Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Changes of field variables


Consider a functional integral
\[
\mathcal{I}=\int [\mathrm{d}\varphi ]\hspace{0.02in}\exp \left( -S(\varphi)+\int J\left( \varphi -bU\right) \right) ,
\]
where $U(\varphi ,bJ)$ is a local function of $\varphi$ and $J$, and $b$ is a constant. Then there exists a perturbatively local change of variables
\[
\varphi =\varphi (\varphi ^{\prime },b,bJ)=\varphi ^{\prime }+\mathcal{O}(b),
\]
expressed as a series expansion in $b$, such that
\[
\mathcal{I}=\int [\mathrm{d}\varphi ^{\prime }]\hspace{0.02in}\exp \left(
-S^{\prime }(\varphi ^{\prime },b)+\int J\varphi ^{\prime }\right) ,
\]
where $S^{\prime }(\varphi ^{\prime },b)=S(\varphi (\varphi^{\prime },b,0))$.

Read the proof →

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


PDF