Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




I develop a formalism for solving topological field theories explicitly, in the case when the explicit expression of the instantons is known. I solve topological Yang-Mills theory with the $k=1$ Belavin et al. instanton and topological gravity with the Eguchi-Hanson instanton. It turns out that naively empty theories are indeed nontrivial. Many unexpected interesting hidden quantities (punctures, contact terms, nonperturbative anomalies with or without gravity) are revealed. Topological Yang-Mills theory with $G=SU(2)$ is not just Donaldson theory, but contains a certain link theory. Indeed, local and non-local observables have the property of marking cycles. From topological gravity one learns that an object can be considered BRST exact only if it is so all over the moduli space $M$, boundary included. Being BRST exact in any interior point of M is not sufficient to make an amplitude vanish. Presumably, recursion relations and hierarchies can be found to solve topological field theories in four dimensions, in particular topological Yang-Mills theory with $G=SU(2)$ on $R^4$ and topological gravity on ALE manifolds.

PDF

Nucl.Phys. B439 (1995) 617-649 | DOI: 10.1016/0550-3213(95)00024-M

arXiv:hep-th/9411049

Embedded PDFFullscreen PDF view

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


PDF