### Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

### Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)

### Recent Papers

Let $S(\Phi,U,K,K_{U})$ denote the solution of the master equation $(S,S)=0$, where $\{\Phi ^{A},U\}$ are the fields and $\{K_{A},K_{U}\}$ are the sources coupled to the $\Phi ^{A}$- and $U$-gauge transformations. If we replace $U$ with the solution $U^{*}(\Phi ,K,K_{U})$ of the $U$-field equations
\begin{equation}
\frac{\delta _{r}S}{\delta U}=0,
\end{equation}
then the action
\begin{equation}
S^{*}(\Phi ,K,K_{U})=S(\Phi ,U^{*}(\Phi ,K,K_{U}),K,K_{U})
\end{equation}
satisfies the master equation $(S^{*},S^{*})=0$ in the reduced set of fields and sources $\Phi,K$.

Proof

Every time we differentiate $S^{*}$ with respect to $\vartheta =\Phi, K$ we must pay attention to the fact that now $U$ depends on $\vartheta$. However, the operation of setting $U=U^{*}$ and the differentiation with respect to $\vartheta$ can be freely interchanged on $S^{*}$, because
\begin{eqnarray*}
\frac{\delta _{r}S^{*}}{\delta \vartheta }&=&\frac{\delta _{r}}{\delta
\vartheta }\left( \left. S\right| _{U=U^{*}}\right) \\&=&\left. \frac{\delta
_{r}S}{\delta \vartheta }\right| _{U=U^{*}}+\int \mathrm{d}^{D}x\left. \frac{%
\delta _{r}S}{\delta U(x)}\right| _{U=U^{*}}\frac{\delta _{r}U^{*}(x)}{%
\delta \vartheta }=\left. \frac{\delta _{r}S}{\delta \vartheta }\right|
_{U=U^{*}}.
\end{eqnarray*}
Setting $U=U^{*}$ inside $(S,S)=0$ and using the identities just found we get precisely $(S^{*},S^{*})=0$. $\Box$

This theorem is a well-known result. Among its applications we mention the case where $U$ are auxiliary fields. Then replacing $U=U^{*}$ inside a local action $S$ produces another local action $S^{*}$. Moreover, that replacement is equivalent to do the functional integral over $U$ (at least using the dimensional-regularization technique).

For example, integrating out auxiliary fields in gauge algebras that close off-shell, such as the one off-shell N=1 supergravity, we obtain gauge algebras that close only on-shell, e.g. the one of on-shell N=1 supergravity. In that case it is well-known that the action $S^{*}$ still solves the master equation, if $S$ does.

An explicit example

In pure non-Abelian Yang-Mills theory the integrated fields are $\{A_{\mu }^{a},C^{a},\bar{C}^{a},B^{a}\}$ and their sources are $\{K_{a}^{\mu },K_{C}^{a},K_{\bar{C}}^{a},K_{B}^{a}\}$. In the Euclidean notation the gauge-fixed action
\begin{eqnarray*}
S &=&\int \left( \frac{1}{4}F_{\mu \nu }^{a\ 2}-\frac{\lambda }{2}%
(B^{a})^{2}+B^{a}\partial \cdot A^{a}-\bar{C}^{a}\partial _{\mu }D_{\mu
}C^{a}\right) \\
&&-\int D_{\mu }C^{a}K_{\mu }^{a}+\frac{g}{2}\int
f^{abc}C^{b}C^{c}K_{C}^{a}-\int B^{a}K_{\bar{C}}^{a}{,}
\end{eqnarray*}
satisfies the master equation $(S,S)=0$, where $D_{\mu }C^{a}=\partial _{\mu}C^{a}+gf^{abc}A_{\mu }^{b}C^{c}$ is the covariant derivative of the ghosts, $f^{abc}$ are the structure constants of the Lie algebra and $F_{\mu \nu }^{a}=\partial_{\mu }A_{\nu }^{a}-\partial _{\nu }A_{\mu }^{a}+gf^{abc}A_{\mu }^{b}A_{\nu}^{c}$ is the field strength. The Lagrange multiplier $B^{a}$ satisfies the assumptions of the theorem. Integrating it out is equivalent to set
\begin{equation}
B^{a}=\frac{1}{\lambda }\left( \partial \cdot A^{a}-K_{\bar{C}}^{a}\right)
\end{equation}
in the action. Thus, defining $\Phi ^{A}=(A_{\mu }^{a},C^{a},\bar{C}^{a})$, $K_{A}=(K_{a}^{\mu },K_{C}^{a},K_{\bar{C}}^{a})$ the action
\begin{eqnarray*}
S^{*}(\Phi ,K) &=&\int \left( \frac{1}{4}F_{\mu \nu }^{a\ 2}+\frac{1}{%
2\lambda }\left( \partial \cdot A^{a}-K_{\bar{C}}^{a}\right) ^{2}-\bar{C}%
^{a}\partial _{\mu }D_{\mu }C^{a}\right) \\
&&-\int D_{\mu }C^{a}K_{\mu }^{a}+\frac{g}{2}\int f^{abc}C^{b}C^{c}K_{C}^{a}{,}
\end{eqnarray*}
satisfies the master equation $(S^{*},S^{*})=0$.

For other details and more general applications take a look at

D. Anselmi, Master functional and proper formalism for quantum gauge field theory,
12A3 Renorm
Eur.Phys.J. C73 (2013) 2363 | DOI: 10.1140/epjc/s10052-013-2363-4
and arXiv:1205.3279 [hep-th]

### Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages Avaibable on Amazon:

Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References

PDF

### Logo Cite papers of this site as follows:

Auths, Title, 'year'A'num' Renorm

For example:

D. Anselmi, Master functional and proper formalism for quantum gauge field theory, 12A3 Renorm

Cite books as

Auths, Title, 'year'B'num' Renorm

Cite reviews as

Auths, Title, 'year'R'num' Renorm

Cite proceedings as

Auths, Title, 'year'P'num' Renorm

Cite theorems as

Auths, Title, Theorem 'year'T'num' Renorm

Cite exercises as

Auths, Title, Exercise 'year'E'num' Renorm