Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Recent papers and theorems

24A2 Damiano Anselmi
Quantum gravity with purely virtual particles from asymptotically local quantum field theory

We investigate the local limits of various classes of unitary, nonlocal quantum field theories. While it is easy to build nonlocal models with well-behaved asymptotics in Euclidean space, the Minkowskian correlation functions typically exhibit singular behaviors. We introduce "asymptotically local" quantum field theory (AL-QFT) as the class that encompasses unitary, ... [more]

24A1 Damiano Anselmi
Cosmological inhomogeneities, primordial black holes, and a hypothesis on the death of the universe

We study the impact of the expansion of the universe on a broad class of objects, including black holes, neutron stars, white dwarfs, and others. Using metrics that incorporate primordial inhomogeneities, the effects of a hypothetical "center of the universe" on inflation are calculated. Dynamic coordinates for black holes that ... [more]

23A3 Damiano Anselmi
Gauge theories and quantum gravity in a finite interval of time, on a compact space manifold

We study gauge theories and quantum gravity in a finite interval of time $ \tau $, on a compact space manifold $\Omega $. The initial, final and boundary conditions are formulated in gauge invariant and general covariant ways by means of purely virtual extensions of the theories, which allow us ... [more]

23A2 Damiano Anselmi
Propagators and widths of physical and purely virtual particles in a finite interval of time

We study the free and dressed propagators of physical and purely virtual particles in a finite interval of time $τ$ and on a compact space manifold $Ω$, using coherent states. In the free-field limit, the propagators are described by the entire function $(e^{z}-1-z)/z^{2}$, whose shape on the real axis is ... [more]

23A1 Damiano Anselmi
Quantum field theory of physical and purely virtual particles in a finite interval of time on a compact space manifold: diagrams, amplitudes and unitarity

We provide a diagrammatic formulation of perturbative quantum field theory in a finite interval of time $τ$, on a compact space manifold $Ω$. We explain how to compute the evolution operator $U(t_{\text{f}},t_{\text{i}})$ between the initial time $t_{\text{i}}$ and the final time $t_{\text{f}}=t_{\text{i}}+τ$, study unitarity and renormalizability, and show how to ... [more]

22A5 Damiano Anselmi
A new quantization principle from a minimally non time-ordered product

We formulate a new quantization principle for perturbative quantum field theory, based on a minimally non time-ordered product, and show that it gives the theories of physical particles and purely virtual particles. Given a classical Lagrangian, the quantization proceeds as usual, guided by the time-ordered product, up to the common ... [more]

22A4 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: quantum gravity

Quantum gravity is extended to include purely virtual "cloud sectors", which allow us to define a complete set of point-dependent observables, including a gauge invariant metric and gauge invariant matter fields, and calculate their off-shell correlation functions perturbatively. The ordinary on-shell correlation functions and the $S$ matrix elements are unaffected. ... [more]

22A3 Damiano Anselmi
Purely virtual extension of quantum field theory for gauge invariant fields: Yang-Mills theory

We extend quantum field theory by including purely virtual "cloud" sectors, to define physical off-shell correlation functions of gauge invariant quark and gluon fields, without affecting the $S$ matrix amplitudes. The extension is made of certain cloud bosons, plus their anticommuting partners. Both are quantized as purely virtual, to ensure ... [more]

22R2 Damiano Anselmi
A hope for particle physics – ERC Advanced Grant application (VIRTUAL)

The physics of fundamental interactions is going through a concerning, prolonged period of stagnation. The incredible success of the standard model of particle physics and the lack of new experimental data have frustrated our hopes in the future. On top of that, the scientific community shattered into a large number ... [more]

22R1 Damiano Anselmi
Purely virtual particles in quantum gravity, inflationary cosmology and collider physics

We review the concept of purely virtual particle and its uses in quantum gravity, primordial cosmology and collider physics. The fake particle, or “fakeon”, which mediates interactions without appearing among the incoming and outgoing states, can be introduced by means of a new diagrammatics. The renormalization coincides with one of ... [more]

22A2 Damiano Anselmi
Purely virtual particles versus Lee-Wick ghosts: physical Pauli-Villars fields, finite QED and quantum gravity

We reconsider the Lee-Wick (LW) models and compare their properties to the properties of the models that contain purely virtual particles. We argue against the LW premise that unstable particles can be removed from the sets of incoming and outgoing states in scattering processes. The removal leads to a non-Hermitian ... [more]

22A1 Damiano Anselmi
Dressed propagators, fakeon self-energy and peak uncertainty

We study the resummation of self-energy diagrams into dressed propagators in the case of purely virtual particles and compare the results with those obtained for physical particles and ghosts. The three geometric series differ by infinitely many contact terms, which do not admit well-defined sums. The peak region, which is ... [more]

21A5 Damiano Anselmi
Diagrammar of physical and fake particles and spectral optical theorem

We prove spectral optical identities in quantum field theories of physical particles (defined by the Feynman $i\epsilon $ prescription) and purely virtual particles (defined by the fakeon prescription). The identities are derived by means of purely algebraic operations and hold for every (multi)threshold separately and for arbitrary frequencies. Their major ... [more]

21A4 Damiano Anselmi, Kristjan Kannike, Carlo Marzo, Luca Marzola, Aurora Melis, Kristjan Müürsepp, Marco Piva and Martti Raidal
A fake doublet solution to the muon anomalous magnetic moment

Extensions to the Standard Model that use strictly off-shell degrees of freedom - the fakeons - allow for new measurable interactions at energy scales usually precluded by the constraints that target the on-shell propagation of new particles. Here we employ the interactions between a new fake scalar doublet and the ... [more]

21A3 Damiano Anselmi, Kristjan Kannike, Carlo Marzo, Luca Marzola, Aurora Melis, Kristjan Müürsepp, Marco Piva, Martti Raidal
Phenomenology of a Fake Inert Doublet Model

We introduce a new way of modeling the physics beyond the Standard Model by considering fake, strictly off-shell degrees of freedom: the fakeons. To demonstrate the approach and exemplify its reach, we re-analyze the phenomenology of the Inert Doublet Model under the assumption that the second doublet is a fakeon. ... [more]

I show that under certain conditions it is possible to define consistent irrelevant deformations of interacting conformal field theories. The deformations are finite or have a unique running scale (“quasi-finite”). They are made of an infinite number of lagrangian terms and a finite number of independent parameters that renormalize coherently. The coefficients of the irrelevant terms are determined imposing that the beta functions of the dimensionless combinations of couplings vanish (“quasi-finiteness equations”). The expansion in powers of the energy is meaningful for energies much smaller than an effective Planck mass. Multiple deformations can be considered also. I study the general conditions to have non-trivial solutions. As an example, I construct the Pauli deformation of the IR fixed point of massless non-Abelian Yang-Mills theory with $N_c$ colors and $N_f \lesssim 11N_c/2$ flavors and compute the couplings of the term $F^3$ and the four-fermion vertices. Another interesting application is the construction of finite chiral irrelevant deformations of $N=2$ and $N=4$ superconformal field theories. The results of this paper suggest that power-counting non-renormalizable theories might play a role in the description of fundamental physics.

PDF

JHEP 0310 (2003) 045 | DOI: 10.1088/1126-6708/2003/10/045

arXiv:hep-th/0309251

As it stands, quantum gravity coupled with matter in three spacetime dimensions is not finite. In this paper I show that an algorithmic procedure that makes it finite exists, under certain conditions. To achieve this result, gravity is coupled with an interacting conformal field theory $C$. The Newton constant and the marginal parameters of $C$ are taken as independent couplings. The values of the other irrelevant couplings are determined iteratively in the loop- and energy-expansions, imposing that their beta functions vanish. The finiteness equations are solvable thanks to the following properties: the beta functions of the irrelevant couplings have a simple structure; the irrelevant terms made with the Riemann tensor can be reabsorbed by means of field redefinitions; the other irrelevant terms have, generically, non-vanishing anomalous dimensions. The perturbative expansion is governed by an effective Planck mass that takes care of the interactions in the matter sector. As an example, I study gravity coupled with Chern-Simons $U(1)$ gauge theory with massless fermions, solve the finiteness equations and determine the four-fermion couplings to two-loop order. The construction of this paper does not immediately apply to four-dimensional quantum gravity.

PDF

Nucl.Phys. B687 (2004) 124-142 | DOI: 10.1016/j.nuclphysb.2004.03.024

arXiv:hep-th/0309250

In three spacetime dimensions, where no graviton propagates, pure gravity is known to be finite. It is natural to inquire whether finiteness survives the coupling with matter. Standard arguments ensure that there exists a subtraction scheme where no Lorentz-Chern-Simons term is generated by radiative corrections, but are not sufficiently powerful to ensure finiteness. Therefore, it is necessary to perform an explicit (two-loop) computation in a specific model. I consider quantum gravity coupled with Chern-Simons U(1) gauge theory and massless fermions and show that renormalization originates four-fermion divergent vertices at the second loop order. I conclude that quantum gravity coupled with matter, as it stands, is not finite in three spacetime dimensions.

PDF

Nucl.Phys. B687 (2004) 143-160 | DOI: 10.1016/j.nuclphysb.2004.03.023

arXiv:hep-th/0309249

I study some aspects of the renormalization of quantum field theories with infinitely many couplings in arbitrary space-time dimensions. I prove that when the space-time manifold admits a metric of constant curvature the propagator is not affected by terms with higher derivatives. More generally, certain lagrangian terms are not turned on by renormalization, if they are absent at the tree level. This restricts the form of the action of a non-renormalizable theory, and has applications to quantum gravity. The new action contains infinitely many couplings, but not all of the ones that might have been expected. In quantum gravity, the metric of constant curvature is an extremal, but not a minimum, of the complete action. Nonetheless, it appears to be the right perturbative vacuum, at least when the curvature is negative, suggesting that the quantum vacuum has a negative asymptotically constant curvature. The results of this paper give also a set of rules for a more economical use of effective quantum field theories and suggest that it might be possible to give mathematical sense to theories with infinitely many couplings at high energies, to search for physical predictions.

PDF

Class.Quant.Grav. 20 (2003) 2355-2378 | DOI: 10.1088/0264-9381/20/11/326

arXiv:hep-th/0212013

I discuss several issues about the irreversibility of the RG flow and the trace anomalies $c$, $a$ and $a’$. First I argue that in quantum field theory: $i$) the scheme-invariant area $\Delta a’$ of the graph of the effective beta function between the fixed points defines the length of the RG flow; $ii$) the minimum of $\Delta a’$ in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points; $iii$) in even dimensions, the distance between the fixed points is equal to $\Delta a =a_{UV}-a_{IR}$. In even dimensions, these statements imply the inequalities $0 \leq \Delta a \leq \Delta a’$ and therefore the irreversibility of the RG flow. Another consequence is the inequality $a \leq c$ for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain “oriented-triangle inequalities”, imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is irreversible also in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of $d=3$ theories where the RG flow is integrable at each order of the large $N$ expansion.

PDF

Class.Quant.Grav. 21 (2004) 29-50 | DOI: 10.1088/0264-9381/21/1/003

arXiv:hep-th/0210124

I study some classes of RG flows in three dimensions that are classically conformal and have manifest $g \rightarrow 1/g$ dualities. The RG flow interpolates between known (four-fermion, Wilson-Fischer, $\phi_3^6$) and new interacting fixed points. These models have two remarkable properties: $i$) the RG flow can be integrated for arbitrarily large values of the couplings g at each order of the $1/N$ expansion; $ii$) the duality symmetries are exact at each order of the $1/N$ expansion. I integrate the RG flow explicitly to the order ${\cal O}(1/N)$, write correlators at the leading-log level and study the interpolation between the fixed points. I examine how duality is implemented in the regularized theory and verified in the results of this paper.

PDF

Nucl.Phys. B658 (2003) 440 | DOI: 10.1016/S0550-3213(03)00174-3

arXiv:hep-th/0210123

I review my explanation of the irreversibility of the renormalization-group flow in even dimensions greater than two and address new investigations and tests.

PDF

Acta Phys.Slov. 52 (2002) 573

arXiv:hep-th/0205039

I study various properties of the critical limits of correlators containing insertions of conserved and anomalous currents. In particular, I show that the improvement term of the stress tensor can be fixed unambiguously, studying the RG interpolation between the UV and IR limits. The removal of the improvement ambiguity is encoded in a variational principle, which makes use of sum rules for the trace anomalies $a$ and $a’$. Compatible results follow from the analysis of the RG equations. I perform a number of self-consistency checks and discuss the issues in a large set of theories.

PDF

J.Math.Phys. 43 (2002) 2965-2977 | DOI: 10.1063/1.1475766

arXiv:hep-th/0110292

I derive a procedure to generate sum rules for the trace anomalies $a$ and $a’$. Linear combinations of $\Delta a = a_{UV}-a_{IR}$ and $\Delta a’ = a’_{UV}-a’_{IR}$ are expressed as multiple flow integrals of the two-, three- and four-point functions of the trace of the stress tensor. Eliminating $\Delta a’$, universal flow invariants are obtained, in particular sum rules for $\Delta a$. The formulas hold in the most general renormalizable quantum field theory (unitary or not), interpolating between UV and IR conformal fixed points. I discuss the relevance of these sum rules for the issue of the irreversibility of the RG flow. The procedure can be generalized to derive sum rules for the trace anomaly $c$.

PDF

JHEP 0111:033 (2001) | DOI: 10.1088/1126-6708/2001/11/033

arXiv:hep-th/0107194

A flow invariant is a quantity depending only on the UV and IR conformal fixed points and not on the flow connecting them. Typically, its value is related to the central charges a and c. In classically-conformal field theories, scale invariance is broken by quantum effects and the flow invariant $a_{UV}-a_{IR}$ is measured by the area of the graph of the beta function between the fixed points. There exists a theoretical explanation of this fact. On the other hand, when scale invariance is broken at the classical level, it is empirically known that the flow invariant equals $c_{UV}-c_{IR}$ in massive free-field theories, but a theoretical argument explaining why it is so is still missing. A number of related open questions are answered here. A general formula of the flow invariant is found, which holds also when the stress tensor has improvement terms. The conditions under which the flow invariant equals $c_{UV}-c_{IR}$ are identified. Several non-unitary theories are used as a laboratory, but the conclusions are general and an application to the Standard Model is addressed. The analysis of the results suggests some new minimum principles, which might point towards a better understanding of quantum field theory.

PDF

Class.Quant.Grav. 18 (2001) 4417-4442 | DOI: 10.1088/0264-9381/18/21/304

arXiv:hep-th/0101088

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF