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Abstract

Certain topological invariants of the moduli space of gravitational instantons are defined

and studied. Several amplitudes of two and four dimensional topological gravity are computed.

A notion of puncture in four dimensions, that is particularly meaningful in the class of Weyl

instantons, is introduced. The topological embedding, a theoretical framework for constructing

physical amplitudes that are well-defined order by order in perturbation theory around instan-

tons, is explicitly applied to the computation of the correlation functions of Dirac fermions in

a punctured gravitational background, as well as to the most general QED and QCD ampli-

tude. Various alternatives are worked out, discussed and compared. The quantum background

affects the propagation by generating a certain effective “quantum” metric. The topological

embedding could represent a new chapter of quantum field theory.

1



96
A
1
R
en

or
m

1 Introduction and motivation

Given a manifold or, in general, a field configuration, one can define topological quantities like

the Pontrjiagin number and the Euler number. In quantum field theory, one mainly deals with

spaces of field configurations, rather than single field configurations. Consequently, it can be

interesting to study topological invariants of such spaces. These invariants were called quantum

in ref. [1], since they involve an integration over the chosen configuration space. The usual

topological invariants were called classical. The quantum topological invariants are defined in

a way that is originally suggested by topological field theory, if treated with the approach of

ref. [2], but that actually live quite independently. No notion of functional integral is strictly

necessary, so that, from the mathematical point of view, every formula is rigorously well-defined.

Among the spaces of field configurations, special interest has to be devoted to the space

of instantons, or, in general, the minima of the action of a physical model. The quantum

topological quantities are naturally associated with “measures” over the moduli space and such

measures can be physically relevant. Following the ideas developed in ref.s [3, 1] (collected

under the name of topological embedding), these peculiar measures can be useful to define

perturbation theory around instantons, bypassing convergence problems with the moduli space

integration [4]. In other words, new amplitudes in quantum field theory can be constructed

and proven to be well-defined order by order in perturbation theory around instantons. They

receive contributions only from a specific topological sector (the one to which the instanton

belongs) and could lead to qualitatively new physical predictions.

In this paper, I investigate these issues in topological and quantum gravity. With the new

method I recover known amplitudes in 2-D topological gravity and compute new ones. Then,

I define and study punctures in four dimensions and compute their characteristic quantum

topological invariants. Finally, I apply the topological embedding procedure to the computation

of various physical (i.e. non-topological) correlation functions, illustrating many aspects of

the arguments of [3, 1]. I consider first the two-point function of a fermion in a punctured

background, both in two and four dimensions, and then the most general QED and QCD

amplitude. The main effect of the quantum background on the propagation seems to be the

generation of an effective metric, that we can call the “quantum” metric of the problem. Several

different quantum backgrounds are analysed and compared.

2 Punctures in two dimensions

On a two dimensional plane, let us consider metrics of the form

ea =

(
1 +

n∑

i=1

ρ2pi
(x− xi)2p

) 1
2p

δaµdx
µ ≡ D

1
2p δaµdx

µ ≡ e
1
2p
ϕ
δaµdx

µ. (2.1)

The behaviour of the metric around xi is

ea ' ρi
|x− xi|

dxa. (2.2)
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The points xi are punctures on the plane, i.e. points that are sent to infinity. The scales

ρi specify, in some sense, the “size” of the puncture. Here they are just external parameters

(no topological quantity depends on them). Later on we shall discuss cases in which the ρi are

treated as moduli, on the same footing as the positions xi of the punctures. The integer number

p is introduced for convenience. The topological quantities are independent of p, since they are

sensitive only to the “singularities” (2.2). Unless specified, we use p = 1 in this section. We

have

ω = − 1

2D
dxµεµν∂νD, R = dω,

1

2π

∫

IR2
R = n.

The singularity of the spin-connection ω is a gauge artifact. Indeed, the curvature R = dω

is everywhere regular. This means that the metrics that we are considering are physically

meaningful. The classical topological invariant 1
2π

∫
IR2 R counts the number of punctures.

The topological field theory of gravity with the metrics (2.1) (see [5] for the formal construc-

tion of the theory) can be solved explicitly using the method of ref. [2], combined with some

remarks made in ref. [1]. There is no need to recall the procedure here, since it was extensively

discussed in ref.s [2, 3, 1]. One finds that the diffeomorphism ghosts ca are

ca = − 1

D
1
2

n∑

i=1

ρ2i dx
a
i

(x− xi)2
, êa ≡ ea + ca =

1

D
1
2

[
dxa +

n∑

i=1

ρ2id(x− xi)
a

(x− xi)2

]
. (2.3)

As explained in sect. 2 of ref. [2], everything follows from the expression of this ghost. We

allow the singularity in ca because we are allowing the same behaviour for ea. However, the

solution to the topological field theory makes sense, since the components of the BRST extended

curvatures are all regular. The Lorentz ghosts cab are given by

cab = D[acb], ω̂ab ≡ εabω̂ = ωab + cab = εab
1

D

n∑

i=1

ρ2id(x− xi)
µεµν(x− xi)

ν

(x− xi)4
(2.4)

One can easily check that the first descendant of the torsion, called ψa in ref. [5], is indeed

regular:

ψa = −D{acb}eb +
1

2
sϕ ea, s =

n∑

i=1

dxµi
∂

∂xµi
, (2.5)

s being the exterior derivative on the moduli space. The BRST extended curvature, which is

the basic ingredient in the construction of the observables, is (d̂ = d + s)

R̂= d̂ω̂ =
2

D2

[
n∑

i=1

ρ2id
2(x− xi)

(x− xi)4

(
D − ρ2i

(x− xi)2

)
+

∑

i 6=j

ρ2i ρ
2
j

(x− xi)4(x− xi)4
(x− xi) · d(x− xi) d(x− xj)

µεµν(x− xj)
ν


 . (2.6)

The observables are

O(d)
γ =

1

(2π)d

∫

γ
R̂d,
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where γ can also be a point, in which case the observable is denoted by O(d)(x) (simply O(x)

for d = 1).

The correlator <
∏n
j=1O(yj) >=

1
n!An with local observables placed in distinct points is

equal to one. This can be proved as follows. Let us write O(yn) as
1
2εabsc

ab(yn) and integrate

by parts on the moduli space. The singularities of cab in xi are responsible for the nonvanishing

contributions. Each puncture contributes the same, so that we have n times a reduced amplitude
1
n!An−1 in which one modulus, say xn, disappears. In An−1 one has to set dxn = 0 and take

the limit yn → xn. Before taking this limit one has to note that 1
(n−1)!An−1 is the same as

<
∏n−1
j=1 O(yj) > with the replacements ρ2i → ρ2

i

1+ρ2n/(yn−xn)
2 , i = 1, . . . n − 1. This can be

proven by direct inspection of (2.6). After repeating the argument n − 1 times, one arrives at

an expression A1, which is the same as < O(y1) > with ρ21 → ρ21∏n

i=2
(1+ρ2

i
/(yi−xi)2)

. A1 is equal

to one, whatever ρ1 is. At this point the limits yi → xi, i = 2, . . . n are all trivial and the final

result is also one, as claimed.

When there are observables placed in coincident points, the above procedure cannot be

applied and we have to do the computation in a different way. A long algebraic manipulation

similar to the ones described in detail in ref. [1]1 gives

R̂n =
2nn!

Dn+1

n∏

i=1

ρ2id
2(x− xi)

(x− xi)4
. (2.7)

The correlation functions <
∏k
j=1O(dj)(yj) > can be computed using the cluster property. The

independence of the points yj assures that we can take the limits |yj − yk| → ∞ ∀j 6= k. This

shows that

<
k∏

j=1

O(yj)
dj >=

k∏

j=1

< O(yj)
dj > .

Formula (2.7) gives

< [O(n)(x)] >=
1

(2π)nn!

∫
2nn!

Dn+1

n∏

i=1

ρ2id
2xi

(x− xi)4
=

1

n!
, (2.8)

so that

<
k∏

j=1

O(yj)
dj >=

k∏

j=1

1

dj !
. (2.9)

These are the (known) correlation functions of 2D topological gravity [6], here computed on

the plane, instead of the sphere. To recover the ones on the sphere, one has to remember that

three “hidden” punctures are not visible in our approach, since they just do the job of fixing

the gauge of the ghosts. Moreover, the usual normalization is to multiply the amplitude by the

symmetry factor n!.

Before proceeding, let us make a couple of comments. The moduli space has diagonal

subspaces ∆ where the positions of the punctures coincide. Discarding ∆ by saying that it is of

1 In particular, one has to use formulæ (4.24) and (4.26) of that paper.
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vanishing measure could be too naive, since the measure could be singular on ∆ (the measure

is a descendant of the Euler characteritic, which jumps on ∆). Actually, we did not find any

problem in our computation and this can be interpreted as follows. The jump of the Euler

characteristic is transferred, at the quantum level, to a jump of the correlation functions, that

takes place when the positions of the local observables coincide. In each correlation function ∆

is of vanishing measure, but there are many different correlation functions to consider, i.e. many

measures. One can obtain some topological information about ∆ by comparing the values for

different sets of coindident points. In particular, we have learnt that when n points come to

coincide, there is a jump of 1/n!. I argue that this is a completely general feature of punctures

(and of the centers of Yang-Mills instantons, as we shall see), because the same thing happens

in four dimensions (see section 3). In the case of vortices, on the other hand, there is no jump

at all [1]. Exotic values of the jumps will be also found in the next section.

Now, let us study some correlation functions with nonlocal observables.

I consider the plane with one puncture and a correlation function < Oγ1 · Oγ2 >, γ1 and γ2
being two curves. The explicit evaluation gives

< Oγ1 · Oγ2 >=
ρ4

π2

∫

γ1

∫

γ2
εµνdx

µdyν
∫

d2x0
(ρ2 + (x− x0)2)2(ρ2 + (y − x0)2)2

. (2.10)

To understand what this means, it can be useful to take the limit ρ→ 0, where one gets

< Oγ1 · Oγ2 >=

∫

γ1

∫

γ2
εµνdx

µdyνδ(x− y).

We see that this amplitude counts the number of intersections of γ1 and γ2 with signs. Roughly

speaking, this is similar to the link numbers of [2, 3]. Indeed, in the multilink interpretation

offered in [3], the importance of intersections among the γ’s was apparent. Borrowing the

graphical notation from [3], we shall denote the intersection of the two curves with \/(γ1, γ2).
One the sphere or the plane, this number is always zero, if γ1 and γ2 are both compact. On

higher genus Riemann surfaces it is not so. Later on we shall exhibit the full set of amplitudes of

this kind for any genus and and arbitrary (even) number of curves. With Yang-Mills instantons

[2, 3], on the other hand, there is one more modulus (the scale) and one more element in the

amplitude (the Chern-Simons form), so that it is not necessary to have a genus in order to

produce a nontrivial linkage [2]. Something similar will be observed below.

With more nonlocal observables, one can consider a multiple amplitude. Straightforward

manipulations allow us to show that

<
2n∏

i=1

Oγi >=
∑

cyclic perm of {2,...2n}

\/(γ1, γ2) · · · \/(γ2n−1, γ2n). (2.11)

The fact that the multiple amplitude can be written purely in terms of the two-amplitude

suggests that \/(γ1, γ2) is in some sense the topological “propagator” between curves. Then,

(2.11) is a “tree-level” amplitude. Similar phenomena take place in higher dimensions.

5
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Finally, let us analyse what happens when treating the scales ρi as true moduli. (2.3) and

(2.4) are unchanged, while in (2.5) the moduli space derivative s has to be replaced by

s =
n∑

i=1

dxµi
∂

∂xµi
+ dρ2i

∂

∂ρ2i
.

(2.6) has to be modified consequently. It is easy to check that the quantum topological invariants

are link numbers, similarly to the case worked out in ref.s [2, 3]. To be concrete, let us take

n = 1, p = 1 and the observable < Oγ · O(x) >. The computation can be done writing O(x) as
1
2εabsc

ab and integrating by parts, or by direct inspection of the integral below, which I write

down explicitly for later use in connection with the topological embedding. We have

< Oγ · O(x) >=
1

4π2

∫

γ
dyµεµν(y − x)ν

∫
2ρ2 dρ2 d2x0

(ρ2 + (y − x0)2)2(ρ2 + (x− x0)2)2
= \/(γ, {x}),

(2.12)

where \/(γ, {x}) = 1
2π

∫
γ dy

µεµν(y − x)ν/(x− y)2.

If one is interested in the punctured torus, one can use the metrics

e1 = (dξ + τ1 dη) e
1
2p
ϕ
, e2 = τ2 dη e

1
2p
ϕ
,

ϕ= ln

(
1 +

n∑

i=1

ρ2pi Fp(x− xi)

)
, (2.13)

Fp(λ) =
∑

k,l

1

(λ+ k1̂ + lτ)2p
.

Here ξ, η ∈ [0, 1], x = (ξ + τ1η, τ2η), 1̂ = (1, 0), τ = (τ1, τ2), xi = (ξi + τ1ηi, τ2ηi), ξi, ηi ∈ [0, 1].

τ is the modulus of the torus, (ξi, ηi) are the positions of the punctures. The convergence of

the sum in Fp, in which k and l range over the integers, requires now p > 1. In the usual

conventions, the above metric describes the torus with n + 1 punctures. The extra puncture,

that fixes the translations, is not visible in our approach.

The case n = 0 has been discussed in sect. of [2], the local observable being the Poincarè

metric

Pm =
d2τ

(τ − τ̄)2

and the amplitude being the volume of the moduli space (equal to 1/24). Pm is a good

observable in presence of any number of punctures. It corresponds to the top Chern class of

the Hodge bundle and can be brought into the game via a mechanism described in [7]. The

local observable is, instead equal to the Poincaré metric plus a certain remnant.

Explicit computations are much more involved, now. A simple case is given by the ampli-

tudes

\/(γ1, . . . , γ2n) =< Pm ·
2n∏

j=1

Oγj > .

that are equal to (2.11) times a numerical factor, now on the torus instead of the sphere. Similar

considerations easily extend to higher genera.

6



96
A
1
R
en

or
m

3 Punctures in four dimensions

In four dimensions, on IR4, we consider the conformally flat metrics

ea =

(
1 +

n∑

i=1

ρ2pi
(x− xi)2p

) 1
p

δaµdx
µ ≡ e

1
p
ϕ
δaµdx

µ. (3.1)

For any p these metrics are in the same topological class (their topological invariants are the

same). The Einstein action is finite (zero in the special case p = 1), the Weyl action is zero.

From the computative point of view, p = 2 will be the most convenient choice. The metrics

with p = 1 are discussed in ref. [8] from a classical point of view.

The singularity that we allow around a puncture xi is now

ea ' ρ2i
(x− xi)2

dxa. (3.2)

While the two-dimensional puncture (2.2) describes a cylinder, as one can see after the change

of coordinates |x− xi| → e−|x−xi|, the four-dimensional punture (3.2) corresponds to an IR4, as

it is clearly visible after the inversion (x− xi)µ → (x− xi)µρ
2
i /(x− xi)

2.

The definition (3.1) will be justified by the results that we shall obtain. Moreover, it is

such that the statement “IR4 is S4 with one puncture at infinity” is literally correct. Indeed,

let us write the metric of S4 as ds2 = dx2/(1 + x2/R2)2. We perform an inversion xµ → R2

x2
xµ

in order to exchange the point at infinity with zero. Then we place a puncture in the origin,

multiplying the metric by a conformal factor of the type (3.1) with p = 1, precisely
(
1 + R2

x2

)2
.

Finally, we undo the inversion. At the end we get the metric ds2 = dx2 of IR4, as desired.

A conformal factor like the one in (3.1) “puncturizes” a Weyl instanton while remaining in

the class of Weyl instantons. The process of “puncturization” encoded in (3.1) is completely

general. Given a manifold M , we denote by pM the punctured version of the same. When

we want to specify the number of punctures, we write pMn. If the topological invariants of M

are (χ, σ), then those of pMn are (χ − 2n, σ). For example, interesting Weyl instantons with

punctures are the pALE (punctured Asymptotically Locally Euclidean) manifolds, pK3, pT 4,

pCP 2, pS4, etc. The topological properties that will be derived for pIR4 are quite general and

hold for any punctured manifold pM .

The hyperKähler character of a gravitational instanton, instead, in not preserved by the

puncturization process. I have not found, yet, a definition of puncture that does this job. It

would be interesting to know if it exists.

Coming back to pIR4, we have that the spin connection ωab is

ωab = −1

p
dxa∂bϕ+

1

p
dxb∂aϕ.

The curvature Rab = dωab − ωacωcb is regular. The Pontrijagin number vanishes, while the

7
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Euler number counts the number of punctures2:

− 1

64π2

∫

IR4
Rab ∧Rcdεabcd = n,

∫

IR4
Rab ∧Rab = 0. (3.3)

Now, let us solve the topological field theory of gravity [5] with the metrics (3.1), following

the general recipe of ref.s [2, 1]. The ghosts ca of diffeomorphisms are

ca = − 1

D
p−1
p

n∑

i=1

ρ2pi dxai
(x− xi)2p

, êa ≡ ea + ca =
1

D
p−1
p

[
dxa +

n∑

i=1

ρ2pi d(x− xi)
a

(x− xi)2p

]
. (3.4)

The expressions of the other fields greatly simplify for p = 2, which is the value that we shall

use from now on. The Lorentz ghosts cab are again given by the first expression of formula

(2.4), so that

ω̂ab = − 2

D

n∑

i=1

ρ4i
(x− xi)6

[(x− xi)
ad(x− xi)

b − (x− xi)
bd(x− xi)

a].

The first BRST descendant of the torsion ψa, again given by (2.5), is regular. Using the notation

x̂i = x−xi in order to compress the formula, the BRST extended curvature R̂ab = d̂ω̂ab−ω̂acω̂cb
is given by

R̂ab =− 4

D2

[
n∑

i=1

ρ4i
x̂6i

(
D − ρ4i

x̂4i

)(
dx̂ai dx̂

b
i − 6

x̂i · dx̂i
x̂2i

x̂
[a
i dx̂

b]
i

)

+
∑

i 6=j

ρ4i ρ
4
j

x̂6i x̂
6
j

(
4x̂i · dx̂i x̂[aj dx̂

b]
j − x̂ai x̂

b
j dx̂i · dx̂j − x̂i · x̂j dx̂ai dx̂bj − 2x̂j · dx̂i x̂[ai dx̂

b]
j

)

 .

The observables are

Oγ = − 1

64π2

∫

γ
R̂ab ∧ R̂cdεabcd ≡

∫

γ
Q̂(x).

The correlator <
∏n
j=1O(yj) >, yj 6= yk for j 6= k, is equal to one. This can be proved

exactly like in the two-dimensional case, by a sequence of partial integrations and rescalings of

the ρi’s. The detailed derivation is left to the reader. When there are coincident points, there

should exist a simple formula generalizing (2.7), but it seems very difficult to work it out. In

the case n = 2, a long work done with Mathematica gives

[
Q̂(x)

]2
=

384

π4
ρ81ρ

8
2d

4x̂1d
4x̂2

D7x̂121 x̂
12
2

(
D +

ρ41ρ
4
2

2x̂41x̂
4
2

− (x̂1 · x̂2)2
ρ41ρ

4
2

2x̂61x̂
6
2

)
.

This allows us to compute the correlation function with two local observables placed in the

same point, which turns out to be (putting ρ1 = ρ2 = 1)

< [O(x)]2 >=
1

2!

∫
384

π4
d4x1d

4x2
D7x̂121 x̂

12
2

(
D +

1

2x̂41x̂
4
2

− (x̂1 · x̂2)2
2x̂61x̂

6
2

)
=

1

2
. (3.5)

2 In the standard normalization, χ = −2n and σ = 0. However, from the point of view of topological field

theory it is convenient to normalize the invariants like in (3.3).
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We see that the kind of jump that characterizes punctures in four dimensions is the same as in

two, as we wanted to show. Very presumably, formula (2.9) also holds.

The Pontrijagin number of our metrics vanishes. However, this is not sufficient to say that

all the related quantum topological observables

Õ(d)
γ = − 1

(32π2)d

∫

γ
tr[R̂2d] (3.6)

give vanishing correlation functions. < Õ(1)(x) > trivially vanishes. One can explicitly check

that < Õ(1)(x)Õ(1)(y) > also vanishes. When x 6= y, this is straightforward. When x = y

similar algebraic manipulations as above give an expression proportional to

∫
d4x1d

4x2
D7x̂121 x̂

12
2

(
D − 2

x̂41x̂
4
2

+
2(x̂1 · x̂2)2
x̂61x̂

6
2

)
= 0. (3.7)

However, due to the identity
[
O(1)(x)

]2
= 2

[
Õ(1)(x)

]2
+4Õ(2)(x), Õ(2)(x) is related to a couple

of O(1)(x) at coincident points, so that we have

< Õ(2)(x) >=
1

8
. (3.8)

This means that Pontrjiagin and Euler numbers mix at the quantum level, although they are

classically distinguished. This mixing does not violate parity conservation, since it takes place

only with even powers.

It can also be checked that O(x)Õ(x) ≡ 0. In particular, decomposing the Riemann curva-

ture Rab into the self-dual and anti-self-dual components, Rab = R+ab + R−ab, one can write

< O(x)Õ(x) >∝< tr[(R̂+)2]2− tr[(R̂−)2]2 >= 0. This equality, toghether with, (3.5) and (3.7),

implies that 1
(16π2)2 < tr[(R̂±)2]2 >= 1

2 . We point out this fact for the following reason. There is

a deep relationship between punctures and the centers of Yang-Mills instantons. Let us consider

(3.1) for p = 1. It can be easily checked that R+ab turns out to coincide with the field strength of

the ’t Hooft SU(2) Yang-Mills instantons with instanton number n [9], while R−ab is the “con-

jugate” of the same, namely the ‘t Hooft solution with instanton number −n. Instantons and

anti-instantons are placed in the same points, so that we can say that a puncture can be viewed

as an instanton-anti-instanton pair3. We have just shown that 1
(16π2)2 < tr[(R̂±)2]2(x) >= 1

2 ,

while 1
(16π2)2

< tr[(R̂±)2](x) tr[(R̂±)2](y) >= 1, for x 6= y. This result has been obtained for

p = 2, but it is independent of p, as we know. We conclude that the elementary jump that

characterizes punctures characterizes the centers of Yang-Mills instantons also.

Similarly to the two-dimensional case, we can consider amplitudes associated with non-local

observables. For example, in the case with one-puncture, we get

< Oγ3 · Oγ1 >=
24

π4

∫

γ3

∫

γ1
εµνρσdx

µdxνdxρdyσ
∫

ρ16(x− x0)
4(y − x0)

4 d4x0
(ρ4 + (x− x0)4)4(ρ4 + (y − x0)4)4

,

3 This explains also why χ = −2n: a contribution −n comes from instantons and another contribution −n

comes from anti-instantons. These two contributions cancel in the Pontrjiagin number: σ = −n+ n = 0.

9
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γ3 and γ1 here denoting three- and one-dimensional closed submanifolds (eventually not com-

pact). A clearer representation of the above correlation function is obtained by taking the limit

ρ→ 0 and using the property limρ→0
ρ8x4

(ρ4+x4)4 = π2

2 δ
(4)(x):

< Oγ3 · Oγ1 >=
1

6

∫

γ3

∫

γ1
εµνρσdx

µdxνdxρdyσ δ(x − y) = \/(γ3, γ1).

So, there is a topological propagator between pairs of closed submanifolds whose dimensions

sum up to four. The above correlation function is more meaningful on a topologically nontrivial

manifold, like K3, T 4, CP 2. Using a procedure similar to the one used in section 2 for T 2, we

can produce the above correlation function on any punctured manifold pM , after inserting an

additional top-form of the moduli space of M . On T 4 formulæ generalizing (2.13) can be easily

written down.

When the ρi are included in the set of the moduli, the quantum topological invariants

are link numbers, again. With one puncture, one recovers exactly the multilink correlation

functions of [2, 3]. For example,

< Oγ3 · O(x) >= \/(γ3, {x}).

With more punctures, the problem is equivalent to the same problem with ’t Hooft multi-

instantons [9], i.e. SU(2) Yang-Mills instantons in which one keeps the gauge moduli fixed and

studies only positions and scales.

Before closing this section, I would like to comment about the non uniqueness of the four

dimensional puntures (3.2), and the uniqueness of the two dimentional punctures (2.1). To this

purpose, let us modify (3.1) into

ea =

(
1 +

n∑

i=1

ρ2pi
(x− xi)2p

) α
2p

δaµdx
µ. (3.9)

Then the singularity (3.2) becomes ea ' ρα
i

|x−xi|α
dxa. For α = 1 the punctures are of the kind

IR × S3 rather than IR4. It would seem, at first, that such punctures are the most natural

candidates to generalize the two-dimensional cylindrical punctures, instead of the ones that we

have used so far. This, however, is incorrect. Indeed, if we modify (2.1) like (3.9), we see that

a generic α does not produce any change in the quantum topological invariants. In particular,

one observes the same kind of jumps as before. Nevertheless, (3.9) do not share this universality

property. Following the general recipe, one can easily solve the topological field theory with

(3.9). I shall not repeat the derivation here, leaving it to the reader. The normalization (3.3)

is now replaced by

− 1

16π2α2(3− α)

∫

IR4
Rab ∧Rcdεabcd = n.

The technical simplifications occur for α = p. Then, the punctures of type IR× S3 correspond

to p = 1. The characteristic jump (3.5) can be easily computed to be replaced by

< [O(x)]2 >=
(p2 − 32p + 80)

40 (3 − p)2
. (3.10)
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The punctures of type IR× S3, in particular, have a jump of 49/160, a number which is very

difficult to interpret. The right hand side of (3.10) has a maximum equal to 22/35 for p = 32/13.

We conclude that the jump in not universal in four dimensions, while it is so in two dimensions.

The above expression does not single out anything special about p = 2.

Let us consider, now, the correlation function < [Õ(x)]2 >, where the tilded observables are

normalized by replacing the 32π2 with 8π2α2(3 − α) in (3.6). Then, after a certain nontrivial

amount of work, we get

< [Õ(x)]2 >=
(2− p)(p + 10)

40 (3 − p)2
,

which vanishes only for p = 2 and equals 11/160 for p = 1. Thus, for p 6= 2 the quantum mixing

between Euler and Pontrijagin numbers is much more apparent than for p = 2. We finally see

that the IR4 punctures are indeed the privileged ones.

We have just learned something very nontrivial from the analysis of the quantum topological

invariants. This shows once again that these concepts are very useful and that the method for

treating them developed in [2, 3, 1] is very powerful.

4 Physics

In this section I comment about the physical relevance of the metrics (3.1) and the notion

of punctures in quantum gravity. Moreover, I study the case of a fermion placed in a given

quantum topological background. For the issues of gauge invariance and renormalization in

connection with the topological embedding in a general quantum field theory, the reader is

referred to [3, 1].

The metrics (3.1) are instantons of Weyl gravity, but they are also important in ordinary

quantum gravity, as we wish to show.

For p = 1 the Einstein action
∫
R
√
g is zero, independently of the number of punctures,

since the Ricci curvature vanishes identically. However, one has to take into account that the

total action contains a boundary term [10], which is not zero for p = 1. It can be easily verified

that for p > 1 the boundary term vanishes, while the Einstein action is negative definite.

According to ref. [10], given a metric g one has to look for the element ḡ in the conformal

class of g that satisfies R ≡ 0. The Positive Action Conjecture [10] says that the action for

ḡ, which is entirely given by the boundary term, is positive definite. The action for g has an

additional contribution, due to the conformal factor, that is positive definite once the integration

over the conformal factor is taken to be parallel to the imaginary axis [10]. In our case, g is a

generic metric (3.1), ḡ is the metric with p = 1. So, the metrics with p = 1 are the ones with

the least action in our class.

Since the behaviour of ḡµν for x→ ∞ is δµν(1+
∑n
i=1 ρ

2
i /x

2)2, the action for ḡ is simply [8]

S = − 1

16πκ2

∫

M
d4x

√
gR+

1

8πκ2

∫

∂M
[K]

√
kd3x+

iθ

64π2

∫

M
RabRcdεabcd = 6π

n∑

i=1

ρ2i
κ2

−inθ. (4.1)

11
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Integrating over ρi gives unity:

C
1

κn

∫ n∏

i=1

dρi e
−S = einθ,

where C is an appropriate numerical factor. This means that the contribution of the metrics

(3.1) to the gravitational path integral is, after integrating over all possible values of the scales

ρi, of the same order of magnitude as the contribution coming from flat space. Hence, the

metrics (3.1) should be relevant for quantum gravity. Indeed, they can be considered as the

analogues of the Yang-Mills instantons.

Note that the action (4.1) does not have a minimum in the topological sector specified by

(3.3): tuning the values of the scales ρi appropriately, S can be made arbitrarily small. On

the other hand, when some ρi’s are exactly zero, the metric belongs to a different topological

sector, since (3.3) jumps. A phenomenon like this one does not hold for Yang-Mills instantons,

where the minimum of the action in the kth instanton sector is 8π2|k|/g2; it holds in four

dimensional quantum gravity as a consequence of the peculiarity of the gravitational action (its

linearity in the curvature) and of the fact that the boundary of the moduli space of pIR4
n is a

union of moduli spaces of pIR4
k, k < n. In two dimensions, on the other hand, gravity is too

simple to have an effect like this. The practical consequence of this observation is that in four

dimensional quantum gravity, differently from Yang-Mills theory, the topological embedding

acts on the positions xi of the punctures only, while the scales ρi are taken care of by the

measure C
∏
i d (ρi/κ) e−S .

Thus, we understand that the best way to treat the topological sectors (3.3) is to integrate

over all possible values of the ρi’s. In perturbative quantum gravity around the metrics (3.1)

(with p = 1) there will be a linear term in the graviton. It would be interesting to explore

the effects of this linear term in connection with the topological embedding. This, however, is

beyond the scope of the present paper and maybe will be considered elsewhere.

The integration over the scales ρi with the measure C
∏
i d (ρi/κ) e−S does not affect the

topological invariants considered in the past section, since they are scale-independent.

Instead of studying the topological embedding on gravity itself, it is simpler to start from its

effects on matter. Let us consider a fermion coupled to the gravitational field in d dimensions

(we take p = 1 if d = 2 and p = 2 if d = 4). The action has the additional contribution

√
gψγaeµaDµψ = e

d−1
2
ϕψD/ψ.

The presence of the factor eϕ, which is singular in the puctures, forces the matter field to vanish

there, more or less as it happens in the case of vortices [1].

We are interested in the two-point function < ψ(x)ψ(y) > in a punctured background. This

means that we have to integrate over the positions of the puncures. This integral is, in general,

divergent. However, according to the general theory developed in [3] and [1], certain amplitudes

are order-by-order perturbatively well-defined in the topologically nontrivial sectors. Here we

want to apply those ideas to our case. One considers, instead of the ill-defined < ψ(x)ψ(y) >,

12
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amplitudes of the form

< ψ(x)ψ(y)
n∏

j=1

O(zj) >≡< ψ(x)ψ(y) >{z} . (4.2)

The insertion of the local observables O(zj) (n of them, in the case of n punctures) specifies

the quantum topological background on which the amplitude is defined. Intuitively, it is like

studying phonon interactions on the background of the magnetic force lines that penetrate

a type II superconductor [1]. An amplitude like the above one will be called a (2, n)-point

function, the first number referring to the quantum excitations, the second number referring to

the quantum background. Later on we shall also compute the fermion two-point function with

a nonlocal quantum background made of curves γ.

Before beginning the computations, we have to make a couple of comments about the

solutions (2.3) and (3.4) and the meaning of the topological gauge-fixing conditions on the

physical side of the problem.

It has been shown in [2] that the gauge-fixing condition for the topological ghosts uniquely

determine the solution to the topological field theory. In our case, ψa = ψabeb should be fixed

with the conditions ψab = ψba and Dµψaµ = 0. However, (2.3) and (3.4) do not satisfy Dµψaµ = 0:

(2.3) and (3.4) are only smooth deformations of the “good” solutions. The topological invariants

are unaffected and, indeed, in two dimensions we were able to reproduce some known results.

In the analysis of the physical side of the problem, on the other hand, the gauge-fixing condition

for ψa is important. One can check that the physical amplitudes, like (4.2), do depend on it. As

far as we know, it could be impossible to write down a gauge condition for ψa that rigorously

produces the solutions (2.3) or (3.4) and satisfies the standard requirements of quantum field

theory (locality, in particular). Dµψaµ = 0 appears to be the natural (and, to some extent,

unique) choice. On the other hand, the explicit solution to this equation, that we have not

found, could be so complicated to prevent us from using it for practical purposes. Therefore,

we use (2.3) and (3.4) in this paragraph4, taking full advantage of their simplicity, but being

aware that in any hypothetical “comparison with experiment” our results should be mostly

taken as qualitative.

In full generality, the gauge-fixing conditions Gψ = 0 for the topological ghosts ψaµ appear

to be as important as the instanton conditions GT = 0 themselves (for example, in Yang-Mills

theory, GT = F a+ and Gψ = Dµψaµ). This is quite reasonable, since the topological ghosts

ψaµ are descendants of the curvature (F a, Rab, . . .). It is for this reason, for example, that

the non-covariant choice Gψ = ∂µψaµ is not acceptable: indeed, in [2] it was observed that

Gψ = ∂µψaµ leads to an empty topological Yang-Mills theory. The instanton conditions GT = 0

are also a sort of gauge-fixing conditions, from the topological field theoretical viewpoint, but

on the physical side they play quite a different role, because they are uniquely determined by

minimizing the action.

4 The explicit computations will be mainly performed in two dimensions, since this is already a nontrivial

and illustrative case, but simpler.
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Summarizing, changing Gψ does change the physical amplitudes, but, fortunately, there

exists a natural choice for it. Moreover, Gψ is strictly unique if one accepts that it should

combine together with the ψ-field equation into a twisted Dirac equation. This “gauge-fixing

dependence” is not in contraddiction with general principles. The point is that we are talking

about the gauge-fixing conditions of the topological symmetry, which is not a symmetry of

the physical theory, but rather an artifact of the perturbative expansion around instantons.

The topological “gauge-symmetry” is present because in the topologically nontrivial sectors the

minimum of the action is not a point, but a moduli space. We can say that the topological

embedding solves the problem that arises when the very first stage of the perturbative expansion

(with which I mean the zero point function) has more “gauge-symmetries” than the complete

theory. In the topological embedding the quantum topological invariants play the very role of

“zero point functions”.

After this instructive digression, let us begin our analysis of the physical amplitudes.

In two dimensions the action of pure gravity is topological. The scales ρi deserve to be

discussed apart. In this respect, the situation is different from the four dimensional one. The

ρi’s can or cannot be integrated over, according to the background that one wish to consider.

Here, I shall examine both cases, starting from the case in which the ρi are fixed. The amplitudes

can be ρi-dependent.

The covariant derivative Dψ is dψ − i
2ωσ3ψ. Defining ψ = e−

ϕ
4 ψ̃ and ψ = e−

1
4
ϕψ̃, the

lagrangian can be written simply as

e
ϕ
2 ψσµ

(
∂µ +

1

4
∂µϕ

)
ψ = ψ̃σµ∂µψ̃,

where eϕ(x) = D(x) = 1+
∑n
i=1

ρ2
i

(x−xi)2
. Thus, the desired (2, n)-point function is easily written

down. One has

< ψ(x)ψ(y) >{z}=
1

2π

x/− y/

(x− y)2
Gn(x, y, {z}), (4.3)

where the function G(x, y, {z}) is a sort of form factor that describes the deviation from the

free propagator. In order to simplify the expression, I would like to consider the case in which

the n points zi are all distinct (coincidences appear to be quite unplausible, from the physical

point of view), but concentrated in a small region (or viewed from a large distance). In this

way, we can take zj ' z ∀j. Were the punctures truly placed in the same point z, there would

be a jump described by an additional overall factor 1/n!, as we know.

Under these conditions, we have, from (2.8),

Gn(x− z, y − z) =
n!

πn

∫ n∏

i=1

ρ2id
2xi

(z − xi)4
1

D(z)n+1D(x)
1
4D(y)

1
4

(4.4)

Although it was not obvious from the beginning, the above formula shows that the amplitudes

that we are considering are indeed well-defined: the xi-integrations make sense. This would

not be true without the insertion of the quantum background
∏n
j=1O(zj). Thus we have a

concrete illustration and check of the general theory developed in ref.s [3, 1]. (4.3) represents

14
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the first perturbative contribution to the effective action in the n-puncture topological sector,

obtained by expanding around the topological amplitude <
∏n
j=1O(zj) >= 15. The result

is no more topological, of course, and the factor G(x − z, y − z) measures the feedback that

the fermion propagation receives from the quantum background on which it is excited. G

could be considered as an effective “quantum” metric. In our examples G obeys the inequality

0 ≤ G ≤ 1. The amount of the deviation of G from the value 1 (propagator in flat space)

describes the “obstacle” that the fermion finds on its way.

This phenomenon, i.e. the generation of a quantum metric by the quantum background,

seems to be quite general, not related to the presence of gravity in the problem. For example, a

two-point function of the same structure can be observed (see formula (2.8) of [1]) with scalars

in presence of the BPST instanton [11].

In our simple theory, there is no radiative correction to the effective action and the form

factor G(x− z, y − z) is the entire story.

Let us focus on the singular behaviour for x ∼ y. The function Gn(x − z, x − z) has a

minimum exactly on the puncture (x = z) and tends to 1 far from it: the deviation from

the free propagator is maximal nearby the puncture and negligible elsewhere. The minimum

Gn(0, 0) is
(2n)!!

(2n+1)!! , so that

< ψ(x)ψ(z) >z∼
(2n)!!

(2n+ 1)!!

1

2π

x/− z/

(x− z)2
.

For large n this minimum goes to zero like 1
n . This means that an infinite number of punctures

is able to inhibit the propagation completely in the area where they are located. This is a quite

reasonable physical result. But it is also interesting to note that no finite number of punctures

is able to achieve this.

We can compare the effects of the quantum background to the ones of the classical back-

ground. The latter situation is achieved by saying that the metric is a fixed external field, so

that no integrations over the positions xi are performed. Then, the fermion two-point function

< ψ(x)ψ(y) >=
1

2π
e−

ϕ(x)
4

x/− y/

(x− y)2
e−

ϕ(y)
4 (4.5)

vanishes at the points xi, whatever the total number of puctures is. We conclude that the

quantum background is able to smoothen this effect.

For one puncture the form factor is

G(x− z, y − z) =
1

π

∫
ρ2d2x0

(ρ2 + (z − x0)2)2
1

[(
1 + ρ2

(x−x0)2

) (
1 + ρ2

(y−x0)2

)] 1
4

(4.6)

and its minimum is 2
3 . We understand that the physical meaning of the scale ρ is that it

measures the size of the region where the propagation is sensibly affected by the G-function.

5 The words “expanding around a topological amplitude” should not suggest that there is a smooth limit that

reduces the physical theory to the topological one. Indeed, it is true that the quantum fluctuations are “small”,

but it is also true that, after the functional integration, their contribution is finite.
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Now, we want to analyse a different possibility for defining < ψ(x)ψ(y) > in the one-

puncture sector. We want to insert a couple of nonlocal observables like the ones appearing in

(2.10). We have

< ψ(x)ψ(y) >γ1·γ2=
1

2π

x/− y/

(x− y)2
G(x, y, γ1 · γ2).

where

G(x, y, γ1·γ2) =
ρ4

π2

∫

γ1

∫

γ2

∫
εµνdz

µdwν d2x0

(ρ2 + (z − x0)2)2(ρ2 + (w − x0)2)2
[(
1 + ρ2

(x−x0)2

) (
1 + ρ2

(y−x0)2

)] 1
4

.

To be explicit, let us γ1 be the x-axis and γ2 the y-axis. The γ-integrations are easily doable.

The minimum of G is in the point in which γ1 and γ2 intersect. A numerical integration gives,

for x ∼ y ∼ 0

< ψ(x)ψ(y) >γ1·γ2∼ 0.6935
1

2π

x/− y/

(x− y)2
,

revealing that the deviation from free propagation due to two intersecting lines is slightly less

than the one due to a local observable. Note, however, that the γ’s distribute G in a wider

area.

Finally, let us study the topological embedding when the scales ρi are included in the set of

the moduli. We study the propagation on the quantum background (2.12). We have

< ψ(x)ψ(y) >γ·{z}=
1

2π

x/− y/

(x− y)2
G(x, y, γ · {z}). (4.7)

where

G(x, y, γ · {z}) = 1

4π2

∫

γ

∫
dwµεµν(w − z)ν 2ρ2dρ2 d2x0

(ρ2 + (z − x0)2)2(ρ2 + (w − x0)2)2
[(
1 + ρ2

(x−x0)2

) (
1 + ρ2

(y−x0)2

)] 1
4

.

(4.8)

The integral in ρ and x0 diverges as 1
(z−w)2 when w → z, precisely as in the purely topological

amplitude (2.12). The factor in front of the singularity, however, can be different. An instructive

situation that we can easily handle is the one in which x ∼ y ∼ z. In other words, let us inspect

how the propagator is modified in the neighborhood of the point z where the local observable

is placed. One gets

< ψ(x)ψ(y) >γ·{x}∼
2

3
\/(γ, {x}) 1

2π

x/− y/

(x− y)2
. (4.9)

We see that there are both the numerical factor 2/3 and the link number itself in front of the

usual two-point function. At very large distances, on the other hand, the two point function

looses the factor 2/3 and becomes the free propagator times the link number. An intermediate

situation is the one in which one point, say x, is very far and the other one is very close to z.

Then the factor 2/3 in (4.9) is replaced by 4/5. If the curve γ and the point z are unlinked,

(4.9) is exactly zero, however the two-point function is not identically zero.
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Since ρ is integrated over, there is no external scale which is kept fixed. The size of the

region where the propagation is sensibly affected by the quantum background is dictated by

the quantum background itself: precisely it is the size of the curve γ.

We have examined two typical cases. In the first case the instantons contain a dimensionful

parameter ρ that is kept fixed. Then the quantum background can be constructed purely with

local observables, like in (4.2). In the second case, instead, the size of the instanton is integrated

over. Then the quantum background is forced to contain at least one nonlocal observable, like

in (4.7), associated with a closed submanifold γ. The brings a new scale into the game, which

is the size of γ. It seems that it is not possible to have a scale-free topological embedding.

Let us recall that, in the topologically trivial sector, when no other scale is around, it

is renormalization that forces the introduction of one. In section 2.1 of ref. [1] the usual

renormalization scale was interpreted as the (unique) quantum background of the topologically

trivial sector. Indeed, a feature that the topological embedding and renormalization have in

common is that they both cure problems with divergences.

It seems that the factor G has everywhere the same sign, which we can fix conventionally to

be positive. I have not found situations where this property is violated. It is straightforward to

prove it for the amplitude (4.4) and for a set of simple situations in (4.8) (for example, when γ

is a circle centered in z). However, I do not have a rigorous proof that this positivity condition

holds in general. It would assure that our two-point function is physically meaningful without

imposing restrictions on the quantum background. At the same time, it would justify the name

“quantum metric” that we have used.

The analysis of the two-point function of a Dirac fermion in a four dimensional punctured

background is entirely similar and will not be repeated. We just note that it is sufficient to

write the Lagrangian L =
√
gψγaeµaDµψ as L = ψ̃∂/ψ̃ for ψ̃ = ψ e

3
2p
ϕ and ψ̃ = ψ e

3
2p
ϕ (Dψ =

dψ − 1
8 [γa, γb]ω

abψ in our notation) and proceed as before, using the moduli-space measures of

section 3. Similarly, messless QED (or QCD, with obvious modifications) in the same punctured

background presents no further difficulty. The QED Lagrangian in the variables ψ̃ and ψ̃ still

looks like the ordinary one. Consequently, denoting by Γ (x,m; y,m; z, l) the ordinary renormal-

ized QED scattering amplitude ofm fermions and l photons, the same amplitude in the quantum

punctured background Q is given by ΓQ (x,m; y,m; z, l) = Γ (x,m; y,m; z, l)GQ (x,m; y,m),

where (p = 1)

GQ (x,m; y,m) = C

∫ n∏

i=1

d (ρi/κ) e−SQ dµQ

m∏

j=1

e−
3
2(ϕ(xj)+ϕ(yj)). (4.10)

Here dµQ denotes the measure of the topological amplitude
∫
dµQ associated with the quantum

background Q. SQ is the action (4.1) of the background Q. It is straightforward to check that

GQ is well-defined and that its qualitative behaviour agrees with the behaviours of the G-

functions studied so far. A direct consequence of (4.10) is that the pure scattering of photons

(m = 0) does not really feel the quantum background, in the sense that GQ is just the topological

invariant in that case. (4.10) could have some physical applications, for example in solid state

physics, if one finds some material that is able to simulate the effects of the punctures. In
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this hypothetical situation, (4.10) could describe the QED scattering inside such a material.

Finally, we can see explicitly that there is no conflict between the topological embedding and

renormalization.

In conclusion, we have tested the general theory of the topological embedding in a set of

simple models in which we can write down explicit formulæ. The amplitudes are well-defined

and give quite plausible physical predictions. We have seen that the known properties of quan-

tum field theory are generalized in a reasonable way. Up to now, the analysis of the topological

embedding has not revealed the need of physical restrictions on the quantum background one is

expanding around. The topological embedding could be a new chapter of quantum field theory.
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