Quantum gravity
Talk given at the conference “Quantum Gravity and Quantum Geometry“, Nijmegen Oct 29 – Nov 1, 2019
A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. The theory predicts that causality is lost at sufficiently small distances, where time makes no longer sense. After formulating the theory, I explain its main properties. In particular: the nontrivial classical limit, the modifications of the FLRW metric and the roles of the cosmological constant and the Hubble constant.
The concept of fake particle, or “fakeon”, allows us to make sense of quantum gravity as an ultraviolet complete theory, by renouncing causality at very small distances. We investigate whether the violation of microcausality can be amplified or detected in the most common settings. We show that it is actually short range for all practical purposes. Due to our experimental limitations, the violation does not propagate along the light cones or by means of gravitational waves. In some cases, the universe even conspires to make the effect disappear. For example, the positivity of the Hubble constant appears to be responsible for the direction of time in the early universe.
Class. Quantum Grav. 37 (2020) 095003 | DOI: 10.1088/1361-6382/ab78d2
We give a simple proof of perturbative unitarity in gauge theories and quantum gravity using a special gauge that allows us to separate the physical poles of the free propagators, which are quantized by means of the Feynman prescription, from the poles that belong to the gauge-trivial sector, which are quantized by means of the fakeon prescription. The proof applies to renormalizable theories, including the ultraviolet complete theory of quantum gravity with fakeons formulated recently, as well as low-energy (nonrenormalizable) theories. We clarify a number of subtleties related to the study of scattering processes in the presence of a cosmological constant $\Lambda$. The scattering amplitudes, defined by expanding the metric around flat space, obey the optical theorem up to corrections due to $\Lambda$, which are negligible for all practical purposes. Problems of interpretation would arise if such corrections became important. In passing, we obtain local, unitary (and “almost” renormalizable) theories of massive gravitons and gauge fields, which violate gauge invariance and general covariance explicitly.
J. High Energy Phys. 12 (2019) 027 | DOI: 10.1007/JHEP12(2019)027
Talk given by Marco Piva at the conference “Avenues of quantum field theory in curved spacetime“, Modena, Sept 9th, 2019
Talk given at the conference “Cosmological Frontiers in Fundamental Physics 2019” – Perimeter Institute
Talk given at the Centre de Physique Theorique of the University of Marseille on June 28th, 2019
A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription. I also discuss the possibility that the Higgs boson might be a fakeon.
Talk given at the conference “Gravity and other fields under the volcano”, Catania, Italy, June 10th, 2019
A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription. I also discuss the possibility that the Higgs boson might be a fakeon.
Seminar given at the Department of Physics and Astronomy of the University of Bologna on May 30th, 2019
A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription. I also discuss the possibility that the Higgs boson might be a fakeon.
We point out the idea that, at small scales, gravity can be described by the standard degrees of freedom of general relativity, plus a scalar particle and a degree of freedom of a new type: the fakeon. This possibility leads to fundamental implications in understanding gravitational force at quantum level as well as phenomenological consequences in the corresponding classical theory.
Int. J. Mod. Phys. D 28 (2019) 1944007 | DOI: 10.1142/S0218271819440073
Talk given at the conference PAFT 2019 – Current problems in theoretical physics. Aspects of nonperturbative QFT, foundations of quantum theory, quantum spacetime. XXV edition, Vietri sul Mare (Salerno, Italy), April 13-17, 2019
A new quantization prescription is able to endow quantum field theory with a new type of “particle”, the fakeon (fake particle), which mediates interactions, but cannot be observed. A massive fakeon of spin 2 (together with a scalar field) allows us to build a theory of quantum gravity that is both renormalizable and unitary, and to some extent unique. After presenting the general properties of this theory, I discuss its classical limit, which carries important remnants of the fakeon quantization prescription and reveals unforeseen features.