Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Resonances

We provide a diagrammatic formulation of perturbative quantum field theory in a finite interval of time $τ$, on a compact space manifold $Ω$. We explain how to compute the evolution operator $U(t_{\text{f}},t_{\text{i}})$ between the initial time $t_{\text{i}}$ and the final time $t_{\text{f}}=t_{\text{i}}+τ$, study unitarity and renormalizability, and show how to include purely virtual particles, by rendering some physical particles (and all the ghosts, if present) purely virtual. The details about the restriction to finite $τ$ and compact $Ω$ are moved away from the internal sectors of the diagrams (apart from the discretization of the three-momenta), and coded into external sources. So doing, the diagrams are as similar as possible to the usual $S$ matrix diagrams, and most known theorems extend straightforwardly. Unitarity is studied by means of the spectral optical identities, and the diagrammatic version of the identity $U^†(t_{\text{f}},t_{\text{i}})U(t_{\text{f}},t_{\text{i}})=1$. The dimensional regularization is extended to finite $τ$ and compact $Ω$, and used to prove, under general assumptions, that renormalizability holds whenever it holds at $τ=\infty $, $Ω=\mathbb{R}^{3}$. Purely virtual particles are introduced by removing the on-shell contributions of some physical particles, and the ghosts, from the core diagrams, and trivializing their initial and final conditions. The resulting evolution operator $U_{\text{ph}}(t_{\text{f}},t_{\text{i}})$ is unitary, but does not satisfy the more general identity $U_{\text{ph}}(t_{3},t_{2})U_{\text{ph}}(t_{2},t_{1})$ $=U_{\text{ph}}(t_{3},t_{1})$. As a consequence, $U_{\text{ph}}(t_{\text{f}},t_{\text{i}})$ cannot be derived from a Hamiltonian in a standard way, in the presence of purely virtual particles.

PDF

J. High Energ. Phys. 07 (2023) 209 | DOI: 10.1007/JHEP07(2023)209

arXiv: 2304.07642 [hep-th]

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF