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Abstract

Topological Yang-Mills theory with the Belavin-Polyakov-Schwarz-Tyupkin SU(2) instanton

is solved completely, revealing an underlying multi-link intersection theory. Link invariants are

also shown to survive the coupling to a certain kind of matter (hyperinstantons). The physical

relevance of topological field theory and its invariants is discovered. By embedding topological

Yang-Mills theory into pure Yang-Mills theory, it is shown that the topological version TQFT

of a quantum field theory QFT allows us to formulate consistently the perturbative expansion

of QFT in the topologically nontrivial sectors. In particular, TQFT classifies the set of good

measures over the instanton moduli space and solves the inconsistency problems of the previous

approaches. The qualitatively new physical implications are pointed out. Link numbers in QCD

are related to a non abelian analogoue of the Aharonov-Bohm effect.
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1 Introduction

The idea that in some quantum field theories special correlation functions are exactly calculable

dates back to the eighties, when it was realized that supersymmetric theories possess amplitudes

(‘gaugino condensates’ or, in general, ‘topological amplitudes’) that are independent of the

distances between points1. A systematic study of topological amplitudes can be pursued in the

realm of the so called topological field theories, where every physical amplitude is of this type.

Some topological field theories can be produced by a formal procedure, the topological twist

[2, 3, 4], starting from N=2 supersymmetric theories. Up to now, topological field theories

have not been related in a systematic way to their nonsupersymmetric counterparts2 and their

importance for physics has not been identified.

According to Witten [2], the physical amplitudes of topological Yang-Mills theory are the so-

called Donaldson invariants [6]. The observables Oγi are interpreted as cocycles of the instanton

moduli space M and are associated to cycles γi of the four-manifoldM (Donaldson map). With

M = IR4 (or S4), G = SU(2) and unit instanton number, there is no amplitude of this type,

since the only nontrivial cycles of IR4 are the point (associated to a 4-form on M) and the

manifold M itself: the moduli space dimension, which is 8k − 3, k ∈ Z, cannot be saturated

with a product of 4-forms. Nevertheless, in ref. [7] it was explicitly shown that the theory is not

empty. The key idea was to integrate the usual observables of topological Yang-Mills theory

on contractible closed submanifolds γi of IR
4, rather than on cycles. The result was that the

expectation value of the product of two observables associated to linked submanifolds γ1 ⊂ IR4

and γ2 ⊂ IR4 is indeed nonzero. The submanifolds γ1 and γ2 are said to be linked if γ1 is a

nontrivial cycle of IR4\γ2 and γ2 is a nontrivial cycle of IR4\γ1. The idea was tested in two

cases, namely

< OS3 · OP >= \/(S3, P ), < OS2 · OS1 >= \/(S2, S1). (1.1)

The left hand side denotes the amplitudes as defined in topological Yang-Mills theory. The

right hand side denotes the result of the explicit computations, that was interpreted as the link

intersection number of the γi’s. I use the symbol \/ for such a kind of intersection numbers.

\/(S3, P ) is a step function: zero if the point P is placed outside the 3-sphere S3; 1 if the point

P is placed inside S3. \/(S2, S1) is entirely similar. In ref. [7] correlation functions that do not

vanish, although naively expected to, were also found in four dimensional topological gravity.

The considered amplitudes involve non-local observables, related to circles, spheres, Rie-

mann surfaces, 1-knots, 2-knots, etc. In N=2 super Yang-Mills theory the gaugino condensates

[1] are average values of local observables. It is interesting to know that amplidutes with nonlo-

cal observables can also be explicitly computed in four dimensions and it would also be desirable

to compute similar amplitudes in supersymmetric theories. Moreover, all gaugino condensates

are constant amplitudes: step amplitudes have not been found in supersymmetric theories, so

1For a review and references see [1]. Those results are mainly due to the groups Novikov-Shifman-Vainshtein-

Zacharov, Amati-Konishi-Meurice-Rossi-Veneziano, Affleck-Dine-Seiberg.
2Recently, nevertheless, it has been proposed in [5] that certain amplitudes of topological field theory (Don-

aldson invariants) can be recovered in ordinary Yang-Mills theory in a suitable limit.
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far.

The hidden link-theory contained in topological Yang-Mills theory deserves to be explored

in depth. One of the purposes of this paper is to push the analysis of ref. [7] forward, answer-

ing some of the questions raised there, in particular identifying completely the mathematical

meaning of the unit instanton number sector of the theory. It will be shown that this sector

of the theory contains the full set of multilink invariants of closed smooth submanifolds of IR4.

Multilink intersection theory is defined in section 2.

In a double linkage U\/V , one usually writes U = ∂B (B being called Seifert manifold) and

counts the intersections B ∩V . There is a well-known integral representation, due to Gauss, of

the link number between two 1-knots in IR3, namely

U\/V =
1

4π

∮

U
dxi

∮

V
dyjεijk∂k

1

|x− y| . (1.2)

Topological field theory provides natural generalizations of this formula. The integral repre-

sentation of 2-linkages in IR4 is known in the literature, the representations of multilikages are

new.

In view of the results of [7] and the present paper, it seems that the generic ideas according

to which N=2 supersymmetric Yang-Mills theory in the ultraviolet is Donaldson theory and the

topological twist reorganizes the topological amplitudes of an N=2 theory into a self-consistent

topological sub-theory deserves to be reconsidered. Actually, the topological contents of N=2

super Yang-Mills theory (“gaugino condensates”), topological Yang-Mills theory and the so-

called “Donaldson theory” appear to be, in general, essentially different and only formally

related by the topological twist. Moreover, it will be suggested here that topological Yang-

Mills theory is more intrinsically related to ordinary Yang-Mills theory (via a certain topological

embedding, see section 4) than to N=2 supersymmetric Yang-Mills theory. Indeed, it is one

of the main purposes of this paper to propose and study the role of topological field theory

in physics. The topological amplitudes are expected to carry some physical information. Link

numbers in QCD should be related to a non abelian analogue of the Aharonov-Bohm effect

(which could be in principle detectable).

The organization of the paper is the following. In section 2, multilink intersection theory is

defined and tested by computing various amplitudes and by working out integral representations

of multilink invariants. In section 3 the so-called hyperinstantons, introduced and studied by

Frè and the author in ref.s [4, 8, 9], are used to show that the properties of pure topological

Yang-Mills theory survive the coupling to matter (scalar fields, in this case). In section 4, the

topological embedding is realized and compared to the usual treatment of collective coordinates.

Finally, in section 5 the relation between link numbers and Aharonov-Bohm effect is discussed.

2 Multilinks

The aim of this section is to define multilink intersection theory, work out its relation with

topological Yang-Mills theory, test this relation and find integral representations of multilink

invariants.
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According to the common interpretation, topological field theory deals with intersection

theory on the moduli spaceM of some instantons on a manifoldM . This means that the average

value of a product of observables Oγi integrated over cycles γi ⊂M has an interpretation

< Oγ1 · · · Oγn >= #(L1, · · · , Ln) (2.1)

as intersection number (here denoted with #) of cycles Li ⊂ M associated to the M -cycles γi.

The above expression is well-defined and possibly nonzero only when the intersection on the

right hand side is a complete intersection, which means

n
∑

i=1

codimLi = dimM. (2.2)

In that case, the intersection ∩iLi is a discrete set of points and the operation # counts these

points (with a suitable sign assignement that can be defined rigorously).

Now, the results of ref. [7] imply that this is not the whole story about topological field

theories in four dimensions, in general. Indeed, link numbers belong to a quite different class of

invariants. Nevertheless, one expects that the interpretation of these new topological correlation

functions is formally similar to the above one, once one replaces the symbol # with \/ and Li

with γi themselves. Moreover, γi are closed M -submanifolds, but not necessarily M -cycles.

Thus, we expect to have, instead of (2.1),

< Oγ1 · · · Oγn >= \/(γ1, · · · , γn), (2.3)

and that this expression is possibly nontrivial when some analogue of (2.2) holds.

For simplicity, I assume that none of the γi is M itself. In general, the γi’s wil be compact.

However, in the explicit calculations it is sometimes convenient to ‘uncompactify’ them, for

example describing a 2-sphere as a 2-plane.

The above symbolic expressions suggest that one should be able define a suitable concept

of multi-linkage and a suitable criterium of complete multilinkage.

Completeness.

A multiple intersection point P among a set of M -submanifolds γ1, . . . γn is complete if

n
∑

i=1

codim γi = dimM + 1. (2.4)

P is called a complete intersection. \/(γ1, . . . γn) is called a complete multilink intersection form.

All situations in which (2.4) does not hold are referred to as incomplete intersections.

In relation (2.4) (as well as in the multilink problem) there is no trace either of SU(2)

instantons, or topological Yang-Mills amplitudes. The funny fact is that for M = IR4 (or S4),

dimM + 1 equals the dimension of the moduli space of SU(2) instantons on M with unit

instanton number. Condition (2.4) is clearly satisfied by the amplitudes (1.1). Indeed, from

the field theoretical point of view, (2.4) is nothing but the requirement that the ghost number

anomaly should be compensated by the sum of the ghost numbers of the observables.
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For n = 2, (2.4) can be written in the form dim γ1 + dim γ2 = dimM − 1, which is the

usual rule for 2-linkages. However, this form is not suitable for the multilink generalization:

the correct expression is (2.4).

Multi-linkage.

The idea of multilinkage is the following. Consider the amplitude (2.3). One wants to deform

the γi’s smoothly in IR4 in orther to unlink them or contract them to points: in practice, to

move them very far from one another. In doing this, two things can happen:

i) a proper subset of the γi’s intersect in some point or some locus of points. This is an

incomplete intersection and is valued 0. The reason for this is that, when the γi’s satisfy (2.4),

then no proper subset of the γi’s can satisfy an analogous relation and intersect completely.

For example, two 2-spheres S2 and S2′ can be intersected and superposed without problems.

ii) in the movement, it is necessary to cross complete intersections, i.e. points in which all

the γi’s intersect contemporarily. Each of these points contributes with one unit. The multilink

intersection number is the (algebraic) counting of these points. It is easy to see that, in a

generic situation, this is the counting of a discrete number of points.

The rigorous definition of the signs of each contribution is encoded in the explicit integral

formulæ that will be derived from topological field theory.

The following property holds:

\/(γ1, . . . γi, γi+1, . . . γn) = (−1)codim γi·codim γi+1 \/(γ1, . . . γi+1, γi, . . . γn), (2.5)

that means that one has to take the order in which the γi’s are listed into account.

Considering the example \/(S3, S3′, S1) of a triple linkage with two 3-spheres S3 and S3′

and one circle S1, depicted in the figure, one can easily work out alternative definitions of

the multilink intersection points. The picture is at fixed time t = 0: the 3-spheres appear as

2-spheres at fixed time. The circle S1 is at t ≡ 0. S1 intersects S3 in the points P and S and

S3′ in R and Q. The intersection among the two 3-spheres is a 2-sphere S2. At t = 0 such

an intersection appears as a circle C. C is the boundary of a surface D (the shadowed region

in the picture), that intersects S1 in a point T . The counting of the points T obtained in this

way with appropriate signs gives the amplitude. Describing the set of points that have to be

counted does not seem so difficult, but it seems nontrivial to assign appropriate signs to them.

Topological Yang-Mills theory already contains the correct prescription.
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S1S3t=0
C
P Q
R ST

Fig: 1 : n=(S3; S30; S1)
S30t=0

To show that the above construction is meaningful, one has to prove that it does not depend

on the chosen couple of γi’s one starts with. So, let us consider, now, the following alternative

possibility. This time, we start by considering the intersection between S3 and S1, which is

represented by the two points P and S. P and S are the boundary of a segment PS. PS

meets S3′ in a point N (not shown in the picture). The amplitude can also be described as the

counting of such points.

A third equivalent description is the following. Let β1 be such that ∂β1 = γ1. Then, consider

the intersection among β1 and the other γi’s, i = 2, . . . n. This is in general a discrete set of

points and counting them gives the amplitude.

Proposition. Multilink intersection theory is the solution to topological Yang-Mills theory

with G = SU(2), M = IR4 and unit instanton number.

I am now going to check the above proposition in various cases of multilink intersections

and derive their integral representations. It is useful to report here the explicit solution of the

theory, as it was elaborated in ref. [7], to which the reader is referred for the details of the

derivation (see also formula (4.4)). The solution is encoded into the generating expressions

Q̂=
1

16π2
F̂ aF̂ a =

1

4π2
ρ3

D4
[ρdV (x− x0)− 4dρ ∧ (x− x0)

µdσµ(x− x0)] =
1

16π2
d̂Ĉ,

Ĉ = ÂaF̂ a − 1

6
εabcÂ

aÂbÂc =
4

3

1

D3
[3ρ2 + (x− x0)

2](x− x0)
µdσµ(x− x0). (2.6)

(ρ, x0) ∈ M = (0,∞) ⊗ IR4 are the five moduli, while x ∈ M = IR4 and D = ρ2 + (x − x0)
2.
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F a = dAa + 1
2ε

a
bcA

bAc denotes the field strength. F̂ a = F a + ψa
0 + φa0 and Âa = Aa + Ca

0

are the relevant BRST extensions. Finally, dV (x) = dxµdσµ(x), dσµ(x) = εµνρσdx
νdxρdxσ and

d̂ = d+ s, s being the BRST operator

s = dmi ∂

∂mi
= dρ

∂

∂ρ
+ dxµ0

∂

∂xµ0
. (2.7)

The observables are

O(n)
γ =

∫

γ
Q̂n. (2.8)

It was noticed in [7] that the amplitudes are “automatically” normalized correctly by the

factor 1
16π2 appearing in (2.6). This property gives an intrinsic and concrete meaning to formal

concepts and set-ups like the ‘BRST extension’ (see [10, 3, 4, 8]). The notation of ref. [7]

is strictly followed in the sequel, with the only difference that the observables O and the

corresponding M-differential forms are defined ab-initio with the correct normalization factor
1

16π2 .

Any topological amplitude can be written as an integral over the boundary of the moduli

space M. For SU(2) instantons on S4 such a boundary corresponds to ρ = 0, while for instan-

tons on IR4 the boundary possesses more components (ρ → ∞ and x0 → ∞). Nevertheless,

these extra components never contribute to the amplitudes computed in ref. [7], confirming that

one can safely extend the results to topological Yang-Mills theory on S4. In this case, however,

one should imagine that a puncture is placed at infinity. In the appendix to this section it

is proved on general grounds, that the ∂M-component x0 → ∞ never contributes. Knowing

this a priori is useful to simplify the computations, since in many cases, it is convenient to

‘uncompactify’ some submanifolds γi and it is not correct to check the x0 → ∞ component

after having uncompactified. I shall comment on the vanishing of the ρ→ ∞ terms along with

the computations.

The ρ→ 0 limit of (2.6) can be done easily, using the property

lim
ρ→0

ρ4

(ρ2 + x2)4
=
π2

6
δ(x), (2.9)

so that on ∂M (dρ being also zero)

Q̂(x) → 1

4!
δ(x− x0)dV (x− x0) = − 1

4!π2
d̂ ∂µ

1

(x− x0)2
dσµ(x− x0). (2.10)

In practice, everything is encoded into these very simple expressions, although it is (2.6) that

makes any computation meaningful. Some properties, that are not visible from (2.10) will

follow immediately from (2.6). Check, for example, the end of subsection 2.2.

Now, we are ready to begin the computations. First (Example 1) the integral representation

of \/(γ1, γ2) is derived from topological field theory. Then, we proceed by studying genuine

multilink invariants and extracting their integral representations. The calculation of the first

multilink intersection number (Example 2) is done in full detail, the other computations being

simply scketched.
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2.1 Evaluations

Example 1. Integral representation of \/(γ1, γ2).
Let us consider two submanifolds γ1, γ2 ⊂ IR4, of dimensions 1 and 2, respectively. Let the

corresponding observables be Oγ1 = ω
(3)
γ1 = dΩ

(2)
γ1 and Oγ2 = ω

(2)
γ2 = dΩ

(1)
γ2 . We have

\/(γ1, γ2) =< Oγ1 · Oγ2 >=

∫

M
ω(3)
γ1 ∧ ω(2)

γ2 =

∫

∂M
Ω(2)
γ1 ∧ ω(2)

γ2 . (2.11)

Ω
(2)
γ1 and ω

(2)
γ2 can be easily written down from (2.6). We have thus

\/(γ1, γ2) = − 3

2π4

∫

γ1
dxµ

∫

γ2
dyνdyρ lim

ρ→0

∫

IR4
d4x0

εµνρσ(x− x0)
σρ4[3ρ2 + (x− x0)

2]

[ρ2 + (x− x0)2]3[ρ2 + (y − x0)2]4
. (2.12)

It is convenient to write

\/(γ1, γ2) =
∫

γ1
dxµ

∫

γ2
dyνdyρεµνρσV

σ(x− y), (2.13)

where

V σ(z) = − 3

2π4
lim
ρ→0

∫

IR4
d4x0

(z − x0)
σρ4[3ρ2 + (z − x0)

2]

[ρ2 + (z − x0)2]3(ρ2 + x20)
4

= − 1

4π2
zσ

|z|4 . (2.14)

The form of the last expression follows from dimensional considerations. The constant − 1
4π2 is

determined after rescaling all quantities by ρ and applying the dominated convergence theorem,

or, more quickly, but less rigorously, by using (2.9). We conclude

\/(γ1, γ2) =
1

8π2

∫

γ1
dxµ

∫

γ2
dyνdyρεµνρσ∂σ

1

(x− y)2
, (2.15)

which is the desired expression. Notice the appearance of the Green function 1
(x−y)2 , which is

singular precisely on the complete intersection points x = y. Of course, (2.15) contains (1.2):

writing IR4 as IR3 ⊗ IR and taking U = γ1 ⊂ IR3, γ2 = V ⊗ IR, V ⊂ IR3, (2.15) gives back (1.2).

Example 2. \/(S3, S3′, S1).

In the first example of multilinkage, I consider a triple intersection among two 3-spheres

and one circle (see also Fig. 1). The 3-spheres will be ‘uncompactified’ to IR3’s, this simplifying

a bit the calculation. Precisely, I choose

S3 = IR2 × IR× {0}, S3′ = IR2 × {x̄} × IR, S1
r = {(0, 0)} × Cr, (2.16)

Cr denoting a circle of radius r placed in the last IR2 and centered in the origin. The above

submanifolds of IR4 are indeed multilinked according to the general definition. S3 and S3′

intersect in the ‘time’ axis (which, by convention, is the first one, while the other axis are x,

y and z, in the order) and in the x-axis. Such intersections are irrelevant, because incomplete.

The circle S1 is at fixed time t = 0 and winds around the x-axis. It intersects S3 in a couple

of points on the y-axis and S3′ in a couple of points on the z-axis. These intersections are

also incomplete. Now, if r > x̄, when one wants to unlink the three objects, it is necessary to

cross precisely one complete (triple) intersection point. Thus, we predict that the corresponding

8
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topological amplitude is equal to one. Instead, if r < x̄, the unlinking procedure goes on safely

and we predict a zero amplitude.

I want to compute

A =< OS3 · OS3′ · OS1
r
>=

∫

M
ω(1) ∧ ω(1)′ ∧ ω(3)

r . (2.17)

Using the first of (2.6), it is easy to verify that the M-1-forms corresponding to the first two

observables are

ω(1) =

∫

S3

Q̂ =
3

4

ρ3[ρdx40 − x40dρ]

[ρ2 + (x40)
2]

5

2

, ω(1)′ =

∫

S3′
Q̂ =

3

4

ρ3[ρdx30 − (x30)dρ]

[ρ2 + (x30 − x̄)2]
5

2

. (2.18)

An immediate check shows that these differential forms are closed, as it must be.

Instead, in order to write down ω
(3)
r , it is convenient to use the second of (2.6), to express

ω
(3)
r as dΩ

(2)
r , and A as

∫

∂M ω(1) ∧ ω(1)′ ∧Ω
(2)
r . One finds

Ω(2)
r =

1

4π2

∫

Cr

3ρ2 + (x10)
2 + (x20)

2 + (x− x0)
2

[ρ2 + (x10)
2 + (x20)

2 + (x− x0)2]3
(x− x0)

µdxνεµνρσdx
ρ
0dx

σ
0 , (2.19)

the bold-face denoting 2-vectors in the plane generated by the y-axis and the z-axis.

We know that the only component of the boundary ∂M that contributes is the one for

ρ→ 0. So, we can put dρ = 0 and take the limit ρ→ 0. Let us also choose x̄ = 0, for now. We

have

A = lim
ρ→0

9ρ8

32π2

∫

IR4
d4x0

∫ 2π

0
dθ

r(r − x4 cos θ)(3ρ
2 + x20 + r2 − 2rx4 cos θ)

[ρ2 + (x40)
2]

5

2 [ρ2 + (x30)
2]

5

2 (ρ2 + x20 + r2 − 2rx4 cos θ)3
, (2.20)

where x4 =
√

(x30)
2 + (x40)

2. Now, rescaling all quantities by ρ, redefining r as r
ρ and integrating

over x10, x
2
0 and θ one easily arrives at

A = lim
r→∞

9

32π

∫ ∞

−∞
dx40

∫ ∞

−∞
dx30

ϕ(x4, r)

[1 + (x40)
2]

5

2 [1 + (x30)
2]

5

2

, (2.21)

where

ϕ(x4, r) = π + π
(r2 − x24)

3 + 3(r4 − x44 − x24) + r2 − 1

[(r2 − x24)
2 + 2(r2 + x24) + 1]

3

2

. (2.22)

The function ϕ(x4, r) tends to zero for x4 → ∞, to 2π for r → ∞, is continuous and bounded.

So, by the dominated convergence theorem, we can exchange the limit and the integration,

finally obtaining

A =
9

16

(

∫ ∞

−∞

dy

(1 + y2)
5

2

)2

= 1, (2.23)

confirming the expectation. Moreover, ϕ(x4, 0) ≡ 0. So, for r → 0, which corresponds to

ρ→ ∞, we have a zero result, confirming that the ∂M-component ρ→ ∞ does not contribute.

Taking x̄ 6= 0, there are two quantities that, after the rescaling by ρ, should tend to infinity:

the rescaled r and the rescaled x̄. The order according to which these limits should to be taken

9



95
A
1
R
en

or
m

is dictated by which one of the inequalities r > x̄ and r < x̄ is true. In the first case, everything

goes on as before, but in the second case one gets zero. We conclude

A(r, x̄) =
1

2
(1 +H(r − x̄)). (2.24)

where H(x) = 1 for x > 0 and H(x) = −1 for x < 0: the amplitude is a step function. Finally,

one can check that for r = x̄ the result is 1
2 , so that we can define H(0) = 0.

Example 3. \/(S3
(1), S

3
(2), S

3
(3), S

2
r ).

In this example, the 3-spheres will be described by IR3’s, at x = 0, y = 0 and z = 0,

respectively. The corresponding M-forms are the analogues of (2.18). Thus, we have a triple

intersection, which is the entire time axis at x = y = z = 0. The 2-sphere S2
r will be placed

at fixed time t = 0 and centered in the origin of the 3-space generated by the x, y and z-axis.

Vectors in such a three space will be written in boldface. It is obvious that one cannot unlink

the four objects without meeting one complete intersection point. Using the second of (2.6) we

write A =
∫

∂M

∏3
i=1 ω

(1)
i Ω

(1)
r , with ω

(2)
r = dΩ

(1)
r and

Ω(1)
r =

1

4π2

∫

S2
r

[3ρ2 + (x10)
2 + (x− x0)

2] (x− x0)
µεµνρσdx

νdxρdxσ0
[ρ2 + (x10)

2 + (x− x0)2]3
. (2.25)

Thus, after rescaling all quantities by ρ and integrating ove x10, one easily arrives at

A = lim
r→∞

33

2 · 43
∫ 4
∏

i=2

dxi0

∫ π

0
dθ

r2 sin θ(r − |x0| cos θ)
∏4

i=2[1 + (xi0)
2]

5

2 (r2 + |x0|2 − 2r|x0| cos θ)
3

2

. (2.26)

Finally, taking the limit r → ∞, one finds

A =
33

43

(

∫ ∞

−∞

dy

(1 + y2)
5

2

)3

= 1. (2.27)

Example 4. \/(S3
(1), S

3
(2), S

3
(3), S

3
(4), S

3
(5)).

Now we want to check the predictions with a 5-tuple linkage among 3-spheres. The first

four 3-spheres S3
(i) i = 1, . . . 4 will be in fact IR3’s, at t = t̄, x = x̄, y = ȳ and z = z̄, respectively.

They intersect in the point x̄ = (t̄, x̄, ȳ, z̄) ∈ IR4. This is a 4-intersection and so does not

contribute, according to the general rules: in the case at hand a complete intersection is a

5-intersection. The fifth 3-sphere S3
(5) (which will be really a compact sphere, the radius being

r) is chosen to surround the origin. Consequently, if r > |x̄| the unlinking process necessarily

meets a 5-tuple intersection point and the amplitude A =
∫

M

∏5
i=1 ω

(1)
i is expected to be equal

to one. If, instead, r < x̄, the unlinking process finds no obstacle and the result is zero.

The expressions of ω
(1)
i , i = 1, . . . 4 are easily read from (2.18), while, using some other

results of [7], see formulæ (4.21) and (4.24) there, one can write ω
(1)
5 = df , where f is a function

that tends to 1
2(1 +H(r − x0)) for ρ→ 0. Consequently, we have

A = lim
ρ→0

34

44

∫

IR4

1

2
(1 +H(r − |x0 + x̄|)) ρ16 d4x0

∏4
i=1[ρ

2 + (xi0)
2]

5

2

. (2.28)

10
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Rescaling every quantity by ρ as usual, one gets

A =
34

44

(

∫ ∞

−∞

dy

(1 + y2)
5

2

)4
1

2
(1 +H(r − x̄)) =

1

2
(1 +H(r − x̄)), (2.29)

as desired.

2.2 Integral representations of multilink invariants

The purpose of this subsection is to extract the integral representations of multilink invariants

provided by the instanton. I focus on \/(γ3, γ′3, γ1). It is easy to see that the integral represen-

tation of \/(γ3, γ′3, γ1) =
∫

M ω
(1)
γ3 ∧ω(1)

γ′

3

∧ ω(3)
γ1 =

∫

∂M ω
(1)
γ3 ∧ ω(1)

γ′

3

∧Ω
(2)
γ1 provided by the instanton

can be written as

\/(γ3, γ′3, γ1) =
∫

γ3

∫

γ′

3

∫

γ1
dσ(x) · dy dσ(x′) · V (x, x′, y)− dσ(x′) · dy dσ(x) · V (x, x′, y), (2.30)

where V µ(x, x′, y) = ∂
∂yµ v(x, x

′, y). Here, v(x, x′, y) is a kind of “three-body Green function”.

Its expression is

v(x, x′, y) =
1

4π6
lim
ρ→0

ρ8
∫

IR4
d4x0

1

[ρ2 + (y − x0)2][ρ2 + (x− x0)2]4[ρ2 + (x′ − x0)2]4
. (2.31)

v(x, x′, y) should be regarded as a distribution and can be easily determined using (2.9). Alter-

natively, it is convenient to study 2yv(x, x
′, y) ≡ vy(x, x

′, y), picking up a test function ϕ(z, t),

z = x− y, t = x′ − y, and acting on it with vy. We have

vy(ϕ) =

∫

vy(x, x
′, y)ϕ(z, t)dz dt

=− 2

π6
lim
ρ→0

∫

ρ10ϕ(z, t) dz dt dx0
(ρ2 + x20)

3[ρ2 + (z − x0)2]4[ρ2 + (t− x0)2]4
= − 1

36
ϕ(0, 0), (2.32)

after rescaling z, t and x0 by ρ, as usual. We conclude

vy(x, x
′, y) = − 1

36
δ(x− y)δ(x′ − y), v(x, x′, y) =

1

36π2
δ(x− x′)

(x− 2y + x′)2
. (2.33)

The final expression of the triple link number is thus

\/(γ3, γ′3, γ1) =
1

36π2

∫

γ3
dσµ(x)

∫

γ′

3

dσν(x′)

∫

γ1
dyρ δ(x− x′)

∂

∂yσ
(δµρδνσ − δµσδνρ)

(x− 2y + x′)2
. (2.34)

This expression, as well as (2.33), is in complete agreement with the multilink idea. The delta

function projects onto the instersection of two submanifolds, the rest counts the links with

the third manifold. Notice that the Green function v(x, x′, y) is not symmetric in x, x′ and

y, but keeps trace of the choice of the two submanifolds that are intersected. This choice

corresponds to the choice of which differential form is converted from ω
(n)
γ to Ω

(n−1)
γ (where

ω
(n)
γ = dΩ

(n−1)
γ ) when passing from the integral over M to the integral over the boundary ∂M.

11
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So, the instanton provides an easy way to prove that the result is independent of the choice

of the intersected submanidolds, although this independence is not apparent in formula (2.34).

The above expression was found converting ω
(3)
γ1 to Ω

(2)
γ1 . Alternatively, doing the same work

with γ3, instead of γ1, one finds the equivalent integral representation

\/(γ3, γ′3, γ1) =
1

36π2

∫

γ3
dσµ(x)

∫

γ′

3

dσν(x′)

∫

γ1
dyν δ(y − x′)

∂

∂xµ
1

(y − 2x+ x′)2
. (2.35)

In all the other cases, Green functions and integral representations can be worked out similarly.

2.3 Open problems

We have estabilished that multilink intersection theory is the solution to topological Yang-

Mills theory on IR4 (or S4) with G = SU(2) and unit instanton number. Open problems

concern the interpretation (and calculation) of nonvanishing amplitudes for the other instanton

numbers [11, 12], as well as for other gauge groups G and manifolds M . For G = SU(N) and

unit instanton number, the amplitudes are the same, since the instanton is the same. When

G = SU(3) the formal dimension of the moduli space is 12k−8, while for SU(2) it is 8k−3. For

k = 1, one has 4 instead of 5. This is because, embedding the SU(2) instanton in the first three

generators of SU(3), there is room for an antighost zero mode (the constant, which is indeed

meaningful on S4, but not on IR4) associated to the eight SU(3) generator. A reasonable way

to define amplitudes (denoted with � . . .�) with selection rule 4 instead of 5 can be

� O1 · · · On �= lim
r→∞

< OS3
r
· O1 · · · On > . (2.36)

In this way, one has, for example, using the first of (1.1),

� tr[φ2](x) �= lim
r→∞

< OS3
r
· tr[φ2](x) >= 1, (2.37)

since the infinitely large 3-sphere necessarily contains the point x. Formula (2.37) is an example

of a recursion relation between invariants for different N ’s, perhaps a particular case of a much

richer set of recursion relations.

As far as higher instanton numbers are concerned and G = SU(2), we can make the following

comments. For generic k a very simple amplitude is < OS3
r
·∏2k−1

i=1 tr[φ2](xi) > [7]. A possible

meaning of this amplitude is that it counts the number of points xi that are placed inside S3
r .

Apart from this very simple case, however, it is not so easy to identify the meaning of the more

complicated amplitudes. Take, for example, k = 3 and <
∏3

i=1

∫

γi
Q2 >, γi, i = 1, 2, 3, being

three circles in IR4. This should be something like the generalized link number of three circles

γi. If this has a meaning, the meaning should be nontrivial. One can expect that there is a

canonical way of associating a 2-sphere or, in general, a 2-knot to a couple of circles and that the

amplitude is the linking number between the 2-knot and the third circle. Moreover, this result

shoul be independent of the choice of the initial couple of circles. The present knowledge on

2-knots, however, does not allow us to say whether this description makes any sense or should

12



95
A
1
R
en

or
m

be discarded tout court. It can be taken for granted, anyway, that uncovering the meaning of

the amplitudes of this theory is a source of insight for mathematics itself.

Finally, it is also interesting to know whether the properties described so far survive the

coupling to matter. A positive answer will be given in the next section, where explicit examples

of the so-called hyperinstantons introduced in ref. [4, 8, 9] by Frè and the author will be studied.

2.4 Appendix: x0 → ∞ does not contribute

Here I prove that the x0 → ∞ ∂M-component does not contribute to the topological ampli-

tudes. The amplitude is always written as
∫

M

∏n
i=1 ωγi =

∫

∂MΩγ1

∏n
i=2 ωγi where ωγ1 = dΩγ1 .

Since the γi’s are assumed to be compact, there exists an R such that the 3-sphere of radius R

centered in the origin contains any γi. Then, it is easy to prove, from (2.6) and (2.8), that

ωγi ∼
ρ3Rdi(ρd4−dix0 + x0dρ d

3−dix0)

(ρ2 + x20)
4

, Ωγi ∼
Rdi(3ρ2 + x20)x0d

3−dix0
(ρ2 + x20)

3
, for x0 → ∞,

(2.38)

where di = dim γi. Due to the fact that
∑n

i=1 codim γi = 5, we have
∑n

i=1 di = 4n − 5. Since

n ≥ 2, then
∑n

i=1 di ≥ 3. Let us assume n = 2, which is the worst case. Then, the x0 → ∞
contribution is of the form

∫ ∞

0
dρ
R3(3ρ2 + x20)x

5
0ρ

3

(ρ2 + x20)
7

∼ R3

x30
→ 0, (2.39)

as expected. Note that if we first uncompactified some of the γi’s (R→ ∞) and then took the

limit x0 → ∞ (which is incorrect), we would find problems.

3 Matter coupling

In this section, the coupling to matter (scalar fields) is examined. The ideas introduced in

ref.s [4, 8, 9] by Fré and the author are used extensively. Scalars can possess very interesting

instantons (called hyperinstantons), that can be coupled to gravitational instantons [4, 8], as

well as Yang-Mills instantons [9]. Here we take isospin 1/2 scalar fields in the background of the

Belavin et al. [13] instanton. The coupling constant g is set to 1, for simplicity. Hyperistantons

are described by the lagrangian (I convert to the Euclidean signature with respect to ref. [9])

L√
g
=

1

2
gµνhijDµq

iDνq
j +

1

4β
F a
µνF

a
µν +

β

2
Pu
aPu

a . (3.1)

A parameter β has been introduced for future use. This lagrangian is the bosonic piece of an

N=2 lagrangian in a special case suggested by the topological twist [9]. L can be written as

L√
g
=

1

8
gµνhij

(

Dµq
i − Λuv(ju)µ

ρDρq
k(Jv)k

i
) (

Dνq
j − Λst(js)ν

σDσq
l(Jt)l

j
)

+
1

2β

(

F−a
µν +

β

2
ΛuvI

u
µνPv

a

)2

+
1

8β
F aF a +

1

8
ΛuvΘ

uΩ̂v. (3.2)
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Λuv can be any SO(3) matrix. See [9] for the remaining notation, that will be in any case

explained along with the discussion. The instanton configurations are

F−a
µν +

β

2
ΛuvI

u
µνPv

a = 0, Dµq
i − Λuv(ju)µ

νDνq
j(Jv)j

i = 0. (3.3)

I shall take β → 0, so that the first equation reduces to the usual equation of Yang-Mills

instantons, solved by the first of (4.4). The other equation is invariant and defines the hy-

perinstantons in the gauge-instanton background (or gauged triholomorphic maps, according

to the mathematical interpretation worked out in [8, 9]). The topological properties should

be independent of β, since changing β should be a continuous deformation of the instanton

equation. It could happen, nevertheless, that some value of β is not reachable continuously,

but I do not enter into these problems here. After factorizing exp
(

− 1
8βF

aF a
)

away, the limit

β → 0 in the Lagrangian L (3.2) can be thought as a kind of Landau gauge (indeed, from the

point of view of topological field theory, the instanton conditions are simply the gauge-fixing of

the topological symmetry). Therefore, the β = 0 solutions are hyperinstantons in the Landau

gauge.

To be explicit, in the case at hand ju = Ju = Iu = −η̄u, η̄u denoting the anti-self-dual

’t Hooft symbols [14], Θu = dxtIudx, Ωu = dqtIudq, Ω̂u = DqtIuDq + F aPu
a , Dµq

i = ∂µq
i +

1
2A

a
µ(Īa)

ijqj, Pu
a = 1

2q
tIuĪaq, Īa = −ηa. One has dΘu = dΩu = dΩ̂u = 0. The index i = 1, . . . 4

goes over the real components of the isospin 1/2 representation.

Consider the following configuration

qi(x) =
(x− x0)

i

ρ
√

ρ2 + (x− x0)2
=

(x− x0)
i

ρ
√
D

. (3.4)

One can check that Dµq
i =

δiµρ

D3/2 . The second equation of (3.3) gives Λ = Λt and tr Λ = −1.

We choose Λ = diag(1,−1,−1). In this way, the above scalar field configuration, which was

known only as a solution to the equation DµD
µqi = 0 [14], is also a hyperinstanton3. This

remark allows us to use the machinery developped in ref. [4, 8, 9]. Notice the crucial power 1/ρ

in (3.4).

Now, one wants to elaborate the specific observables of the above scalar configuration and

check whether they share the properties of pure Yang-Mills theory. The observables are related,

via descent equations, to a topological number, called hyperinstanton number, identified in [8, 9]

as the last term of (3.2), namely4

Hn =
1

4π2

∫

M
ΛuvΘ

u ∧ Ω̂v, (3.5)

3As a matter of fact, it is also a solution to certain vortex equations, related to N=1 supersymmetry in the

same way as the hyperinstanton equations are related to N=2 supersymmetry.
4As pointed out in [9], eqs. (3.3) reduce to Witten’s monopole equations [15] when G = U(1) and the

manifold of the scalars q is flat (in ref.s [8, 9] the q-manifold can be a generic almost quaternionic manifold).

The hyperinstanton number, firstly introduced in [8], here plays a crucial role, but it seems that in [15] there is

no analogue of it.
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where Ω̂u = dω̂u and ω̂u = qtIudq + AaPu
a . One can check that Hn= 1 for the solution (3.4).

The instantons of the coupled theories are thus classified by two integer numbers: the usual

instanton number and the hyperinstanton number.

One could put an arbitrary constant v in front of qi, however such a parameter should not be

considered as a modulus: the BRST variation of v should be zero, otherwise Hn= v2 would not

be BRST invariant (see section 6 of ref. [7] for an analogous case in topological abelian Yang-

Mills theory coupled to topological gravity). The eventual v-integration is made meaningful by

the exponential factor e−Hn. In practice, we can suppress the parameter v.

The desired observables are provided by the descent equations associated to Hn in the usual

way [10, 3, 8]. To begin with, let us consider

OS3
r
=

1

4π2

∫

S3
r

ΛuvΘ
u(2IvijDqiξj + ψa

0Pv
a ) =

1

4π2
s

∫

S3
r

ΛuvΘ
uω̂v = sf(r, ρ, x0), (3.6)

where s is the BRST operator (2.7) and ξi is defined by sqi = ξi − Ca
0k

i
a, k

i
a(q) = 1

2(Īa)
ijqj.

ψa
0 = ψa

0µdx
µ and Ca

0 are given in (4.4). One finds

f(r, ρ, x0) =
2

π

∫ π

0

r3(r − x0 cos θ) sin
2 θ dθ

(ρ2 + r2 + x20 − 2rx0 cos θ)2
. (3.7)

f tends to 1 for r → ∞, i.e. to the hyperinstanton number Hn. A generic amplitude A =<

OS3
r
·∏i Oγi > can be written as

∫

∂M f(r, ρ, x0)
∏

i ωγi . So, what matters is the limit of f for

ρ→ 0. This turns out to be the familiar step function

lim
ρ→0

f(r, ρ, x0) =
1

2
(1 +H(r − x0)), (3.8)

precisely as in the case of pure Yang-Mills theory, but now coming out of very different field

configurations (hyperinstantons) and observables related to a different topological number (hy-

perinstanton number).

While the Yang-Mills instanton number generates M-differential forms of any degree from

1 to 4 (compare with equations (2.6) and (2.8) for n = 1), the hyperinstanton number (3.5)

generates only 1-forms and 2-forms, obtained by integrating its descendants over 3- and 2-

dimensional M -submanifolds, respectively. We have just checked that in the first case the pure

Yang-Mills result is reproduced. To conclude, we check the same thing in the second case,

integrating over the 2-plane S2 = {x2} ⊗ IR′2:

OS2 = ω(2)
x2

= dΩ(1)
x2
, Ω(1)

x2
=

1

4π2

∫

S2

ΛuvΘ
uωv

(0,1), (3.9)

ωu
(0,1) being the first descendant of ω̂u. One finds

ξi = −ρdx
i
0

D3/2
− (x− x0)

i[2ρ2 + (x− x0)
2]dρ

ρ2D3/2
, ωu

(0,1) = qtIuξ = −(x− x0)
tIudx0

D2
. (3.10)

Using the Iu-basis of ref. [9], one has

Ω(1)
x2

=
1

2π

(x02 − x00)dx
1
0 − (x12 − x10)dx

0
0

ρ2 + (x2 − x0)2
. (3.11)
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The pure Yang-Mills analogue of this expression is written in formula (4.41) of ref. [7]. The

two expressions are indeed different. However, when inserted into an amplitude, for example,

< OS2 · OS1 >= \/(S2, S1), only the ρ → 0 limit matters and both expressions have the same

ρ → 0 limit, apart from an immaterial sign and the normalization (the overal factor 1
16π2 , not

introduced in [7] from the begining). So, again, the coupling to matter agrees with the pure

theory, normalization included.

4 Topological embedding

The purpose of this section and the next one is to study the relevance of link invariants and

topological field theory for physics. In the end of the day the properties found in ref. [7] and

in the previous sections are properties of very special solutions to the field equations of pure

QCD. It is hard to believe that such properties have no relation with physics.

The first aim is to embed topological Yang-Mills theory into ordinary Yang-Mills theory

and show in what limit (and for what amplitudes) the latter reduces to the former. In the next

section the match with physical phenomena is discussed.

The idea is that the topological version of a theory is a useful device for defining perturbation

theory in the topologically nontrivial sectors of the same theory5. It allows one to separate

in a convenient way the nonperturbative part, which is the integration over the instanton

moduli space M, from the perturbative part, described by the quantum fluctuations around

the instanton ‘vacuum’. At the same time, the topological theory can be recovered as a limit

of the ordinary theory, when the quantum fluctuations are suppressed. The embedding of the

former into the latter, which will be called topological embedding, is just a generalization of the

usual procedure of treating the collective coordinates by “introducing 1” a la Faddeev-Popov

[18, 19]: here I suggest to treat the topologically nontrivial sectors of a theory by “introducing

the topological version” of the same theory. The observables of the topological theory are useful

to define the (previously ill-defined) integration over collective coordinates. Of course, there

are many inequivalent choices. One of them, the insertion of the volume form of the instanton

moduli space M, gives back the common result, in which the (infinite) volume of the moduli

space appears as an overall factor. The other possibilities offered by the topological embedding

and not contemplated within the usual approach, are indeed the insertions M-top-forms made

by products of topological observables Oγi . In this approach, the infinite volume factor gets

“regularized” and perturbation theory in the topologically nontrivial sectors is consistent.

In view of this, the amplitudes of the topological version of the theory give information about

the nonperturbative nature of the complete theory. They are a useful device for extracting

otherwise invisible properties of the instantonic configurations, that should have some physical

meaning, if instantons do. Applying the results of ref. [7] and the previous sections to QCD, it

will be argued that the step amplitudes computed there and generalized here are related to a

non abelian generalization of the Aharonov-Bohm effect.

5The ‘classical’ approach to this problem can be found, for example in [16, 17]. The approach followed here

is different under several aspects, but contains the old one.
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To be explicit, I focus on topological Yang-Mills theory with G = SU(2), M = IR4 in the

k = 1 sector, in which case we have all the needed explicit formulæ. Let us decompose the

gauge connection A into A0 + gAq, A0 being the Belavin et al. instanton [13] and Aq denoting

the quantum fluctuation around it. Now, A0 spans a moduli space M, while Aq is restricted

to be perperdicular to it, otherwise tangential fluctuations are counted twice: once in A0 and

a second time in Aq. Having done this decomposition, we know that the integral over Aq is

well-defined. For example, in the quadratic approximantion, it gives the primed determinant

of the kinetic operator, which has been computed explicitly by ’t Hooft in ref. [14]. The M-

integral, on the other hand, is not well-defined. Usually [17, 16], one takes the attitude that

the problem is due to perturbation theory and should disappear in the exact answer. This is

not so useful from the practical point of view and is equivalent to declare that the perturbative

expansion around instantons is inconsistent. Here I take a radically different attitude. The

key idea is to say that there is a gauge-symmetry that has not been gauge-fixed before and

that the ill-definition of the M-integral is like the ill-definition of any functional integral before

fixing ordinary geuge-symmetry. Indeed, there is no way, from the physical point of view, to

privilege any m ∈ M (any position or size of the instanton, for example), because any m is a

minimum of the classical action. So, in the context of the perturbation expansion that I want

to consider, deforming m around M is a gauge-symmetry. It is exactly a topological symmetry:

the most general continuous deformation of the instanton in the space of instantons. To cure the

problem, we generalize the usual BRS recipe to global degrees of freedom. We have to do two

things: i) to introduce ghosts (to be called topological ghosts) associated with the topological

symmetry while preserving the nilpotence of the BRS operator; ii) to introduce a BRS closed

operator that gauge-fixes the symmetry, making both the M-integral and the integral over

the topological ghosts meaningful. These aims can be achieved by embedding the topological

version of the theory into the physical theory.

The topological ghosts are just the ghosts of topological Yang-Mills theory. So, let us write

the BRST algebra of ordinary Yang-Mills theory

sAa = −DCa, sCa = −1

2
εabcC

bCc, (4.1)

as the semidirect product of the BRST algebra of topological Yang-Mills theory

sAa
0µ =ψa

0µ +Dµ(A0)C
a
0 , sψa

0µ = −Dµφ
a
0 − εabcψ

b
0µC

c
0,

sφa0 = εabcφ
b
0C

c
0, sCa

0 = φa0 −
1

2
εabcC

b
0C

c
0, (4.2)

times the following “remnant”

sAa
qµ =−1

g
ψa
0µ +Dµ(A)C

a
q + εabcA

b
qµC

c
0,

sCa
q =−1

g
φa0 − εabcC

b
0C

c
q −

g

2
εabcC

b
qC

c
q . (4.3)

(4.1) is the sum of (4.2) and (4.3), Ca being identified with Ca
0 + gC

a
q . The complete functional

integral is obtained by integrating over the ‘topological fields’ A0, ψ0, C0 and φ0 and the
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quantum fluctuations Aq and Cq. The functional measure over the topological fields reduces to
∫

M dmdm̂,m denoting the moduli and m̂ being their ghost partners (m̂ = sm). The topological

subset (4.2) is closed under BRS transformations. This fact, as we know from [7], allows us to

“solve the BRS algebra”, i.e. find the explicit expressions of the topological ghosts that follow

from nilpotence and the explicit expression of A0. The complete solution is [7]

Aa
0 =

2

D
dxµηaµν(x− x0)

ν , Ca
0 = − 2

D
x̂µ0η

a
µν(x− x0)

ν ,

ψa
0µ =−4

ρ

D2
ηaµν [ρx̂

ν
0 + (x− x0)

ν ρ̂], φa0 = − 2ρ

D2
ηaµν [ρx̂

µ
0 + 2(x− x0)

µρ̂)]x̂ν0 . (4.4)

It is worth recalling that ψ0 is gauge-fixed with the condition Dµ(A0)ψ
a
0µ = 0. Finally, we can

write the generating functional Z[Jq] as

Z[Jq] =
∑

k∈Z

e
iθk− 8π

g2
|k|
∫

Mk

dmZk[m,Jq], (4.5)

where Zk[m,Jq] is the partition function for a fixed value of the instanton moduli m with

instanton number k, namely

Zk[m,Jq] =

∫

dm̂

∫

dAqdCqdµgf exp [−S(Aq,m, m̂) + Sgf (Aq,m, m̂) + JqAq] . (4.6)

Sgf (Aq,m, m̂) denotes a suitable gauge-fixing term and dµgf is the relevant functional inte-

gration measure for Lagrange multipliers and antighosts. In this way, we have conveniently

separated the nonperturbative and the perturbative aspects of the topologically nontrivial sec-

tors of Yang-Mills theory. Z[m,Jq] can be calculated perturbatively, since the background is

fixed. The BRST algebra is (4.3) and the quantum fluctuations Aq are restricted to be perpen-

dicular to M. They have a well-defined propagator and one can safely define Feynmann rules.

The perturbative amplitude is in general m-dependent and the final amplitude is obtained af-

ter the (non-perturbative) integration over M. The amplitudes computed in [7] and in the

previous section are examples in which the full contribution comes from the nonperturbative

part. Nevertheless, it is clear that they are also very peculiar amplitudes of ordinary Yang-Mills

theory in the topologically nontrivial sectors.

The action S(Aq,m, m̂) is obtained by expanding the usual Yang-Mills action around A0:

S(Aq,m, m̂) =
1

4
[Dµ(A0)A

a
qν −Dν(A0)A

a
qµ]

2 +
1

2
εabcF

a
µν(A0)A

b
qµA

c
qν

+ gεabcA
a
qµA

b
qνDµ(A0)A

c
qν +

g2

4
(εabcA

b
qµA

c
qν)

2. (4.7)

The gauge-fixing term is made by two pieces: the first term fixes the gauge symmetry δAa
qµ =

DµC
a
q , while the second one fixes the topological symmetry. The first gauge-fixing is achieved

with the usual condition Dµ(A0)A
a
qµ = 0, thus preserving the topological symmetry. So, the

ordinary gauge-fixing term is

Sgf (Aq,m, m̂) =
1

2
(Dµ(A0)A

a
qµ)

2 + C̄a
q [Dµ(A0)Dµ(A)C

a
q + εabcψ

b
0µA

c
qµ + εabcDµ(A0)A

b
qµC

c
0].

(4.8)
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The quadratic part SQ of the gauge-fixed action S + Sgf mixes Aq and the ghosts C̄q and Cq

in a nontrivial way: defining Vq = [Aq, Cq, C̄q] and Q(m, m̂) such that SQ = V t
qQ(m, m̂)Vq, the

zero modes are collected in the vector [ψ0, φ0, 0]: Q(m, m̂)[ψ0, φ0, 0] = 0.

Finally, let us discuss point ii) mentioned above, namely how to gauge-fix the topological

symmetry. Usually, to gauge-fix a symmetry one introduces and operator of the form O =

δ(G) sG, G being the chosen gauge-fixing condition. O is clearly BRS closed and makes both

the integration over the gauge-fields (via δ(G)) and the integration over the gauge-ghosts (via

sG) meaningful. The moral of the story is that we have to introduce a BRS-closed operator

O that makes both the m- and m̂-integrations meaningful. It is now clear that O has to be

constructed with the topological observables Oγi , i.e. O =
∏

i Oγi . Concretely, one can modify

(4.6) into

Zk[m,Jq, ζ] =

∫

dm̂

∫

dAqdCqdµgf exp [−S(Aq,m, m̂) + Sgf (Aq,m, m̂) + JqAq + ζ(γ)Oγ ] ,

(4.9)

the term ζ(γ)Oγ standing for all the possible insertions of topological observables. ’t Hooft’s

choice [14], instead, dictated by a simple dimensional argument, is

O =
ρ̂
∏4

µ=1(x̂0)µ

ρ5
. (4.10)

It does not fix the x0-translations and leave the problem of the ρ-integration open.

Now, let us take a certain number of ζ-functional derivatives in order to introduce a product

of Oγi that saturates the moduli space dimension. Due to this, any term in Sgf containing ψ0

or C0 can be dropped and the action S+Sgf reduces to the usual one. In the g → 0 limit, only

the quadratic part matters, which integrates to the primed determinants that combine with the

e
− 8π

g2 factor to give a renormalization group invariant expression [14]. If we focus, for now, on

dimensionless amplitudes (in some sense, the ‘partition functions’ of the topologically nontrivial

sectors), i.e. amplitudes with no gluons Aq, this expression is just a constant6. Finally, the M
integration gives back the topological amplitude associated to the Oγi ’s, namely

const. eiθ
∫

M
dmdm̂

n
∏

i

Oγi(m, m̂). (4.11)

A choice like (4.11) ‘renormalizes’ the infinite factor that would be obtained with the ’t Hooft

measure (4.10). The (physically meaningful) freedom related to the choice of (4.11) can also

be thought as the arbitrariness associated to the renormalization of the infinite volume factor.

When there are gluons in the amplitude, (4.11) is just the measure over the moduli space. The

amplitude has the form

const. eiθ
∫

M
dmdm̂

n
∏

i

Oγi(m, m̂)A(x1, . . . xn;m), (4.12)

6For more detailed explanations on how this happens and its implications, see section 2.1 of ref. [20].
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A(x1, . . . xn;m) denoting the perturbative amplitude at fixed m. It is clear that the measure

(4.11) makes the M-integral convergent. We conclude that the physical meaning of topological

field theory is that it provides the set of consistent measures over the moduli space.

Due to the nature of the topological symmetry and its gauge-fixing, it is clear that the

theory “depends” on the gauge-fixing itself, namely on the choice os γi’s, in the sense that

two gauge-fixings that are not continuously related to each other give different answers. It is

very nontrivial, in general, to solve the problem of classifying the gauge-fixing dependence of

a theory. Nevertheless, for the specific aspect of the problem that we are considering now,

namely the dependence on the “gauge-fixing for collective coordinates” in the unit instanton

number sector of SU(2) (or SU(N)) Yang-Mills theory, we already know the answer, that is the

multilink intersection theory elaborated n the previous sections. To be explicit, the unlinking

process described in section 2 is a non-continuous deformation whenever a complete multilink

intersection is crossed. It is a continuous deformation for any incomplete intersection. That is

why sometimes I speak about topological “gauge-fixing” and other times about “insertion of

topological observables”, when referring to this aspect of the theory. In other words, such a

gauge-fixing choice is observable. Actually, our approach allows us to say that the topological

aspects are the only genuine instantonic properties that can be observable. Dynamics only

comes form the quantum fluctuations Aq, i.e. gluons propagating over the instanton background

specified by
∏

i Oγi .

A comment is in order about the regularization technique that is most convenient to treat

perturbation theory around instantons (see also [14]). The dimensional technique presents some

problems, since instantons are purely four dimensional objects. A Pauli-Villars-type technique

seems to be better. To avoid the problem that the mass terms of the regulators break gauge-

invariance, one can use the following alternative regularization technique, firstly defined and

used by Johansen in [21] within the usual perturbation theory framework. Embed Yang-Mills

theory into N=4 super Yang-Mills theory and break N=4 supersymmetry down to N=0 by

giving mass terms to each additional field. For finite masses, the theory is finite and so is a

good regulator. When one wants to recover the initial theory, one has to let the masses tend

to infinity and the divergent terms have then to be subtracted with the usual renormalization

algorithms.

To conclude, topological Yang-Mills theory is a useful device to define perturbation theory

in the topologically nontrivial sectors of ordinary Yang-Mills theory and is also a certain limit

of this theory itself. The topological amplidutes calculated so far can play a role in the “real

theory”.

5 Non abelian analogue of the Aharonov-Bohm effect

In this section, the relation between link invariants and physics is discussed, focusing, in par-

ticular on a non abelian analogue of the Aharonov-Bohm effect.

QCD is expected to confine and confinement is nonperturbative in nature. However, it is

very difficult to get nonperturbative information about Yang-Mills theory. There are some non-
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perturbative aspects, nevertheless, (like instantons) that can be studied exactly, for example

using the topological field theoretical device. These aspects of the theory could carry some, per-

haps unconventional, sign that the theory confines and the link invariants could be interpreted

as such a sign. The first thing that comes to one’s mind when speaking about link invariants

is the Aharonov-Bohm effect.

In Maxwell theory, a wire γ of magnetic dipoles with magnetic moment g per unit length

(a thin circular solenoid, for example) generates a vector potential A(x, γ) equal to

A(x′, γ) = −g
∮

γ
dx ∧ ∇ 1

|x− x′| , (5.1)

so that the magnetic flux associated to a loop γ′ is given by Gauss’ formula (1.2):

Φγ′(Bγ) =

∮

γ′

A(x′, γ) · dx′ = 4πg γ\/γ′. (5.2)

The flux is quantized, according to the link number of the two loops. This is physically mean-

ingful, since it can be observed (Aharonov-Bohm effect). The noticeable property of the field

configuration is that both the electric and magnetic fields are zero everywhere except than

within γ. So, in γ there is a concentration of three entities: the gauge field, the positively

charged matter and the negatively charged matter.

Quantum nonabelian gauge field theory should have the property that three (or more)

entities like the above ones (i.e. the gauge bosons) are forced by the gauge symmetry to always

screen one another. At least, this should be visible in any exact amplitude. Take, for example,

SU(2) gauge field theory and look at it as a U(1) gauge theory (previliging some vector boson,

which we call the photon) coupled to charged matter (the other two gauge bosons). Due

to the underlying gauge symmetry, the “matter” and the “photon” are mixed together and

indistinguishable. We know that link numbers appear in Maxwell theory plus matter only

when the field strength and the charged matter are confined together. We also know, from the

computations made in this paper, that link numbers in nonabelian gauge field theory appear

naturally in special, but exact, amplitudes of the theory. That means precisely that, in the realm

of the amplitudes here computed, which are the only exact nonperturbative amplitudes available

so far, QCD, when regarded as a matter coupled QED, is such that the “matter” naturally

screens the photon. Due to the underlying gauge symmetry, this holds for any “photon” and

consequently for the entire group. In this sense, the link numbers that we have found can be

regarded as an unconventional sign of confinement. A nontrivial consequence of this description

is that, although QCD confines, the non-abelian analogue of the Aharonov-Bohm effect cannot

be “screened” and should be experimentally observable. Maybe in some future we shall be

able to construct wires carrying a nonvanishing color current and create something similar to

the magnetic force lines that penetrate the superconductors [20]. Something like this should

correspond to making experiments in a sector specified by (4.11).

Since confinement is expected to be a nonperturbative phenomenon, one should resum the

perturbative series before being able to reveal it. In the perturbative framework, confinement is

hardly visible, since when the coupling constant is zero the theory becomes practically abelian
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and an abelian theory does not confine. So, it may be very interesting to investigate some

genuinely nonperturbative aspects of the theory like the ones considered in this paper. The

amplitudes computed here represent special situations in which one is allowed to freeze the

quantum fluctuations (so that no resummation at all is necessary) and yet get something non-

trivial. Finally, it is clear that the topological embedding is an approach that also deserves to

be studied per se.

Link numbers in QCD appear in the pure theory, i.e. they do not require the presence of

matter. In section 3, we saw that they can also appear in presence of matter.

6 Conclusions

In ref. [7] and the present paper, new properties of the the Belavin-Polyakov-Schwarz-Tyupkin

instanton were uncovered, using topological field theory as a tool. An unexpected connection

with link theory came out. In [7] the presence of some link theory was detected, here the theory

was identified completely. The feeling is that higher instanton numbers [11, 12] hide deeper

mathematical concepts. No trace of vanishing amplitudes has been found so far, so one open

problem (of the many) is to identify the mathematical meaning of the amplitudes with higher

instanton number.

The second point concerns physics. The physical role of topological field theory was clari-

fied by showing that its embedding in the associated physical theory is useful to perform the

perturbative expansion in the topologically nontrivial sectors. The topological properties of

very special solutions to the Yang-Mills field equations, like instantons are, are not expected to

be unrelated to physics. Here they are related to a non abelian version of the Aharonov-Bohm

effect.
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