that if the high-energy model(1.3) is asymptotically free, then the full Standard Model extension (1.1) is, as well as its otherversions of ref.s [3, 4].We work out a method to determine the domain of asymptotic freedom in quantum �eldtheories with more couplings and apply it to some of our models. Our approach is to studythe asymptotic expansion of the running couplings around the free �xed point. The domain ofasymptotic freedom DAF is determined by the arbitrary constants contained in the expansion.The dimension of DAF is equal the number of positive eigenvalues (including multiplicities) of acertain matrix N , which depends only on the one-loop coe�cients of the beta functions.Finally, we point out the presence of special RG trajectories that might hide new symmetries.Indeed, if we apply Zimmermann's �reduction of couplings� [5] to our beta functions we �nd thatsome solutions of the RG equations exhibit features that normally appear only in the presence ofhidden symmetries.The paper is organized as follows. In section 2 we classify the four fermion vertices andpresent the most general CPT- and rotation invariant four fermion model. In section 3 we workout general formulas for its one-loop beta functions. In section 4 we study some explicit examples.In section 5 we formulate our method to determine the domain of asymptotic freedom. In section6 we recall Zimmermann's reduction of couplings, and explain why some of our models mightpossess hidden symmetries. Section 7 contains our conclusions.2 Four fermion modelUsing charge conjugation we can use only left-handed fermions, which we collect into a vector
`j . We orthonormalize the kinetic terms ¯̀

jiγ
µ∂̂µ`k and simultaneously diagonalize the quadraticterms ¯̀

jiγ
µ∂̄µ∂̄

2`k by means of a unitary transformation.The most general CPT invariant, rotation invariant four fermion vertices are of the form
L∗L∗LL and LLLL, plus its conjugate L∗L∗L∗L∗. We do not have to include vertices L∗LLL.Indeed, in the four-component notation they can be constructed only with an odd number of3
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space-time indices, so they violate CPT. Precisely, a term L∗LLL plus its Hermitian conjugatereads

a(L̄1UL2)(L
c
3V L4) + a∗(L̄2γ

0Uγ0L1)(L̄4γ
0V γ0Lc3), (2.1)where U can be γ0 or γi, V can be 1, σ0i or σij , and a is a constant. However, the combination(2.1) is CPT odd.On the other hand, all combinations of terms LLLL, L∗L∗L∗L∗ and L∗L∗LL are CPT even.Explicitly, we have the structures

(L̄1V L
c
2)(L

c
3V L4), (L̄1UL2)(L̄3UL4),for L∗L∗LL, and
(Lc1V L2)(Lc3V L4),for LLLL, plus their Hermitian conjugates.Using Fierz identities, we can show that every LLLL vertex is Lorentz invariant and of theform
(Lc1L2)(Lc3L4). (2.2)Similarly, all four fermion vertices of type L∗L∗LL have the form
(L†

1L2)(L
†
3L4). (2.3)In general, this structure is Lorentz violating, but the combination

(L†
1L2)(L

†
3L4) + (L†

1L4)(L
†
3L2) = (L1L

c
3)(L

c
2L4) =

1

2
(L̄1γµL2)(L̄3γ

µL4), (2.4)is Lorentz invariant, which can be easily proved using the Fierz identity σiαβσiγδ = 2δαδδγβ −
δαβδγδ .At this point it is convenient to switch to the two-component spinor notation. Because of(2.2) and (2.3), the most general four fermion vertices are constructed with the contractions

`†i`j ≡ `†αi `
α
j , `Tk ε`m ≡ `αkεαβ`

β
m, `†kε`

∗
m ≡ `∗αk εαβ`

∗β
m , (2.5)

α, β, . . . being spinor indices and T denoting transposition. The most general CPT- and rotationinvariant interaction Lagrangian reads
L4f =

1

2Λ2
L

∑

ijkm

[

(`†i `j)(`
†
k`m)gijkm + (`Ti ε`j)(`

T
k ε`m)fijkm + (`†iε`

∗
j )(`

†
kε`

∗
m)f

∗
ijkm

]

, (2.6)where the couplings f and g satisfy the symmetry properties
gijkm = gkmij = g∗jimk, fijkm = fkmij = fjikm.4
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Because of (2.4), the most general Lorentz invariant interaction Lagrangian is (2.6) if thecouplings gijkm satisfy the additional symmetry property

gijkm = gimkj .Finally, the most general high-energy Lorentz violating four fermion model that we are goingto study reads
L =

∑

j

`†ji

(

∂̂ + bjσ · ∂̄ ∂̄
2

Λ2
L

)

`j + L4f , (2.7)where σ are the Pauli matrices. This model is renormalizable. The quadratic terms χ̄aI ibIab1 ∂̄/χbI of(1.2) have been switched o�, because they are not important at high energies. Nevertheless, thecorrelation functions at generic external momenta have no infrared divergences in two weighteddimensions. Therefore, we can study the model (2.7) in itself.Assigning the axial charges +1 to `j and −1 to `†i , the g-terms are axially symmetric, whilethe f -terms explicitly violate the axial symmetry. Suppressing the f -terms we obtain a restrictedmodel
Lr =

∑

j

`†ji

(

∂̂ + bjσ · ∂̄ ∂̄
2

Λ2
L

)

`j +
1

2Λ2
L

∑

ijkm

(`†i `j)(`
†
k`m)gijkm, (2.8)that is still renormalizable. This restriction is interesting for merely theoretical purposes. How-ever, for phenomenological applications we include the full set (2.4) of interactions. Integratingthe Higgs �eld out in the Standard Model produces f -terms, which generate g-terms by renormal-ization. Moreover, our Lorentz-violating theories can include four fermion vertices that describeproton decay, and such terms are of both f - and g-types [6].It should be emphasized that a high-energy Lorentz violation does not imply that the protonmust decay. In this respect, we have two classes of renormalizable models. The models of the�rst class are described by B-invariant Lagrangians. Then, B-violating vertices are not generatedback as counterterms by renormalization1, so this choice is consistent. The models of the secondclass contain B-violating four fermion vertices at the classical level. Consistency with existingexperimental bounds on proton decay imply that the energy scale of Lorentz violation ΛL mustthen be greater than or equal to 1014-15GeV (see for example [6]). At present, there is no reasonto expect that ΛL is much smaller than this value. However, if neutrino masses have the Lorentz-violating origin suggested by one of us in [3], namely they are explained by the renormalizabledimension-5 vertex

1

ΛL
(LH)2,1The B-violations due to the B + L anomaly are non-perturbative, and do not a�ect the renormalizationstructure of the theory. 5
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where H is the Higgs �eld, then ΛL could be around 1014GeV, which is still compatible with thebound coming from proton decay2.3 One-loop renormalizationIn this section we study the one-loop renormalization in the most general model (2.7). It isconvenient to use the background �eld method. Replace ` with ` + ψ, where ψ denotes thebackground �eld. Then expand L in ψ and keep only the quadratic part in `. The result can bewritten as

Lψ =
1

2

∑

np

(

`†n, `
T
n

)

(Qnδnp +Hnp)

(

`p

`∗p

)

,where Qn collects the kinetic terms and Hnp is a matrix quadratic in ψ. In momentum space,
Qn = p0 + bn

p2

Λ2
L

(

p · σ 0

0 p · σ∗

)

.Thus, the one-loop contribution to the e�ective action reads
Γ1 = − i

2
tr ln[Qnδnp +Hnp] =

i

4
tr[Q−1HQ−1H] + constant + �nite. (3.1)Observe that the tadpole −itr[Q−1H]/2 vanishes, since the propagator Q−1 is odd in p. For thisreason there is no wave-function renormalization at one loop.We use a dimensional regularization where only the dimensions of space are continued tocomplex values 3− ε2. There is no reason to continue also the time dimension, since the integralsover p̂ = p0 converge. The divergent parts of just two integrals are necessary to evaluate expression(3.1), namely

∫

dp4 d3−ε2 p̄

(2π)4
p24

DnDp
=

Λ2
L

4π2ε2(|bn|+ |bp|)
+ �nite,and

∫

dp4 d3−ε2 p̄

(2π)4
1

Λ4
L

(p̄2)3

DnDp
=

Λ2
L

4π2ε2|bnbp|(|bn|+ |bp|)
+ �nite,where

Di = p24 + b2i
(p̄2)3

Λ4
L

+ δ2(in Euclidean space). The �ctitious mass δ is introduced to avoid IR problems at vanishingexternal momenta and can be set to zero after the evaluation. The calculations are performed2A di�erence of one or two orders of magnitude can always be due to the dimensionless couplings that multiplythe vertices. 6
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using Feynman parameters to integrate over p4. This isolates the pole of the p̄-integral, thereforethe divergent part.Using these formulas we easily �nd

Γ1 = Λ2
L

(4π)2ε2

∑

np

tnp

{

tr[HnpHpn]−
snp
3

tr

[(

σi 0

0 σi∗

)

Hnp

(

σi 0

0 σi∗

)

Hpn

]}

.We can convert this formula from the dimensional regularization to a conventional cut-o� Λ̄ onthe p̄-integral replacing 1/ε2 with lnΛ̄+constant. Now, since Λ̄ has weight 1/3 and, by de�nition,the high-energy dynamical scale µ has weight 1, matching weights and dimensions we �nd theidenti�cation
1

ε2
=

1

3
ln

Λ̄3

µΛ2
L

.The relation between the one-loop bare and renormalized Lagrangians is
LB = LR − Γ1.The beta functions are found equating the µ-derivative of LB to zero and performing a numberof straightforward manipulations. We �nd

βijkmg =− 1

36π2

∑

np

tnp [6(1− snp)gijnp(gpnkm − gpmkn)− 2snpginpjgkpnm

+2snp(ginkpgpjnm + 16fjpmnf
∗
inkp)− (3 + snp)(ginpmgkpnj − ginkpgpmnj − 16fmpjnf

∗
inkp)

+48 (1 + snp)(fjmnpf
∗
iknp − fmpjnf

∗
iknp − fjmnpf

∗
kpin)

]

(i,j)↔(k,m)
, (3.2)

βijkmf =− 1

18π2

∑

np

tnp [2(3 + snp)gnipkfmpjn + 3(1 + snp)gnipjfkmnp + 4snpgnipkfjpmn]
i↔j, k↔m
(i,j)↔(k,m) ,and βbi = 0, where snp = bnbp/|bnbp| and tnp = 1/(|bn|+ |bp|). The expressions on the right-handsides of (3.2) have to be symmetrized as follows:

[Xijkm](i,j)↔(k,m) ≡
1

2
(Xijkm +Xkmij) ,

[Xijkm]
i↔j, k↔m≡ 1

4
(Xijkm +Xjikm +Xijmk +Xjimk) .4 Explicit examplesIn this section we consider some particular cases in detail. A separate section is devoted to theconditions for asymptotic freedom.

7
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U(NL) model A simple model is the U(NL)-symmetric model of left-handed fermions L,

LL = L†ii

(

∂̂ + bσ · ∂̄ ∂̄
2

Λ2
L

)

Li +
g1
2Λ2

L

(L†iLi)2 +
g2
2Λ2

L

(L†iLj)(L†jLi).Here we can set b = 1 rescaling the space coordinates, the �elds and the couplings. We have amodel (2.7) with
gijkm = g1δijδkm + g2δimδkj, fijkm = 0,so the one-loop beta functions read
β1 =

g22
36π2

(NL − 2), β2 =
g22

36π2
(2NL − 1). (4.1)The solutions of the RG equations read

g1(t) = g1(0) +
NL − 2

2NL − 1
(g2(t)− g2(0)) , g2(t) =

g2(0)

1− (2NL − 1)g2(0)t/(36π2)
,where t = − ln(|x|µ) and x is some scale.In the ultraviolet limit (t → ∞) we have

g1(t) ∼ g1(0) −
NL − 2

2NL − 1
g2(0)−

36π2(NL − 2)

(2NL − 1)2t
, g2(t) ∼ − 36π2

(2NL − 1)t
.In particular,

g1(∞) ∼ g1(0)−
NL − 2

2NL − 1
g2(0).If g1(∞) 6= 0 the UV �xed point is interacting, if g1(∞) = 0 it is free. However, an interacting�xed point is not guaranteed to survive beyond the one-loop approximation. Thus, we mustrestrict to the subspace with g1(∞) = 0.It is easy to prove that the model with g2 ≡ 0 is renormalizable, for example introducing anauxiliary �eld χ of weight 1 and writing the Lagrangian in the form

L′
L = L†ii

(

∂̂ + bσ · ∂̄ ∂̄
2

Λ2
L

)

Li + χ(L†iLi)− Λ2
L

2g1
χ2. (4.2)Such a model has vanishing one-loop beta function. However, it is unlikely to be �nite, since nosymmetry appears to forbid higher-order corrections.We have just pointed out a general feature of our four fermion models: there exist combinationsof couplings that have zero one-loop beta functions. Nevertheless, we are unable to use thisobservation to prove the existence of interacting �xed points. That would require more knowledgeabout higher-order corrections. Using only one-loop results the best we can do is to project onto asuitable subspace of the space of couplings, using a method inspired by Zimmermann's �reduction8
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of couplings� [5], and study the conditions for asymptotic freedom in that subspace. We �rstprove that there exists an analytic solution of the RG equations of the form

g1 = c1g2 +

∞
∑

i=2

cig
i
2 (4.3)to all orders in the perturbative expansion. Consistence with the RG equations gives

dg1
dg2

=
β1
β2
,which in turn uniquely determines all coe�cients ci's. We �nd

c1 =
NL − 2

2NL − 1
,plus recurrence relations of the form

ci = Pi(cj<i),where Pi(cj<i) are well-de�ned polynomials depending only on the coe�cients cj 's with j < i.The Zimmermann solution (4.3) restricts the two-parameter space to a curve. There our theoryhas a unique coupling, g2, and its one-loop beta function is still given by the second formula of(4.1). The condition of asymptotic freedom is thus
g2 < 0.�Electroweak� model Now we consider a four fermion model containing one family of theelectroweak model. We have the left-handed doublet La = (νL, eL) and the right-handed electron

eR. The high-energy four fermion Lagrangian reads
LEW =L†ai

(

∂̂ + bLσ · ∂̄ ∂̄
2

Λ2
L

)

La + e†Ri

(

∂̂ − bRσ · ∂̄ ∂̄
2

Λ2
L

)

eR +
λ

Λ2
L

(L†aeR)(e
†
RL

a)

+
g1L
2Λ2

L

(L†aLa)2 +
g2L
2Λ2

L

(L†aLb)(L†bLa) +
gR
2Λ2

L

(e†ReR)
2 +

gLR
Λ2
L

(L†aLa)(e†ReR).Because of hypercharge conservation f -terms are not allowed, so this model is of restricted type(2.8). De�ne `i = (νL, eL, e
c
R), where c denotes the charge conjugate. Then we have

gijkm= g1Lδ̂ij δ̂km + g2Lδ̂imδ̂jk + gRδi3δj3δk3δm3

+(λ− gLR)(δ̂ijδk3δm3 + δi3δj3δ̂km) + λ(δ̂imδk3δj3 + δi3δm3δ̂jk),where δ̂ij = δij − δi3δj3. Applying (3.2) we obtain the beta functions
β1L=

λ2

36π2|bR|
, β2L =

1

36π2

(

3
g22L
|bL|

+ 2
λ2

|bR|

)

, βR =
λ2

6π2|bL|
,

βLR=
λ

36π2

(

u+
λ(s− 3)

|bL|+ |bR|

)

, βλ =
λ

18π2

(

u− λ(2s+ 3)

|bL|+ |bR|

)

, (4.4)9
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where s ≡ bLbR/(|bL||bR|) and

u ≡ g1L
|bL|

+ 2
g2L
|bL|

+
gR
|bR|

+
4sgLR

|bL|+ |bR|
.Recall that bL and bR do not run at one loop.We see that the beta functions depend only on three couplings, precisely λ, g2L and thecombination u. The conditions for asymptotic freedom are studied in section 5. There existRG-�ow trajectories with special properties, possibly hidden symmetries. This topic is discussedin section 6.

U(NL) × U(NR) model This is a generalization of the electroweak model, where the left- andright-handed fermions are in the fundamental representations of U(NL) and U(NR), respectively.The Lagrangian is
LNLNR

=L†ai

(

∂̂ + bLσ · ∂̄ ∂̄
2

Λ2
L

)

La + E†I
R i

(

∂̂ − bRσ · ∂̄ ∂̄
2

Λ2
L

)

EIR

+
g1L
2Λ2

L

(L†aLa)2 +
g2L
2Λ2

L

(L†aLb)(L†bLa) +
g1R
2Λ2

L

(E†I
R E

I
R)

2 +
g2R
2Λ2

L

(E†I
R E

J
R)(E

†J
R EIR)

+
g1LR
Λ2
L

(L†aLa)(E†I
R E

I
R) +

g2LR
Λ2
L

(L†aEIR)(E
†I
R L

a),where a, b = 1, . . . NL and I, J = 1, . . . NR. De�ne `i = (La, EcI), with i = (a, I). We have arestricted model (2.8) with couplings
gijkm= g1Lδ̂ij δ̂km + g2Lδ̂imδ̂jk + g1Rδ̄ij δ̄km + g2Rδ̄imδ̄jk

+(g2LR − g1LR)(δ̂ij δ̄km + δ̂kmδ̄ij) + g2LR(δ̂imδ̄jk + δ̂jkδ̄im),where δ̂ and δ̄ are the Kronecker tensors of U(NL) and U(NR), respectively. The beta functionsare
β1L =

1

36π2

(

(NL − 2)
g22L
|bL|

+NR
g22LR
|bR|

)

, β2L =
1

36π2

(

(2NL − 1)
g22L
|bL|

+ 2NR
g22LR
|bR|

)

)

,

β1R =
1

36π2

(

(NR − 2)
g22R
|bR|

+NL
g22LR
|bL|

)

, β2R =
1

36π2

(

(2NR − 1)
g22R
|bR|

+ 2NL
g22LR
|bL|

)

)

,

β1LR =
g2LR
36π2

(

u+
g2LR(s− 3)

|bL|+ |bR|

)

, β2LR =
g2LR
18π2

(

u− g2LR(2s + 3)

|bL|+ |bR|

)

, (4.5)where now
u =

g1L
|bL|

+
g1R
|bR|

+NL
g2L
|bL|

+NR
g2R
|bR|

+
4sg1LR

|bL|+ |bR|
.

10



10A1Renorm
Dirac fermions So far, we have considered only explicit examples of reduced type (2.8). Nowwe consider a model of N Dirac fermions, which involves also f terms and new types of g terms.We impose the �avor symmetry U(N) and parity invariance, which allows us to set bL = bR = 1.As usual, write the Dirac fermions ψi as (`i1, `ci2 ), where `i1 denote the left-handed componentsand `i2 are the charge-conjugates of the right-handed components. The action of parity reads

P`i1 = ε`i∗2 , P `i2 = −ε`i∗1 .Moreover, `i1 and `i2 belong to the fundamental and anti-fundamental U(N) representations, re-spectively.The Lagrangian (2.7) becomes
LN = `†i1 i

(

∂̂ + σ · ∂̄ ∂̄
2

Λ2
L

)

`i1 + `†i2 i

(

∂̂ + σ · ∂̄ ∂̄
2

Λ2
L

)

`i2

+
g1
2Λ2

L

[

(`†i1 `
i
1)

2 + (`†i2 `
i
2)

2
]

+
g2
2Λ2

L

[

(`†i1 `
j
1)(`

†j
1 `

i
1) + (`†i2 `

j
2)(`

†j
2 `

i
2)
] (4.6)

+
g3
Λ2
L

(`†i1 `
i
1)(`

†j
2 `

j
2) +

g4
Λ2
L

(`†i1 `
j
2)(`

†j
2 `

i
1) +

g5
Λ2
L

(`†i1 `
j
1)(`

†i
2 `

j
2) +

g6
Λ2
L

(`†i1 `
j
2)(`

†i
2 `

j
1)

+
f1
Λ2
L

[

(`T i1 ε`
i
2)(`

Tj
1 ε`j2) + (`†i1 ε`

∗i
2 )(`

†j
1 ε`

∗j
2 )
]

+
f2
Λ2
L

[

(`T i1 ε`
j
2)(`

Tj
1 ε`i2) + (`†i1 ε`

∗j
2 )(`†j1 ε`

∗i
2 )
]

,and all couplings are real. A possible third vertex of f -type, namely
(`T i1 ε`

j
1)(`

T i
2 ε`

j
2)is not included, because it is not independent of the other two. Indeed, a Fierz rearrangementgives the identity

(`T i1 ε`
i
2)(`

Tj
1 ε`j2) + (`T i1 ε`

j
2)(`

Tj
1 ε`i2) + (`T i1 ε`

j
1)(`

T i
2 ε`

j
2) = 0.We report only the beta functions in the large N limit, which simplify considerably:

βg1 =
N(g22 + g24)

36π2
, βg2 =

N(g22 + g24)

18π2
, βg3 =

Ng2g4
18π2

, βg4 =
Ng2g4
9π2

,

βg5 =− N

18π2
(

g25 + g5g6 + g26 + 12f21 − 12f1f2 + 4f22
)

,

βg6 =− N

36π2
(

g25 + 4g5g6 + g26 + 24f21 − 24f1f2 + 4f22
)

,

βf1 =
N

18π2
[f2(g5 + 2g6)− 3f1(g5 + g6)] , βf2 =

N

18π2
f2(g6 − g5).Observe that the beta functions do not depend on g1 and g3. Moreover, the couplings separate intwo groups, g1-4 and g5,6-f1,2, which do not talk to each other. These, however, are only featuresof the large N limit. 11
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5 Asymptotic freedomIn this section we study the conditions for asymptotic freedom in the presence of more thanone coupling. The idea is to search for solutions of the RG equations as expansions around theultraviolet free �xed point. The domain of asymptotic freedom DAF is then determined by thefree parameters contained in the solution. A di�erent approach to asymptotic freedom with morecouplings is due to Zimmermann [7]. An investigation that is in part related to this problem canbe found in [8].We �rst illustrate our method in the case of a single coupling α with beta function

βα = α̇ = α

∞
∑

n=1

βnα
n.where the dot denotes the derivative with respect to t = − ln(|x|µ), |x| being some scale. If β1 6= 0the asymptotic expansion around the ultraviolet limit t→ ∞ reads

α(t) =
1

t

∞
∑

n=0

bn(ln t)

tn
, (5.1)where bn are polynomials of degree n in ln t. Inserting this expansion into the RG equation weget b0 = −1/β1 and the recursion relations

(n− 1)bn − b′n = δn< (5.2)for n > 0, where δn< is a linear combination of monomials ∏i b
ki
ni

with ∑i niki 6 n and dependsonly on the coe�cients bm with 0 < m < n. Consider �rst n = 1, and observe that δ1< contains nologarithms, so b1 is a polynomial of degree 1. The coe�cient of ln t in b1 is uniquely determined,while b1(0) ≡ b remains arbitrary. For n > 1 the relations (5.2) can be solved recursively:
bn =

1

n− 1
(δn< + b′n) =

1

n− 1
δn< +

1

(n− 1)2
δ′n< +

1

(n− 1)3
δ′′n< + · · · (5.3)Clearly, the sum ends after a �nite number of terms, since δn< is a polynomial.Thus, the asymptotic solution (5.1) is well-de�ned and uniquely determined as a function ofthe arbitrary constant b. To the lowest orders, we �nd

α(t) = − 1

β1t
− β2
β31

ln t

t2
+
b

t2
− β22
β51

ln2 t

t3
+
β2
β51

(2bβ31 + β2)
ln t

t3
+O

(

t−3
)

. (5.4)If β1 = 0 but β2 < 0 we have the expansion
α(t) =

1

t1/2

∞
∑

n=0

bn(ln t)

tn/2
=

1√−2β2t
+

β3
2β22t

+
β23 − β2β4

4
√
2(−β2)7/2

ln t

t3/2
+

b

t3/2
+O

(

t−2 ln t
)

. (5.5)12
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If the �rst non-vanishing coe�cient is βn then the expansion begins with t−1/n.Now we generalize this result to the case of more couplings. Consider a theory with s couplings
g = {gi} and beta functions βi(g). To be speci�c, we assume

βi(g) =

∞
∑

n=2

1

n!
cij1···jngj1 · · · gjn =

1

2
cijkgjgk +O(g3), (5.6)where the constants cijk are the one-loop coe�cients. We look for asymptotic solutions of the RGequations starting form the �Zimmermann trajectories�

gi(t) ∼ −ai
t

(5.7)in the limit t→ ∞. Inserting (5.7) into the RG equations
ġi(t) = βi(g(t)), (5.8)where βi are given by (5.6), and keeping only the leading terms, we see that the constants ai aredetermined by the quadratic equations
ai =

1

2
cijkajak, (5.9)which have, in general, a discrete set of solutions. Normally the solutions just have to be real(if the couplings are parametrized to be real, as we assume), but in some cases further physicalrestrictions might apply. For example, stability (positive-de�niteness of the action in Euclideanspace) might require that some couplings be positive. We do not consider such restrictions hereand assume that all real solutions are physical acceptable. It is straightforward to adapt ourconclusions to speci�c situations.Around a Zimmermann trajectory, we continue the expansion as

gi(t) ∼ −1

t

(

ai +
bi
tγ

)

, (5.10)assuming that γ is a positive number. Then γ and bi are an eigenvalue and an eigenvector of thereal matrix
Nij = cikjak − δij ,respectively.The matrix N is crucial for our discussion. The dimension dAF of the domain DAF of asymp-totic freedom is equal to the number ofN -positive eigenvalues γ , including multiplicities. Observethat because of (5.9) one eigenvalue is always equal to 1, with eigenvector ai. If the Zimmermanntrajectory exists, the dimension dAF is at least 1. If γ = 1 is the unique positive eigenvalue, theform of the expansion is (5.1). 13
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The most general solution reads

gi(t) = −1

t



ai +
∑

γ·n,n>0

bi,γ·n(ln t)

tγ·n



 . (5.11)Here γ is a vector collecting the positive eigenvalues of the matrix N , while n is a vector ofnon-negative integer entries. The condition n > 0 means that n must not vanish identically. Twovectors n and n′ such that γ · n = γ · n′ are equivalent, and associated with a unique numerator
bi,γ·n. The sum is ordered for increasing values of γ · n. Finally, the bi,γ·n(ln t)'s are polynomialsof certain �nite degrees in ln t.Inserting (5.11) into the RG equations (5.8) and isolating the coe�cients of the powers t−2+γ·n,we obtain equations for the polynomials bi,γ·n. It is immediate to �nd that such equations havethe form

[(γ · n)δij −Nij] bj,γ·n − b′i,γ·n = δi,γ·n<, (5.12)where δi,γ·n< is a sum of monomials
∏

k

bj,γ·nkwith γ · nk < γ · n and ∑k γ · nk 6 γ · n.Clearly, δi,γ·n< contains a �nite number of terms. Now we want to show that equations (5.12)allow us to recursively determine the bi,γ·n's.For intermediate purposes, it is convenient to turn to the basis where the matrix Nij has areal canonical Jordan form. Quantities in this basis are denoted with a tilde. Speci�cally, Ñ isblock-diagonal. Its �rst blocks are associated with the real eigenvalues λ and have the form








λ 0 0

1
. . . 0

0 1 λ









, (5.13)while the last blocks are associated with the complex eigenvalues µ and have the same form as(5.13), where however the λ's are replaced by 2×2 blocks
( Reµ Imµ

−Imµ Reµ ) ,the 1's are replaced by 2×2 identity matrices and the 0's are replaced by 2×2 matrices withvanishing entries. All matrices Ñij − (γ · n)δij are then in canonical Jordan form.Let Mij be such that N = M−1ÑM and b̃i,γ·n ≡ Mijbj,γ·n. Multiplying equation (5.12) by
M to the left, we can rewrite it in the form

[

(γ · n)δij − Ñij

]

b̃j,γ·n − b̃′i,γ·n = δ̃i,γ·n<, (5.14)14



10A1Renorm
By induction, if we assume that the polynomials b̃i,γ·n′ with γ ·n′ < γ ·n are known, we concludethat the δ̃i,γ·n<'s are polynomials of certain �nite degrees in ln t. When the matrix Ñij− (γ ·n)δijis invertible, the polynomials b̃i,γ·n are uniquely determined. Calling Uij the inverse matrix of
Ñij − (γ · n)δij , we have, similarly to (5.3),

b̃i,γ·n = −Uij
(

δ̃j,γ·n< + b̃′j,γ·n

)

= −Uij δ̃j,γ·n< + UijUjkδ̃′k,γ·n< − UijUjkUklδ̃′′l,γ·n< + · · · (5.15)Again, the sum ends after a �nite number of terms, since the δ̃i,γ·n<'s are polynomials.When Ñij − (γ · n)δij is not invertible, one of its blocks has m0 > 0 zeros on the diagonal.Assume that this block is the one with ı̄ 6 i, j < ı̄ + m0 and proceed as follows. The block-structure of Ñ allows us to split equation (5.14) into: a) the equation for the b̃i,γ·n's with i < ı̄; b)the equation for the b̃i,γ·n' with ı̄ 6 i, j < ı̄+m0; c) the equation for the b̃i,γ·n's with i > ı̄+m0.Equations a) and c) are solved by formulas similar to (5.15). Equation b) has the form








0 0 0

ζ1
. . . 0

0 ζm0−1 0









ij

b̃j,γ·n − b̃′i,γ·n = δ̃i,γ·n<,where the ζi's can be equal to 0 or 1. The right-hand side is made of recursively known polynomialsof some degrees di in ln t. Then the b̃i,γ·n's are polynomials of �nite degrees greater than di, andeach of them is uniquely determined up to an arbitrary additional constant. Therefore, in totalwe have m0 arbitrary constants.Thus, equations (5.12)-(5.14) can be solved recursively to determine the polynomials b̃i,γ·n,and therefore the bi,γ·n's. The solutions (5.11) contain a number of arbitrary constants equal tothe number of times the matrices Ñij − (γ · n)δij become degenerate, including multiplicities.This number is equal to the number of positive N -eigenvalues, including multiplicities. Indeed,recalling that di�erent n's with the same γ · n are equivalent, each equation γi = γ · n admitsprecisely one solution, and no other degeneracies are possible.The set of arbitrary constants contained in the asymptotic expansion (5.11) determines thedomain of asymptotic freedom DAF. We conclude that the dimension of DAF is equal to thenumber of positive eigenvalues γ of the matrix N , including multiplicities.In practice, we have to look for the Zimmermann trajectory around which the asymptoticexpansion (5.11) has the maximal number of positive eigenvalues. In most cases the other Zim-mermann trajectories also play a role. They can determine the boundary of DAF, if it is two-dimensional, or its edges, if it more than two dimensional.Now we consider two examples in detail.
15
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Dirac model First we consider the Dirac model (4.6) in the large N limit, focusing on the g2-g4subsystem. The RG �ow is given by the equations

β2 = ġ2 = κ(g22 + g24) +O(g3), β4 = ġ4 = 2κg2g4 +O(g3),where κ = N/(18π2) > 0. We �nd the constants
c222 = c244 = c424 = c442 = 2κ,while all other entries cijk vanish. The Zimmermann trajectories are given by (a2, a4) = (1, 0)/κand (a2, a4) = (1,±1)/(2κ). Expanding around the trajectories with (a2, a4) = (1, 0)/κ we �ndthat N is equal to the identity matrix, so γ = 1 with multiplicity 2. This means that DAF hasdimension 2. Two arbitrary constants appear at order t−2.Precisely, we �nd

g2(t) = − 1

κt
+

1

t2
(ξ2 ln t+ b2) +O

(

t−3 ln2 t
)

, g4(t) =
1

t2
(ξ4 ln t+ b4) +O

(

t−3 ln2 t
)

, (5.16)where b2,4 are arbitrary constants, while ξ2,4 are uniquely determined by the cubic terms of thebeta functions. Since all other matricesNij−(γ·n)δij are invertible the higher-order corrections areuniquely determined. Thus, the two-dimensional domain of asymptotic freedom is parametrizedby the arbitrary constants b2,4. The other two Zimmermann trajectories, given by (a2, a4) =

(1,±1)/(2κ), are the boundary of DAF.At one loop we can check our results solving the system explicitly. Call λ± = g2 ± g4. Wehave
β± = λ̇± = κλ2±,wherefrom
λ±(t) =

λ±0

1− κλ±0t
. (5.17)In the ultraviolet limit t→ ∞ the asymptotic behaviors are

g2(t) = − 1

κt
− 1

2κ2t2
λ+0 + λ−0

λ+0λ−0
+O

(

t−3
)

, g4(t) =
1

2κ2t2
λ+0 − λ−0

λ+0λ−0
+O

(

t−3
)

.Here the logarithmic terms of (5.16) are absent, because we are neglecting higher-order correctionsto the beta functions (check also (5.4)).Electroweak model Now we apply our method to the electroweak four fermion model (4.4)with bL = bR = 1. We �rst restrict to the subspace (g2L, λ, u). At one loop we have
β2L =

1

(6π)2
(3g22L +2λ2), βλ =

λ

(6π)2
(2u− 5λ) , βu =

1

(6π)2
(9λ2 +6g22L +2λu). (5.18)16
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The conditions β2L = βλ = βu = 0 are solved by g2L = λ = 0, while u remains arbitrary. Sincea non-trivial �xed point cannot be trusted within our approximation, we need to project onto asuitable subspace of parameter space. Such a projection is automatic in our approach.The Zimmermann trajectories are

g2L ∼ −a1
t
, λ ∼ −a2

t
, u ∼ −a3

t
,with

(a1, a2, a3) =

(

1

3
, 0,

2

3

)

,

(

1

5
,
1

5
, 1

)

, (0.046,−0.141, 0.149) . (5.19)The third trajectory is given by complicated irrational coe�cients of which we just give theapproximate numerical values. Two complex solutions to (5.9) also exist, but must be discarded.Expanding around the �rst Zimmermann trajectory, we �nd
N =







1 0 0

0 1
3 0

4 4
3 −1






, (5.20)so the positive eigenvalues are γ = 1/3 and γ = 1. The Jordan canonical form of this matrix isdiagonal: Ñ =diag(1, 1/3,−1). The domain of asymptotic freedom is two-dimensional and thearbitrary constants appear at orders t−4/3 and t−2. Using the one-loop truncated beta functions,the asymptotic expansion of the solution reads

(6π)−2g2L(t) =− 1

3t
+

6a2

t5/3
+

1

2t2
(72a3 ln t+ 27a3 + b)− 1566a4

t7/3
− 3a2

t8/3
(360a3 ln t+ 2907a3 + 5b)

− 3888a6
ln2 t

t3
,

(6π)−2λ(t) =
a

t4/3
+

9a2

t5/3
+

63a3

t2
− a

t7/3
(144a3 ln t+ 2b− 495a3)

− a2

t8/3

(

1620a3 ln t− 138267

14
a3 +

45

2
b

)

, (5.21)
(6π)−2u(t) =− 2

3t
+

a

t4/3
+

15a2

t5/3
+

1

t2
(72a3 ln t+ b)− a

t7/3

(

144a3 ln t+
24669

7
a3 + 2b

)

− 3a2

t8/3

(

900a3 ln t+
70587

14
a3 +

25

2
b

)

− 7776a6
ln2 t

t3
,up to O(t−3 ln t), where a and b are the arbitrary constants.The cubic corrections to the beta functions start with terms ∼ 1/t3, so they give extra contri-butions of the form ∼ ci/t

2 to the solutions, where ci are uniquely determined functions of a and
b. The corrections do not a�ect the terms proportional to (ln t)/t2. Thus, the complete solution17
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has the form

(6π)−2g2L(t) =− 1

3t
+

6a2

t5/3
+

1

2t2
(72a3 ln t+ 27a3 + b+ ξ1) +O(t−7/3 ln t),

(6π)−2λ(t) =
a

t4/3
+

9a2

t5/3
+

63a3 + ξ2
t2

+O(t−7/3 ln t), (5.22)
(6π)−2u(t) =− 2

3t
+

a

t4/3
+

15a2

t5/3
+

1

t2
(72a3 ln t+ b+ ξ3) +O(t−7/3 ln t),where ξi, i = 1, 2, 3, are calculable numbers, depending on the cubic corrections to the betafunctions. The other beta functions of (4.4) give

(6π)−2g1L = − 3a2

5t5/3
+
ξ4
t2

+O(t−7/3), (6π)−2gR = − 18a2

5t5/3
+
ξ5
t2

+O(t−7/3),where ξ4,5 are calculable numbers.We have thus found a two dimensional domain of asymptotic freedom.One-loop degeneracies In special cases, not frequent in physical problems, the one-loop coef-�cients cijk can have degeneracies that make the expansions of some couplings start from powers
t−1/n instead of 1/t, similarly to what happens in (5.5) when β1 = 0 for a single coupling. Somehigher loop contributions can be as important as the one-loop ones, or even more important thanthe one-loop ones. Then the expansions of the beta functions in powers of the couplings have tobe accordingly reordered. For example, consider the system

ġ1 = g21 + κ2g1g
2
2 , ġ2 =

1

4
g1g2,where κ is a constant. Observe that the terms g21 and κ2g1g

2
2 are one- and two-loop, respec-tively. Nevertheless, they are equally important in the asymptotic expansion. The Zimmermanntrajectories are

(g1, g2) =

(

−1

t
, 0

)

,

(

−2

t
,± 1

κ
√
t

)

, (5.23)to which we must add the line of �xed points g1 ≡ 0. The procedure described above hasto be applied using the trajectories (5.23). For example, expanding around the second pair oftrajectories we �nd that the matrix N has eigenvalue 1 with degeneracy 2 and the expansionsread
g1(t) =−1

t

(

2 +
a− b

t
ln t− a

t

)

+O(t−3 ln2 t),

g2(t) =± 1

4κ
√
t

(

4 +
a− b

t
ln t− b

t

)

+O(t−5/2 ln2 t),where a and b are the arbitrary constants. All higher-order terms are uniquely determined. Thedomain of asymptotic freedom is two-dimensional.18
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Another way to �nd DAF Here we give an alternative method that can be useful to determinethe domain DAF of asymptotic freedom when the origin is an isolated �xed point (possibly aftera suitable projection in parameter space). We de�ne the radius ρ in parameter space as

ρ =

√

√

√

√

N
∑

i=1

g2i ,and the radial velocity v as
v =

dρ

dt
=

1

ρ

N
∑

i=1

giβi.Let D denote a domain in parameter space and D its closure. A theory is asymptotically freein DAF if the origin belongs to D̄AF (but not DAF) and every trajectory passing through DAFremains in DAF and �ows to the origin in the ultraviolet limit. The trajectories that satisfy v < 0asymptotically for t → ∞ in a neighborhood of the origin belong to DAF. The Zimmermanntrajectories, in particular, belong to DAF.When the origin g = 0 is an isolated �xed point DAF can be also characterized as follows:
i) �nd the domain D around the origin where v < 0;
ii) call ∂0D the boundary of D minus the origin, and consider the trajectories crossing it;
iv) if all such trajectories enter D, then DAF = D; if not, DAF is D minus the trajectoriesleaving D through the boundary ∂0D.Indeed, the remaining trajectories cannot leave D, so they must �ow to the origin, because itis the unique �xed point.The condition v < 0 is necessary, but not su�cient, because some trajectories intersecting Dcan cross its boundary and run away, instead of �owing to the origin. The good feature of D isthat it can be easily determined, but DAF is only a subset of D.Now, observe that D depends on the parametrization of the couplings, while DAF of coursedoes not. Call hi(g) a reparametrization of the couplings and Dh the domain where the velocity

vh ≡
∑N

i=1 hiβhi
√

∑N
j=1 h

2
jis negative in a neighborhood of the origin. An e�cient way to estimate DAF (and in most casesdetermine it) is to take the intersection of the Dh's, for all reparametrizations h.We illustrate this method in the g2-g4 subsystem of the Dirac model in the large N limit,using one-loop truncated beta functions. Observe that the origin is the unique �xed point. Wehave

ρv = g2β2 + g4β4 = ag2(g
2
2 + 3g24).19
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The domain D is just g2 < 0. Consider now the one-parameter family of reparametrizations

h2 = g2 + αg4, h4 = αg2 + g4.We �nd
ρhvh =

g32
r3
[

r(1 + α2)(3 + r2) + 2α(1 + 3r2)
]

,where r = g2/g4. Now we study the condition vh < 0, knowing that g2 must be negative. Varying
α to obtain the best result, we �nd

|r| < 1, i.e. |g2| < |g4|,which together with g2 < 0 gives our best estimate of the domain DAF.We can check this estimate using the explicit one-loop solution (5.17). We see that inside Donly the trajectories with |g2| 6 |g4| �ow to the origin. All others cross the boundary ∂0D (thatis the line g2 = 0), enter the region with v > 0 and run away. Thus, DAF is given by g2 < 0,
|g2| 6 |g4|. We conclude that our method gives an accurate estimate of DAF, since it misses onlyits boundary, namely the trajectories with |g2| = |g4|.6 Zimmermann trajectories and hidden symmetriesIn the previous section we have seen that the Zimmermann trajectories play an important role inthe study of the domain of asymptotic freedom. Some such trajectories (see for example (5.19))involve only rational coe�cients, others very complicated irrational numbers. Normally, rationaltrajectories appear when the theory has more symmetries. In this section we point out thatthe existence of rational Zimmermann trajectories appears to be a general feature of high-energyLorentz violating four fermion models.First, we brie�y recall Zimmermann's �reductions of couplings� [5, 9]. Assume that a theoryhas couplings λI , I = 1, . . . N . Zimmermann's idea is to parametrize the couplings in terms ofa smaller set of independent parameters αj , j = 1, . . .M < N . Write λI = λI(αj). Consistencewith the renormalization group demands

βI =
∂λI
∂αj

βj .The most interesting case is N = 2,M = 1. Normally, if the one-loop beta functions are quadraticin the couplings, as in our case, Zimmermann's equations admit two power-series solutions of theform
λ̄ = cα+ α

∞
∑

n=1

dnα
n,20
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where c and dk are calculable, generically irrational, numbers. If the solution exists at one loop(namely, if c is real), then it exists to all orders. The most general solution to Zimmermann'sequations is not analytic, but has the form

λ̄′ = λ̄+

∞
∑

m,n=1

dmnα
mξ+n,where ξ is typically irrational, d11 is arbitrary and the other coe�cients dmn are uniquely deter-mined once d11 is given.In special situations, such as when the �reduced� model has additional symmetries, the power-series solution λ̄ shrinks to the monomial cα, with a rational coe�cient c, and λ̄′ becomes analytic.For example, the (Lorentz invariant) model of a spinor ψ and a pseudoscalar �eld A interactingwith the Lagrangian

LI = igAψ̄γ5ψ − λ

4!
A4admits reductions

λ′ =
1

3
(1±

√
145)g2 + d1g

4 + · · ·+ d11g
2

5

√
145+2 + · · ·On the other hand, the massless model with interaction

LI = gψ̄(A+ iγ5B)ψ − λ

2
(A2 +B2)2admits the rational reduction

λ = g2, (6.1)which reveals the existence of a symmetry. Indeed, when the couplings are related by formula(6.1) we have the supersymmetric Wess-Zumino model.We now analyze Zimmermann's trajectories at one loop in some of our Lorentz violating fourfermion models. Consider again the electroweak model. We look for RG trajectories where allcouplings are proportional to one another: g1L = ax, g2L = bx, gR = cx, gLR = dx and λ = ex.The constants a, b, c, d and e can be worked out matching the beta functions (4.4). The absolutevalue of bL (or bR) can be set to 1 rescaling the space coordinates. On the other hand, the ratio
bL/bR is free and does not run at one loop.We choose |bL| = |bR| = 1 and consider the cases s = ±1. We �nd only three real solutions.One of them is just g1L = gR = gLR = λ = 0, with only g2L non-vanishing. Of the other twosolutions, only one has rational coe�cients, and reads

g1L =
λ

5
, g2L = λ, gR =

6

5
λ, gLR =

5 + 3s

10
λ. (6.2)If we choose |bL| 6= |bR| we generically do not �nd rational trajectories.21
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The existence of a trajectory with rational coe�cients is unexpected and o�ers evidence thatthe reduced model might have hidden symmetries. Its Lagrangian reads
LEWred =L†ii

(

∂̂ + σ · ∂̄ ∂̄
2

Λ2
L

)

Li + e†Ri

(

∂̂ − sσ · ∂̄ ∂̄
2

Λ2
L

)

eR − g

Λ2
L

(L†ieR)(e
†
RL

i)

− g

10Λ2
L

(L†iLi)2 − g

2Λ2
L

(L†iLj)(L†jLi)− 3g

5Λ2
L

(e†ReR)
2 − (5 + 3s)g

10Λ2
L

(L†iLi)(e†ReR),where g = −λ > 0, and its one-loop beta function is
βg = − 5g2

(6π)2
.If the hidden symmetry is simple, we expect that the relations (6.2) are preserved by higher-loop corrections. However, this is not a necessary requirement for a hidden symmetry.The rational RG trajectory exists also in the U(NL)× U(NR) model for |bL| = |bR| = 1. We�nd

g1L = g1R = − NL +NR − 2

2NL + 2NR − 1
g, g2L = g2R = g2LR = −g, g1LR = −2NL + 2NR + 3s− 1

2(2NL + 2NR − 1)
g,the beta function being

βg = − g2

36π2
(2NL + 2NR − 1).Curiously, the model of N Dirac fermions in the large N limit admits only rational trajectories.We have already studied the g2-g4 subset in the previous section. In the g5,6-f1,2 subset we �nd15 rational trajectories:

g5 = (−2,±1, 1,−1,−5,−2,−2,−7/5)g6 ,

f1 = (0, 0,±1/2,±1/2,±3/2,±1,±1/2,±1/10)g6 ,

f2 = (0, 0, 0,±1,±3,±3/2,±3/2, 0)g6 .One such trajectory (g5 = g6 = 2f1, f2 = 0) gives the Lorentz violating �Gross-Neveu� model[10], whose interaction reads
λ

2Λ2
L

(ψ̄iψi)2 =
λ

Λ2
L

(`†i1 `
j
1)(`

†i
2 `

j
2) +

λ

Λ2
L

(`†i1 `
j
2)(`

†i
2 `

j
1) +

λ

2Λ2
L

[

(`T i1 ε`
i
2)(`

Tj
1 ε`j2) + (`†i1 ε`

∗i
2 )(`

†j
1 ε`

∗j
2 )
]

,which is renormalizable by the same argument used in (4.2). In some sense, this is an example of�hidden symmetry� associated with the rational trajectory.
22



10A1Renorm
7 ConclusionsIf Lorentz symmetry is violated at high energies, then the Standard Model admits a ultravioletcompletion that is renormalizable despite it contains four fermion vertices at the fundamentallevel. In this scenario, four fermion models play a key role, because all other interactions, beingsuper-renormalizable, disappear at energies much higher than the scale of Lorentz violation. Inthis paper we have studied the one-loop renormalization of CPT-invariant Lorentz violating fourfermion models and their RG �ows.We have �rst considered the most general case, working out formulas for the beta functions,and then analyzed particular models in detail. We have formulated a method to determine thedomain of asymptotic freedom expanding the running couplings around the free �xed point. Weemphasize that if the four fermion model (1.3) is asymptotically free then the entire Lorentzviolating Standard Model is.Moreover, we found that the RG �ow admits a number of special �rational� trajectories that,in the spirit of Zimmermann's reduction of couplings, might hide some new symmetries.References[1] V.A. Kostelecký and N. Russell, Data tables for Lorentz and CTP violation, V.A. Kostelecký,Ed., Proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, World Scienti�c,Singapore, 2008, p. 308 and arXiv:0801.0287 [hep-ph].[2] D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76(2007) 125011 and arXiv:0707.2480 [hep-th].[3] D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions ofthe Standard Model, Phys. Rev. D 79 (2009) 025017 and arXiv:0808.3475 [hep-ph].[4] D. Anselmi, Standard Model Without Elementary Scalars And High Energy Lorentz Viola-tion, Eur. Phys. J. C 65 (2010) 523 and arXiv:0904.1849 [hep-ph].[5] W. Zimmermann, Reduction in the number of coupling parameters, Commun. Math. Phys.97 (1985) 211.[6] See for example, A. Strumia and F. Vissani, Neutrino masses and mixings and..., arXiv:hep-ph/0606054 [hep-ph].[7] W. Zimmermann, Scheme independence of the reduction principle and asymptotic freedomin several couplings, Commun. Math. Phys. 219 (2001) 221.23
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