Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




A flow invariant is a quantity depending only on the UV and IR conformal fixed points and not on the flow connecting them. Typically, its value is related to the central charges a and c. In classically-conformal field theories, scale invariance is broken by quantum effects and the flow invariant $a_{UV}-a_{IR}$ is measured by the area of the graph of the beta function between the fixed points. There exists a theoretical explanation of this fact. On the other hand, when scale invariance is broken at the classical level, it is empirically known that the flow invariant equals $c_{UV}-c_{IR}$ in massive free-field theories, but a theoretical argument explaining why it is so is still missing. A number of related open questions are answered here. A general formula of the flow invariant is found, which holds also when the stress tensor has improvement terms. The conditions under which the flow invariant equals $c_{UV}-c_{IR}$ are identified. Several non-unitary theories are used as a laboratory, but the conclusions are general and an application to the Standard Model is addressed. The analysis of the results suggests some new minimum principles, which might point towards a better understanding of quantum field theory.

PDF

Class.Quant.Grav. 18 (2001) 4417-4442 | DOI: 10.1088/0264-9381/18/21/304

arXiv:hep-th/0101088

Embedded PDFFullscreen PDF view

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in Pisa in 2015. (More chapters will be added later.)

Last update: May 9th 2015, 230 pages

Avaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


PDF