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Abstract

We study the one-loop renormalization of high-energy Lorentz violating four fermion models. We
derive general formulas and then consider a number of specific models. We study the conditions for
asymptotic freedom and give a practical method to determine the asymptotic-freedom domain. We also
point out that in some models the RG flow contains “rational” Zimmermann trajectories that might hide

new symmetries.
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1 Introduction

Although Lorentz symmetry is one of the most precise symmetries in nature [I], the possibility
that it might be violated at high energies or very large distances is still open and has been
extensively investigated. A Lorentz symmetry violation at high energies allows us, among the
other things, to renormalize vertices that are otherwise non-renormalizable. This result is achieved
using a modified power counting criterion, which weights space and time differently [2]. Modified
dispersion relations improve the large-momentum behavior of propagators in such a way that, in
the common perturbative framework, the theory remains unitary, local, polynomial and causal.

Using this knowledge, it is possible to formulate a Standard Model extension |3, 4] that is CPT
invariant, but violates Lorentz symmetry at high energies, and contains two scalar-two fermion
vertices, as well as four fermion vertices, at the fundamental level. The inclusion of CPT violating
terms is also possible. Four fermion vertices are important for a variety of reasons. On the one
hand, they can be used to explain proton decay. On the other hand, they can trigger a Nambu—
Jona-Lasinio mechanism and give masses to fermions and gauge fields even if the elementary Higgs
boson is suppressed [4]. In its simplest version, the scalarless Lorentz violating Standard Model
schematically reads

Y, g =
Lixxx — =5 F3, (1.1)

5
1
Lot = Lo + Lying — Y  —59DF (X1yx1) +
2w A

I=1

where the quadratic terms are

1 _
Lo= 13 RGEE ~ FEOTIES),
G

3.5 Tab
Cuns= 30 St (00 00 4 D) o) (12)

a,b=1I=1 L
and the vertices are denoted symbolically, namely without listing all possible field differentiations
and index contractions. In our notation hats are used to denote time, bars to denote space. The
weight of time is equal to —1, while the weight of each space coordinate is —1/3. The gauge
couplings ¢ have weight 1/3. The weighted dimension of space-time is 2, so the Lagrangian
contains only terms of weights < 2. Moreover, x{ = L* = (v},£%), x5 = Q} = (u},d}), x§ = (%,
X§ = uf and x¢ = d%, v* = (Ve, Y, V7)), 0% = (e, 1, 7), u® = (u,c,t) and d* = (d,s,b). The sum
> is over the gauge groups SU(3)., SU(2);, and U(1)y. Finally, Y = —D?/A%, where Ay, is

the scale of Lorentz violation, and 7¢ are polynomials of degree 2.

The models of 3], 4] are anomaly-free, because gauge anomalies cancel out exactly as in the
Standard Model [3]. The “boundary conditions” such that Lorentz invariance is recovered at low
energies are that /% tend to §%° and 7¢ tend to 1 (one such condition can be trivially fulfilled

normalizing the space coordinates ).
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An important consequence of the high-energy Lorentz violation is that all gauge interactions
are super-renormalizable, therefore asymptotically free. Moreover, since fermions have weight
1/2, the four fermion interactions are strictly renormalizable. At energies much larger than Ap

vectors decouple and the model (LI]) reduces to a four fermion model in two weighted dimensions,

3 5 . plab _ Y.
L= 3 Y i (5‘“’@ - X—M‘”’) ¥+ (13)
a,b=1I=1 L L
plus free fields. The purpose of this paper is to study this type of model, its one-loop beta
functions and the conditions for asymptotic freedom. We stress that if the high-energy model
(I3) is asymptotically free, then the full Standard Model extension (1) is, as well as its other
versions of ref.s [3], 4].

We work out a method to determine the domain of asymptotic freedom in quantum field
theories with more couplings and apply it to some of our models. Our approach is to study
the asymptotic expansion of the running couplings around the free fixed point. The domain of
asymptotic freedom Dap is determined by the arbitrary constants contained in the expansion.
The dimension of Dar is equal the number of positive eigenvalues (including multiplicities) of a
certain matrix A, which depends only on the one-loop coefficients of the beta functions.

Finally, we point out the presence of special RG trajectories that might hide new symmetries.
Indeed, if we apply Zimmermann’s “reduction of couplings” [5] to our beta functions we find that
some solutions of the RG equations exhibit features that normally appear only in the presence of
hidden symmetries.

The paper is organized as follows. In section 2 we classify the four fermion vertices and
present the most general CPT- and rotation invariant four fermion model. In section 3 we work
out general formulas for its one-loop beta functions. In section 4 we study some explicit examples.
In section 5 we formulate our method to determine the domain of asymptotic freedom. In section
6 we recall Zimmermann’s reduction of couplings, and explain why some of our models might

possess hidden symmetries. Section 7 contains our conclusions.

2 Four fermion model

Using charge conjugation we can use only left-handed fermions, which we collect into a vector
;. We orthonormalize the kinetic terms ij“é#fk and simultaneously diagonalize the quadratic
terms ij’@ué%k by means of a unitary transformation.

The most general CPT invariant, rotation invariant four fermion vertices are of the form
L*L*LL and LLLL, plus its conjugate L*L*L*L*. We do not have to include vertices L*LLL.

Indeed, in the four-component notation they can be constructed only with an odd number of
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space-time indices, so they violate CPT. Precisely, a term L*LLL plus its Hermitian conjugate

reads
a(LyU L) (L§V Ly) + a* (Lo U~ L) (Lay VA L), (2.1)

where U can be 4% or 4%, V can be 1, ¢% or 0%, and a is a constant. However, the combination
(2.1) is CPT odd.
On the other hand, all combinations of terms LLLL, L*L*L*L* and L*L*LL are CPT even.

Explicitly, we have the structures
(LVLS)(L§V L), (L1ULg)(L3ULy),
for L*L*LL, and
(LSV Ly)(L§V Ly),

for LLLL, plus their Hermitian conjugates.
Using Fierz identities, we can show that every LLLL vertex is Lorentz invariant and of the
form

(TEL2) (T5La)- (2.2)

Similarly, all four fermion vertices of type L*L*LL have the form
(LTLo)(LiLy). (2.3)
In general, this structure is Lorentz violating, but the combination

I — 1 - _

(LY L) (LS La) + (LY La) (LS L) = (L1 L5) (L5 La) = 5(Lav L) L3y La), (24)

is Lorentz invariant, which can be easily proved using the Fierz identity o aﬁaiw = 200608 —
00305

At this point it is convenient to switch to the two-component spinor notation. Because of

(22) and (23]), the most general four fermion vertices are constructed with the contractions

G =00, (Fely, = eapll,  flely, = (a5, (2.5)
a, B, ... being spinor indices and 7 denoting transposition. The most general CPT- and rotation

invariant interaction Lagrangian reads

1 * * *
Lig =gz 2 |G l)gigm + () el) fiim + (Ce6) el Fim| - (26)
L jikm

where the couplings f and g satisfy the symmetry properties

*
Gijkm = Gkmij = Gjimk> fijkm = femi; = fjikm-
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Because of (24]), the most general Lorentz invariant interaction Lagrangian is (2.6]) if the

couplings g;jxm satisfy the additional symmetry property
Jijkm = Gimkj-

Finally, the most general high-energy Lorentz violating four fermion model that we are going

to study reads
A _ 2
L= Ze;z <8 +bjo - 8A—2> 0+ £4f, (2.7)
» L
J

where o are the Pauli matrices. This model is renormalizable. The quadratic terms x¢ ib{“bﬁxfl’ of
(L2) have been switched off, because they are not important at high energies. Nevertheless, the
correlation functions at generic external momenta have no infrared divergences in two weighted
dimensions. Therefore, we can study the model (2.7) in itself.

Assigning the axial charges +1 to ¢; and —1 to KZT, the g-terms are axially symmetric, while
the f-terms explicitly violate the axial symmetry. Suppressing the f-terms we obtain a restricted
model 5

L=t (é + bjo - éA—2> 0 + % > (@) (¢ ) gijim (2.8)
j L L ikm
that is still renormalizable. This restriction is interesting for merely theoretical purposes. How-
ever, for phenomenological applications we include the full set (2.4) of interactions. Integrating
the Higgs field out in the Standard Model produces f-terms, which generate g-terms by renormal-
ization. Moreover, our Lorentz-violating theories can include four fermion vertices that describe
proton decay, and such terms are of both f- and g-types [6].

It should be emphasized that a high-energy Lorentz violation does not imply that the proton
must decay. In this respect, we have two classes of renormalizable models. The models of the
first class are described by B-invariant Lagrangians. Then, B-violating vertices are not generated
back as counterterms by renormalizatio so this choice is consistent. The models of the second
class contain B-violating four fermion vertices at the classical level. Counsistency with existing
experimental bounds on proton decay imply that the energy scale of Lorentz violation Az must
then be greater than or equal to 10141GeV (see for example [6]). At present, there is no reason
to expect that A is much smaller than this value. However, if neutrino masses have the Lorentz-
violating origin suggested by one of us in [3], namely they are explained by the renormalizable
dimension-5 vertex )

— (LH)?
AL( )7

!The B-violations due to the B 4+ L anomaly are non-perturbative, and do not affect the renormalization

structure of the theory.
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where H is the Higgs field, then Az could be around 10'*GeV, which is still compatible with the

bound coming from proton deca; .

3 One-loop renormalization

In this section we study the one-loop renormalization in the most general model (27). It is
convenient to use the background field method. Replace ¢ with £ + 1, where ¥ denotes the
background field. Then expand £ in 1 and keep only the quadratic part in ¢. The result can be

14
Lo=5 3 (6.6 (Quing + Hiy) ( ; ) ,

np

written as

where @, collects the kinetic terms and H,,, is a matrix quadratic in ¥. In momentum space,

2
0 P p-o 0
n=70" +b,— .
Qn=p A%( 0 p_a*>

Thus, the one-loop contribution to the effective action reads

I = —%tr In[Qndnp + Hpp| = itr[Q_lHQ_lH] + constant + finite. (3.1)

Observe that the tadpole —itr[Q~'H]/2 vanishes, since the propagator @~! is odd in p. For this
reason there is no wave-function renormalization at one loop.

We use a dimensional regularization where only the dimensions of space are continued to
complex values 3 —e9. There is no reason to continue also the time dimension, since the integrals

over p = p? converge. The divergent parts of just two integrals are necessary to evaluate expression

B.1), namely

(2m)*  DpD,  4m2es(|by| + |bp)) ’
and
(2m)* A% nDyp  Am2e2|byby|(1bn| + [byl) 7
where s
Di:pi%—b?(i%) + 82

(in Euclidean space). The fictitious mass ¢ is introduced to avoid IR problems at vanishing

external momenta and can be set to zero after the evaluation. The calculations are performed

2A difference of one or two orders of magnitude can always be due to the dimensionless couplings that multiply

the vertices.
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using Feynman parameters to integrate over ps. This isolates the pole of the p-integral, therefore
the divergent part.

Using these formulas we easily find

A2 s o0 o0
r § top & [ HppHpn] — —Ltr | H, ) Hynl ».
L= (47‘( €9 p{ I"[ PP ] 3 [( 0 ot > p ( 0 o > P ] }

We can convert this formula from the dimensional regularization to a conventional cut-off A on
the p-integral replacing 1/eo with InA+constant. Now, since A has weight 1/3 and, by definition,
the high-energy dynamical scale p has weight 1, matching weights and dimensions we find the
identification 3

1 1 A3
—=-lh—.
€92 3 /LA I

The relation between the one-loop bare and renormalized Lagrangians is

Lp=Lr—T.
The beta functions are found equating the p-derivative of £p to zero and performing a number
of straightforward manipulations. We find

ﬂéjkm _36 2 Z np [6(1 = Snp)Gijnp(Gpnkm — Gpmkn) — 28npJinpjJkpnm

+23np(ginkpgpjnm + 16f]pmnf:;2kp) - (3 + Snp)(ginpmgkpnj - ginkpgpmnj - 16fmp]nf:;2kp)

+48 (1 + snp)(fjmnpf;;gnp - fmpjnfiﬂ;cnp - fjmnpfl:pin)] (i,5)¢> (k,m)’ (32)

ik k
ﬁw "= 18 Te o Z tnp 3 + Snp)gmpkfmpyn + 3(1 + Snp)gmpjfkmnp + 43npgmpkfjpmn]u_m) ((Z:Z) s

and £y, = 0, where s,, = byb,/|byby| and ¢, = 1/(|by| + [bp|). The expressions on the right-hand
sides of ([B.2) have to be symmetrized as follows:

1

[Xijhml(i.gyes tem) = 5 Xigim + Xkmis)
o 1

[Xijhm]' @ Fom = -

(Xijrm + Xjikm + Xijmk + Xjimg) -
4 Explicit examples

In this section we consider some particular cases in detail. A separate section is devoted to the

conditions for asymptotic freedom.
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U(Nz) model A simple model is the U(Np)-symmetric model of left-handed fermions L,
Ly, =LY% (0+bo- 52 iy Il (ohiphy? 4 22 (Lh L)L LY.
A2 2702 2702

Here we can set b = 1 rescaling the space coordinates, the fields and the couplings. We have a
model (2.7)) with

Gijkm = 910ij0km + 920im Ok, fijkm =0,

so the one-loop beta functions read

93 95
b= (NL=2), By = o5 (2N — 1), (4.1)

The solutions of the RG equations read

Ny -2
2N —1

_ 92(0)
1— (2N — 1)g2(0)t/(3672)’

91(t) = g1(0) + (92(t) = 92(0)),  g2(t)
where ¢t = — In(|x|p) and z is some scale.

In the ultraviolet limit (¢ — o) we have

Np -2

B (0) — 36m2(Ny — 2) 367>
ONg — 172 (2N, —1)2t

91(t) ~ 91(0) 92(t) ~ —

In particular,
Np—2
— ——g2(0).
ON, — 192( )

If g1(oc0) # 0 the UV fixed point is interacting, if gi(oco) = 0 it is free. However, an interacting

g1(c0) ~ g1(0)

fixed point is not guaranteed to survive beyond the one-loop approximation. Thus, we must
restrict to the subspace with g1 (oc0) = 0.
It is easy to prove that the model with go = 0 is renormalizable, for example introducing an
auxiliary field x of weight 1 and writing the Lagrangian in the form
1 (b0 00\ L (i) — ALy 4.2
L= 2 (94 b A%> (M) - 3L, (12)
Such a model has vanishing one-loop beta function. However, it is unlikely to be finite, since no
symmetry appears to forbid higher-order corrections.

We have just pointed out a general feature of our four fermion models: there exist combinations
of couplings that have zero one-loop beta functions. Nevertheless, we are unable to use this
observation to prove the existence of interacting fixed points. That would require more knowledge
about higher-order corrections. Using only one-loop results the best we can do is to project onto a

suitable subspace of the space of couplings, using a method inspired by Zimmermann’s “reduction
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of couplings” [5], and study the conditions for asymptotic freedom in that subspace. We first

prove that there exists an analytic solution of the RG equations of the form

[e.e]
g1 =c192 + Z ¢igs (4.3)
=2
to all orders in the perturbative expansion. Counsistence with the RG equations gives
dor _ 5
dga B2’
which in turn uniquely determines all coefficients ¢;’s. We find
Np —2
1= ——0r,
PN -1

plus recurrence relations of the form

¢ = Pi(cj<i),
where Pj(cj<;) are well-defined polynomials depending only on the coefficients ¢;’s with j < i.
The Zimmermann solution (4.3]) restricts the two-parameter space to a curve. There our theory

has a unique coupling, go, and its one-loop beta function is still given by the second formula of

(@I). The condition of asymptotic freedom is thus
gs < 0.
“Electroweak” model Now we consider a four fermion model containing one family of the

electroweak model. We have the left-handed doublet L* = (v, er) and the right-handed electron

er. The high-energy four fermion Lagrangian reads

R 72 92
Lrw = L1% <8 +bro - 88—2> L + GEZ‘ <8 —bro - 0 82 > €eR + )\2 (LTaeR)(eTRLa)
A2 A A2
glL Ta a 92L Ta b "‘b a .gR "‘ gLR "‘a a
L'"L L"L”)(L'"L — L'L
PRI 4 L)L)+ (e + G L L) cher).

Because of hypercharge conservation f-terms are not allowed, so this model is of restricted type

[238). Define ¢ = (v, er, €%), where ¢ denotes the charge conjugate. Then we have

Gijim = 912,01 0km + 921.0imOik + gROi30j30k30m3
+(A = gr.R) (0 0k30m3 + 0i30;30km) + A(0imOk30;3 + dizdmadik),

where 5,~j = 0i; — 0;30;3. Applying (3.2) we obtain the beta functions

A2 1 g A2 A2
= =—(32L 19 =
bie 36m2[bg|’ far 36772< oo \bRy> br 6m2[br|’
A A(s —3) A A(2s + 3)
PLR = 362 <“+|bL|+|bR|>’ A= T (“ DEA (44
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where s = br.br/(|br||br|) and

1L 92L  9R 4sgrr
= NL | oL | IR | _AOLR
br| lbr]  [brl  |bL| + |brR]

Recall that by, and br do not run at one loop.

We see that the beta functions depend only on three couplings, precisely A, gor and the
combination u. The conditions for asymptotic freedom are studied in section 5. There exist
RG-flow trajectories with special properties, possibly hidden symmetries. This topic is discussed

in section 6.

U(NL) x U(Ngr) model This is a generalization of the electroweak model, where the left- and
right-handed fermions are in the fundamental representations of U(Np) and U(Ng), respectively.
The Lagrangian is

R _H2 . _H2
Ly Ny = L1% (a +bro - a%) L+ El <a — bgro - a%) E%
L

L
91L g2r giRr I 92R I J
+opg LN 4 SR ()LL) + S (B BR)” + S5 (BR ER)(E BR)
L
glLR I 92LR I
e (LY L) (B} Bf) + =5 (L1 Ef) (B L),
L

where a,b = 1,... Ny and I,J = 1,... Ng. Define ¢/ = (L% E°), with i = (a,I). We have a
restricted model (2.8) with couplings

Gijkm = 91L5ij5km + 92L5im5jk + G1R0ijOkm + 92R5im5jk
+(920r — 91LR) (00km + Okmdi;) + G20 (OimOjk + Ok0im),

where 6 and & are the Kronecker tensors of U(Ny) and U(Ng), respectively. The beta functions

are
e <(NL 2) ﬁfﬁ + N j’;f;f) for = 55 (<2NL - ”ﬁfﬁ 1 oNg ﬁgfj))
=g (=R B = i (- D )
=g (e BST) B (D) e
where now gL . iR 9oL 92R 4sq1Lr
ool lonl V] T R ] T ol + Joal

10



10A1 Renorm

Dirac fermions So far, we have considered only explicit examples of reduced type ([2.8]). Now
we consider a model of N Dirac fermions, which involves also f terms and new types of g terms.
We impose the flavor symmetry U(N) and parity invariance, which allows us to set by, = bgp = 1.

As usual, write the Dirac fermions 1’ as (¢, £5'), where ¢} denote the left-handed components

and (5 are the charge-conjugates of the right-handed components. The action of parity reads
Pl =cely, Pl = —cli*

Moreover, ¢4 and ¢} belong to the fundamental and anti-fundamental U(N) representations, re-
spectively.
The Lagrangian (2.7) becomes

‘. A ay
Ly=101 d+o0-0— 0+ Ay D40 -0— |0

A2 A2
+opr (AP + (Ga7]+ o2 ()l e) + e (4.6)
K;’ (el i) + ig (i) ie) + ig (el (i) + j{g (eliedy(ehied)
ﬁWﬂwWw>W%WWM ﬁWﬂWWw>W%WWM,

and all couplings are real. A possible third vertex of f-type, namely
(7=l (657et3)

is not included, because it is not independent of the other two. Indeed, a Fierz rearrangement

gives the identity
((Ficty) (07 e6) + ((Fied) (017 ets) + (€Tel]) (e eth) = 0

We report only the beta functions in the large NV limit, which simplify considerably:

g, _N@+gn) 5 _Nebta) 5 _New o Now
g 3672 g2 1872 95 = 18n2 9T Tgp2
Bys ST (93 + 9596 + g5 + 12f1 — 12f1 fo + 4f3)

N
ﬁgsz_m(g§+4g596+g§+24f12—24f1f2+4f22)7
81 = [falgs + 206) — 3F1(gs + g6)]. Bps = —L Falgs — g5)
1= 192 [F2(95 + 296 1(g95 + 96)] , f2 = 1gp2/2\96 — 95):

Observe that the beta functions do not depend on g; and g3. Moreover, the couplings separate in
two groups, gi-4 and g5 ¢-f1,2, which do not talk to each other. These, however, are only features
of the large N limit.

11
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5 Asymptotic freedom

In this section we study the conditions for asymptotic freedom in the presence of more than
one coupling. The idea is to search for solutions of the RG equations as expansions around the
ultraviolet free fixed point. The domain of asymptotic freedom Dap is then determined by the
free parameters contained in the solution. A different approach to asymptotic freedom with more
couplings is due to Zimmermann [7]. An investigation that is in part related to this problem can
be found in [§].

We first illustrate our method in the case of a single coupling o with beta function

00
Bo = & :a26nan-
n=1

where the dot denotes the derivative with respect to t = —In(|z|u), |x| being some scale. If 51 # 0

the asymptotic expansion around the ultraviolet limit ¢ — co reads

1 = by, (Int)
n=0
where b, are polynomials of degree n in Int. Inserting this expansion into the RG equation we

get bp = —1/B1 and the recursion relations
(n - 1)bn - b/n = On< (5.2)

for n > 0, where §,< is a linear combination of monomials [], b’,ﬁ’l with >, n;k; < n and depends
only on the coefficients b, with 0 < m < n. Consider first n = 1, and observe that §;~ contains no
logarithms, so by is a polynomial of degree 1. The coefficient of Int in b; is uniquely determined,
while b1(0) = b remains arbitrary. For n > 1 the relations (5.2)) can be solved recursively:

by, = . 1) b)) = 1 _1 5 5 o

n_n_l(n<+ n)_n_1n<+(n 1)2 n<+( )3n< . (53)
Clearly, the sum ends after a finite number of terms, since d,< is a polynomial.

Thus, the asymptotic solution (B.I]) is well-defined and uniquely determined as a function of

the arbitrary constant b. To the lowest orders, we find

1 BoInt b ln t ﬁ2 5
T 5t g3 e 2 . 4
o(t) Bt B3 2 + ) ﬁ? 3 ﬁ1 =5 ( b} + ﬁ2) +0(t77) (5.4)
If 81 = 0 but B2 < 0 we have the expansion
§ n(Int) 1 B3 ﬁ§ — B2B4 Int b 9
- — + =5 + O (t “Int). 2.5
151/2 t”/2 = 2t 232t + I2(—Ba)T/2 32 tapt (t*Int).  (5.5)

12
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If the first non-vanishing coefficient is /3, then the expansion begins with ¢=1/7.

Now we generalize this result to the case of more couplings. Consider a theory with s couplings

g = {g;} and beta functions 3;(g). To be specific, we assume

o0

1 1
Bil9) = Y —Cijrajubis i = FCk9i0% + O(g°), (5.6)

n=2

where the constants c¢;j;, are the one-loop coefficients. We look for asymptotic solutions of the RG

equations starting form the “Zimmermann trajectories”

gi(t) ~ —% (5.7)

in the limit ¢ — oo. Inserting (5.7)) into the RG equations

gi(t) = Bi(g(1)), (5.8)

where (3; are given by (5.6]), and keeping only the leading terms, we see that the constants a; are

determined by the quadratic equations
1
a; = §Cijka]‘ak, (59)

which have, in general, a discrete set of solutions. Normally the solutions just have to be real
(if the couplings are parametrized to be real, as we assume), but in some cases further physical
restrictions might apply. For example, stability (positive-definiteness of the action in Euclidean
space) might require that some couplings be positive. We do not consider such restrictions here
and assume that all real solutions are physical acceptable. It is straightforward to adapt our
conclusions to specific situations.

Around a Zimmermann trajectory, we continue the expansion as

9i(t) ~ —% (ai + %) : (5.10)

assuming that v is a positive number. Then ~ and b; are an eigenvalue and an eigenvector of the
real matrix

Nij = cikjar — dij,
respectively.

The matrix N is crucial for our discussion. The dimension dar of the domain Dap of asymp-
totic freedom is equal to the number of A/-positive eigenvalues v , including multiplicities. Observe
that because of (5.9]) one eigenvalue is always equal to 1, with eigenvector a;. If the Zimmermann
trajectory exists, the dimension day is at least 1. If v = 1 is the unique positive eigenvalue, the

form of the expansion is (B.1)).

13
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The most general solution reads

gi(t):—z at Y ”t‘;int . (5.11)
yn,n>0

Here v is a vector collecting the positive eigenvalues of the matrix A/, while n is a vector of
non-negative integer entries. The condition n > 0 means that n must not vanish identically. Two
vectors n and n’ such that v-n =~ - n’ are equivalent, and associated with a unique numerator
biyn. The sum is ordered for increasing values of v - n. Finally, the b; ;.n(Int)’s are polynomials
of certain finite degrees in Int.

Inserting (5.11)) into the RG equations (5.8) and isolating the coefficients of the powers t =27,
we obtain equations for the polynomials b; 5.n. It is immediate to find that such equations have

the form
[(v - 0)dij = Nigl bjyn = b yn = Gy (5.12)

where 0; y.n< is a sum of monomials
H ij"Y'nk

k
with v -np <vy-mand ), v-n, <7v-n
Clearly, d; y.n< contains a finite number of terms. Now we want to show that equations (512)
allow us to recursively determine the b; y.n’s.
For intermediate purposes, it is convenient to turn to the basis where the matrix N;; has a
real canonical Jordan form. Quantities in this basis are denoted with a tilde. Specifically, A is

block-diagonal. Its first blocks are associated with the real eigenvalues A and have the form

A0 0
1 0 | (5.13)
0 1 X

while the last blocks are associated with the complex eigenvalues p and have the same form as
(513), where however the A’s are replaced by 2x2 blocks

Repy  Imp

—Imp Rep )’
the 1’s are replaced by 2x2 identity matrices and the 0’s are replaced by 2x2 matrices with
vanishing entries. All matrices Nj; — (v - n)d;; are then in canonical Jordan form.

Let M;; be such that N = M~INM and l~)m.n = M;jbj y.n. Multiplying equation (5.12) by

M to the left, we can rewrite it in the form

(")/ . n)éij — ./\/;'j Bj7-y.n b; n 5i7’y~n<7 (5.14)
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By induction, if we assume that the polynomials INJM.HI with v-n’ < v-n are known, we conclude
that the Si,,y.n<’s are polynomials of certain finite degrees in Int. When the matrix ./\7U — (y-n)d;;
is invertible, the polynomials l~)m,n are uniquely determined. Calling f;; the inverse matrix of

Nij — (v - n)dij, we have, similarly to (5.3),
bin = Uy (gj”y'“ + Bg,v-n) = —Uij0j < + Uikl ne — Uil e + -+ (5.15)

Again, the sum ends after a finite number of terms, since the 5i¢,,n<’s are polynomials.

When ./\7ij — (v - n)d;; is not invertible, one of its blocks has mg > 0 zeros on the diagonal.
Assume that this block is the one with 7 < 4,5 < 7+ mg and proceed as follows. The block-
structure of A allows us to split equation (TI4) into: a) the equation for the b; ,.n’s with i < 7; b)
the equation for the l~)m.n’ with 7 < 4, < 7+ mo; ¢) the equation for the l;iﬁ.n’s with ¢ > 74+ myg.
Equations a) and c¢) are solved by formulas similar to (5.15]). Equation b) has the form

0 0 0
Cl . 0 Bj;yn - 5;7’%11 = Si;y~n<,
0 Cmo—l 0

ij

where the (;’s can be equal to 0 or 1. The right-hand side is made of recursively known polynomials
of some degrees d; in Int. Then the Biﬂ,n’s are polynomials of finite degrees greater than d;, and
each of them is uniquely determined up to an arbitrary additional constant. Therefore, in total
we have myg arbitrary constants.

Thus, equations (512)-(EI4) can be solved recursively to determine the polynomials b; .z,
and therefore the b; ,.n’s. The solutions (G.II) contain a number of arbitrary constants equal to
the number of times the matrices J\~/,~j — (v - n)d;; become degenerate, including multiplicities.
This number is equal to the number of positive N-eigenvalues, including multiplicities. Indeed,
recalling that different n’s with the same v - n are equivalent, each equation v; = v - n admits
precisely one solution, and no other degeneracies are possible.

The set of arbitrary constants contained in the asymptotic expansion (G5.11]) determines the
domain of asymptotic freedom Dap. We conclude that the dimension of Dar is equal to the
number of positive eigenvalues 7 of the matrix N, including multiplicities.

In practice, we have to look for the Zimmermann trajectory around which the asymptotic
expansion (0.1 has the maximal number of positive eigenvalues. In most cases the other Zim-
mermann trajectories also play a role. They can determine the boundary of Dap, if it is two-
dimensional, or its edges, if it more than two dimensional.

Now we consider two examples in detail.

15
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Dirac model First we consider the Dirac model (4.6]) in the large N limit, focusing on the g2-g4
subsystem. The RG flow is given by the equations

By =ga = k(g5 +91) + O(¢%),  Ba=ga = 2kg294+ O(g°),
where x = N/(187%) > 0. We find the constants

€222 = C244 = C424 = C442 = 2K,

while all other entries ¢;;, vanish. The Zimmermann trajectories are given by (az,a4) = (1,0)/k
and (ag,a4) = (1,£1)/(2x). Expanding around the trajectories with (ag,as) = (1,0)/x we find
that A is equal to the identity matrix, so v = 1 with multiplicity 2. This means that Dar has
dimension 2. Two arbitrary constants appear at order ¢t=2.

Precisely, we find

1 1 1
— 4 (@t b) +O (W), ga(t) = (€t +ba) +O (0t (5.16)

g2(t) = —
where by 4 are arbitrary constants, while £ 4 are uniquely determined by the cubic terms of the
beta functions. Since all other matrices N;;—(7-1n)d;; are invertible the higher-order corrections are
uniquely determined. Thus, the two-dimensional domain of asymptotic freedom is parametrized
by the arbitrary constants by 4. The other two Zimmermann trajectories, given by (ag,as4) =
(1,£1)/(2k), are the boundary of Day.

At one loop we can check our results solving the system explicitly. Call Ay = g2 + g4. We

have
6:& = ).\:t = ’{)‘3:7
wherefrom \
Ap(t) = —220 1
:t( ) 1-— /i)\:tot (5 7)

In the ultraviolet limit ¢ — oo the asymptotic behaviors are

1 1 Ao+ 2o
Kt 2/4:2t2 )\+0)\_0

I Ao— Ao

_ -3
N 2H2t2 )\+0)\_0 + o (t )

+0(t7%), ga(t)

92(t) = —

Here the logarithmic terms of (5.10]) are absent, because we are neglecting higher-order corrections
to the beta functions (check also (5.4])).

Electroweak model Now we apply our method to the electroweak four fermion model (£.4)
with by, = bp = 1. We first restrict to the subspace (gar, A, u). At one loop we have

1 A 1
Po = B +2X). Aa= e (u—5A). Bu= sy (0% 665, + 2hu). (5.18)

N

16
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The conditions Bar, = By = By = 0 are solved by gor, = A = 0, while u remains arbitrary. Since
a non-trivial fixed point cannot be trusted within our approximation, we need to project onto a
suitable subspace of parameter space. Such a projection is automatic in our approach.

The Zimmermann trajectories are

ay A az az
~N —— ~N —— U~ ——
92L £ £ £
with
1 2 11
(al, as, CL3) = g, 0, g s g, g, 1 s (0046, —0141, 0149) . (519)

The third trajectory is given by complicated irrational coefficients of which we just give the
approximate numerical values. Two complex solutions to (5.9]) also exist, but must be discarded.

Expanding around the first Zimmermann trajectory, we find

N=10
4

0|, (5.20)

so the positive eigenvalues are v = 1/3 and v = 1. The Jordan canonical form of this matrix is

diagonal: N =diag(1,1/3,—1). The domain of asymptotic freedom is two-dimensional and the

—4/3

arbitrary constants appear at orders ¢ and ¢~2. Using the one-loop truncated beta functions,

the asymptotic expansion of the solution reads

1 6a? 1566a*  3a?
-2 _ =
(6m)g21.(t) = =3 + 575 +—2t2 (72a* Int + 27a® + b) — 7 " @ (360a” Int + 2907a” + 5b)
In? ¢
388848 1
t3
9a%>  63a®
(6m)2A(t) = t46;3 + ﬁ% + —t;” - —/3(144a Int + 2b — 495a°)
2
a 3oy 138267 5 45
7 (16200° nt — ——7—=a’ + = (5.21)
2 a 15a> 24669
-2 .~ S 3 3 a3
6m)ult) =5, + 1 T 5 +t2(72a Int +b) — 7/3 <144 It +—— +2b>
70587 25 In?t
3 a + . 6
900a* Int 4 —-— b> TT760" -,

up to O(t~3Int), where a and b are the arbitrary constants.
The cubic corrections to the beta functions start with terms ~ 1/t3, so they give extra contri-
butions of the form ~ ¢;/t? to the solutions, where ¢; are uniquely determined functions of a and

b. The corrections do not affect the terms proportional to (Int)/t?. Thus, the complete solution

17
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has the form

1 6a® 1
-2 - 3 3 —~7/3
(6m) “gor(t) = 3 + 573 + 2t2(72a Int+27a° +b+ &)+ Ot Int),
_ a  9a®> 63a®+& _

2 a 15a2
ETATVERTTE

(67) u(t) = — + t%(m?’ Int + b+ &) + Ot /2 Int),

where &;, @ = 1,2,3, are calculable numbers, depending on the cubic corrections to the beta
functions. The other beta functions of ([@.4]) give

30 | &

_ _ 18a?
—W+t—2+0(75 7, (67)gr =

 545/3

(6m)%g1, = + f—g’ +Ot77/3),

where &4 5 are calculable numbers.

We have thus found a two dimensional domain of asymptotic freedom.

One-loop degeneracies In special cases, not frequent in physical problems, the one-loop coef-
ficients ¢;;, can have degeneracies that make the expansions of some couplings start from powers
t~1/" instead of 1 /t, similarly to what happens in (5.5) when £$; = 0 for a single coupling. Some
higher loop contributions can be as important as the one-loop ones, or even more important than
the one-loop ones. Then the expansions of the beta functions in powers of the couplings have to

be accordingly reordered. For example, consider the system

) 1

g1 =g + K219, 92 = 79192,

where x is a constant. Observe that the terms g7 and x2g;g5 are one- and two-loop, respec-

tively. Nevertheless, they are equally important in the asymptotic expansion. The Zimmermann

(91,92) = (—%,0> : <—%i%ﬁ> , (5.23)

to which we must add the line of fixed points g3y = 0. The procedure described above has

trajectories are

to be applied using the trajectories (5.23]). For example, expanding around the second pair of
trajectories we find that the matrix N has eigenvalue 1 with degeneracy 2 and the expansions

read

1 _
()= <2+ a4 t brnt— %) + O3 n2t),

_ 1 a—b b ~5/271.2
gg(t)—i4ﬁ\/%<4+ " Int t>+(’)(t In“t),

where a and b are the arbitrary constants. All higher-order terms are uniquely determined. The

domain of asymptotic freedom is two-dimensional.

18
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Another way to find Dar Here we give an alternative method that can be useful to determine
the domain Dap of asymptotic freedom when the origin is an isolated fixed point (possibly after

a suitable projection in parameter space). We define the radius p in parameter space as

and the radial velocity v as
dp 1 N
Rk S

Let D denote a domain in parameter space and D its closure. A theory is asymptotically free
in Dap if the origin belongs to Dar (but not Dap) and every trajectory passing through Dap
remains in Dap and flows to the origin in the ultraviolet limit. The trajectories that satisfy v < 0
asymptotically for t — oo in a neighborhood of the origin belong to Dap. The Zimmermann
trajectories, in particular, belong to Day.

When the origin g = 0 is an isolated fixed point Dar can be also characterized as follows:

i) find the domain D around the origin where v < 0;

i1) call 9yD the boundary of D minus the origin, and consider the trajectories crossing it;

iv) if all such trajectories enter D, then Dap = D; if not, Dap is D minus the trajectories
leaving D through the boundary dyD.

Indeed, the remaining trajectories cannot leave D, so they must flow to the origin, because it
is the unique fixed point.

The condition v < 0 is necessary, but not sufficient, because some trajectories intersecting D
can cross its boundary and run away, instead of flowing to the origin. The good feature of D is
that it can be easily determined, but Dap is only a subset of D.

Now, observe that D depends on the parametrization of the couplings, while Dap of course

does not. Call h;(g) a reparametrization of the couplings and D}, the domain where the velocity

SN hif,
S

Vp =

is negative in a neighborhood of the origin. An efficient way to estimate Dap (and in most cases
determine it) is to take the intersection of the Dp’s, for all reparametrizations h.

We illustrate this method in the gs-g4 subsystem of the Dirac model in the large N limit,
using one-loop truncated beta functions. Observe that the origin is the unique fixed point. We

have

pv = g2f2 + 1B = aga(g5 + 393).
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The domain D is just ga < 0. Counsider now the one-parameter family of reparametrizations
ha = g2 + g, hy = ags + ga.

We find 5
PRUL = % [r(l + az)(3 + 7‘2) + 2a(1 + 37‘2)] ,

where r = g2/g4. Now we study the condition v, < 0, knowing that go must be negative. Varying

« to obtain the best result, we find
Irl <1, Le.  [g2| <|gal,

which together with go < 0 gives our best estimate of the domain Dpp.

We can check this estimate using the explicit one-loop solution (B.I7). We see that inside D
only the trajectories with |ga| < |g4| flow to the origin. All others cross the boundary dyD (that
is the line go = 0), enter the region with v > 0 and run away. Thus, Dy is given by g2 < 0,
lg2| < |ga].- We conclude that our method gives an accurate estimate of Dap, since it misses only

its boundary, namely the trajectories with |go| = |g4]-

6 Zimmermann trajectories and hidden symmetries

In the previous section we have seen that the Zimmermann trajectories play an important role in
the study of the domain of asymptotic freedom. Some such trajectories (see for example (5.19I))
involve only rational coefficients, others very complicated irrational numbers. Normally, rational
trajectories appear when the theory has more symmetries. In this section we point out that
the existence of rational Zimmermann trajectories appears to be a general feature of high-energy
Lorentz violating four fermion models.

First, we briefly recall Zimmermann’s “reductions of couplings” [5, [9]. Assume that a theory
has couplings A7, I = 1,... N. Zimmermann’s idea is to parametrize the couplings in terms of
a smaller set of independent parameters o, j = 1,... M < N. Write A\ = A7(c;). Consistence

with the renormalization group demands

Y

Br = Bj-

aaj

The most interesting case is N = 2, M = 1. Normally, if the one-loop beta functions are quadratic
in the couplings, as in our case, Zimmermann’s equations admit two power-series solutions of the

form
[oe)

X:ca—i-aZdna",

n=1
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where ¢ and dj, are calculable, generically irrational, numbers. If the solution exists at one loop
(namely, if ¢ is real), then it exists to all orders. The most general solution to Zimmermann’s

equations is not analytic, but has the form

oo
NoAd S dya™n,
m,n=1

where £ is typically irrational, dy; is arbitrary and the other coefficients d,,, are uniquely deter-
mined once dy1 is given.

In special situations, such as when the “reduced” model has additional symmetries, the power-
series solution A shrinks to the monomial co, with a rational coefficient ¢, and A’ becomes analytic.

For example, the (Lorentz invariant) model of a spinor ¢ and a pseudoscalar field A interacting

with the Lagrangian
A

Z A4
4!

L= igAyse —

admits reductions
1
X = S VIB)G +dig' + o+ digh T 4

On the other hand, the massless model with interaction
- A
Lr=gyY(A+ivsB)y — §(A2 + B?)?

admits the rational reduction
A=g?, (6.1)

which reveals the existence of a symmetry. Indeed, when the couplings are related by formula
(1) we have the supersymmetric Wess-Zumino model.

We now analyze Zimmermann’s trajectories at one loop in some of our Lorentz violating four
fermion models. Consider again the electroweak model. We look for RG trajectories where all
couplings are proportional to one another: ¢17, = ax, gor, = bz, gr = cx, gLr = dr and A = ex.
The constants a, b, ¢, d and e can be worked out matching the beta functions (£4)). The absolute
value of by, (or br) can be set to 1 rescaling the space coordinates. On the other hand, the ratio
br,/br is free and does not run at one loop.

We choose |br| = |bg| = 1 and consider the cases s = 1. We find only three real solutions.
One of them is just gi11, = gr = grr = A = 0, with only go; non-vanishing. Of the other two

solutions, only one has rational coefficients, and reads

A

6
giL 5’ 92L ) dr 57 9gLR

5+ 3s
10

A (6.2)

If we choose |by| # |br| we generically do not find rational trajectories.
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The existence of a trajectory with rational coefficients is unexpected and offers evidence that

the reduced model might have hidden symmetries. Its Lagrangian reads

/. _ 52 ' . 52
Lewred = L1 <8 +o- 8A—2> L'+ e];%z' <8 — 50 - 8A—2> er — A2 (LJ”eR)(eL.LZ)
L L
iy g iTi i 9t 2 (BE38)g 4iiv ot
LT LU LY LY — == A
10A2 ( ) 2A2L( ) ) 5A% (erer) 10A2L ( )(erer),
where g = — X > 0, and its one-loop beta function is
59>
Y o

If the hidden symmetry is simple, we expect that the relations (G.2]) are preserved by higher-
loop corrections. However, this is not a necessary requirement for a hidden symmetry.

The rational RG trajectory exists also in the U(Np) x U(Ng) model for |by| = |bg| = 1. We
find

Np + N —2 _ _ _ _ 2N +2Nr+3s—1
2NL+2NR—1g’ 92L = 92R = 92LR = —Y, YILR = 22N1 + 2Ng — 1) 9

91L = 91R =

the beta function being
2

g
,Bg = 36 2(2NL + 2Np — 1)
Curiously, the model of N Dirac fermions in the large N limit admits only rational trajectories.
We have already studied the gs-g4 subset in the previous section. In the g5 6-f1,2 subset we find

15 rational trajectories:

(=2,41,1, -1, -5, -2, —2, —~7/5)gs,
(0,0,41/2,41/2,£3/2, £1, +1/2, +:1/10)gs,
(0,0,0,41, 43, +3/2, £3/2, 0)gs.

f
fa

One such trajectory (g5 = gs = 2f1, fo = 0) gives the Lorentz violating “Gross-Neveu” model

[10], whose interaction reads

A

A
A2(

A
A2(

eTlej ) ([flej )
2A%

5 A2 (4')° = AENGE) + 51> [(ret)(Eed) + (=) )

which is renormalizable by the same argument used in (4.2). In some sense, this is an example of

“hidden symmetry” associated with the rational trajectory.
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7 Conclusions

If Lorentz symmetry is violated at high energies, then the Standard Model admits a ultraviolet
completion that is renormalizable despite it contains four fermion vertices at the fundamental
level. In this scenario, four fermion models play a key role, because all other interactions, being
super-renormalizable, disappear at energies much higher than the scale of Lorentz violation. In
this paper we have studied the one-loop renormalization of CPT-invariant Lorentz violating four
fermion models and their RG flows.

We have first considered the most general case, working out formulas for the beta functions,
and then analyzed particular models in detail. We have formulated a method to determine the
domain of asymptotic freedom expanding the running couplings around the free fixed point. We
emphasize that if the four fermion model (L3)) is asymptotically free then the entire Lorentz
violating Standard Model is.

Moreover, we found that the RG flow admits a number of special “rational” trajectories that,

in the spirit of Zimmermann’s reduction of couplings, might hide some new symmetries.
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