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1 IntroductionLorentz symmetry is a basic ingredient of the Standard Model of particle physics and one of thebest tested symmetries in nature [1]. From the theoretical viewpoint, we often take for grantedthat Lorentz symmetry must be exact. However, our present knowledge cannot exclude that itmay just be approximate. Speci�cally, it could be violated at very high energies or very largedistances. Both possibilities have motivated several authors to investigate the new physics thatwould emerge. Although no sign of Lorentz violation has been found so far, these kinds ofinvestigations are useful because, after comparison with experiments, they allow us to put boundson the parameters of the violation. Among the most relevant reference works, we mention refs.[2] and [3], together with the data tables of [1]. For a recent update on the state of the art seeref. [4].In quantum �eld theory, if we assume that Lorentz symmetry is explicitly violated at high en-ergies we can turn non-renormalizable interactions into renormalizable ones [5]. In �at space, andin the realm of perturbation theory, it is possible to construct gauge theories [6, 7] and extensionsof the Standard Model [8, 9], without violating physical principles. The Lorentz violating modelscan contain several types of terms of higher dimensions. They are multiplied by inverse powers ofa scale ΛL, which is interpreted as the scale of Lorentz violation. Renormalizability holds becausethe theory includes quadratic terms of higher dimensions that contain higher space derivatives.The modi�ed dispersion relations generate propagators with improved ultraviolet behaviors. A�weighted� power counting, according to which space and time have di�erent weights, controlsthe ultraviolet divergences of Feynman diagrams, and allows us to determine which vertices arecompatible with each set of quadratic terms. No terms containing higher time derivatives (whichwould spoil unitarity) are present, nor generated back by renormalization. Lorentz symmetryis recovered at energies much smaller than ΛL. It is not necessary to assume that CPT is alsoviolated to achieve these results.The theories formulated using these tools are not meant to be just e�ective �eld theories,but can be regarded as fundamental theories, in the sense that, very much like the StandardModel, in principle they can describe nature at arbitrarily high energies (when gravity is switchedo�). Some Standard-Model extensions contain the vertex (LH)2/ΛL at the fundamental level,therefore give neutrinos Majorana masses after symmetry breaking. No right-handed neutrinos,nor other extra �elds, are necessary to achieve this goal. Some extensions contain four fermionvertices (ψ̄ψ)2/Λ2

L at the fundamental level. Such vertices can explain proton decay and triggera Nambu�Jona-Lasinio mechanism, which generates fermion masses, gauge-boson masses, andcomposite bosons. Finally, some of our models can be phenomenologically viable even if they donot contain elementary scalars.Because of renormalizability, these extensions contain a �nite set of independent parameters,2
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so they are to some extent predictive. It is important to check that they can reproduce the knownphysics at low energies. For example, it is not obvious that the models containing no elementaryscalars are able to fully reproduce the Standard Model at low energies.In this paper we study the low-energy phenomenology of the scalarless models and comparepredictions with experimental data. Although our approach has large theoretical errors, thepredictions are still meaningful, because they can be falsi�ed by data. We give enough evidencethat our models do reproduce the known low-energy physics. We study the e�ective potential indetail, prove that there exists a broken phase, study the phase space and give evidence that thereexists a Lorentz phase. We investigate the mixing among generations and show how the Cabibbo-Kobayashi-Maskawa (CKM) matrix emerges. We study the spectrum of composite bosons thatpropagate at low energies, the low-energy e�ective action, and the compatibility with experimentalconstraints. Finally, we discuss neutrino oscillations.The search for consistent Standard-Model alternatives that do not contain elementary scalar�elds has a long history, from technicolor [10] to the more recent extra-dimensional Higgslessmodels [11]. Worth mentioning are also the asymptotic-safety approach of ref. [12] and thestandard perturbative approach of ref. [13]. In this respect, the violation of Lorentz symmetryo�ers, among the other things, a new guideline and source of insight, and in our opinion deservesthe utmost attention.The paper is organized as follows. In section 2 we review the minimal scalarless Standard-Model extension that we are going to study. In section 3 we describe the dynamical symmetry-breaking mechanism and calculate the e�ective potential to the leading order. In section 4 weprove that there exists a domain in parameter space where the dynamical symmetry breaking takesplace, namely the e�ective potential has a non-trivial absolute minimum. We also investigate thephase space. In section 5 we reconsider the case of one generation treated in ref. [9] and provesome new results. In section 6 we study the case of three generations and show how the CKMmatrix emerges. We also show that, in general, the Lorentz violation predicts a more severemixing among generations besides the CKM matrix. In section 7 we show that there exist CPTviolating local minima. In section 8 we derive and study the low-energy e�ective action in theLorentz phase, in the case of one generation, and compare predictions with data. In section 9we show that the minimal model cannot generate (Majorana) masses for left-handed neutrinos.Nevertheless, it is possible that neutrino oscillations are explained in a di�erent way. Section 10contains conclusions and outlook.
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2 The modelWe assume that CPT and invariance under rotations are preserved. The (minimal) scalarlessmodel we are going to study reads
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G isover the gauge groups SU(3)c, SU(2)L and U(1)Y . The last three terms of (2.1) are symbolic.Finally, Ῡ ≡ −D̄2/Λ2
L and τG are polynomials of degree 2. Gauge anomalies cancel out exactlyas in the Standard Model [8].The model is �minimal� in the sense that it contains the minimal set of elementary �elds. Itcontains fewer �elds than the minimal Standard Model, because we have suppressed the elemen-tary scalars. No right-handed neutrinos, nor other extra �elds, are included.The model is renormalizable by weighted power counting in two �weighted dimensions�. Thismeans that at high energies renormalizability is governed by a power counting that resemblesthe one of a two dimensional �eld theory, where energy has weight one, and the three spacecoordinates altogether have weight one, therefore each of them separately has weight 1/3.The weights of �elds and couplings are determined so that each Lagrangian term has weight2. Gauge couplings g have weight 1/3, so they are super-renormalizable. For this reason, at veryhigh energies gauge �elds become free and decouple, so the theory (2.1) becomes a four fermionmodel in two weighted dimensions, described by the Lagrangian
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Our purpose is to investigate whether (2.1) can describe the known low-energy physics bymeans of a dynamical symmetry breaking mechanism triggered by four-fermion vertices.The low-energy limit is the limit ΛL → ∞. From the point of view of renormalization, power-like and logarithmic divergences in ΛL appear in this limit, and add to the divergences alreadypresent in the high-energy theory. The ΛL-divergences make the di�erence between the renormal-ization of the high-energy theory and the one of the low-energy theory, which are controlled byweighted power counting and ordinary power counting, respectively. When no symmetry-breakingmechanism takes place, Lorentz symmetry can always be restored at low energies �ne-tuning theparameters of the low-energy Lagrangian. In ref. [14] these aspects of the low-energy limit havebeen studied in the QED subsector of (2.1). However, taking the low-energy limit in the fullmodel (2.1) is more involved.Because of the dynamical symmetry breaking mechanism, the symmetries of the low energytheory depend on the vacuum. In turn, the vacuum depends on the coe�cients of the four-fermionvertices and the other free parameters of the theory. The absolute minimum of the e�ectivepotential may break boosts, and even rotations and CPT. If that happens, it is impossible torecover Lorentz invariance at low energies and have compatibility with experimental data. Thus,it is important to show that there exists a phase (namely, a range in parameter space) where theminimum is Lorentz invariant, so that Lorentz symmetry can be restored at low energies. Oneof the purposes of this paper is to provide evidence that such a phase exists. This is the phasewhere the Standard Model lives, and we call it the Lorentz phase.We proceed according to the following high-energy→low-energy pattern. It is useful to �rstswitch gauge interactions o� and switch them back on later. Normally, this is just a trick tosimplify the presentation, but in our model it has a more physical justi�cation, because, asexplained above, gauge �elds decouple at very high energies, where the complete model (2.1)reduces to the four-fermion model (2.3) plus free �elds. We show that the model (2.3) exhibits adynamical symmetry-breaking mechanism in the large Nc expansion. Under suitable assumptions,we argue that the e�ective potential has a Lorentz invariant minimum. The minimum producesfermion condensates 〈q̄q〉 and gives masses to the fermions. Massive bound states (composite Higgsbosons) emerge, together with Goldstone bosons. When gauge interactions are �nally switchedback on, the Goldstone bosons associated with the breaking of SU(2)L × U(1)Y to U(1)Q are�eaten� by the W± and Z bosons, which then become massive.When we study the compatibility of our predictions with experimental data we set the scaleof Lorentz violation ΛL to 1014GeV. This value was suggested in ref. [8] assuming that neutrinomasses are due to the vertex

1

ΛL
(LH)2. (2.4)However, in the minimal model (2.1) this vertex is absent, both at the fundamental and e�ective5
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levels, and neutrino oscillations must be explained in a di�erent way (see section 9). Still, anumber of considerations suggest that ∼ 1014-15GeV are meaningful values for the scale of Lorentzviolation. They can be thought of as the smallest values allowed by data. For example, they alsoagree with existing bounds on proton decay, derived from four-fermion vertices (ψ̄ψ)2/Λ2

L: if weassume that the dimensionless coe�cients multiplying such vertices are of order one, we obtain
ΛL & 1015GeV [15]. For other, recent considerations on the magnitude of ΛL and compatibilitywith ultrahigh-energy cosmic rays, see [16].3 Dynamical symmetry-breaking mechanismIn this section we describe the dynamical symmetry breaking mechanism in the model (2.3) andcalculate the e�ective potential to the leading order of the 1/Nc expansion.The most general four-fermion vertices can be expressed using auxiliary �elds, that we call
M , N , a quadratic potential V2 and Yukawa terms:
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For the purposes of this paper we just need to consider the leading order of the 1/Nc expansion.For Nc = 3, formula (3.1) tells us that we have a ±50% of error. Even if this error is large, someof our predictions are enough precise to be possibly ruled out.We cannot exclude that other symmetry-breaking mechanisms may take place in the exactmodel, but we do not consider such possibilities here, because we do not have a form of controlon them such as the one provided by the large Nc expansion.The leading order of the 1/Nc expansion receives contributions only from color-singlet fermionbilinears, on which we focus for the moment. We consider the Yukawa terms
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R) and m,n are both SU(2)L- and SU(2)R-indices, depending on the case.The Yukawa terms are U(2)L × U(2)R-invariant, and so is the leading-order correction to thee�ective potential. The (contracted) SU(Nc)-indices are not shown. The �elds S and Lµν areCPT even, while the �elds Hµ and Kµ are CPT odd. The matrices Hµ and Kµ are Hermitian.Lagrangian of the high-energy model and e�ective potential As usual, we �rst switchthe gauge �elds o�, because they decouple at high energies. We will turn them back on later.The fermionic kinetic terms are
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The indices not shown explicitly in this formula are contracted with constant tensors.To study the e�ective potential we need to consider the Lagrangian
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σ̂µν = −i(σµσ̄ν − σν σ̄µ)/2.The leading-order e�ective potential reads
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. (3.4)Observe that V(M) is regular in the infrared.4 Existence of a non-trivial absolute minimumIn this section we prove that there exists a phase where the dynamical symmetry-breaking mech-anism takes place. Precisely, the potential has a nontrivial absolute minimum if some parameterscontained in W2(M) satisfy certain bounds and B1 is in the neighborhood of the identity. The8
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assumption B1 ∼ 1 is not only useful to simplify the calculations, but also justi�ed by all knownexperimental data [1].It is su�cient to work at B1 = 1, because the result, once proved for B1 = 1, extends tothe neighborhood of the identity by continuity. On the other hand, for the moment we keep thematrix B0 free, because its entries can di�er from one another by several orders of magnitude.We �rst prove that the potential grows for large M , in all directions. This result allowsus to conclude that there exists an absolute minimum. Indeed, since the function W (M) iscontinuous the extreme value theorem ensures that it has absolute maxima and absolute minimain an arbitrary sphere |M | 6 R. If we take R large enough W (M) grows outside the sphere. Thenthe absolute minima inside the sphere are absolute minima of the function.Later we show that, in a suitable domain D of parameter space, the point M = 0, which isstationary, is not a minimum. This proves that the absolute minimum of W (M) is nontrivial in
D. Along with the proof, we derive the bounds that de�ne D.To study W (M) for large M , we rescale M by a factor λ and then let λ tend to in�nity. It isuseful to rescale also p4 by a factor λ and p̄ by a factor λ1/3. We get
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2/3. The subscript IR means that the p̄-integralis restricted to the IR region. It gives contributions proportional to λ2 lnλ2.Formula (4.1) is proved as follows. If we factor out a λ2 and take λ to in�nity inside theintegrand of (3.4), we notice that the integral remains convergent in the ultraviolet region, butbecomes divergent in the infrared region. Thus, when λ → ∞ the infrared region providesdominant contributions that grow faster than λ2. The �rst term of (3.4) does not give dominantcontributions: indeed, in the IR region it is safe to take λ → ∞ inside the logarithm. Instead, itis not safe to do the same in the second term of (3.4). This explains formula (4.1).Now we calculate the dominant contributions. It is convenient to work in the basis where thematrix B0 is diagonal:
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a,b. The trace is invariant under rotations, so it can be calculated orienting p̄ along the z-directionand rewriting the result as a scalar. With this choice, the propagator is diagonal in all indices,and the trace can be easily calculated. We obtain a linear combination of integrals of the form
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The integral in p4 can be calculated using the residue theorem. The p̄-integrand, which is quadraticin M , is at most quadratic in the components of p̄, and can be symmetrized using

p̄ip̄j → δij
3
p̄2.We obtain a linear combination of p̄-integrals of the form
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, (4.4)where S, Hi, Ki, Gi are matrices obtained from Γ0M dropping all entries that are not S, Hi, Kiand Gi ≡ 2iL0i − εijkLjk, respectively.The dominant contribution (4.4) of W (λM) is positive-de�nite in the M -entries that it con-tains. Indeed, recalling that B0 and Γ0M are Hermitian, the integrand is the sum of terms of theform tr [(e−ξB0/2Me−ξB0/2
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,which are positive de�nite. Thus, the e�ective potential grows in all directions on whichWdom(λM)depends.However, Wdom(λM) does not depend on all M -entries. Precisely, it does not contain H0,
K0 and L0i (in the basis L0i-Gi). Thus, the dominant contributions of V(λM) that depend onsuch entries are at most of order λ2, as are the contributions coming from the tree-level potential
W2(λM). Now, V(λM) is uniquely determined, while W2(λM) contains free parameters. If weassume that the W2(λM)-coe�cients that multiply the terms containing H0, K0 and L0i satisfy10
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suitable inequalities, which de�ne a certain domain D′ in parameter space, the total leading-order potential W (λM) grows in all directions. Then, by continuity, it must have a minimumsomewhere. This is not the end of our argument, since the minimum could still be trivial.Let us investigate the pointM = 0. It is certainly a stationary point, since the �rst derivativesof both W2(M) and V(M) vanish at M = 0. Moreover, the second derivatives of V(M) vanishat M = 0 by construction, so the second derivatives of W (M) at M = 0 coincide with those of
W2(M). Thus, choosing some free parameters of W2(M) to be negative, or smaller that certainbounds, we can de�ne a domain D′′ in parameter space where the origin M = 0 is not a localminimum.The domains D′ and D′′ have a non-empty intersection D. Indeed, it is su�cient to choose a
D′′-region de�ned by bounds on the W2(M)-parameters that are unrelated to H0, K0 and L0i.In the domain D the potential W (M) grows in every direction for large M , therefore it has aminimum. Moreover, the minimum cannot be the origin, but it is located somewhere at M 6= 0.This means that the symmetry-breaking mechanism necessarily takes place in D, as we wantedto prove.Phase diagram Varying the parameters contained inW2, the absolute minimum moves aroundand we can study the phase diagram of the theory.So far, we have rigorously proved that the theory has an unbroken phase and a broken phase.We still do not know much about the minimum of the broken phase. To make contact withexperiments it is necessary to prove that there exists a broken phase that i) preserves rotationsand CPT and ii) allows us to recover Lorentz symmetry at low energies. In this Lorentz phaseonly the �elds S may have non-trivial expectation values, while Hµ, Kµ and Lµν must vanish atthe minimum.A number of technical di�culties prevent us from rigorously prove that the Lorentz phaseexists in the most general case. However, we give a number of results providing evidence that itdoes exist in several particular cases of interest.Le us assume for the moment that tuning the W2(M)-parameters we can obtain every con-�guration of expectation values we want. Then the theory has a rich phase diagram. Besidesthe unbroken phase and the Lorentz phase, we have broken phases where Lorentz symmetry isviolated also at low energies, namely some vector �elds or tensor �elds acquire non-trivial ex-pectation values. Among these phases, we have: i) a phase where invariance under rotations ispreserved, but CPT is broken, if Hi = Ki = Lµν = 0 at the minimum and H0, K0 have non-trivialexpectation values; ii) a phase where rotational invariance is broken, but CPT is preserved, if
Hµ = Kµ = 0, but Lµν 6= 0; iii) a phase where rotational invariance and CPT are both broken, if
Hi, Ki have non-trivial expectation values. Note that there is no Lorentz violating phase whereCPT and invariance under rotations are both preserved.11
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At the leading order of the 1/Nc expansion it is consistent to project onto the scalar sectorputting Hµ = Kµ = Lµν ≡ 0, because such �elds are generated back by renormalization only atsubleading orders. Equivalently, adding quadratic terms proportional to H2, K2 and L2 to thetree-level potential W2(M), multiplied by arbitrarily large positive coe�cients, it is possible tofreeze the vector and tensor directions at the leading order. Then, the expectation values of Hµ,

Kµ and Lµν become arbitrarily small and may be assumed to be zero for all practical purposes.This argument can partially justify the existence of the Lorentz phase and the projection ontothe scalar subsector, which we advocate in the next sections. However, we stress that it worksonly at the leading order of the 1/Nc expansion.4.1 Lorentz invariant local minimumWe begin to study the Lorentz phase investigating when the point
S = S0 6= 0, Hµ = Kµ = Lµν = 0 (4.5)is a local minimum. Again, we consider a neighborhood of B1 = 1 (which allows us to workat precisely B1 = 1, by continuity) and restrict the tree-level couplings of W2(M) to a suitabledomain in parameter space.Consider the �rst derivatives ∂W/∂M calculated at (4.5). Clearly, both ∂W/∂H and ∂W/∂Kvanish, since they are CPT odd, and ∂W/∂L0i and ∂W/∂Lij vanish by invariance under rotations.Instead, ∂W/∂S = ∂W2/∂S + ∂V/∂S can be made to vanish adjusting the free parameters thatmultiply the S-S̄-quadratic terms contained in W2. Observe that all other W2-parameters remainarbitrary, a fact that will be useful in a moment.Now we study the second derivatives ∂2W/∂M2 at the point (4.5). Assume that the matrix

(

∂2W
∂S2

∂2W
∂S∂S̄

∂2W
∂S̄∂S

∂2W
∂S̄2

) (4.6)is positive de�nite at the minimum. The derivatives ∂2W/(∂H∂S) and ∂2W/(∂K∂S) vanish,since they are CPT odd. The derivatives ∂2W/(∂S∂L0i) and ∂2W/(∂S∂Lij) vanish by rotationalinvariance. The matrix ∂2W/∂M2 is then block diagonal. One block is (4.6) and the second blockdoes not contain derivatives with respect to S. The second block can be made positive de�niteassuming that the W2-parameters that have remained arbitrary satisfy suitable inequalities.We still have to prove that (4.6) is positive de�nite. This calculation is rather involved in ageneric situation. We study this problem in a number of special cases.
12
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5 The case of one generation revisitedWhile experiments tell us that the matrix B1 is close to the identity, we have no such informationabout the matrix B0. Actually, its entries could di�er from one another by several orders ofmagnitude, so in principle the matrix B0 should be kept generic. However, calculations with ageneric B0 are rather involved, so we have to make some simplifying assumptions. In this sectionwe reconsider the case of one generation (which we assume to be the third one, for future use) inthe scalar sector with B0 = B1 = 1 [9]. We also prove some statements that were not proved in[9], for example that the minimum is absolute and unique in the scalar sector.In the scalar sector Hµ = Kµ = Lµν = 0. We have

Γ0M =

(

0 τ †

τ 0

)

,where τ is a 2× 2 matrix, with indices of SU(2)L to the right and indices of SU(2)R to the left.The fermions are organized as Ψ = (QL, QR) and Q = (t, b).If we assume the axial symmetry U(1)A, besides SU(2)L and U(1)Y , the leading-order poten-tial is
W (M) = Λ2

Ltr[ττ †C]−Nc

∫ d4p
(2π)4

(

ln det(1− P−1Γ0M) +
1

2
tr [P−1Γ0MP−1Γ0M

]

)

, (5.1)where C is a diagonal constant matrix, C = diag(ct, cb).We use the �polar� decomposition (A.2) to write
τ = ŨRDUL, D =

(

dt 0

0 db

)

,and the diagonalization (A.5) for N = Γ0M . See Appendix A for notation and details. At
B0 = B1 = 1 the one-loop correction to the potential does not depend on the diagonalizingmatrix U of (A.5), but only on the entries dt, db of D. It is useful to de�ne the four vector

p′ =

(

p0, p̄

(

1 +
p̄2

Λ2
L

))

, (5.2)because the integrand of (5.1) is �Lorentz invariant� in this four-vector, therefore it can be calcu-lated at p̄ = 0. Writing
ŨR =

√

1− |u|2 + iuσ+ + iūσ−,where σ± = (σ1 ± iσ2)/2, |u| 6 1, we obtain the potential
W (M) = Λ2

L(d
2
t ct + d2bcb)− Λ2

L|u|2(d2t − d2b)(ct − cb) + 2V (d2t ) + 2V (d2b),13
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where

V (r) ≡ −Nc

∫ d4p
(2π)4

(

ln

(

1 +
r

(p′)2

)

− r

(p′)2

)

.This function is non-negative, monotonically increasing and convex. Indeed, for r > 0,
V ′(r) = rNc

∫ d4p
(2π)4

1

(p′)2((p′)2 + r)
> 0, V ′′(r) = Nc

∫ d4p
(2π)4

1

((p′)2 + r)2
> 0.Moreover, V (0) = V ′(0) = 0 and V ′′(0) = +∞.Let us �nd the stationary points of W (M) and study the Hessians there. We denote thevalues of dt,b at the stationary point with mt,b, and identify them with the top and bottommasses, respectively.We assume ct 6= cb, because, as we prove below, the case ct = cb is not physically interesting.Then we �nd the following stationary points:1) u = 0, while mt,b do not vanish and solve the gap equation

Λ2
Lci + 2V ′(m2

i ) = 0; (5.3)2) u = 0, while one of mt,b vanishes and the other one solves the gap equation (5.3);3) |u|2 = 1/2 and mt = mb 6= 0 solve
0 = Λ2

L(ct + cb) + 4V ′(m2
t ). (5.4)4) mt = mb = 0.Now we analyze the Hessian at each stationary point.1) Because of (5.3) and ct 6= cb, and since V ′ is monotonic, mt and mb cannot coincide. TheHessian is diagonal and strictly positive:

∂2W

∂d2i

∣

∣

∣

∣min = 8m2
iV

′′(m2
i ) > 0,

∂2W

∂|u|2
∣

∣

∣

∣min = 2(m2
t −m2

b)(V
′(m2

t )− V ′(m2
b)) > 0.This point is a local minimum. It exists if and only if the gap equations (5.3) have solutions,which occurs if and only if both ct and cb are negative.2) If mb vanishes then the Hessian is diagonal and

∂2W

∂d2t

∣

∣

∣

∣min = 8m2
tV

′′(m2
t ),

∂2W

∂d2b

∣

∣

∣

∣min = 2Λ2
Lcb,

∂2W

∂|u|2
∣

∣

∣

∣min = Λ2
Lm

2
t (cb − ct).This point is a local minimum if and only if

cb > 0, cb > ct.3) The determinant of the Hessian is negative,
detH = −32Λ4

Lm
4(ct − cb)

2V ′′(m2),14
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so this point cannot be the minimum.4) From the analysis of the previous section we already know that the origin is a local minimumif and only if both ci's are positive.The physically interesting case is clearly 1). Since both ct and cb are negative, we may assume

ct < cb < 0. (5.5)Then point 1) is the unique local minimum in the scalar sector. The theorem proved in theprevious section (existence of the absolute minimum) allows us to conclude that point 1) is alsothe absolute minimum of W (M) in the scalar sector. Moreover, the argument of section 4.1ensures that if the other tree-level couplings of W2(M) belong to a suitable region in parameterspace point 1) is also a local minimum in the full M -space.Note that these arguments still do not prove that there exists a phase where point 1) is theabsolute minimum in the full M -space.Because of the symmetries of the potential, its minimum is not just a point, but a geometriclocus of points. By means of a SU(2)L×U(1)Y ×U(1)A-transformation we can choose the physicalminimum
τ0 =

(

mt 0

0 mb

)

, (5.6)which preserves U(1)Q.The other cases are not physically interesting. For example, if either ct or cb vanish or arepositive the absolute minimum is either point 2) or the origin M = 0. Then at least one massvanishes. Instead, if ct = cb the theory is invariant under the custodial symmetry SU(2)R and
mt,b either vanish or solve the gap equation (5.3). Using SU(2)R × SU(2)L × U(1)Y × U(1)A wecan always make the minimum have the form (5.6), but either some masses vanish or coincide.We conclude that there is a (unique, up to exchange of mt and mb) phase such that W (M)has the absolute minimum (5.6) in the scalar sector, and point (5.6) is also a local minimum inthe full M -space.6 Three generationsNow we study the case of three generations, focusing again on the scalar sector and still assuming
B0 = B1 = 1. We look for evidence that the Lorentz phase exists. Assuming again axial symmetry,the potential W (M) =W2(M) + V(M) has

W2(M) = Λ2
L

∑

mnabcd

Sab
mnS̄

cd
mnC

abcd
m , V(M) = 2

∑

i

V (d2i ), (6.1)where Cabcd
m are constants. The correction V(M) is calculated using the polar decomposition(A.5) for N = Γ0M and noting that the integrand is independent of U . Moreover, it is Lorentz15
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invariant in the four-vector (5.2), so it can be easily calculated at p̄ = 0 and later rewritten incovariant form.As before, V(M) is positive de�nite, monotonically increasing and convex. Its minimum is
M = 0, so the minimum of W (M) is determined by the free parameters Cabcd

m contained in
W2(M).Illustrative example To begin with, it is worth considering the simple case

Cabcd
m = HbdCca

m , (6.2)where H and Cm are Hermitian matrices.De�ne the matrices Hab
nn′ = δnn′Hab, Cab

mm′ = δmm′Cab
m . Using the polar decomposition (A.2),we write

V (SS†) = ŨRdiag(V (d21), · · · , V (d2n))Ũ
†
R, V (S†S) = U †

Ldiag(V (d21), · · · , V (d2n))UL.The potential reads
W (M) = tr[Λ2

LHS†CS + 2V (S†S)] = tr[Λ2
LCSHS† + 2V (SS†)]. (6.3)The stationary points must satisfy

∂W (M)

∂S
= Λ2

LHS†C + 2V ′(S†S)S† = 0,
∂W (M)

∂S†
= Λ2

LCSH + 2V (SS†)S = 0. (6.4)We may assume that S is non-singular at the minimum. Indeed, it is not di�cult to prove,following the example treated before, that, if the free parameters contained in W2 satisfy suitableinequalities, the singular con�gurations can be stationary points, but not minima.De�ning
H∆ = ULHU †

L, C∆ = Ũ †
RCŨR,equations (6.4) become

−Λ2
LH∆DC∆ = −Λ2

LC∆DH∆ = 2V ′(D2)D = diagonal.We see that the matrices H̃D =
√
DH∆

√
D and C̃D =

√
DC∆

√
D are Hermitian and com-mute with each other, so they can be simultaneously diagonalized with a unitary transformation.Moreover, their product H̃DC̃D is itself diagonal. This means that both H̃D and C̃D are alreadydiagonal. In turn, also H∆ and C∆ are diagonal, so UL and ŨR must be matrices that diagonalize

H and C, respectively. The most general such matrices are
UL =

(

U ′
L 0

0 U ′
L

)

U2, ŨR =

(

ŨRu 0

0 ŨRd

)

, (6.5)16
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where U ′

L ∈ U(3) and ŨRu, ŨRd ∈ Ũ`(3) are unitary matrices that rotate the generations, but areinert on the SU(2)R- and SU(2)L-indices m and n, while U2 ∈ SU(2) acts on the indices m, n,but is inert on the generations. The reason why UL has this factor U2 is that H has two coincidingdiagonal blocks, which can be freely rotated. We could factor out the unitary diagonal matricesthat multiply U ′
L to the left, as we do for the unitary diagonal matrices that multiply ŨRu and

ŨRd to the right, but we do not need to.We conclude that the non-singular stationary points have the form
Smin =

(

ŨRu 0

0 ŨRd

)

D

(

U ′
L 0

0 U ′
L

)

U2. (6.6)Arguing as before, these points are also global minima in the scalar sector and local minima inthe full M -space.Now, observe that the kinetic and Yukawa terms of the action are invariant under GS ≡
U(3)L × U(3)Ru × U(3)Rd, if the auxiliary �elds are transformed appropriately. The leading-order correction V(M) to the potential is also invariant under GS , while the tree-level potential
W2(M) breaks GS explicitly. The GS- and SU(2)L × U(1)Y -transformations allow us to turnthe minimum (6.6) into the diagonal form Smin = D, which preserves U(1)Q. Once we havedone this, the diagonal entries of D are the quark masses. However, we discover that the CKMmatrix is trivial, namely there is no mixing among generations. Thus, our assumption (6.2) isphenomenologically too restrictive.In the special case

Cabcd
m = cmδ

acδbd, (6.7)the theory is completely invariant under the global symmetry GS , which is also preserved byrenormalization. The minimum of the e�ective potential does break this symmetry (because itis diagonal in the space of generations, but not proportional to the identity). However, with thechoice (6.7) the model predicts only two di�erent quark masses, since W2 contains only two freeparameters, ct and cb.The results obtained in this example generalize immediately to an arbitrary number of gen-erations: with a choice like (6.2) the minimum can always be put into a diagonal form, with nomixing among generations.A source of mixing among generations is provided by the matrix B0, which was taken tobe proportional to the identity in this section. Now we show that there is enough room for anon-trivial CKM matrix even if we still assume B0 = 1. Indeed, it is su�cient to take a lesssymmetric tree-level potential W2(M).
17
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Emergence of the CKM matrix and mixing among generations Now we show that theemergence of the CKM matrix can be explained taking

Cabcd
m = Hbd

mC
ca
m , (6.8)where Hm and Cm are again Hermitian matrices. We still assume B0 = B1 = 1. De�ning thematrices Hab

1nn′ = δnn′Hab
1 , Hab

2nn′ = δnn′Hab
2 , Cab

1mm′ = δm1δm′1C
ab
1 , Cab

2mm′ = δm2δm′2C
ab
2 , now thepotential reads

W (M) = tr[Λ2
LSH1S

†C1 + Λ2
LSH2S

†C2 + 2V (S†S)]. (6.9)The stationary points are the solutions of
H̃1DC̃1D + H̃2DC̃2D = C̃1DH̃1D + C̃2DH̃2D = − 2

Λ2
L

V ′(D2)D2 = diagonal,where
H̃mD =

√
DULHmU

†
L

√
D, C̃mD =

√
DŨ †

RCmŨR

√
D, m = 1, 2.If we search for a solution of the form

Smin =

(

ŨRu 0

0 ŨRd

)

D

(

ULu 0

0 ULd

)

U2 (6.10)and argue as before, we �nd that ULu, ULd ∈ U(3), ŨRu, ŨRd ∈ Ũ`(3) must be matrices thatdiagonalize H1, H2, C1, C2, respectively.At this point we can proceed as usual: the invariance of the rest of the action under phasetransformations and SU(2)L × U(1)Y ×GS allows us to turn the minimum into the form
S′min =

(

1 0

0 CKM

)

D, (6.11)which preserves U(1)Q, where CKM is the CKM matrix. This stationary point can describe theproperties of the Standard Model at low energies.We have only proved that (6.11) belongs to the set of extremal points of the potential. Strictlyspeaking, there could be other extrema that are not block diagonal, and therefore spontaneouslybreak also charge conservation.If we take the most general potential (6.1) every minimum that preserves U(1)Q can be castinto the form (6.11). Indeed, U(1)Q-conservation means that the charged S-entries, which are Sab
12and Sab

21, vanish, therefore the minimum is block-diagonal. Then it can be turned to the form (6.11)arguing as before, namely using invariance under phase transformations and SU(2)L×U(1)Y ×GS.Finally, let us comment about the case B0 6= 1. If B0 is not diagonal it can be diagonalizedusing SU(3)L × SU(3)Ru × SU(3)Rd. Then we cannot use such transformations to turn (6.10)18
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into the form (6.11). We can only simplify (6.10) by means of (eight) phase transformations.So, the Lorentz violation predicts more mixing among generations besides the CKM matrix. Italso predicts mixing among leptons. If leptons have a non-diagonal matrix B0`, we can use thefreedom we have to diagonalize it, but then the lepton mass matrix remains non-diagonal.If both B0 and B1 are di�erent from the identity, we can diagonalize only one of them for eachparticle.7 CPT violating local minimaIn this section we want to show that the e�ective potential may also give non-trivial expectationvalues to the vector and tensor �elds Hµ,Kµ, Lµν . For simplicity, we assume B0 = B1 = 1 andconcentrate on the vector Hµ.The most general tree-level potential with one generation is

W2(M) = Λ2
L

(

c1tr[H0]
2 + c2tr[Hi]

2 + c3tr[H2
0 ] + c4tr[H2

i ]
)

,where c1-4 are constants. After simple manipulations, the one-loop correction can be expressed inthe form
V(M) = −Nc

∫ d4p
(2π)4

[

ln det(A+ σiBi)−
4tr[H2

i ](p̄
′)2

3(p′2)2

]

,where
A = 1 +

1

(p′)2
(ip4H0 − p′iHi), Bi =

1

(p′)2
(−ip4Hi + p′iH0 − ip′jHkεijk).However, since H0 and Hi are 2×2 matrices, it is still di�cult to evaluate V(M) explicitly. If werestrict to the case of a single fermion we can perform the calculation to the end. We �nd

W2(M) =Λ2
L(c

′
1H

2
0 + c′2H

2
i ),

V(M) =
NcΛ

4
L

7560hπ2
[

630h3 ln(v2 + 1)− v3
(

140v6 + 360v4 − 630hv3 + 252v2 − 945hv + 1260h2
)]

,with
v =

21/3∆2/3 − 2 · 31/3
62/3∆1/3

, ∆ =
√

12 + 81h2 + 9h, h =

√

H2
i

Λ2
L

.The one-loop correction V(M) does not depend on H0, so to have a minimum we must assume
c′1 > 0. As a function of h, V(M) is monotonic and convex, and V(M) = O(H4) in a neighborhoodof the origin. Thus, we have two phases:1) the unbroken phase has c′1 > 0, c′2 > 0;2) the broken phase has

c′1 > 0, c′2 < 0.19
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where H has a non-trivial expectation value. Here the minimum of the e�ective potential spon-taneously breaks invariance under boosts, rotations and CPT.In the simple example just studied, the potential V(M) does not depend on H0. The reasonis that H0 can be reabsorbed with an imaginary translation of p4. Observe that Hi cannot bereabsorbed away. Indeed, although the integrand depends only on the sum p′i + Hi, we cannottranslate p′i, because the integral is in pi, not in p′i. On the other hand, only one p4 translation isavailable, so we expect that with more fermions, where H0 is a matrix, there exist broken phaseswhere Hi = 0 but some entries of the H0-matrix get non-trivial expectation values. In such phasesCPT and boosts are broken, but rotations are preserved.8 Low-energy e�ective actionIn this section we study the low-energy e�ective action in the Lorentz phase. We work at theleading order of the 1/Nc expansion, at B0 = B1 = 1, and focus on the third generation. Asusual, we �rst turn the gauge-�eld interactions o� and turn them back on at a second stage. Westudy the spectrum of composite bosons, derive a number predictions and show that the model iscompatible with the experimental data. For the moment we can concentrate on the scalar sector.To keep the presentation readable, at �rst we assume not only invariance under SU(2)L ×
U(1)Y × U(1)B , but also the axial symmetry U(1)A. With this assumption, however, the low-energy model is ruled out by experimental data. It is straightforward to relax the assumption ofaxial symmetry at a second stage. We show that once U(1)A is explicitly broken full compatibilitywith data is achieved.We refer to section 5 for the notation. The total four-fermion Lagrangian is Ltot = Lq + L`,where the quark- and lepton-contributions are

Lq = Ψ̄

(

iΓ0
1∂t + iΓ̄ · ∂̄

(

1− ∂̄2

Λ2
L

)

−M

)

Ψ− Λ2
Ltr[ττ †C] (8.1)

L` =L`kin −∑
ab

(

yabτ2n ¯̀
a
RL

b
n + ȳbaL̄a

n`
b
Rτ̄2n

)

, (8.2)
yab being constants, while Ψ = ((tL, bL), (tR, bR)). The form of L` is justi�ed as follows.Since we are working in the leading order of the 1/Nc expansion, we have to calculate one-loopdiagrams with circulating quarks. Thus, we can focus on four-fermion vertices that contain twoquarks q and two leptons `, or four quarks, and ignore the vertices that contain four leptons.Introducing auxiliary scalar �elds τ and σ, as usual, we get Yukawa and potential terms of theform

−τqq − σ``− a

2
τ2 − bτσ − c

2
σ2.20
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The leading-order correction V to the potential depends only on τ , so the e�ective potential hasthe form

W(τ, σ) =
a

2
τ2 + bτσ +

c

2
σ2 + V(τ).Its extrema can also be found replacing σ with the solution σ = −bτ/c of its �eld equation,namely working with W(τ,−bτ/c). Therefore, we do not need to multiply the lepton bilinears ``by independent auxiliary scalars σ. We can just multiply them by entries of τ and free parameters.Because of the symmetries we have assumed, (8.2) is the only form that is allowed. Moreover,using the polar decomposition on yab and performing unitary transformations on La and `aR, wecan diagonalize the matrices yab. Thus, from now on we take yab = δabdiag(ya), with ya real.We expand around the minimum (5.6), writing τ = τ0 + η. We �rst recall the leading contri-butions to the quadratic e�ective action Γ2 [9], namely

Γ2 = −Nc

∑

ij

ηij
(

∂2 + 2m2
j

)

fij η̄ij −Nc

∑

ij

mimjfij(ηijηji + η̄ij η̄ji) (8.3)(the constants fij being de�ned in Appendix B and the integration over spacetime being under-stood), which gives the following propagating �elds: i) two neutral massive scalars ϕ1,2 and acharged massive scalar ϕ,
ϕ1 =

√

2NcfttRe ηtt, ϕ2 =
√

2NcfbbRe ηbb, ϕ =

√

Ncftb
m2

t +m2
b

(mbηtb +mtη̄bt) ,with squared masses
m2

1 = 4m2
t , m2

2 = 4m2
b , m2 = 2

(

m2
t +m2

b

)

,respectively; ii) the Goldstone bosons associated with the spontaneously broken generators of
SU(2)L × U(1)Y , which are

φ+ = i

√

Nc

2fW
ftb(mtηtb −mbη̄bt), φ0 =

√

Nc

fZ
(mbfbb Im ηbb −mtftt Im ηtt),and φ− = φ̄+, where

fW =
ftb
2
(m2

t +m2
b), fZ =

1

2

(

m2
t ftt +m2

bfbb
)

;

iii) a Goldstone boson
φ̃0 =

√

Ncfbbftt
fZ

(mb Im ηtt +mt Im ηbb) ,associated with the broken axial symmetry. 21
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When gauge interactions are switched back on, the Goldstone bosons φ±,0 are �eaten� by thegauge �elds. Then the gauge �elds acquire squared masses

m2
W = Ncg

2fW , m2
Z = Ncg̃

2fZ . (8.4)Including the covariant derivatives for U(1)Q the quadratic e�ective action Γ2 becomes
Γ2 =

1

2

2
∑

i=1

[

(∂µϕi)(∂
µϕi)−m2

iϕ
2
i

]

+ (∂µϕ̄− ieAµϕ̄)(∂
µϕ+ ieAµϕ)−m2ϕ̄ϕ+

1

2
∂µφ̃

0∂µφ̃0

+(∂µφ
+ −mWW

+
µ )(∂µφ− −mWW

µ−) +
1

2
(∂µφ

0 −mZZµ)(∂
µφ0 −mZZ

µ)and it is invariant under the linearized gauge transformations
δW±

µ = ∂µC
±, δZµ = ∂µC

0, δφ± = mWC
±, δφ0 = mZC

0. (8.5)Now we calculate the three-leg and four-leg terms Γ3 and Γ4 of the e�ective action. We focuson the terms proportional to factors of the form ln(Λ2
L/m

2), where m is a function of the masses,because they are numerically more important, in our approximation. We �nd (again, refer toAppendix B for the notation)
Γ3 + Γ4 = −2Nc

∑

ijk

mifijk(ηij η̄kjηki + η̄ijηkj η̄ki)−Nc

∑

ijkl

fijklηij η̄kjηklη̄il. (8.6)Writing (8.3) and (8.6) we have omitted some terms that are numerically negligible. Basically,they do not contain the enhancing factor ∼ ln Λ2
L. Examples of such terms are

Nc

24π2
(∂µRe ηtt)(∂

µRe ηtt),
Ncmt

3(4π)2
η3tt,

Ncmb

3(4π)2
η3bb,

2Ncmb

(4π)2
ηttηtbηbt, (8.7)(using mt � mb). We can compare them with the smallest cubic term in (8.6), which is

− 2Nc

(4π)2
mb(ηbj η̄kjηkb + η̄bjηkj η̄kb) ln

Λ2
L

m2
t

(8.8)Numerically, with ΛL = 1014GeV and using mt = 171.2GeV, mb = 4.2GeV, we �nd that thecoe�cient of the second term of (8.7) is about 13% of the coe�cient of (8.8). All other terms oftype (8.7) are suppressed by a factor 1/ ln(Λ2
L/m

2
t ), which is a 2%. In any case, these contributionsare below our errors. Moreover, since ln(Λ2

L/m
2
t ) and ln(Λ2

L/m
2
b) di�er only by a 14%, we canalso neglect their di�erence and replace mb with mt inside the logarithms. Finally, the recurringfactor

N ≡ Nc

(4π)2
ln

Λ2
L

m2
t22
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can be approximated to one up to a negligible 3%. However, we continue to write it downexplicitly, to keep track of the ΛL-dependence.Collecting Γ2, Γ3 and Γ4, we get the low-energy scalar e�ective action

Γ ∼ N tr[∂µτ∂µτ † + 2τ20 ττ
† − ττ †ττ †], (8.9)which is a type II two Higgs doublet model (2HDM), namely a model with two Higgs doublets,where one doublet couples only to top quarks, while the other doublet couples only to bottomquarks and leptons.Because of the assumed axial symmetry U(1)A, the scenario explored so far is ruled out bydata. Indeed, it predicts very light neutral Higgs bosons, such as the �eld ϕ2 of mass ∼ 2mb andthe massless U(1)A Goldstone boson. These �elds violate the present experimental lower boundon the mass of neutral Higgs bosons, which is 114GeV [17]. This bound, established through theprocess Z → Zh→ Zb̄b, applies to our model. Indeed, take for example the �eld ϕ2 as the Higgsboson h. It is easy to check that although the vertex ZZh is suppressed by a factor mb/mt, theYukawa coupling hb̄b is enhanced by the reciprocal factor mt/mb, so the process Z → Zh→ Zb̄bis not suppressed with respect to one predicted by the minimal Standard Model.Compatibility with data can be obtained breaking U(1)A explicitly.Low-energy model compatible with data It is easy to see that, because of SU(2)L×U(1)Yinvariance, the U(1)A symmetry can be explicitly broken in a unique way by four-fermion vertices.Indeed, only one term can be added to the tree-level potential W2, namely

∆W2 = m̃2
12tr [τετT ε]+ m̃∗2

12tr [τ †ετ∗ε] , (8.10)where T denotes transposition, εtt = εbb = 0, εtb = −εbt = 1, and m̃12 is a complex constant. Theone-loop correction V is una�ected, therefore still U(1)A-symmetric. The term (8.10) displacesthe minimum and changes the mass spectrum.For simplicity, we take m̃12 real. To bring the displaced minimum back to the form (5.6), wealso modify the term
2τ20 ττ

†of (8.9) replacing τ20 with a di�erent diagonal matrix. With our approximations we �nd thelow-energy type II 2HDM Lagrangian
Γ = N tr [∂µτ∂µτ † + 2τ20 ττ

† − m2
12mtmb

2(m2
t +m2

b)

(

τετT ε+ τ †ετ∗ε− 2ετ0ετ
−1
0 ττ †

)

− ττ †ττ †
]

,(8.11)Expanding τ as τ0+ η we can �rst check that the minimum is still τ0, and then work out the newspectrum. We �nd that, using mb � mt, 23
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i) the three Goldstone bosons φ±,0 associated with the SU(2)L×U(1)Y symmetry are una�ected,
ii) the mass of the charged composite Higgs boson ϕ becomes

mϕ ∼
√

2m2
t +m2

12 ,

iii) assuming also mb � m12, the masses of the neutral Higgs bosons ϕ1 and ϕ2 become
m12, 2mt ,which is which depending on whether m12 > 2mt or m12 < 2mt,

iv) the �eld φ̃0 acquires a mass equal to m12,
v) the neutral �elds (ϕ1, ϕ2) are rotated by an angle α, while all other �elds preserve the expres-sions they had before.Since four fermion vertices are multiplied by 1/Λ2

L, the tree-level potential terms, such as(8.10), are proportional to Λ2
L, which means that m12 is large. For m12 su�ciently large themasses of all particles become compatible with data. Taking into account of our errors (±50%),even a Higgs mass predicted to be around 2mt could in the end be more close to mt, which iscontained in the present mass range for Higgs boson.Moreover, because of i) the gauge-boson masses are una�ected, and formulas (8.4) still hold.The Fermi constant and the parameter ρ are given by the relations [9]
1

GF
=

Ncm
2
t

4π2
√
2
ln

Λ2
L

m2
t

, ρ =
g̃2m2

W

g2m2
Z

∼ 1. (8.12)Formulas (8.12) provide two important checks of our model. The Standard Model provides noanalogue of the �rst formula. At ΛL = 1014GeV the �rst prediction turns out to be very precise.As far as ρ is concerned, the Standard Model predicts ρ = 1 up to radiative corrections, whichmatches experimental data very well. Our approach is consistent with this, but cannot be equallyprecise, because our theoretical errors are large.So far, we have focused on the scalar sector and ignored the �elds Hµ, Kµ and Lµν . It is easyto prove, computing their two-point functions in the low-energy limit, that such �elds do becomepropagating at some point. Moreover, the dominant contributions to their kinetic terms, namelythe contributions proportional to ln Λ2
L, are Lorentz invariant. Thus, our model also predictscomposite vectors and tensors at low energies. Nevertheless, it is unable to predict their masses,whose values can be changed adding quadratic terms proportional to H2, K2 and L2 to the tree-level potential W2(M), multiplied by coe�cients proportional to Λ2

L. The basic reason is that inthe Lorentz phase Hµ, Kµ and Lµν have trivial gap equations. Thus, we are free to assume thatthe masses of these �elds are su�ciently large, in which case this subsector of our model is alsocompatible with data. 24
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The limit m12 → ∞ The limit m12 → ∞ is particularly interesting, because it gives the usualone-doublet model. The coe�cient of m2

12 in (8.11) must vanish in the limit, which requires
τ = u

(

H2 −H1

κH̄1 κH̄2

)

, κ =
mb

mt
, u−2 = (1 + κ2)N . (8.13)Then we �nd a particular case of the usual Higgs Lagrangian, namely (using again mt � mb)

ΓH = ∂µH
†∂µH − V (H), V (H) = 2m2

tH
†H − u2(H†H)2. (8.14)From this formula we can read: i) the Higgs vacuum expectation value (|H|min = v/

√
2), whichis (with ΛL = 1014GeV)

v =
mt

u

√
2 ∼ 247GeV,

ii) the constant
λ = u2 ∼ 1,and, consequently, iii) the Higgs-boson mass, which is 2mt.The Yukawa couplings are automatically correct. We have

LYukawa =−mt

v

√
2
(

t̄RH̃QL + Q̄LtRH̃
†
)

− mb

v

√
2
(

H†b̄RQL + Q̄LbRH
)

−
√
2

v

3
∑

a=1

ma
`

(

H† ¯̀a
RL

a + L̄a`aRH
)

, (8.15)where H̃n = εnqHq and ma
` = mby

a. The lepton mass terms do not give new predictions, but justdetermine the Yukawa parameters ya.The one-doublet model (8.14) was already considered in [9], but not fully justi�ed there (itwas presented as a subsector of the model with m12 = 0). The limit m12 → ∞ provides themissing justi�cation for (8.14).9 Neutrino masses and neutrino oscillationsAmong the compatibility checks we can make, we mention neutrino oscillations. In this sectionwe show that the minimal versions of our models cannot give masses to neutrinos and discussalternative ways to explain neutrino oscillations.First, we prove that the vertex
1

ΛL
(LH)2 =

1

ΛL

3
∑

a,b=1

Yab (L
αa
m εαβL

βb
p ) εmnHnεpqHq +H.c., (9.1)which gives Majorana masses to the neutrinos when H is replaced by its expectation value, cannotbe generated. 25
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The vertex (9.1) breaks the conservation of B − L by two units. However, the vacuum weare considering does not break B − L spontaneously. Moreover, the global B − L symmetry isanomaly-free in our model. The reason is that it is anomaly-free in the minimal Standard Model[18], and anomalies are una�ected by the Lorentz violation (see [8]). Finally, the B−L symmetrycannot be explicitly violated in the model (2.1), becauseTheorem 1 all CPT invariant four-fermion vertices constructed with the �elds of the minimalStandard Model preserve B − L.This theorem is a simple generalization of a well-known property stating the same conclusionabout Lorentz invariant four-fermion vertices [19]. We stress here that it is not necessary toassume Lorentz symmetry, because CPT is su�cient. The theorem can be proved writing downall four-fermion vertices that are invariant under SU(2)L×U(1)Y and using a property proved inref. [20], stating that all four-fermion vertices of the form ```` and ```∗`∗ are CPT invariant, andall four-fermion vertices of the form ````∗ are CPT violating, ` denoting a left-handed fermion.For the sake of completeness, we write the structures of four-fermion vertices with non-vanishing ∆B = ∆L. They are

LQ3
L, Q2

LuR`R, LQLuRdR, u2RdR`R, (9.2)plus their Hermitian conjugates. They all have |∆B| = |∆L| = 1. Such vertices do not a�ect thee�ective potential at the leading order of the 1/Nc expansion.The B − L symmetry could be spontaneously broken at subleading orders. However, we arenot going to explore this possibility here.Were it present, the vertex (9.1) could explain neutrino masses with a scale ΛL around 1014-1015GeV. However, it has been speculated [21, 22] that in Lorentz violating models neutrinomasses may not be necessary to explain neutrino oscillations. We make some observations aboutthis fact in the realm of our models.In the minimal model (2.1), the energies of neutrinos with given momentum p are the eigen-values of the matrix
H = p

(

bν1 + bν0
p2

Λ2
L

)

,where bν1 and bν0 are constant Hermitian matrices. In the simple case of two generations, themixing probability after traveling a distance ` is
Pmixing = (1− (tr[∆Hσz])2

Ω2

)

sin2
(

`Ω

2

)

, where Ω =
√

2tr[∆H2]− (tr[∆H])2,where ∆H is H minus any contribution proportional to the identity matrix.If was shown in ref. [23] that several existing data about neutrino oscillations can be accountedfor by the matrix bν1−1. The values of its entries were determined to be around 10−17-10−22, which26
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are compatible with our approach. A di�erent class of massless models (with �ve parameters)was considered in ref. [24], and shown to be unable to explain all combined data about neutrinooscillations. The models considered in ref. [24] explore a region of parameter space that is absentin our approach, because they contain four CPT-violating parameters out of �ve. At present, theproblem to construct massless Lorentz-violating models that are globally compatible with datais still open and challenging. We suggest that it may be considered in a fully CPT invariantframework �rst.Higher-derivative corrections do not appear to be helpful here. If we wanted to explain neutrinooscillations using only bν0 (setting bν1 = 1), we would �nd bν0 � 1 by several orders of magnitude.We expect that large bν0-values are unlikely. The matrices b0 have been studied in other sectors ofthe model, particularly quantum electrodynamics [16], and found to be small or at most of order1. Thus, the e�ects of terms containing higher-space derivatives are expected to be negligible forneutrino oscillations. Non-minimal versions of our model can be considered, and certainly havethe chance to account for all data. Nevertheless, there is still hope that neutrino oscillations canbe fully accounted for by the sole matrix bν1 − 1 in the minimal scalarless model.10 Conclusions and outlookIn this paper we have studied the low-energy phenomenology of renormalizable CPT invariantStandard Model extensions that violate Lorentz symmetry at high energies. These models includeoperators of higher dimensions, in particular four-fermion vertices, and contain no elementaryscalar �elds. At the leading order of the large Nc expansion, a dynamical symmetry-breakingmechanism gives masses to fermions and gauge bosons, and generates composite scalars. We havestudied the e�ective potential and the phase diagram. A broken phase always exists. In general, itmay break boosts, rotations and CPT. We have given evidence that there exists a Lorentz phase,described the mixing among generations and the emergence of the CKM matrix.The low-energy e�ective action in the Lorentz phase looks like a Standard Model with one ormore Higgs doublets, and possibly very heavy composite vectors and tensors. Not all parametersare free, but some are related by formulas induced by the high-energy model. For example, ourapproach gives a formula relating the Fermi constant, the top mass and the scale of Lorentzviolation ΛL. So far, our predictions are compatible with present data, within theoretical errors.We have considered the minimal version of our Lorentz-violating Standard-Model extensionsand made certain assumptions to simplify calculations (such as B1 = B0 = 1). When suchassumptions are relaxed new e�ects appear, such as lepton mixing and a more severe quark mixing.It would be interesting to explore these aspects further and study the low-energy Lagrangian with
B0 generic. Another topic for future investigations is to explore the lowest energies where we can�nd remnants of the Lorentz violation, then look for the e�ects that can be tested in existing or27
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planned experiments. It would also be interesting to explore more general models, and includeright-handed neutrinos and elementary scalars.AcknowledgmentsD.Anselmi wishes to thank Xinmin Zhang and the Institute of High Energy Physics of theChinese Academy of Sciences, Beijing, for hospitality. D.Anselmi is supported by the Chi-nese Academy of Sciences visiting professorship for senior international scientists, grant No.2010T2J01.Appendix A: Polar decomposition and diagonalization of matricesIn this appendix we review some de�nitions and results about the polar decomposition ofmatrices and their diagonalization. We present them in ways that are useful for the arguments ofour paper.De�nition Let g ∈ U(n) be a unitary n×n matrix and h a diagonal unitary matrix, namely anelement of the subgroup U(1)n ⊂ U(n). Consider the set of left cosets of U(1)n in U(n), namelythe equivalence classes under the equivalence relation: g ∼ g′ if and only if g−1g′ = h ∈ U(1)n.This set is denoted with Ũ`(n). Its real dimension is n(n− 1).Theorem 2 Let H be a Hermitian n×n matrix. There exists a diagonal matrix D =diag(d1, · · · , dn)with d1 > d2 > · · · > dn and a unitary matrix Ũ belonging to Ũ`(n), such that

H = ŨDŨ †. (A.1)The diagonal unitary matrices of U(1)n commute with D, so they do not contribute to (A.1).The diagonalization (A.1) is unique if H does not have degenerate eigenvalues. We can prove thisstatement checking that the dimensions match: the set of Hermitian matrices has real dimension
n2, which is equal to the sum of the dimension of Ũ`(n), which is n2 − n, plus the dimension ofthe set of diagonal matrices D, which is n.Now we consider the polar decomposition of matrices, which we present in a form that is againgenerically unique.Theorem 3 Let S be any invertible complex n×n matrix. There exists a non-negative diagonalmatrix D =diag(d1, · · · , dn) with d1 > d2 > · · · > dn > 0, and matrices UL, ŨR belonging to U(n)and Ũ`(n), respectively, such that1

S = ŨRDUL. (A.2)1The reason why �R� stands to the left and �L� stands to the right in formula (A.2) is that in this way UL isattached to left-handed quarks and ŨR is attached to right-handed quarks, according to (3.2).28
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Proof. Since S is invertible, we can write

S = SS†(S†)−1. (A.3)Now, SS† is Hermitian, so it can diagonalized with a unitary matrix ŨR ∈ Ũ`(n). Since SS† isalso positive-de�nite, we call its diagonal form D2 and de�ne D as the positive square root of D2.We have
SS† = ŨRD

2Ũ †
R. (A.4)Inserting (A.4) in (A.3) we get (A.2) with

UL = DŨ †
R(S

†)−1.This matrix is unitary. Indeed,
U †
LUL = S−1ŨRD

2Ũ †
R(S

†)−1 = 1.Again, the dimensions match, because S, ŨR, D and UL contain 2n2, n2 − n, n and n2 realparameters, respectively. Thus, if the eigenvalues of SS† are non-degenerate the decompositionis unique.Finally, consider the Hermitian matrix
N =

(

0 S†

S 0

)

.Using (A.2), we can diagonalize it with the unitary matrix,
U =

1√
2

(

U †
L U †

L

ŨR −ŨR

)

.The eigenvalues of N come in pairs of opposite signs, and coincide with the diagonal entries of Dand their opposites:
N = U

(

D 0

0 −D

)

U †. (A.5)Appendix B: Mathematical de�nitionsHere we collect some mathematical de�nitions used in the paper. The calculation of ourone-loop diagrams gives the functions
fi1···in =

(n − 1)!

(4π)2

∫ 1

0

dx1

∫ 1−x1

0

dx2 · · ·
∫ 1−

∑n−2

k=1
xk

0

dxn−1

(

ln
Λ2
L

M2
n,x

+ cn

)

, (B.1)29
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where i1 · · · in can have the values t and b,

M2
n,x =

n−1
∑

k=1

m2
ik
xk +m2

in

(

1−
n−1
∑

k=1

xk

)and cn are constants. The �rst constants cn have approximate numerical values
c2 = −2.11371, c3 = −2.61371, c4 = −2.94704.The diagrams are calculated as follows. Using the gap equation, the momentum integrals areconvergent for ΛL < ∞ and logarithmically divergent when ΛL is sent to in�nity. They can beviewed as regularized by the Lorentz violation. A direct evaluation of Lorentz violating integralsis very di�cult. However, renormalization theory ensures that everything but �nite numericalconstants (the constants cn ) can be unambiguously calculated with any regularization method.We used an ordinary cut-o�. Later, we evaluated the constants cn taking equal masses in theLorentz violating integrals.With ΛL = 1014GeV and the known values of mt,b we see that the constants cn are numericallynot important for the analysis of our paper.Clearly, fi1···in is completely symmetric. Using mb � mt � ΛL, we have

fi1···in ∼ 1

(4π)2
ln

Λ2
L

m2
t

,any time at least one index is t. Instead,
fb···b ∼

1

(4π)2
ln

Λ2
L

m2
b
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