Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Recent papers and theorems

24A2 Damiano Anselmi
Quantum gravity with purely virtual particles from asymptotically local quantum field theory

We investigate the local limits of various classes of unitary, nonlocal quantum field theories. While it is easy to build nonlocal models with well-behaved asymptotics in Euclidean space, the Minkowskian correlation functions typically exhibit singular behaviors. We introduce "asymptotically local" quantum field theory (AL-QFT) as the class that encompasses unitary, ... [more]

24A1 Damiano Anselmi
Cosmological inhomogeneities, primordial black holes, and a hypothesis on the death of the universe

We study the impact of the expansion of the universe on a broad class of objects, including black holes, neutron stars, white dwarfs, and others. Using metrics that incorporate primordial inhomogeneities, the effects of a hypothetical "center of the universe" on inflation are calculated. Dynamic coordinates for black holes that ... [more]

23A3 Damiano Anselmi
Gauge theories and quantum gravity in a finite interval of time, on a compact space manifold

We study gauge theories and quantum gravity in a finite interval of time $ \tau $, on a compact space manifold $\Omega $. The initial, final and boundary conditions are formulated in gauge invariant and general covariant ways by means of purely virtual extensions of the theories, which allow us ... [more]

23A2 Damiano Anselmi
Propagators and widths of physical and purely virtual particles in a finite interval of time

We study the free and dressed propagators of physical and purely virtual particles in a finite interval of time $τ$ and on a compact space manifold $Ω$, using coherent states. In the free-field limit, the propagators are described by the entire function $(e^{z}-1-z)/z^{2}$, whose shape on the real axis is ... [more]

23A1 Damiano Anselmi
Quantum field theory of physical and purely virtual particles in a finite interval of time on a compact space manifold: diagrams, amplitudes and unitarity

We provide a diagrammatic formulation of perturbative quantum field theory in a finite interval of time $τ$, on a compact space manifold $Ω$. We explain how to compute the evolution operator $U(t_{\text{f}},t_{\text{i}})$ between the initial time $t_{\text{i}}$ and the final time $t_{\text{f}}=t_{\text{i}}+τ$, study unitarity and renormalizability, and show how to ... [more]

22A5 Damiano Anselmi
A new quantization principle from a minimally non time-ordered product

We formulate a new quantization principle for perturbative quantum field theory, based on a minimally non time-ordered product, and show that it gives the theories of physical particles and purely virtual particles. Given a classical Lagrangian, the quantization proceeds as usual, guided by the time-ordered product, up to the common ... [more]

22A4 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: quantum gravity

Quantum gravity is extended to include purely virtual "cloud sectors", which allow us to define a complete set of point-dependent observables, including a gauge invariant metric and gauge invariant matter fields, and calculate their off-shell correlation functions perturbatively. The ordinary on-shell correlation functions and the $S$ matrix elements are unaffected. ... [more]

22A3 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: Yang-Mills theory

We extend quantum field theory by including purely virtual "cloud" sectors, to define physical off-shell correlation functions of gauge invariant quark and gluon fields, without affecting the $S$ matrix amplitudes. The extension is made of certain cloud bosons, plus their anticommuting partners. Both are quantized as purely virtual, to ensure ... [more]

22R2 Damiano Anselmi
A hope for particle physics – ERC Advanced Grant application (VIRTUAL)

The physics of fundamental interactions is going through a concerning, prolonged period of stagnation. The incredible success of the standard model of particle physics and the lack of new experimental data have frustrated our hopes in the future. On top of that, the scientific community shattered into a large number ... [more]

22R1 Damiano Anselmi
Purely virtual particles in quantum gravity, inflationary cosmology and collider physics

We review the concept of purely virtual particle and its uses in quantum gravity, primordial cosmology and collider physics. The fake particle, or “fakeon”, which mediates interactions without appearing among the incoming and outgoing states, can be introduced by means of a new diagrammatics. The renormalization coincides with one of ... [more]

22A2 Damiano Anselmi
Purely virtual particles versus Lee-Wick ghosts: physical Pauli-Villars fields, finite QED and quantum gravity

We reconsider the Lee-Wick (LW) models and compare their properties to the properties of the models that contain purely virtual particles. We argue against the LW premise that unstable particles can be removed from the sets of incoming and outgoing states in scattering processes. The removal leads to a non-Hermitian ... [more]

22A1 Damiano Anselmi
Dressed propagators, fakeon self-energy and peak uncertainty

We study the resummation of self-energy diagrams into dressed propagators in the case of purely virtual particles and compare the results with those obtained for physical particles and ghosts. The three geometric series differ by infinitely many contact terms, which do not admit well-defined sums. The peak region, which is ... [more]

21A5 Damiano Anselmi
Diagrammar of physical and fake particles and spectral optical theorem

We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman $i\epsilon $ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major ... [more]

21A4 Damiano Anselmi, Kristjan Kannike, Carlo Marzo, Luca Marzola, Aurora Melis, Kristjan Müürsepp, Marco Piva and Martti Raidal
A fake doublet solution to the muon anomalous magnetic moment

Extensions to the Standard Model that use strictly off-shell degrees of freedom - the fakeons - allow for new measurable interactions at energy scales usually precluded by the constraints that target the on-shell propagation of new particles. Here we employ the interactions between a new fake scalar doublet and the ... [more]

21A3 Damiano Anselmi, Kristjan Kannike, Carlo Marzo, Luca Marzola, Aurora Melis, Kristjan Müürsepp, Marco Piva, Martti Raidal
Phenomenology of a Fake Inert Doublet Model

We introduce a new way of modeling the physics beyond the Standard Model by considering fake, strictly off-shell degrees of freedom: the fakeons. To demonstrate the approach and exemplify its reach, we re-analyze the phenomenology of the Inert Doublet Model under the assumption that the second doublet is a fakeon. ... [more]

Central functions $c(g)$ and $c'(g)$ are constructed in quantum field theory. These quantities justify and generalize the notions of central charges recently introduced at criticality, which, together with suitable anomalous dimensions $h$, identify a conformal field theory in four dimensions (CFT$_4$). They are encoded in the four-point function of the stress-energy tensors. The behavior of the central functions is analysed to two-loops in perturbation theory. The central function is the fundamental notion for a description of quantum field theory as a radiative interpolation between pairs of CFT$_4$’s. The problem of computating their RG flow in the far IR limit starting from the UV fixed point is addressed in the context of supersymmetric gauge theories and electric-magnetic duality.

PDF

JHEP 9805:005 (1998) | DOI: 10.1088/1126-6708/1998/05/005

arXiv:hep-th/9702056

Certain topological invariants of the moduli space of gravitational instantons are defined and studied. Several amplitudes of two and four dimensional topological gravity are computed. A notion of puncture in four dimensions, that is particularly meaningful in the class of Weyl instantons, is introduced. The topological embedding, a theoretical framework for constructing physical amplitudes that are well-defined order by order in perturbation theory around instantons, is explicitly applied to the computation of the correlation functions of Dirac fermions in a punctured gravitational background, as well as to the most general QED and QCD amplitude. Various alternatives are worked out, discussed and compared. The quantum background affects the propagation by generating a certain effective “quantum” metric. The topological embedding could represent a new chapter of quantum field theory.

PDF

Class.Quant.Grav. 14 (1997) 2031-2047 | DOI: 10.1088/0264-9381/14/8/006

arXiv:hep-th/9607206

With the perspective of looking for experimentally detectable physical applications of the so-called topological embedding, a procedure recently proposed by the author for quantizing a field theory around a non-discrete space of classical minima (instantons, for example), the physical implications are discussed in a “theoretical” framework, the ideas are collected in a simple logical scheme and the topological version of the Ginzburg-Landau theory of superconductivity is solved in the intermediate situation between type I and type II superconductors.

PDF

Class.Quant.Grav. 14 (1997) 1015-1036 | DOI: 10.1088/0264-9381/14/5/010

arXiv:hep-th/9507167

Topological Yang-Mills theory with the Belavin-Polyakov-Schwarz-Tyupkin $SU(2)$ instanton is solved completely, revealing an underlying multi-link intersection theory. Link invariants are also shown to survive the coupling to a certain kind of matter (hyperinstantons). The physical relevance of topological field theory and its invariants is discovered. By embedding topological Yang-Mills theory into pure Yang-Mills theory, it is shown that the topological version TQFT of a quantum field theory QFT allows us to formulate consistently the perturbative expansion of QFT in the topologically nontrivial sectors. In particular, TQFT classifies the set of good measures over the instanton moduli space and solves the inconsistency problems of the previous approaches. The qualitatively new physical implications are pointed out. Link numbers in QCD are related to a non abelian analogoue of the Aharonov-Bohm effect.

PDF

Class.Quant.Grav. 14 (1997) 1-20 | DOI: 10.1088/0264-9381/14/1/005

arXiv:hep-th/9504049

I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the $k=1$ Belavin et al. instanton and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with $G=SU(2)$ is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. From topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space $M$, boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with $G=SU(2)$ on $R^4$ and topological gravity on ALE manifolds.

PDF

Nucl.Phys. B439 (1995) 617-649 | DOI: 10.1016/0550-3213(95)00024-M

arXiv:hep-th/9411049

We go on in the program of investigating the removal of divergences of a generical quantum gauge field theory, in the context of the Batalin-Vilkovisky formalism. We extend to open gauge-algebrae a recently formulated algorithm, based on redefinitions $\delta\lambda$ of the parameters $\lambda$ of the classical Lagrangian and canonical transformations, by generalizing a well-known conjecture on the form of the divergent terms. We also show that it is possible to reach a complete control on the effects of the subtraction algorithm on the space $M_{gf}$ of the gauge-fixing parameters. A principal fiber bundle $E \rightarrow M_{gf}$ with a connection $\omega_1$ is defined, such that the canonical transformations are gauge transformations for $\omega_1$. This provides an intuitive geometrical description of the fact the on shell physical amplitudes cannot depend on $M_{gf}$. A geometrical description of the effect of the subtraction algorithm on the space $M_{ph}$ of the physical parameters lambda is also proposed. At the end, the full subtraction algorithm can be described as a series of diffeomorphisms on $M_{ph}$, orthogonal to $M_{gf}$ (under which the action transforms as a scalar), and gauge transformations on $E$. In this geometrical context, a suitable concept of predictivity is formulated. We give some examples of (unphysical) toy models that satisfy this requirement, though being neither power counting renormalizable, nor finite.

PDF

Class.Quant.Grav. 12 (1995) 319-350 | DOI: 10.1088/0264-9381/12/2/005

arXiv:hep-th/9407023

We consider the problem of removing the divergences in an arbitrary gauge-field theory (possibly nonrenormalizable). We show that this can be achieved by performing, order by order in the loop expansion, a redefinition of some parameters (possibly infinitely many) and a canonical transformation (in the sense of Batalin and Vilkovisky) of fields and BRS sources. Gauge-invariance is turned into a suitable quantum generalization of BRS-invariance. We define quantum observables and study their properties. We apply the result to renormalizable gauge-field theories that are gauge-fixed with a nonrenormalizable gauge-fixing and prove that their predictivity is retained. A corollary is that topological field theories are predictive. Analogies and differences with the formalisms of classical and quantum mechanics are pointed out.

PDF

Class.Quant.Grav. 11 (1994) 2181-2204 | DOI: 10.1088/0264-9381/11/9/005

arXiv:hep-th/9309085

We study a regularization of the Pauli-Villars kind of the one loop gravitational divergences in any dimension. The Pauli-Villars fields are massive particles coupled to gravity in a covariant and nonminimal way, namely one real tensor and one complex vector. The gauge is fixed by means of the unusual gauge-fixing that gives the same effective action as in the context of the background field method. Indeed, with the background field method it is simple to see that the regularization effectively works. On the other hand, we show that in the usual formalism (non background) the regularization cannot work with each gauge-fixing.In particular, it does not work with the usual one. Moreover, we show that, under a suitable choice of the Pauli-Villars coefficients, the terms divergent in the Pauli-Villars masses can be corrected by the Pauli-Villars fields themselves. In dimension four, there is no need to add counterterms quadratic in the curvature tensor to the Einstein action (which would be equivalent to the introduction of new coupling constants). The technique also works when matter is coupled to gravity. We discuss the possible consequences of this approach, in particular the renormalization of Newton’s coupling constant and the appearance of two parameters in the effective action, that seem to have physical implications.

PDF

Phys.Rev. D48 (1993) 5751-5763 | DOI: 10.1103/PhysRevD.48.5751

arXiv:hep-th/9307014

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF