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Abstract

We consider renormalizable Standard-Model extensions that violate Lorentz symmetry at high energies,
but preserve CPT, and do not contain elementary scalar fields. A Nambu-Jona-Lasinio mechanism gives
masses to fermions and gauge bosons, and generates composite Higgs fields at low energies. We study
the effective potential at the leading order of the large-N. expansion, prove that there exists a broken
phase and study the phase space. In general, the minimum may break invariance under boosts, rotations
and CPT, but we give evidence that there exists a Lorentz invariant phase. We study the spectrum of
composite bosons and the low-energy theory in the Lorentz phase. Our approach predicts relations among
the parameters of the low-energy theory. We find that such relations are compatible with the experimental
data, within theoretical errors. We also study the mixing among generations, the emergence of the CKM

matrix and neutrino oscillations.
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1 Introduction

Lorentz symmetry is a basic ingredient of the Standard Model of particle physics and one of the
best tested symmetries in nature [I]. From the theoretical viewpoint, we often take for granted
that Lorentz symmetry must be exact. However, our present knowledge cannot exclude that it
may just be approximate. Specifically, it could be violated at very high energies or very large
distances. Both possibilities have motivated several authors to investigate the new physics that
would emerge. Although no sign of Lorentz violation has been found so far, these kinds of
investigations are useful because, after comparison with experiments, they allow us to put bounds
on the parameters of the violation. Among the most relevant reference works, we mention refs.
[2] and [3], together with the data tables of [I]. For a recent update on the state of the art see
ref. [4].

In quantum field theory, if we assume that Lorentz symmetry is explicitly violated at high en-
ergies we can turn non-renormalizable interactions into renormalizable ones [5]. In flat space, and
in the realm of perturbation theory, it is possible to construct gauge theories [6] [7] and extensions
of the Standard Model [8, 9], without violating physical principles. The Lorentz violating models
can contain several types of terms of higher dimensions. They are multiplied by inverse powers of
a scale Ay, which is interpreted as the scale of Lorentz violation. Renormalizability holds because
the theory includes quadratic terms of higher dimensions that contain higher space derivatives.
The modified dispersion relations generate propagators with improved ultraviolet behaviors. A
“weighted” power counting, according to which space and time have different weights, controls
the ultraviolet divergences of Feynman diagrams, and allows us to determine which vertices are
compatible with each set of quadratic terms. No terms containing higher time derivatives (which
would spoil unitarity) are present, nor generated back by renormalization. Lorentz symmetry
is recovered at energies much smaller than Ay. It is not necessary to assume that CPT is also
violated to achieve these results.

The theories formulated using these tools are not meant to be just effective field theories,
but can be regarded as fundamental theories, in the sense that, very much like the Standard
Model, in principle they can describe nature at arbitrarily high energies (when gravity is switched
off). Some Standard-Model extensions contain the vertex (LH)?/Aj at the fundamental level,
therefore give neutrinos Majorana masses after symmetry breaking. No right-handed neutrinos,
nor other extra fields, are necessary to achieve this goal. Some extensions contain four fermion
vertices (1)1)? /A% at the fundamental level. Such vertices can explain proton decay and trigger
a Nambu—Jona-Lasinio mechanism, which generates fermion masses, gauge-boson masses, and
composite bosons. Finally, some of our models can be phenomenologically viable even if they do
not contain elementary scalars.

Because of renormalizability, these extensions contain a finite set of independent parameters,
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so they are to some extent predictive. It is important to check that they can reproduce the known
physics at low energies. For example, it is not obvious that the models containing no elementary
scalars are able to fully reproduce the Standard Model at low energies.

In this paper we study the low-energy phenomenology of the scalarless models and compare
predictions with experimental data. Although our approach has large theoretical errors, the
predictions are still meaningful, because they can be falsified by data. We give enough evidence
that our models do reproduce the known low-energy physics. We study the effective potential in
detail, prove that there exists a broken phase, study the phase space and give evidence that there
exists a Lorentz phase. We investigate the mixing among generations and show how the Cabibbo-
Kobayashi-Maskawa (CKM) matrix emerges. We study the spectrum of composite bosons that
propagate at low energies, the low-energy effective action, and the compatibility with experimental
constraints. Finally, we discuss neutrino oscillations.

The search for consistent Standard-Model alternatives that do not contain elementary scalar
fields has a long history, from technicolor [10] to the more recent extra-dimensional Higgsless
models [II]. Worth mentioning are also the asymptotic-safety approach of ref. [12] and the
standard perturbative approach of ref. [I3]. In this respect, the violation of Lorentz symmetry
offers, among the other things, a new guideline and source of insight, and in our opinion deserves
the utmost attention.

The paper is organized as follows. In section 2 we review the minimal scalarless Standard-
Model extension that we are going to study. In section 3 we describe the dynamical symmetry-
breaking mechanism and calculate the effective potential to the leading order. In section 4 we
prove that there exists a domain in parameter space where the dynamical symmetry breaking takes
place, namely the effective potential has a non-trivial absolute minimum. We also investigate the
phase space. In section 5 we reconsider the case of one generation treated in ref. [9] and prove
some new results. In section 6 we study the case of three generations and show how the CKM
matrix emerges. We also show that, in general, the Lorentz violation predicts a more severe
mixing among generations besides the CKM matrix. In section 7 we show that there exist CPT
violating local minima. In section 8 we derive and study the low-energy effective action in the
Lorentz phase, in the case of one generation, and compare predictions with data. In section 9
we show that the minimal model cannot generate (Majorana) masses for left-handed neutrinos.
Nevertheless, it is possible that neutrino oscillations are explained in a different way. Section 10

contains conclusions and outlook.
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2 The model

We assume that CPT and invariance under rotations are preserved. The (minimal) scalarless

model we are going to study reads

5
1 — = _ Yf _ _ g =3
Luot = Lq + Liing — Y Az IDF () + oo — 1o 7 (2.1)
=
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are the quadratic terms of fermions and gauge fields, respectively, and Ay, is the scale of Lorentz
violation. Bars are used to denote space components and F denotes the “magnetic” components
F;j of the field strengths. Moreover, x{ = L* = (v},41), x§ = Qf = (u},d}), x§ = €%, x§ = u%
and x§ = d%, v* = (Ve, vy, v7), 1* = (e, 7), u® = (u,c,t) and d* = (d,s,b). The sum ) . is
over the gauge groups SU(3)., SU(2)r and U(1)y. The last three terms of (2] are symbolic.
Finally, T = —D? /A% and 7¢ are polynomials of degree 2. Gauge anomalies cancel out exactly
as in the Standard Model [§].

The model is “minimal” in the sense that it contains the minimal set of elementary fields. It
contains fewer fields than the minimal Standard Model, because we have suppressed the elemen-
tary scalars. No right-handed neutrinos, nor other extra fields, are included.

The model is renormalizable by weighted power counting in two “weighted dimensions”. This
means that at high energies renormalizability is governed by a power counting that resembles
the one of a two dimensional field theory, where energy has weight one, and the three space
coordinates altogether have weight one, therefore each of them separately has weight 1/3.

The weights of fields and couplings are determined so that each Lagrangian term has weight
2. Gauge couplings g have weight 1/3, so they are super-renormalizable. For this reason, at very
high energies gauge fields become free and decouple, so the theory (ZI) becomes a four fermion

model in two weighted dimensions, described by the Lagrangian

3 5

a- . b7 blab B Y, o

Ly = Z ZXIZ (5 P7000 + b]?P — _/2—2@3) xo + A—gxxxx. (2.3)
ab=11=1 L L

b{ab

We have kept also the terms multiplied by , since they are necessary to recover Lorentz

invariance at low energies.
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Our purpose is to investigate whether (2.I) can describe the known low-energy physics by
means of a dynamical symmetry breaking mechanism triggered by four-fermion vertices.

The low-energy limit is the limit A — oo. From the point of view of renormalization, power-
like and logarithmic divergences in Ay appear in this limit, and add to the divergences already
present in the high-energy theory. The Ap-divergences make the difference between the renormal-
ization of the high-energy theory and the one of the low-energy theory, which are controlled by
weighted power counting and ordinary power counting, respectively. When no symmetry-breaking
mechanism takes place, Lorentz symmetry can always be restored at low energies fine-tuning the
parameters of the low-energy Lagrangian. In ref. [14] these aspects of the low-energy limit have
been studied in the QED subsector of (2.I). However, taking the low-energy limit in the full
model (21)) is more involved.

Because of the dynamical symmetry breaking mechanism, the symmetries of the low energy
theory depend on the vacuum. In turn, the vacuum depends on the coefficients of the four-fermion
vertices and the other free parameters of the theory. The absolute minimum of the effective
potential may break boosts, and even rotations and CPT. If that happens, it is impossible to
recover Lorentz invariance at low energies and have compatibility with experimental data. Thus,
it is important to show that there exists a phase (namely, a range in parameter space) where the
minimum is Lorentz invariant, so that Lorentz symmetry can be restored at low energies. One
of the purposes of this paper is to provide evidence that such a phase exists. This is the phase
where the Standard Model lives, and we call it the Lorentz phase.

We proceed according to the following high-energy—low-energy pattern. It is useful to first
switch gauge interactions off and switch them back on later. Normally, this is just a trick to
simplify the presentation, but in our model it has a more physical justification, because, as
explained above, gauge fields decouple at very high energies, where the complete model (2.1))
reduces to the four-fermion model (2.3)) plus free fields. We show that the model (2.3)) exhibits a
dynamical symmetry-breaking mechanism in the large N, expansion. Under suitable assumptions,
we argue that the effective potential has a Lorentz invariant minimum. The minimum produces
fermion condensates (gq) and gives masses to the fermions. Massive bound states (composite Higgs
bosons) emerge, together with Goldstone bosons. When gauge interactions are finally switched
back on, the Goldstone bosons associated with the breaking of SU(2);, x U(1)y to U(1)g are
“eaten” by the W* and Z bosons, which then become massive.

When we study the compatibility of our predictions with experimental data we set the scale
of Lorentz violation Az to 10'4GeV. This value was suggested in ref. [§] assuming that neutrino

masses are due to the vertex )
A

However, in the minimal model (2I)) this vertex is absent, both at the fundamental and effective

(LH)?. (2.4)
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levels, and neutrino oscillations must be explained in a different way (see section 9). Still, a
number of considerations suggest that ~ 10141°GeV are meaningful values for the scale of Lorentz
violation. They can be thought of as the smallest values allowed by data. For example, they also
agree with existing bounds on proton decay, derived from four-fermion vertices (t)?/ A%: if we
assume that the dimensionless coefficients multiplying such vertices are of order one, we obtain
Az 2 10°GeV [15]. For other, recent considerations on the magnitude of A; and compatibility
with ultrahigh-energy cosmic rays, see [16].

3 Dynamical symmetry-breaking mechanism

In this section we describe the dynamical symmetry breaking mechanism in the model (2.3)) and
calculate the effective potential to the leading order of the 1/N, expansion.
The most general four-fermion vertices can be expressed using auxiliary fields, that we call

M, N, a quadratic potential V5 and Yukawa terms:

+ ) [M St < A Ayt —i—H.c.)].

aBABIJ

Here a, § are spinor indices, I, J are indices that denote the type of fermions, A, B are SU(N,.) x
SU(2)-indices. Vo(M, N) is the most general quadratic potential that is invariant under SU(N,) x
SU(2)r, x U(1)y and CPT. The Yukawa terms are made symmetric assigning suitable transfor-
mation properties to the fields M and NV.

The four-fermion vertices are obtained integrating out the auxiliary fields M and N. Several
combinations of auxiliary fields may produce the same four-fermion vertices. We do not need to
select a minimal set of auxiliary fields here. Actually, we include the maximal set of auxiliary
fields, because we want to study all possible intermediate channels. Some components of the fields
M and N become propagating at low energies (composite bosons), others remain non-propagating

also after the symmetry breaking.

Large N. expansion The Nambu—Jona-Lasinio dynamical symmetry-breaking mechanism is
not perturbative in the usual sense, so we need to have a form of control on it. We use a large N,
expansion. A rough estimate of the error due to the large N, expansion can be obtained summing
all powers of 1/N, with opposite signs, assuming that higher order contributions are of the same
magnitude (apart from the powers of 1/N, in front of them). Thus, calling “1” a generic quantity,

1ts corrections are

= 1
Zm = 1 (3.1)
k=1""¢ Ne
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For the purposes of this paper we just need to consider the leading order of the 1/N, expansion.
For N, = 3, formula (B.I)) tells us that we have a +50% of error. Even if this error is large, some
of our predictions are enough precise to be possibly ruled out.

We cannot exclude that other symmetry-breaking mechanisms may take place in the exact
model, but we do not consider such possibilities here, because we do not have a form of control
on them such as the one provided by the large N, expansion.

The leading order of the 1/N, expansion receives contributions only from color-singlet fermion
bilinears, on which we focus for the moment. We consider the Yukawa terms

Ly=="" S (@QE"QY) + St (QE" Q) + Hith(QE"Ql)

abmn
+KZ?MH(Q%m’YMQl}?) + Lzzmn(Q%ﬂUuuQ%ﬂ) + nghnm(@%mauqu}?) ) (32)

where Q% = (u%,d%) and m,n are both SU(2)r- and SU(2)g-indices, depending on the case.
The Yukawa terms are U(2); x U(2)g-invariant, and so is the leading-order correction to the
effective potential. The (contracted) SU(N.)-indices are not shown. The fields S and L,, are
CPT even, while the fields H,, and K, are CPT odd. The matrices H,, and K, are Hermitian.

Lagrangian of the high-energy model and effective potential As usual, we first switch
the gauge fields off, because they decouple at high energies. We will turn them back on later.

The fermionic kinetic terms are

B ' _ bab B B . B babm B
= S Qg (5900 + 8= 40 ) @i+ @i (5700 + - B0 ) @l
abm

where bgf’l ;, and bgf’l”}% are Hermitian matrices for every m. The total Lagrangian reads
£ = ﬁkf—i_ £Y +£/Y + WQ/(SuHuKuLuN,)7

where £, and N’ denote all other Yukawa terms and auxiliary fields, respectively. The potential
WJ is the most general quadratic form compatible with the symmetries of the theory. We can
eliminate the off-diagonal terms SN’, HN', KN’ and LN’ translating the fields N’. Calling N
the translated fields, we get a quadratic potential of the form

W2/ = WZ(Sv Hv K7 L) + W2//(N)

The leading-order correction to the potential depends only on S, H, K and L. The fields NV have
vanishing expectation values, so the fields N’ can have non-trivial expectation values because of
the translation from N’ to N. For the moment we can ignore the N-sector and focus on Wh.

By CPT and rotational invariance, the potential W5 has the symbolic structure

WS, H, K, L) ~ S+ HE + H? + HyKo + H;K; + K§ + K? + Lo; L}, + Li; L.

7
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The indices not shown explicitly in this formula are contracted with constant tensors.

To study the effective potential we need to consider the Lagrangian

3 5 ab
_ _ 52
— Z A <z’1“0]l(‘9t +4l -0 (Bl e B0> M) W — Wo(M), (3.3)

a,b=1
where

bab o™ 0 S + L6t K, ot

BOl = 1L ab ) M = * li 7 :U'? )
’ 0 bo. 1 0" H,o" ST+ L},o™

and

0 xm am
(Fu)ab — 5ab B 7 P — QL ,
SH0 ap

(S = §mPot, (P = 5™k, o = (1,0)
G = —i(otGY — gV 5H) /2.

The leading-order effective potential reads

, ot = (1,—0o), 6" = —i(gto” — c"ot)/2,

W(M) = Wa(M) +V(M),

where V(M) is calculated integrating over the fermions. It is the renormalized version of

72
Vaiv(M) = =N, / ———Indet (P —T°M),  P=ilps+T°T-p < Bi+ 45 Bo>

The integral has already been rotated to the Euclidean space. We regulate the ultraviolet diver-
gences with a cut-off A and subtract them expanding in M around M = 0. The lowest order in
M is a constant, while the first order in M is proportional to the integral of tr [P_IFOM ], which
is odd in momentum, so it vanishes. The second order is logarithmically divergent, while all other

orders are convergent. We have

V(M) =—N, / (;1; <lndet(1 PTITOM) + ;tr [P—lroMP—lroM]>. (3.4)

Observe that V(M) is regular in the infrared.

4 Existence of a non-trivial absolute minimum

In this section we prove that there exists a phase where the dynamical symmetry-breaking mech-
anism takes place. Precisely, the potential has a nontrivial absolute minimum if some parameters

contained in Wy (M) satisfy certain bounds and Bj is in the neighborhood of the identity. The
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assumption B; ~ 1 is not only useful to simplify the calculations, but also justified by all known
experimental data [I].

It is sufficient to work at B; = 1, because the result, once proved for By = 1, extends to
the neighborhood of the identity by continuity. On the other hand, for the moment we keep the
matrix By free, because its entries can differ from one another by several orders of magnitude.

We first prove that the potential grows for large M, in all directions. This result allows
us to conclude that there exists an absolute minimum. Indeed, since the function W (M) is
continuous the extreme value theorem ensures that it has absolute maxima and absolute minima
in an arbitrary sphere |M| < R. If we take R large enough W (M) grows outside the sphere. Then
the absolute minima inside the sphere are absolute minima of the function.

Later we show that, in a suitable domain D of parameter space, the point M = 0, which is
stationary, is not a minimum. This proves that the absolute minimum of W (M) is nontrivial in
D. Along with the proof, we derive the bounds that define D.

To study W (M) for large M, we rescale M by a factor A and then let A tend to infinity. It is
useful to rescale also ps by a factor A and § by a factor A/3. We get

N2 [T dpy dgﬁ A .
= - PO Pr0Mm 2 4.1
2 /_Oo o7 Jin (27r)3tr[ ]J“O(A ) (41)

W(AM) =

where P is the same as P, but with B; — B;/ A\2/3_ The subscript IR means that the p-integral
is restricted to the IR region. It gives contributions proportional to A% 1n \2.

Formula (&) is proved as follows. If we factor out a A? and take A to infinity inside the
integrand of (B.4]), we notice that the integral remains convergent in the ultraviolet region, but
becomes divergent in the infrared region. Thus, when A — oo the infrared region provides
dominant contributions that grow faster than A2. The first term of (3.4]) does not give dominant
contributions: indeed, in the IR region it is safe to take A — oo inside the logarithm. Instead, it
is not safe to do the same in the second term of (8.4]). This explains formula (.T]).

Now we calculate the dominant contributions. It is convenient to work in the basis where the
matrix By is diagonal:

Bgb = o diag (b3, b3, b, bl - (4.2)

Here the indices u,d refer to the “up” and “down” quarks of the family labeled by the index a (so
they mean c¢,s and ¢,b for a = 2 and 3, respectively). In this basis the propagator is diagonal in
a,b. The trace is invariant under rotations, so it can be calculated orienting p along the z-direction
and rewriting the result as a scalar. With this choice, the propagator is diagonal in all indices,

and the trace can be easily calculated. We obtain a linear combination of integrals of the form

/+°° dpa dBp 1 1
—00 21 IR (27'(')3 Zp4 + X Zp4 + Y ’
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The integral in p4 can be calculated using the residue theorem. The p-integrand, which is quadratic
in M, is at most quadratic in the components of p, and can be symmetrized using
%

—2
3 .

Py — —Lp

We obtain a linear combination of p-integrals of the form

35 1 2
/ gp?) 1 p2 302 L2b n A%,
ir (27) D] (W + K—%bxy) (2)2 by

where bg, is the sum of two entries of the matrix By. The result is a linear combination of
contributions of the form

(M)

2
NeA2 ey, zl A In A% (4.3)

bey
where ¢,y is a non-negative numerical factor. Converting the result to a generic basis, where By

is not necessarily diagonal, we find
W(AM) = Waom(AM) + O(N?),

with

N.A2
6(2m)2

© 2
Weom(AM) = A2 1n A2 / détr [se—fBose—fBo + g’Hie_gBo”Hie_EBo
0

2 1
+§icie—€30/cie—530 - ggie—ﬁBogie—fBo , (4.4)

where S, H;, K;, G; are matrices obtained from I'° M dropping all entries that are not S, H;, K;
and G; = 2iLo; — €451 L1, respectively.

The dominant contribution ([4]) of W(AM) is positive-definite in the M-entries that it con-
tains. Indeed, recalling that By and I'YM are Hermitian, the integrand is the sum of terms of the

form

tr [(e_fBO/zMe_fBO/z) <e—€Bo/2Me—£Bo/2)T} 7

which are positive definite. Thus, the effective potential grows in all directions on which Wy, (AM)
depends.

However, Wgom(AM) does not depend on all M-entries. Precisely, it does not contain H,
Ky and Lg; (in the basis Ly;-G;). Thus, the dominant contributions of V(AM) that depend on
such entries are at most of order A\?, as are the contributions coming from the tree-level potential
Wa(AM). Now, V(AM) is uniquely determined, while Wo(AM) contains free parameters. If we
assume that the Wa(AM)-coefficients that multiply the terms containing Hy, Ky and Lg; satisfy

10
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suitable inequalities, which define a certain domain D’ in parameter space, the total leading-
order potential W(AM) grows in all directions. Then, by continuity, it must have a minimum
somewhere. This is not the end of our argument, since the minimum could still be trivial.

Let us investigate the point M = 0. It is certainly a stationary point, since the first derivatives
of both Wa(M) and V(M) vanish at M = 0. Moreover, the second derivatives of V(M) vanish
at M = 0 by construction, so the second derivatives of W (M) at M = 0 coincide with those of
Wo(M). Thus, choosing some free parameters of Wa(M) to be negative, or smaller that certain
bounds, we can define a domain D” in parameter space where the origin M = 0 is not a local
minimum.

The domains D’ and D” have a non-empty intersection D. Indeed, it is sufficient to choose a
D"-region defined by bounds on the Wy(M)-parameters that are unrelated to Hy, Ko and Lo;.

In the domain D the potential W (M) grows in every direction for large M, therefore it has a
minimum. Moreover, the minimum cannot be the origin, but it is located somewhere at M # 0.
This means that the symmetry-breaking mechanism necessarily takes place in D, as we wanted

to prove.

Phase diagram Varying the parameters contained in Ws, the absolute minimum moves around
and we can study the phase diagram of the theory.

So far, we have rigorously proved that the theory has an unbroken phase and a broken phase.
We still do not know much about the minimum of the broken phase. To make contact with
experiments it is necessary to prove that there exists a broken phase that i) preserves rotations
and CPT and i) allows us to recover Lorentz symmetry at low energies. In this Lorentz phase
only the fields S may have non-trivial expectation values, while H,,, K, and L,, must vanish at
the minimum.

A number of technical difficulties prevent us from rigorously prove that the Lorentz phase
exists in the most general case. However, we give a number of results providing evidence that it
does exist in several particular cases of interest.

Le us assume for the moment that tuning the Ws(M)-parameters we can obtain every con-
figuration of expectation values we want. Then the theory has a rich phase diagram. Besides
the unbroken phase and the Lorentz phase, we have broken phases where Lorentz symmetry is
violated also at low energies, namely some vector fields or tensor fields acquire non-trivial ex-
pectation values. Among these phases, we have: i) a phase where invariance under rotations is
preserved, but CPT is broken, if H; = K; = L,,, = 0 at the minimum and Hj, Ky have non-trivial
expectation values; ii) a phase where rotational invariance is broken, but CPT is preserved, if
H, =K, =0, but L, # 0; i) a phase where rotational invariance and CPT are both broken, if
H;, K; have non-trivial expectation values. Note that there is no Lorentz violating phase where

CPT and invariance under rotations are both preserved.

11
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At the leading order of the 1/N, expansion it is consistent to project onto the scalar sector
putting H, = K, = L, = 0, because such fields are generated back by renormalization only at
subleading orders. Equivalently, adding quadratic terms proportional to H?, K? and L? to the
tree-level potential W5(M), multiplied by arbitrarily large positive coefficients, it is possible to
freeze the vector and tensor directions at the leading order. Then, the expectation values of H,,
K, and L,, become arbitrarily small and may be assumed to be zero for all practical purposes.
This argument can partially justify the existence of the Lorentz phase and the projection onto
the scalar subsector, which we advocate in the next sections. However, we stress that it works

only at the leading order of the 1/N, expansion.

4.1 Lorentz invariant local minimum

We begin to study the Lorentz phase investigating when the point
S =5y #0, H,=K,=L,=0 (4.5)

is a local minimum. Again, we consider a neighborhood of B; = 1 (which allows us to work
at precisely By = 1, by continuity) and restrict the tree-level couplings of Wy(M) to a suitable
domain in parameter space.

Consider the first derivatives 0W/9M calculated at ([@35]). Clearly, both OW/0H and OW /0K
vanish, since they are CPT odd, and 0W/0Ly; and 0W/JL;; vanish by invariance under rotations.
Instead, OW/0S = 0W5/0S + 0V/OS can be made to vanish adjusting the free parameters that
multiply the S-S-quadratic terms contained in Ws. Observe that all other Wa-parameters remain
arbitrary, a fact that will be useful in a moment.

Now we study the second derivatives 9?W/OM? at the point (&3]). Assume that the matrix

2w PW
052 8585
PW *W (4'6)

8508 052

is positive definite at the minimum. The derivatives 0?W/(0HOS) and 9*W/(0K03S) vanish,
since they are CPT odd. The derivatives 9*W/(0S9L¢;) and 9*W/(0SAL;;) vanish by rotational
invariance. The matrix 9*W/dM? is then block diagonal. One block is ([f6) and the second block
does not contain derivatives with respect to S. The second block can be made positive definite
assuming that the Wa-parameters that have remained arbitrary satisfy suitable inequalities.

We still have to prove that (4.6]) is positive definite. This calculation is rather involved in a

generic situation. We study this problem in a number of special cases.

12
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5 The case of one generation revisited

While experiments tell us that the matrix Bj is close to the identity, we have no such information
about the matrix Bp. Actually, its entries could differ from one another by several orders of
magnitude, so in principle the matrix By should be kept generic. However, calculations with a
generic By are rather involved, so we have to make some simplifying assumptions. In this section
we reconsider the case of one generation (which we assume to be the third one, for future use) in
the scalar sector with By = B; = 1 [9]. We also prove some statements that were not proved in
[9], for example that the minimum is absolute and unique in the scalar sector.
In the scalar sector H, = K, = L, = 0. We have

.i.
FOM:<0 T )
7 0

where 7 is a 2 X 2 matrix, with indices of SU(2)r, to the right and indices of SU(2)r to the left.
The fermions are organized as ¥ = (Qr,Qr) and Q = (¢,b).
If we assume the axial symmetry U(1) 4, besides SU(2)r, and U(1)y, the leading-order poten-

tial is
4
W (M) = Atr[rriC] — Nc/ (;1—])’4 <ln det(1 — P7ITOM) + %tr [P—lroMP—lroM]> , (5.1)
T

where C'is a diagonal constant matrix, C' = diag(cy, cp).

We use the “polar” decomposition (A2) to write

T:ﬁRDUL, D = d 0 ,
0 dp

and the diagonalization ([A3) for N = I'°M. See Appendix A for notation and details. At
By = B; = 1 the one-loop correction to the potential does not depend on the diagonalizing
matrix U of (AJ5), but only on the entries dy, dj, of D. It is useful to define the four vector

i rali5))

because the integrand of (5.1)) is “Lorentz invariant” in this four-vector, therefore it can be calcu-

lated at p = 0. Writing
Ur = /1 — |ul?2 4 iuoy + itio_,

where o = (01 £1i02)/2, |u| < 1, we obtain the potential

W (M) = AZ(dice + dycy) — AF|ul*(df — di) (e — c) + 2V (dF) + 2V (d}),

13
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where

= (v 57) )

This function is non-negative, monotonically increasing and convex. Indeed, for r > 0,
1 d*p 1
=rN, / >0, V"(r) = N, / > 0.
(p')?+r) 24+7)?2

Moreover, V(0) = V'(0) = 0 and V”( ) = +o0.
Let us find the stationary points of W (M) and study the Hessians there. We denote the
values of d;; at the stationary point with myy, and identify them with the top and bottom

masses, respectively.
We assume ¢; # ¢, because, as we prove below, the case ¢; = ¢ is not physically interesting.
Then we find the following stationary points:

1) u = 0, while m;; do not vanish and solve the gap equation
A2c; + 2V (m?) = 0; (5.3)

2) u = 0, while one of my; vanishes and the other one solves the gap equation (5.3);
3) |u|? = 1/2 and m; = my # 0 solve

0= A2 (c; + cp) + 4V (m?). (5.4)

4) my = my, = 0.
Now we analyze the Hessian at each stationary point.
1) Because of (53) and ¢; # ¢, and since V' is monotonic, m; and my cannot coincide. The
Hessian is diagonal and strictly positive:
0*W
o

0*wW

= 2(mi —my)(V'(m) = V'(my)) > 0.

min min
This point is a local minimum. It exists if and only if the gap equations (5.3]) have solutions,
which occurs if and only if both ¢; and ¢, are negative.

2) If my, vanishes then the Hessian is diagonal and

0*wW 9 0*wW 0*wW
—o | =8miVI(mi),  —|  =2Mia,  arm| = Aimi(a )
8dt2 min adg min 8|u|2 min
This point is a local minimum if and only if
cp > 0, cp > Ct.

3) The determinant of the Hessian is negative,

det H = —32A7m*(c; — ¢)2V" (m?),

14
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so this point cannot be the minimum.
4) From the analysis of the previous section we already know that the origin is a local minimum
if and only if both ¢;’s are positive.

The physically interesting case is clearly 1). Since both ¢; and ¢, are negative, we may assume
c <cp <O0. (5.5)

Then point 1) is the unique local minimum in the scalar sector. The theorem proved in the
previous section (existence of the absolute minimum) allows us to conclude that point 1) is also
the absolute minimum of W(M) in the scalar sector. Moreover, the argument of section 4.1
ensures that if the other tree-level couplings of Wa(M) belong to a suitable region in parameter
space point 1) is also a local minimum in the full M-space.

Note that these arguments still do not prove that there exists a phase where point 1) is the
absolute minimum in the full M-space.

Because of the symmetries of the potential, its minimum is not just a point, but a geometric

locus of points. By means of a SU(2)r, xU(1)y x U(1) a-transformation we can choose the physical

mt 0
TO:< 0 m ), (5.6)

The other cases are not physically interesting. For example, if either ¢; or ¢ vanish or are

minimum

which preserves U(1)q.

positive the absolute minimum is either point 2) or the origin M = 0. Then at least one mass
vanishes. Instead, if ¢; = ¢, the theory is invariant under the custodial symmetry SU(2)g and
myp either vanish or solve the gap equation (5.3]). Using SU(2)r x SU(2)r x U(1)y x U(1)4 we
can always make the minimum have the form (5.6]), but either some masses vanish or coincide.

We conclude that there is a (unique, up to exchange of m; and my) phase such that W (M)
has the absolute minimum (5.6]) in the scalar sector, and point (5.6)) is also a local minimum in
the full M-space.

6 Three generations

Now we study the case of three generations, focusing again on the scalar sector and still assuming
By = By = 1. Welook for evidence that the Lorentz phase exists. Assuming again axial symmetry,
the potential W (M) = Wo(M) + V(M) has

mn=mn-—m

Wo(M) =A7 > S Sed cobed V(M) =2) V(dy), (6.1)

mnabed

where C%°? are constants. The correction V(M) is calculated using the polar decomposition
(A5) for N = T°M and noting that the integrand is independent of U. Moreover, it is Lorentz

15
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invariant in the four-vector (5.2), so it can be easily calculated at p = 0 and later rewritten in
covariant form.

As before, V(M) is positive definite, monotonically increasing and convex. Its minimum is
M = 0, so the minimum of W (M) is determined by the free parameters C%“ contained in
Wa(M).

Illustrative example To begin with, it is worth considering the simple case
Ciret = HMCge, (6.2)

where H and (), are Hermitian matrices.
Define the matrices H%, = 6, H®, C% , = 6,y C2. Using the polar decomposition (A:2),

we write
V(SS") = Urdiag(V(d}),--- . V(&;))Uk,  V(S'S) = Ul diag(V(d}),--- , V(d;))Ut.
The potential reads
W (M) = tr[A2HSTCS + 2V (S19)] = tr[A2CSHST +2V(5ST)). (6.3)

The stationary points must satisfy

AW (M)
S

AW (M)
aST

We may assume that S is non-singular at the minimum. Indeed, it is not difficult to prove,

= AJHSIC +2V'(57S)ST =0, = AJCSH +2V(SSH)S=0.  (6.4)

following the example treated before, that, if the free parameters contained in Ws satisfy suitable
inequalities, the singular configurations can be stationary points, but not minima.
Defining
Ha =U HUL,  Ca = UlCUg,

equations (6.4]) become
~A3 HADCA = —A3CADHA = 2V'(D?)D = diagonal.

We see that the matrices fID = VDHAVD and C’D = VDCAVD are Hermitian and com-
mute with each other, so they can be simultaneously diagonalized with a unitary transformation.
Moreover, their product H DéD is itself diagonal. This means that both H p and éD are already
diagonal. In turn, also Ha and Ca are diagonal, so Ur, and U r must be matrices that diagonalize

‘H and C, respectively. The most general such matrices are

U, 0 - Uge O
U= F Uy  Og=| ™ . , (6.5)
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where U} € U(3) and Ugy, Ugrg € Uy(3) are unitary matrices that rotate the generations, but are
inert on the SU(2)r- and SU(2)r-indices m and n, while Uy € SU(2) acts on the indices m, n,
but is inert on the generations. The reason why Uy, has this factor Us is that H has two coinciding
diagonal blocks, which can be freely rotated. We could factor out the unitary diagonal matrices
that multiply U] to the left, as we do for the unitary diagonal matrices that multiply Ugy and
ﬁRd to the right, but we do not need to.

We conclude that the non-singular stationary points have the form

7 /
[ Ura O ) pf U O Us. (6.6)
0 Upg 0o U

Arguing as before, these points are also global minima in the scalar sector and local minima in
the full M-space.

Now, observe that the kinetic and Yukawa terms of the action are invariant under Gg =
UB)rL X U(3)ru X U(3)Ra, if the auxiliary fields are transformed appropriately. The leading-
order correction V(M) to the potential is also invariant under Gg, while the tree-level potential
Wy(M) breaks Gg explicitly. The Gg- and SU(2)r, x U(1)y-transformations allow us to turn
the minimum (6.6) into the diagonal form Sy, = D, which preserves U(1)g. Once we have
done this, the diagonal entries of D are the quark masses. However, we discover that the CKM
matrix is trivial, namely there is no mixing among generations. Thus, our assumption (6.2]) is
phenomenologically too restrictive.

In the special case
Cbet = ¢ 626", (6.7)

the theory is completely invariant under the global symmetry Gg, which is also preserved by
renormalization. The minimum of the effective potential does break this symmetry (because it
is diagonal in the space of generations, but not proportional to the identity). However, with the
choice (6.7)) the model predicts only two different quark masses, since Wy contains only two free
parameters, ¢; and c,.

The results obtained in this example generalize immediately to an arbitrary number of gen-
erations: with a choice like (6.2)) the minimum can always be put into a diagonal form, with no
mixing among generations.

A source of mixing among generations is provided by the matrix By, which was taken to
be proportional to the identity in this section. Now we show that there is enough room for a
non-trivial CKM matrix even if we still assume By = 1. Indeed, it is sufficient to take a less

symmetric tree-level potential Wa(M).
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Emergence of the CKM matrix and mixing among generations Now we show that the

emergence of the CKM matrix can be explained taking
Ot = Hy Gy, (68)

where H,, and C), are again Hermitian matrices. We still assume By = B; = 1. Defining the
)= O HP, HI = 8 HEY, C¥ = 5,10,  OF0, C = 5,120,005, now the

: ab
matrices H Son S o m

1nn

potential reads
W (M) = tr[A2SH,STC + A2SHSTCy + 2V (S19))]. (6.9)

The stationary points are the solutions of

~ ~ ~ ~ ~ ~ ~ ~ 2
HipCip + HopCop = CipHip + CopHap = —A—QV/(D2)D2 = diagonal,
i3

where

ng = \/BUL'HmUz\/E, émD = \/Bﬁ;[zcmﬁjg\/ﬁ, m=1,2.

If we search for a solution of the form

Ugu O U 0
Swmin= [ p| °F U, (6.10)
0 URd 0 ULd

and argue as before, we find that Ur,, Uy € U(3), Ui, Upa € ﬁg(?)) must be matrices that
diagonalize Hy, Hs, C1, Cs, respectively.
At this point we can proceed as usual: the invariance of the rest of the action under phase

transformations and SU(2)r, x U(1)y x Gg allows us to turn the minimum into the form

Sl = Lo D, (6.11)
0 Ckm

which preserves U(1)q, where Ck s is the CKM matrix. This stationary point can describe the
properties of the Standard Model at low energies.

We have only proved that (6.11)) belongs to the set of extremal points of the potential. Strictly
speaking, there could be other extrema that are not block diagonal, and therefore spontaneously
break also charge conservation.

If we take the most general potential (6.I)) every minimum that preserves U(1)g can be cast
into the form (6.IT). Indeed, U(1)g-conservation means that the charged S-entries, which are S%
and S$?, vanish, therefore the minimum is block-diagonal. Then it can be turned to the form (6.11])
arguing as before, namely using invariance under phase transformations and SU(2), xU(1)y X Gg.

Finally, let us comment about the case By # 1. If By is not diagonal it can be diagonalized
using SU(3)r, x SU(3)ru X SU(3)ra. Then we cannot use such transformations to turn (6.10])
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into the form (6.1I). We can only simplify (6.10) by means of (eight) phase transformations.
So, the Lorentz violation predicts more mixing among generations besides the CKM matrix. It
also predicts mixing among leptons. If leptons have a non-diagonal matrix Byy, we can use the
freedom we have to diagonalize it, but then the lepton mass matrix remains non-diagonal.

If both By and B; are different from the identity, we can diagonalize only one of them for each

particle.

7 CPT violating local minima

In this section we want to show that the effective potential may also give non-trivial expectation
values to the vector and tensor fields H,, K, L,,. For simplicity, we assume By = By = 1 and
concentrate on the vector H,.

The most general tree-level potential with one generation is
Wa(M) = A7 (crtr[Hol® + cotr[H;)* + cstr[HG] + catr[H7])

where c1_4 are constants. After simple manipulations, the one-loop correction can be expressed in

the form

4 TE (2
V(M) = —Nc/(;lTZ))4 [lndet(A—i—o'iBi)_ % 7

where

1 . 1
A=1+ W(ZP4HO — p;HZ'), B, = (p/)2

However, since Hy and H; are 2x2 matrices, it is still difficult to evaluate V(M) explicitly. If we

(—ipaH; + piHo — ip Hpeijr)-

restrict to the case of a single fermion we can perform the calculation to the end. We find

Wa(M) = AL (L HG + ),

N.AY
V(M) = — L [630h° In(v? + 1) — v® (1400° + 3600" — 630hv° + 2520° — 945hv + 1260h%)]
with
21/3A2/3 _ 9 .31/3 sz
v 62/3A1/3 , A = /12 + 81h? + 9h, h = A

The one-loop correction V(M) does not depend on Hy, so to have a minimum we must assume
¢} > 0. As a function of h, V(M) is monotonic and convex, and V(M) = O(H*) in a neighborhood
of the origin. Thus, we have two phases:
1) the unbroken phase has ¢} > 0, ¢, > 0;
2) the broken phase has

c, >0, ¢y < 0.

19



11A1 Renorm

where H has a non-trivial expectation value. Here the minimum of the effective potential spon-
taneously breaks invariance under boosts, rotations and CPT.

In the simple example just studied, the potential V(M) does not depend on Hjy. The reason
is that Hp can be reabsorbed with an imaginary translation of py. Observe that H; cannot be
reabsorbed away. Indeed, although the integrand depends only on the sum p} + H;, we cannot
translate p), because the integral is in p;, not in p}. On the other hand, only one p4 translation is
available, so we expect that with more fermions, where Hj is a matrix, there exist broken phases
where H; = 0 but some entries of the Hyp-matrix get non-trivial expectation values. In such phases

CPT and boosts are broken, but rotations are preserved.

8 Low-energy effective action

In this section we study the low-energy effective action in the Lorentz phase. We work at the
leading order of the 1/N, expansion, at By = B; = 1, and focus on the third generation. As
usual, we first turn the gauge-field interactions off and turn them back on at a second stage. We
study the spectrum of composite bosons, derive a number predictions and show that the model is
compatible with the experimental data. For the moment we can concentrate on the scalar sector.

To keep the presentation readable, at first we assume not only invariance under SU(2); x
U(l)y x U(1)p, but also the axial symmetry U(1)4. With this assumption, however, the low-
energy model is ruled out by experimental data. It is straightforward to relax the assumption of
axial symmetry at a second stage. We show that once U(1) 4 is explicitly broken full compatibility
with data is achieved.

We refer to section 5 for the notation. The total four-fermion Lagrangian is Lo, = L4 + Ly,

where the quark- and lepton-contributions are

32
L,=V (ironat 44l -0 <1 — %) — M> U — A2tr[r7r1C] (8.1)
Ly = Loin — Z (y“ngn _aRLz + gbaﬁgéljﬁgn) , (8.2)

ab

y® being constants, while ¥ = ((t1,,br), (tr,br)). The form of £, is justified as follows.

Since we are working in the leading order of the 1/N, expansion, we have to calculate one-loop
diagrams with circulating quarks. Thus, we can focus on four-fermion vertices that contain two
quarks ¢ and two leptons ¢, or four quarks, and ignore the vertices that contain four leptons.
Introducing auxiliary scalar fields 7 and o, as usual, we get Yukawa and potential terms of the
form

€ 2

—7qq — oll — gTQ —bro — 50 -
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The leading-order correction V to the potential depends only on 7, so the effective potential has
the form
W(r, o) = 37'2 +bro + %02 + V(7).

Its extrema can also be found replacing o with the solution o = —br/c of its field equation,
namely working with W(r, —b7/c). Therefore, we do not need to multiply the lepton bilinears ¢/
by independent auxiliary scalars . We can just multiply them by entries of 7 and free parameters.
Because of the symmetries we have assumed, (82]) is the only form that is allowed. Moreover,
using the polar decomposition on y® and performing unitary transformations on L* and (%, we
can diagonalize the matrices y°. Thus, from now on we take % = §%diag(y®), with y° real.
We expand around the minimum (5.6]), writing 7 = 79 + 1. We first recall the leading contri-

butions to the quadratic effective action I'y [9], namely
Ty = —Ne Y i (8% +2m3) fijiti — Ne _ mamy fi(igngi + Tigflsi) (8.3)
ij ij
(the constants f;; being defined in Appendix B and the integration over spacetime being under-

stood), which gives the following propagating fields: ¢) two neutral massive scalars ;2 and a

charged massive scalar ¢,

Nefuw _
01 = /2N, fre Reng, 02 = \/ 2N, fro Re npp, P = Qcitg (mpnep + M)

my +my
with squared masses
miy = 4mg, m3 = 4m3, m? :2(m?+m§),

respectively; i) the Goldstone bosons associated with the spontaneously broken generators of
SU(2)r, x U(1)y, which are

.| Ng _ N,
ot = \/ Wftb(mtntb — Myt ¢0 = \/ f_Z(mbfbb Im gy, — my fre Imingg ),

and ¢~ = ¢, where
Jub

fW:7(m§+m§)a fz =

~ N,
@0 = \/@ (mb Imntt + my Im"?bb) ’

associated with the broken axial symmetry.

(mf fue +mi fop) ;

N |

ii1) a Goldstone boson
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When gauge interactions are switched back on, the Goldstone bosons ¢=0 are “eaten” by the

gauge fields. Then the gauge fields acquire squared masses
miy; = Neg® fw, m% = N.g*fz. (8.4)

Including the covariant derivatives for U(1)q the quadratic effective action I'y becomes

2

1 L , N P P
Ty=3 D [@upi) (@ 0i) = mi]] + (9, — ieAup) (Do + ieAtp) — m* gy + §aﬂ¢05u¢0
i=1
1

+(0u" — mw W, )(0"¢™ — muw WHT) + 5(5;@0 —mzZ,)(0"¢° —mzZ")

and it is invariant under the linearized gauge transformations
SWFE=0,0%,  0Z,=0,C° ¢ =mwCF,  6¢° =myC". (8.5)

Now we calculate the three-leg and four-leg terms I's and 'y of the effective action. We focus
on the terms proportional to factors of the form ln(A% /m?), where m is a function of the masses,
because they are numerically more important, in our approximation. We find (again, refer to

Appendix B for the notation)

I's+T4=-2N, Z M fijke (i i i + DM Mes) — Ne Z JigkaNii Mg Mt it - (8.6)
ijk ijkl
Writing (8.3]) and (8.6) we have omitted some terms that are numerically negligible. Basically,
they do not contain the enhancing factor ~ In A%. Examples of such terms are

Nemy o 5 Nemy, 4 2N.my

- 5.7)
3(am)2 3(dm)2 ()2 Meteellot: :

52 (On Re ) (0" Re i),

(using my > my). We can compare them with the smallest cubic term in (8.6, which is

2
- %mb(nwmmb + 7o k) In ::L—ig (8.8)
Numerically, with A7, = 10GeV and using m; = 171.2GeV, m; = 4.2GeV, we find that the
coefficient of the second term of (8.7) is about 13% of the coefficient of (8.8]). All other terms of
type (8.7 are suppressed by a factor 1/In(A2 /m?), which is a 2%. In any case, these contributions
are below our errors. Moreover, since In(A7 /m?) and In(A% /m?) differ only by a 14%, we can
also neglect their difference and replace my with m; inside the logarithms. Finally, the recurring

factor N A2
S 5 In _L2
(47) mi

N =
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can be approximated to one up to a negligible 3%. However, we continue to write it down
explicitly, to keep track of the Ap-dependence.

Collecting I's, I's and T'y, we get the low-energy scalar effective action
'~ Ntr[@MTa"TT + 27877t — i), (8.9)

which is a type II two Higgs doublet model (2HDM), namely a model with two Higgs doublets,
where one doublet couples only to top quarks, while the other doublet couples only to bottom
quarks and leptons.

Because of the assumed axial symmetry U(1)4, the scenario explored so far is ruled out by
data. Indeed, it predicts very light neutral Higgs bosons, such as the field @9 of mass ~ 2my and
the massless U(1)4 Goldstone boson. These fields violate the present experimental lower bound
on the mass of neutral Higgs bosons, which is 114GeV [17]. This bound, established through the
process Z — Zh — Zbb, applies to our model. Indeed, take for example the field ¢ as the Higgs
boson h. It is easy to check that although the vertex ZZh is suppressed by a factor m,/my, the
Yukawa coupling hbb is enhanced by the reciprocal factor m;/my, so the process Z — Zh — Zbb
is not suppressed with respect to one predicted by the minimal Standard Model.

Compatibility with data can be obtained breaking U(1)4 explicitly.

Low-energy model compatible with data It is easy to see that, because of SU(2)r x U(1)y
invariance, the U(1)4 symmetry can be explicitly broken in a unique way by four-fermion vertices.

Indeed, only one term can be added to the tree-level potential W5, namely
AW, = miytr [rerT €] + mistr [TTGT*G] , (8.10)

where T denotes transposition, €4 = e = 0, € = —ep = 1, and M9 is a complex constant. The
one-loop correction V is unaffected, therefore still U(1)4-symmetric. The term (8I0) displaces
the minimum and changes the mass spectrum.

For simplicity, we take my real. To bring the displaced minimum back to the form (5.6)), we
also modify the term

27'5 ol

of (83) replacing 73 with a different diagonal matrix. With our approximations we find the
low-energy type II 2HDM Lagrangian

2
m12mtmb

= Ntr 9,707 + 272777 — 12700
: : 2(m7 +mg)

(TETTE +7ler*e — 267’067’0_17'7'T) — rrirrt ,

(8.11)
Expanding 7 as 79 + 1 we can first check that the minimum is still 7y, and then work out the new

spectrum. We find that, using mp << my,
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i) the three Goldstone bosons ¢+ associated with the SU(2);, x U(1)y symmetry are unaffected,

i1) the mass of the charged composite Higgs boson ¢ becomes

[om2 2
My ~ A/ 2mi + miy,

i41) assuming also my < mqg, the masses of the neutral Higgs bosons ¢; and ¢2 become
mi2, 2my,

which is which depending on whether mjs > 2m; or mys < 2my,

iv) the field <;~50 acquires a mass equal to mjs,

v) the neutral fields (¢1, p2) are rotated by an angle «, while all other fields preserve the expres-
sions they had before.

Since four fermion vertices are multiplied by 1/A%, the tree-level potential terms, such as
(810), are proportional to A%, which means that mjo is large. For mgo sufficiently large the
masses of all particles become compatible with data. Taking into account of our errors (£50%),
even a Higgs mass predicted to be around 2m; could in the end be more close to m;, which is
contained in the present mass range for Higgs boson.

Moreover, because of i) the gauge-boson masses are unaffected, and formulas (8.4)) still hold.
The Fermi constant and the parameter p are given by the relations [9]

1 Nemi A} _§'m}

w
1 DAL ALY 8.12
Gr  4r2V/2  m] P m (542

Formulas (8.12]) provide two important checks of our model. The Standard Model provides no
analogue of the first formula. At A7, = 10'4GeV the first prediction turns out to be very precise.
As far as p is concerned, the Standard Model predicts p = 1 up to radiative corrections, which
matches experimental data very well. Our approach is consistent with this, but cannot be equally
precise, because our theoretical errors are large.

So far, we have focused on the scalar sector and ignored the fields H,,, K, and L, . It is easy
to prove, computing their two-point functions in the low-energy limit, that such fields do become
propagating at some point. Moreover, the dominant contributions to their kinetic terms, namely
the contributions proportional to In A%, are Lorentz invariant. Thus, our model also predicts
composite vectors and tensors at low energies. Nevertheless, it is unable to predict their masses,
whose values can be changed adding quadratic terms proportional to H?, K2 and L? to the tree-
level potential Wy (M), multiplied by coefficients proportional to A%. The basic reason is that in
the Lorentz phase H,, K, and L,, have trivial gap equations. Thus, we are free to assume that
the masses of these fields are sufficiently large, in which case this subsector of our model is also

compatible with data.
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The limit mijs — oo The limit m12 — oo is particularly interesting, because it gives the usual

one-doublet model. The coefficient of m?2, in (811 must vanish in the limit, which requires

H —H
T=u 2 L), K= @, u? = (14 KN (8.13)
kH1 kHy my

Then we find a particular case of the usual Higgs Lagrangian, namely (using again m; > my)
Ty =0,H"H -V(H), V(H)=2m!HH—«*(H H)> (8.14)
From this formula we can read: i) the Higgs vacuum expectation value (|H|yi, = v/v/2), which
is (with Ay, = 101GeV)
v=""\/3 ~ 247GV,

u
i1) the constant

A=u?~1,

and, consequently, i) the Higgs-boson mass, which is 2m;.

The Yukawa couplings are automatically correct. We have
m _ ~ . m - _
Lyukawa = —Tt\@ (tRHQL + QLtRHT) - Tb 2 (HTbRQL + QLbRH)

3
—? S mg (HTZC,;LG + Lo, ) , (8.15)
a=1

where H,, = engHy and m§ = myy®. The lepton mass terms do not give new predictions, but just
determine the Yukawa parameters y®.

The one-doublet model ([8I4) was already considered in [9], but not fully justified there (it
was presented as a subsector of the model with mis = 0). The limit mjs — oo provides the
missing justification for (814]).

9 Neutrino masses and neutrino oscillations

Among the compatibility checks we can make, we mention neutrino oscillations. In this section
we show that the minimal versions of our models cannot give masses to neutrinos and discuss
alternative ways to explain neutrino oscillations.

First, we prove that the vertex

3

1 1

A—L(LH)2 -5 > Yap (L8 eapLl?) emnHngpgHy + Hee,, (9.1)
a,b=1

which gives Majorana masses to the neutrinos when H is replaced by its expectation value, cannot

be generated.
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The vertex (O.I]) breaks the conservation of B — L by two units. However, the vacuum we
are considering does not break B — L spontaneously. Moreover, the global B — L symmetry is
anomaly-free in our model. The reason is that it is anomaly-free in the minimal Standard Model
[18], and anomalies are unaffected by the Lorentz violation (see [§]). Finally, the B — L symmetry
cannot be explicitly violated in the model (2.I]), because

Theorem 1 all CPT invariant four-fermion vertices constructed with the fields of the minimal
Standard Model preserve B — L.

This theorem is a simple generalization of a well-known property stating the same conclusion
about Lorentz invariant four-fermion vertices [I9]. We stress here that it is not necessary to
assume Lorentz symmetry, because CPT is sufficient. The theorem can be proved writing down
all four-fermion vertices that are invariant under SU(2)r, x U(1)y and using a property proved in
ref. [20], stating that all four-fermion vertices of the form ¢€0¢ and ¢¢¢*¢* are CPT invariant, and
all four-fermion vertices of the form ¢0¢¢* are CPT violating, ¢ denoting a left-handed fermion.

For the sake of completeness, we write the structures of four-fermion vertices with non-
vanishing AB = AL. They are

LQ3, Qi urlr, LQrugrdg, uhdplg, (9.2)

plus their Hermitian conjugates. They all have |[AB| = |AL| = 1. Such vertices do not affect the
effective potential at the leading order of the 1/N, expansion.

The B — L symmetry could be spontaneously broken at subleading orders. However, we are
not going to explore this possibility here.

Were it present, the vertex (@) could explain neutrino masses with a scale Ay around 10'4-
10'5GeV. However, it has been speculated |21, 22] that in Lorentz violating models neutrino
masses may not be necessary to explain neutrino oscillations. We make some observations about
this fact in the realm of our models.

In the minimal model (2.I]), the energies of neutrinos with given momentum p are the eigen-
2
H=p bu1+b1/0_2 )
A
L

where b,1 and b, are constant Hermitian matrices. In the simple case of two generations, the

values of the matrix

mixing probability after traveling a distance ¢ is

Prixing = <1 — %ﬂ) sin? (?) , where Q = \/2tr[AH2?] — (tr[AH])2,

where AH is H minus any contribution proportional to the identity matrix.
If was shown in ref. [23] that several existing data about neutrino oscillations can be accounted

for by the matrix b,; —1. The values of its entries were determined to be around 10~'7-10~22, which
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are compatible with our approach. A different class of massless models (with five parameters)
was considered in ref. [24], and shown to be unable to explain all combined data about neutrino
oscillations. The models considered in ref. [24] explore a region of parameter space that is absent
in our approach, because they contain four CPT-violating parameters out of five. At present, the
problem to construct massless Lorentz-violating models that are globally compatible with data
is still open and challenging. We suggest that it may be considered in a fully CPT invariant
framework first.

Higher-derivative corrections do not appear to be helpful here. If we wanted to explain neutrino
oscillations using only b,¢ (setting b1 = 1), we would find b,¢ > 1 by several orders of magnitude.
We expect that large byo-values are unlikely. The matrices by have been studied in other sectors of
the model, particularly quantum electrodynamics [16], and found to be small or at most of order
1. Thus, the effects of terms containing higher-space derivatives are expected to be negligible for
neutrino oscillations. Non-minimal versions of our model can be considered, and certainly have
the chance to account for all data. Nevertheless, there is still hope that neutrino oscillations can

be fully accounted for by the sole matrix b,; — 1 in the minimal scalarless model.

10 Conclusions and outlook

In this paper we have studied the low-energy phenomenology of renormalizable CPT invariant
Standard Model extensions that violate Lorentz symmetry at high energies. These models include
operators of higher dimensions, in particular four-fermion vertices, and contain no elementary
scalar fields. At the leading order of the large N, expansion, a dynamical symmetry-breaking
mechanism gives masses to fermions and gauge bosons, and generates composite scalars. We have
studied the effective potential and the phase diagram. A broken phase always exists. In general, it
may break boosts, rotations and CPT. We have given evidence that there exists a Lorentz phase,
described the mixing among generations and the emergence of the CKM matrix.

The low-energy effective action in the Lorentz phase looks like a Standard Model with one or
more Higgs doublets, and possibly very heavy composite vectors and tensors. Not all parameters
are free, but some are related by formulas induced by the high-energy model. For example, our
approach gives a formula relating the Fermi constant, the top mass and the scale of Lorentz
violation Ay. So far, our predictions are compatible with present data, within theoretical errors.

We have considered the minimal version of our Lorentz-violating Standard-Model extensions
and made certain assumptions to simplify calculations (such as By = By = 1). When such
assumptions are relaxed new effects appear, such as lepton mixing and a more severe quark mixing.
It would be interesting to explore these aspects further and study the low-energy Lagrangian with
By generic. Another topic for future investigations is to explore the lowest energies where we can

find remnants of the Lorentz violation, then look for the effects that can be tested in existing or
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planned experiments. It would also be interesting to explore more general models, and include

right-handed neutrinos and elementary scalars.
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Appendix A: Polar decomposition and diagonalization of matrices

In this appendix we review some definitions and results about the polar decomposition of
matrices and their diagonalization. We present them in ways that are useful for the arguments of

our paper.

Definition Let g € U(n) be a unitary nxn matriz and h a diagonal unitary matriz, namely an
element of the subgroup U(1)™ C U(n). Consider the set of left cosets of U(1)™ in U(n), namely
the equivalence classes under the equivalence relation: g ~ ¢' if and only if g~'g' = h € U(1)™.

This set is denoted with Uy(n). Its real dimension is n(n —1).

Theorem 2 Let H be a Hermitian nxn matriz. There exists a diagonal matriz D =diag(dy, - -+ ,dy)

with dy > do > -+ > d,, and a unitary matriz U belonging to ﬁg(n), such that
H=UDU". (A.1)

The diagonal unitary matrices of U(1)™ commute with D, so they do not contribute to (AJ]).
The diagonalization (A.Il) is unique if H does not have degenerate eigenvalues. We can prove this
statement checking that the dimensions match: the set of Hermitian matrices has real dimension

2 _ n, plus the dimension of

n?, which is equal to the sum of the dimension of Up(n), which is n
the set of diagonal matrices D, which is n.
Now we consider the polar decomposition of matrices, which we present in a form that is again

generically unique.

Theorem 3 Let S be any invertible complex nxn matriz. There exists a non-negative diagonal
matriz D =diag(dy, -+ ,dyp) withdy > dy > -+ > d,, > 0, and matrices Ur, Ugr belonging to U(n)
and ﬁg(n), respectively, such tha

S = UrDU. (A.2)

!The reason why “R” stands to the left and “L” stands to the right in formula (A2)) is that in this way Uy is
attached to left-handed quarks and Ug is attached to right-handed quarks, according to ([B.2)).
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Proof. Since S is invertible, we can write
S = 85T(sTH~L (A.3)

Now, SSt is Hermitian, so it can diagonalized with a unitary matrix Ug € Up(n). Since SST is
also positive-definite, we call its diagonal form D? and define D as the positive square root of D?.
We have

5SSt = UxrD*UY,. (A.4)

Inserting (A.4) in (A3]) we get (A2) with
Up, = DUL(SH ™.
This matrix is unitary. Indeed,
Ulup = S~ '0xD?UL(SH) ™! = 1.

2

Again, the dimensions match, because S, Ur, D and Uy, contain 2n2, n? —n, n and n? real

parameters, respectively. Thus, if the eigenvalues of SST are non-degenerate the decomposition
is unique.

Finally, consider the Hermitian matrix
T
N = 0 5 .
S 0
Using (A.2)), we can diagonalize it with the unitary matrix,
po (U UL
V2 \ Ur —Ug

The eigenvalues of N come in pairs of opposite signs, and coincide with the diagonal entries of D

NzU(D 0 )UT. (A.5)
0 -D

and their opposites:

Appendix B: Mathematical definitions

Here we collect some mathematical definitions used in the paper. The calculation of our

one-loop diagrams gives the functions

n—1! /1 l—zy 1= 0w A2
fllln = ﬁ/o dxl/o dxg - - /0 dx,—1 <lnM—§ + Cn> s (B.l)
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where i - - -4, can have the values ¢ and b,

n—1 n—1
Mﬁx = Z m?kznk + mfn (1 — Z :Ek>
k=1 k=1
and ¢, are constants. The first constants ¢, have approximate numerical values
cy = —2.11371, c3 = —2.61371, cqg = —2.94704.

The diagrams are calculated as follows. Using the gap equation, the momentum integrals are
convergent for A; < oo and logarithmically divergent when Ay is sent to infinity. They can be
viewed as regularized by the Lorentz violation. A direct evaluation of Lorentz violating integrals
is very difficult. However, renormalization theory ensures that everything but finite numerical
constants (the constants ¢, ) can be unambiguously calculated with any regularization method.
We used an ordinary cut-off. Later, we evaluated the constants ¢, taking equal masses in the
Lorentz violating integrals.

With Az, = 10'*GeV and the known values of my, we see that the constants ¢, are numerically
not important for the analysis of our paper.

Clearly, fi,...i, is completely symmetric. Using m, < m; < Ap, we have

2
firein ~ L In AL

(4m)? " mi’
any time at least one index is ¢. Instead,

1 A?
foob~—=1In —L.
(4m)2 " m

Note the change of notation with respect to [9], because we have expanded all functions

contained in the low-energy effective action in powers of the momentum
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