Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Recent papers and theorems

25A2 Damiano Anselmi, Gianluca Calcagni
Classicized dynamics and initial conditions in field theories with fakeons

Theories with purely virtual particles (fakeons) do not possess a classical action in the strict sense, but rather a "classicized" one, obtained by integrating out the fake particles at tree level. Although this procedure generates nonlocal interactions, we show that the resulting classicized equations of motion are not burdened with ... [more]

25A1 Damiano Anselmi, Fabio Briscese, Gianluca Calcagni, Leonardo Modesto
Amplitude prescriptions in field theories with complex poles

In the context of field theories with complex poles, we scrutinize four inequivalent ways of defining the scattering amplitudes, each forfeiting one or more tenets of standard quantum field theory while preserving the others: (i) a textbook Wick rotation by analytic continuation of the external momenta from Euclidean to Lorentzian ... [more]

24A2 Damiano Anselmi
Quantum gravity with purely virtual particles from asymptotically local quantum field theory

We investigate the relationship between nonlocal and local quantum field theories, and search for a viable notion of "local limit" to relate the unitary models. In Euclidean space it is relatively easy to have nonlocal theories with well-behaved local limits. In Minkowski spacetime, instead, singular behaviors are generically expected. Relaxing ... [more]

24A1 Damiano Anselmi
Cosmological inhomogeneities, primordial black holes, and a hypothesis on the death of the universe

We study the impact of the expansion of the universe on a broad class of objects, including black holes, neutron stars, white dwarfs, and others. Using metrics that incorporate primordial inhomogeneities, the effects of a hypothetical "center of the universe" on inflation are calculated. Dynamic coordinates for black holes that ... [more]

23A3 Damiano Anselmi
Gauge theories and quantum gravity in a finite interval of time, on a compact space manifold

We study gauge theories and quantum gravity in a finite interval of time $ \tau $, on a compact space manifold $\Omega $. The initial, final and boundary conditions are formulated in gauge invariant and general covariant ways by means of purely virtual extensions of the theories, which allow us ... [more]

23A2 Damiano Anselmi
Propagators and widths of physical and purely virtual particles in a finite interval of time

We study the free and dressed propagators of physical and purely virtual particles in a finite interval of time $τ$ and on a compact space manifold $Ω$, using coherent states. In the free-field limit, the propagators are described by the entire function $(e^{z}-1-z)/z^{2}$, whose shape on the real axis is ... [more]

23A1 Damiano Anselmi
Quantum field theory of physical and purely virtual particles in a finite interval of time on a compact space manifold: diagrams, amplitudes and unitarity

We provide a diagrammatic formulation of perturbative quantum field theory in a finite interval of time $τ$, on a compact space manifold $Ω$. We explain how to compute the evolution operator $U(t_{\text{f}},t_{\text{i}})$ between the initial time $t_{\text{i}}$ and the final time $t_{\text{f}}=t_{\text{i}}+τ$, study unitarity and renormalizability, and show how to ... [more]

22A5 Damiano Anselmi
A new quantization principle from a minimally non time-ordered product

We formulate a new quantization principle for perturbative quantum field theory, based on a minimally non time-ordered product, and show that it gives the theories of physical particles and purely virtual particles. Given a classical Lagrangian, the quantization proceeds as usual, guided by the time-ordered product, up to the common ... [more]

22A4 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: quantum gravity

Quantum gravity is extended to include purely virtual "cloud sectors", which allow us to define a complete set of point-dependent observables, including a gauge invariant metric and gauge invariant matter fields, and calculate their off-shell correlation functions perturbatively. The ordinary on-shell correlation functions and the $S$ matrix elements are unaffected. ... [more]

22A3 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: Yang-Mills theory

We extend quantum field theory by including purely virtual "cloud" sectors, to define physical off-shell correlation functions of gauge invariant quark and gluon fields, without affecting the $S$ matrix amplitudes. The extension is made of certain cloud bosons, plus their anticommuting partners. Both are quantized as purely virtual, to ensure ... [more]

22R2 Damiano Anselmi
A hope for particle physics – ERC Advanced Grant application (VIRTUAL)

The physics of fundamental interactions is going through a concerning, prolonged period of stagnation. The incredible success of the standard model of particle physics and the lack of new experimental data have frustrated our hopes in the future. On top of that, the scientific community shattered into a large number ... [more]

22R1 Damiano Anselmi
Purely virtual particles in quantum gravity, inflationary cosmology and collider physics

We review the concept of purely virtual particle and its uses in quantum gravity, primordial cosmology and collider physics. The fake particle, or “fakeon”, which mediates interactions without appearing among the incoming and outgoing states, can be introduced by means of a new diagrammatics. The renormalization coincides with one of ... [more]

22A2 Damiano Anselmi
Purely virtual particles versus Lee-Wick ghosts: physical Pauli-Villars fields, finite QED and quantum gravity

We reconsider the Lee-Wick (LW) models and compare their properties to the properties of the models that contain purely virtual particles. We argue against the LW premise that unstable particles can be removed from the sets of incoming and outgoing states in scattering processes. The removal leads to a non-Hermitian ... [more]

22A1 Damiano Anselmi
Dressed propagators, fakeon self-energy and peak uncertainty

We study the resummation of self-energy diagrams into dressed propagators in the case of purely virtual particles and compare the results with those obtained for physical particles and ghosts. The three geometric series differ by infinitely many contact terms, which do not admit well-defined sums. The peak region, which is ... [more]

21A5 Damiano Anselmi
Diagrammar of physical and fake particles and spectral optical theorem

We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman $i\epsilon $ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major ... [more]

We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the $\gamma $ matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of the Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typical examples are the renormalizability of chiral gauge theories and the Adler-Bardeen theorem. The difficulty of explicit computations, on the other hand, may increase.

PDF

Phys. Rev. D 89 (2014) 125024 | DOI: 10.1103/PhysRevD.89.125024

arXiv: 1405.3110 [hep-th]

We reconsider the Adler-Bardeen theorem for the cancellation of gauge anomalies to all orders, when they vanish at one loop. Using the Batalin-Vilkovisky formalism and combining the dimensional-regularization technique with the higher-derivative gauge invariant regularization, we prove the theorem in the most general perturbatively unitary renormalizable gauge theories coupled to matter in four dimensions, and identify the subtraction scheme where anomaly cancellation to all orders is manifest, namely no subtractions of finite local counterterms are required from two loops onwards. Our approach is based on an order-by-order analysis of renormalization, and, differently from most derivations existing in the literature, does not make use of arguments based on the properties of the renormalization group. As a consequence, the proof we give also applies to conformal field theories and finite theories.

PDF

Eur. Phys. J. C 74 (2014) 3083 | DOI: 10.1140/epjc/s10052-014-3083-0

arXiv: 1402.6453 [hep-th]

We investigate the background field method with the Batalin-Vilkovisky formalism, to generalize known results, study parametric completeness and achieve a better understanding of several properties. In particular, we study renormalization and gauge dependence to all orders. Switching between the background field approach and the usual approach by means of canonical transformations, we prove parametric completeness without making use of cohomological theorems, namely show that if the starting classical action is sufficiently general all divergences can be subtracted by means of parameter redefinitions and canonical transformations. Our approach applies to renormalizable and non-renormalizable theories that are manifestly free of gauge anomalies and satisfy the following assumptions: the gauge algebra is irreducible and closes off shell, the gauge transformations are linear functions of the fields, and closure is field-independent. Yang-Mills theories and quantum gravity in arbitrary dimensions are included, as well as effective and higher-derivative versions of them, but several other theories, such as supergravity, are left out.

PDF

Phys. Rev. D 89 (2014) 045004 | DOI: 10.1103/PhysRevD.89.045004

arXiv: 1311.2704 [hep-th]


Let $S(\Phi,U,K,K_{U})$ denote the solution of the master equation $(S,S)=0$, where $\{\Phi ^{A},U\}$ are the fields and $\{K_{A},K_{U}\}$ are the sources coupled to the $\Phi ^{A}$- and $U$-gauge transformations. If we replace $U$ with the solution $U^{*}(\Phi ,K,K_{U})$ of the $U$-field equations
\begin{equation}
\frac{\delta _{r}S}{\delta U}=0,
\end{equation}
then the action
\begin{equation}
S^{*}(\Phi ,K,K_{U})=S(\Phi ,U^{*}(\Phi ,K,K_{U}),K,K_{U})
\end{equation}
satisfies the master equation $(S^{*},S^{*})=0$ in the reduced set of fields and sources $\Phi,K$.

Read the proof →

The classical action of quantum gravity, determined by renormalization, contains infinitely many independent couplings and can be expressed in different perturbatively equivalent ways. We organize it in a convenient form, which is based on invariants constructed with the Weyl tensor. We show that the FLRW metrics are exact solutions of the field equations in arbitrary dimensions, and so are all locally conformally flat solutions of the Einstein equations. Moreover, expanding the metric tensor around locally conformally flat backgrounds the quadratic part of the action is free of higher derivatives. Black-hole solutions of Schwarzschild and Kerr type are modified in a non-trivial way. We work out the first corrections to their metrics and study their properties.

PDF

JHEP 1305 (2013) 028 | DOI: 10.1007/JHEP05(2013)028

arXiv:1302.7100 [gr-qc]

We investigate the renormalization of gauge theories without assuming cohomological properties. We define a renormalization algorithm that preserves the Batalin-Vilkovisky master equation at each step and automatically extends the classical action till it contains sufficiently many independent parameters to reabsorb all divergences into parameter-redefinitions and canonical transformations. The construction is then generalized to the master functional and the field-covariant proper formalism for gauge theories. Our results hold in all manifestly anomaly-free gauge theories, power-counting renormalizable or not. The extension algorithm allows us to solve a quadratic problem, such as finding a sufficiently general solution of the master equation, even when it is not possible to reduce it to a linear (cohomological) problem.

PDF

Eur. Phys. J. C 73 (2013) 2508 | DOI: 10.1140/epjc/s10052-013-2508-5

arXiv:1301.7577 [hep-th]

Welcome to RENORMALIZATION.COM

Here you can read papers, theorems and books about renormalization and quantum field theory in general, as well as discuss about open problems, address new projects and ideas. More details here

For queries and suggestions send an email to r enor mal ize@r enor mal izat ion.c om

We develop a general field-covariant approach to quantum gauge theories. Extending the usual set of integrated fields and external sources to “proper” fields and sources, which include partners of the composite fields, we define the master functional $\Omega$, which collects one-particle irreducible diagrams and upgrades the usual $\Gamma$-functional in several respects. The functional $\Omega$ is determined from its classical limit applying the usual diagrammatic rules to the proper fields. Moreover, it behaves as a scalar under the most general perturbative field redefinitions, which can be expressed as linear transformations of the proper fields. We extend the Batalin-Vilkovisky formalism and the master equation. The master functional satisfies the extended master equation and behaves as a scalar under canonical transformations. The most general perturbative field redefinitions and changes of gauge-fixing can be encoded in proper canonical transformations, which are linear and do not mix integrated fields and external sources. Therefore, they can be applied as true changes of variables in the functional integral, instead of mere replacements of integrands. This property overcomes a major difficulty of the functional $\Gamma$. Finally, the new approach allows us to prove the renormalizability of gauge theories in a general field-covariant setting. We generalize known cohomological theorems to the master functional and show that when there are no gauge anomalies all divergences can be subtracted by means of parameter redefinitions and proper canonical transformations.

PDF

Eur. Phys. J. C 73 (2013) 2363 | DOI: 10.1140/epjc/s10052-013-2363-4

arXiv:1205.3862 [hep-th]

We study a new generating functional of one-particle irreducible diagrams in quantum field theory, called master functional, which is invariant under the most general perturbative changes of field variables. The functional $\Gamma$ does not transform as a scalar under the transformation law inherited from its very definition, although it does transform as a scalar under an unusual transformation law. The master functional, on the other hand, is the Legendre transform of an improved functional W = ln Z with respect to the sources coupled to both elementary and composite fields. The inclusion of certain improvement terms in W and Z is necessary to make this transform well defined. The master functional behaves as a scalar under the transformation law inherited from its very definition. Moreover, it admits a proper formulation, obtained extending the set of integrated fields to the so-called proper fields, which allows us to work without passing through Z, W or $\Gamma$. In the proper formulation the classical action coincides with the classical limit of the master functional, and correlation functions and renormalization are calculated applying the usual diagrammatic rules to the proper fields. Finally, the most general change of field variables, including the map relating bare and renormalized fields, is a linear redefinition of the proper fields.

PDF

Eur. Phys. J. C 73 (2013) 2385 | DOI: 10.1140/epjc/s10052-013-2385-y

arXiv:1205.3584 [hep-th]


Consider a functional integral
\[
\mathcal{I}=\int [\mathrm{d}\varphi ]\hspace{0.02in}\exp \left( -S(\varphi)+\int J\left( \varphi -bU\right) \right) ,
\]
where $U(\varphi ,bJ)$ is a local function of $\varphi$ and $J$, and $b$ is a constant. Then there exists a perturbatively local change of variables
\[
\varphi =\varphi (\varphi ^{\prime },b,bJ)=\varphi ^{\prime }+\mathcal{O}(b),
\]
expressed as a series expansion in $b$, such that
\[
\mathcal{I}=\int [\mathrm{d}\varphi ^{\prime }]\hspace{0.02in}\exp \left(
-S^{\prime }(\varphi ^{\prime },b)+\int J\varphi ^{\prime }\right) ,
\]
where $S^{\prime }(\varphi ^{\prime },b)=S(\varphi (\varphi^{\prime },b,0))$.

Read the proof →

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF