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Abstract

We provide a diagrammatic formulation of perturbative quantum field theory in a

finite interval of time τ , on a compact space manifold Ω. We explain how to compute

the evolution operator U(tf, ti) between the initial time ti and the final time tf = ti + τ ,

study unitarity and renormalizability, and show how to include purely virtual particles, by

rendering some physical particles (and all the ghosts, if present) purely virtual. The details

about the restriction to finite τ and compact Ω are moved away from the internal sectors

of the diagrams (apart from the discretization of the three-momenta), and coded into

external sources. Unitarity is studied by means of the spectral optical identities, and the

diagrammatic version of the identity U †(tf, ti)U(tf, ti) = 1. The dimensional regularization

is extended to finite τ and compact Ω, and used to prove, under general assumptions, that

renormalizability holds whenever it holds at τ = ∞, Ω = R
3. Purely virtual particles

are introduced by removing the on-shell contributions of some physical particles, and the

ghosts, from the core diagrams, and trivializing their initial and final conditions. The

resulting evolution operator Uph(tf, ti) is unitary, but does not satisfy the more general

identity Uph(t3, t2)Uph(t2, t1) = Uph(t3, t1). As a consequence, Uph(tf, ti) cannot be derived

from a Hamiltonian in a standard way, in the presence of purely virtual particles.
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1 Introduction

The success of perturbative quantum field theory relies on the theory of scattering, and

the tests of its predictions in colliders. The S matrix amplitudes describe scattering pro-

cesses among “asymptotic states”, which are free, and far from the interaction region.

Nevertheless, quantum field theory is much more than the S matrix, and can in principle

make predictions about all types of processes. For example, we can consider the effects of

a scattering among particles that are still interacting. One day, we might want to build

colliders to test those predictions.

While there is no conceptual difficulty in formulating quantum field theory in a finite

interval of time τ and on a compact space manifold Ω, and various approaches can be

found in the literature, it is worth to make an effort to identify the formulation that is

closer to the one we are accustomed to at τ = ∞, Ω = R
3. If so, we can generalize the

known properties and theorems with a minimum effort, efficiently study key principles

like unitarity and renormalizability, and possibly extend to formulation to purely virtual

particles [1]. It may be challenging to distinguish what is virtual from what is real, what is

on the mass shell and what is not, in a finite interval of time, and on a compact manifold,

so the investigation may hold intriguing surprises.

The first task is to relate as much as possible the diagrams of perturbative quantum

field theory in a finite interval of time τ , and on a compact space manifold Ω, to the

usual diagrams of the S matrix amplitudes. We achieve this goal by removing (almost

all) the details about the restriction to finite τ and compact Ω from the internal sectors of

the diagrams, and dumping them on appropriate external sources coupled to the vertices.

Only the discretization of the momenta1, due to the restriction to a compact Ω, enters the

loop integrals. This “contamination” is the maximum allowed to generalize the study of

unitarity along the lines of ref. [2], that is to say, by means of spectral optical identities,

which are purely albegraic and hold threshold by threshold, for arbitrary frequencies,

before integrating on the loop momenta (or summing on their discretized versions, on a

compact Ω). In the end, the diagrams look like ordinary Feynman diagrams, apart from

the discretization of the loop momenta, and the insertion of an external source for every

vertex. The usual diagrammatic properties and techniques hold unmodified, or can be

extended easily.

These goals are achieved efficiently in the approach based on coherent states [3]. In

1Throughout this paper, we use a nonrelativistic terminology, where “momentum” means three-

momentum (in four spacetime dimensions), or (D−1)-momentum (in D spacetime dimensions). Only the

momenta are discretized, while the energies are not.
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every other approach they require more effort, but it is always possible to obtain equivalent

results by means of a change of basis, starting from the coherent-state approach.

We consider theories with Hermitian Lagrangians. The free Hamiltonians may be

bounded from below or not, depending on whether the theory contains only physical parti-

cles, or includes ghosts (particles with kinetic terms multiplied by the wrong signs). If the

theory just contains physical particles, the evolution operator U(tf, ti) between the initial

time ti and the final time tf = ti + τ is unitary: U †(tf, ti)U(tf, ti) = 1. If ghosts are present,

an analogous identity holds (called pseudounitarity equation), but cannot be interpreted as

unitarity. A theory of physical particles and ghosts also satisfies the more general identity

U(t3, t2)U(t2, t1) = U(t3, t1), (1.1)

for arbitrary t1, t2 and t3.

We study these properties diagrammatically. Specifically, we decompose (1.1) into

Cutkosky-Veltman identities [4] (see also [6]). Then, we further decompose those identities

into spectral optical identities, by separating the thresholds from one another, following

ref. [2]. At that point, it is relatively straightforward to turn a physical particle (or

a ghost) into a purely virtual particle, when needed, by trivializing its initial and final

conditions, and removing the contributions to the spectral optical identities where the

particle would be on shell. This can be done according to the procedure outlined in ref.

[2], or by replacing the cores of the diagrams with appropriate non time-ordered versions,

as explained in ref. [1]. Interestingly enough, the physical evolution operator Uph(tf, ti) of

a theory that contains both physical and purely virtual particles turns out to be unitary

for arbitrary initial and final times: U †
ph(tf, ti)Uph(tf, ti) = 1. However, it does not satisfy

(1.1), and cannot be derived from a Hamiltonian in a standard way.

Purely virtual particles are particles that cannot exist on the mass shell at any order of

the perturbative expansion. They are not physical particles, nor ghosts, but sort of “fake”

particles. It is possible to introduce them by removing all the on-shell contributions due to

a physical particle or a ghost in one of the following three equivalent ways: i) a nonanalytic

Wick rotation [7, 8], ii) a certain manipulation of the spectral optical identities, to remove

the unwanted on-shell contributions as explained in ref. [2], and iii) the use of non-time-

ordered diagrams, instead of the standard diagrams [1]. In all cases, the basic ingredients

are two: a) a prescription to modify the interiors of the diagrams, and b) a projection to

drop the unwanted particles from the external states. The final theory is unitary, provided

all the ghosts are rendered purely virtual. It is important to stress that I) both physical

particles and ghosts can be rendered purely virtual, and II) purely virtual particles are not
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[9] Lee-Wick ghosts [10]2, so they do not need to have nonvanishing widths, and decay.

The main application of the idea is the formulation of a theory of quantum gravity [8],

which provides testable predictions [12] in inflationary cosmology [13]. The diagrammatic

calculations are not much more difficult than with physical particles, and it is possible to

implement them in softwares like FeynCalc, FormCalc, LoopTools and Package-X [14]. At

the phenomenological level, purely virtual particles open interesting possibilities, because

they evade many constraints that are typical of normal particles (see [15] and references

therein).

We show that, whenever a theory is renormalized at τ = ∞, Ω = R
3, it is also renor-

malized at finite τ and on a compact space manifold Ω. The counterterms are the same

at the Lagrangian level, up to total derivatives (which are not renormalized). These re-

sults are not surprising, considering that the ultraviolet divergences are local, and concern

the behaviors of the correlation functions at infinitesimal distances and intervals of time:

renormalization should know nothing about global restrictions on τ and Ω. To prove the

statements just made, we first extend the analytic [16] and dimensional [17] regulariza-

tion techniques to finite τ and compact Ω. Then we use the extended techniques to show

that everything works as expected, apart from minor changes that do not modify the final

outcome.

We recall that the coherent states [3] are the eigenstates of the annihilation operator.

In the functional-integral (Lagrangian) approach, the switch to coherent states simply

amounts to making a change of variables from coordinates and momenta q, p to z ∼ q+ ip,

z̄ ∼ q − ip (and similarly for the fields), and setting the initial conditions on z, the final

conditions on z̄. For convenience, we keep referring to the new variables z and z̄ by means

of the Hamiltonian terminology “coherent states” 3.

Ultimately, the formalism we develop in this paper gives a diagrammatic interpretation

of the evolution operator U = e−iHt. As such, it is supposed to work even for the scattering

of particles with long-range interactions, or if the timescale of the experiment is short

enough so that the process is not well-approximated by the S matrix. At the same time, it

retains the perturbative character of the standard approaches to the S matrix amplitudes.

One has to check, on a case by case basis, whether the perturbative expansion is effectively

useful, i.e., whether the radiative corrections are smaller or bigger than the contributions

they are supposed to correct. It may be possible to choose the space manifold Ω in order

2For Lee-Wick ghosts in quantum gravity, see [11].
3Details on the correspondence between the operatorial coherent-state approach and the functional

integral can be found in the paragraph 9-1-2 of [18].
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to reduce the effective range of the interactions, and identify new situations where it makes

sense to compare the experimental results with the predictions obtained by truncating the

perturbative expansion to the first few orders. That said, any time it makes sense to use

the evolution operator U = e−iHt perturbatively around the free limit, the results of this

paper provide a diagrammatic way to do it systematically.

The S matrix amplitudes are built by switching to the interaction picture, and changing

the basis to (in and out) asymptotic states, identified as residues of the propagators of the

external legs, which are then amputated. This part, which is necessary to deal with the

asymptotic limit, is not affected by our discussion.

It is convenient to list here the main properties of the diagrammatic rules we find,

starting from those that apply to the coherent-state framework.

The frequencies are discrete, while the energies are continuous: Fourier series are

used for momenta, while Fourier transforms are used for energies.

In theories with physical particles and possibly ghosts:

– The cores of the diagrams are variants of the usual Feynman diagrams, where

the momenta are discretized, and a suitable external source K is attached to

each vertex.

– The sources K and the discretization of the momenta are the sole information

about the restriction to finite τ and compact Ω.

– The analytic/dimensional regularization technique can be generalized to finite

τ and compact Ω.

– Once a theory is renormalized at τ = ∞, Ω = R
3, it is renormalized at finite τ

and compact Ω, and the counterterms are the same.

– Unitarity, pseudounitarity and the identity (1.1) can be translated diagrammat-

ically into Cutkosky-Veltman identities, à la [4].

– The Cutkosky-Veltman identities can be decomposed threshold by threshold

into algebraic, spectral optical identities, à la [2].

Purely virtual particles can be introduced by rendering some physical particles (and

all the ghosts, if any are present) purely virtual. The features of the theories of

physical and purely virtual particles are:
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– The cores of the diagrams are replaced by appropriate non time ordered dia-

grams.

– Equivalently, the contributions to the spectral optical identities where the purely

virtual particles would be on shell are removed.

– No external states are associated with purely virtual particles.

– The initial and final conditions obeyed by purely virtual particles are trivial.

However, their boundary conditions (referring to the boundary of Ω) need not

be trivial.

– The physical evolution operator Uph(tf, ti) is unitary.

– The more general identity (1.1) does not hold.

– It is not possible to derive Uph(tf, ti) from a Hamiltonian in a standard way.

In a generic approach (not based on coherent states), the propagators have additional

“on-shell” contributions and infinitely many singularities. A change of basis from the

coherent-state approach to an arbitrary one ensures that all the singularities mutually

cancel out, and any property we prove with coherent states is general.

Although it is possible to perform the Wick rotation to Euclidean space, we always

work in Minkowski spacetime, because unitarity is better studied there. The connection

with finite temperature quantum field theory is not obvious, and should be worked out

separately.

We mostly work in four spacetime dimensions, or in quantum mechanics, but the results

hold in an arbitrary numberD of spacetime dimensions. When we dimensionally regularize,

we understand that D is a complex parameter.

Throughout the paper, we work with scalar bosons. The generalization to fermions is

straightforward. In the cases of gauge theories and gravity, we can apply the techiques

developed here with convenient gauge choices, such as the Feynman gauge. A more general

setting (working with arbitrary gauges and arbitrary gauge-fixing parameters is useful to

prove the gauge independence of physical quantities, and, in practical computations, make

checks of the results) requires to overcome certain technical obstacles, which are dealt with

in a separate paper [5].

We work in infinite volume Ω = R
3 till section 5, where we switch to a compact Ω.

The closest approach to ours that we have found in the literature is the one of ref. [19],

where the basic diagrammatics of the coherent-state approach in a finite interval of time

are layed out. Beyond that, we restrict to an arbitrary compact space manifold Ω, develop

the systematics of regularization and renormalization, study unitarity, the identity (1.1)
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and the spectral optical identities diagrammatically, and extend the formulation to purely

virtual particles.

The paper is organized as follows. In sections 2 and 3 we consider the approach based

on position eigenstates at finite τ (Ω = R
3), and describe its main difficulties. In section

4 we switch to the approach based on coherent states, still on Ω = R
3. In section 5 we

switch to a compact space manifold Ω. In section 6 we generalize the analytic/dimensional

regularization technique and study the renormalization of the theory. In section 7 we study

unitarity, while in section 8 we work out the unitarity equations in diagrammatic form.

In section 9 we extend the formulation to purely virtual particles. Section 10 contains the

conclusions. In appendix A we compute some quantities needed in the paper.

2 Position-eigenstate approach

We begin by working with position eigenstates, and their field analogues, which have an

intuitive interpretation. Unfortunately, they lead to unnecessary complications. For the

moment, we restrict time to a finite interval τ , but keep R
3 as the space manifold.

2.1 Amplitudes

Let φ denote scalar bosonic fields. In the operatorial and functional-integral formulations,

the transition amplitude between initial and final states φi(x) and φf(x) at times ti and tf

(with ti < tf) reads

〈φf, tf |φi, ti〉 = 〈φf |e−iHλτ |φi〉 =
∫

φ(ti,x)=φi(x)
φ(tf,x)=φf(x)

[dφ] exp

(

i

∫ tf

ti

dt

∫

d3xLλ(φ(t,x))

)

, (2.1)

where τ = tf − ti, Hλ is the Hamiltonian and Lλ is the Lagrangian. We assume that Lλ

has the form

Lλ(φ) = L0(φ) + LI(φ), L0(φ) =
1

2
(∂µφ)(∂

µφ)− m2

2
φ2, (2.2)

where the interaction term LI(φ) is proportional to some coupling λ, to be treated pertur-

batively. In various steps, it may be useful to assume, as usual, that the squared mass has

a small negative imaginary part (m2 → m2 − iǫ, ǫ > 0).

Let φ0(t,x) denote the solution of the Klein-Gordon equation ∂µ∂
µφ0 +m2φ0 = 0 with

initial and final conditions φ0(ti,x) = φi(x), φ0(tf,x) = φf(x). We write

φ(t,x) = φ0(t,x) + ϕ(t,x), (2.3)

7



23
A
1
R
en
or
m

so the quantum fluctuation ϕ(t,x) has the simpler boundary conditions ϕ(ti,x) = ϕ(tf,x) =

0. The action reads

Sλ(φ) ≡
∫ tf

ti

dt

∫

d3xLλ(φ(t,x)) = Sλ(φ0) + Sλ(ϕ, φ0), Sλ(ϕ, φ0) ≡
∫ tf

ti

dt

∫

d3xLλ(ϕ, φ0),

(2.4)

where

Sλ(φ0) =
1

2

∫

d3x
[

φf(x)φ̇0(tf,x)− φi(x)φ̇0(ti,x)
]

+

∫ tf

ti

dt

∫

d3xLI(φ0),

Lλ(ϕ, φ0)≡L0(ϕ) + LI(ϕ, φ0), LI(ϕ, φ0) ≡ LI(φ0 + ϕ)− LI(φ0). (2.5)

Although the ϕ interaction Lagrangian LI(ϕ, φ0) may contain φ0-dependent terms that are

linear or quadratic in ϕ, we treat them perturbatively, since they are proportional to λ.

For ti > tf we define and compute the amplitudes by means of the identity

〈φf, tf |φi, ti〉 = (〈φf, tf |φi, ti〉∗)∗ = 〈φi, ti |φf, tf〉∗, (2.6)

where 〈φi, ti |φf, tf〉 is the same as in (2.1) with i ↔ f. Note that the time ordering becomes

anti-time ordering under complex conjugation. For this reason, the complex conjugation

acts on m2 as well, when the prescription iǫ is attached to it. If the fields are not real, we

have φ∗
i and φ∗

f on the right-hand side.

2.2 Correlation functions and generating functionals

As usual, it is convenient to introduce an external source J coupled to the field φ, by

making the replacement Lλ → Lλ + Jφ in (2.1). This allows us to define the correlation

functions as functional derivatives with respect to J . We can write

〈φf, tf |φi, ti〉J = Zλ(J) exp

(

iSλ(φ0) + i

∫ tf

ti

dt

∫

d3xJφ0

)

, (2.7)

where

Zλ(J) = eiWλ(J) ≡
∫

ϕ(ti,x)=ϕ(tf,x)=0

[dϕ] exp

(

iSλ(ϕ, φ0) +

∫ tf

ti

dt

∫

d3xJϕ

)

. (2.8)

We can reduce the effort to working out the correlation functions encoded in Zλ(J), since

the factor in front of it in (2.7) is under control.

The Zλ correlation functions

〈ϕ(x1) · · ·ϕ(xn)〉λ = Z−1
λ (0)

δnZλ(J)

iδJ(x1) · · · iδJ(xn)

∣
∣
∣
∣
J=0

(2.9)
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collect all the diagrams, including the disconnected ones and the reducible ones. Mimicking

standard arguments, we can prove thatW (J) is the generating functional of the connected

diagrams. Its Legendre transform

Γ(Φ) = W (J)−
∫ tf

ti

dt

∫

d3xJΦ, Φ =
δW

δJ
,

is the generating functional of the amputated, one-particle irreducible diagrams.

First, it is useful to show that the functional integral of a functional total derivative

vanishes. That is to say, the identity
∫

ϕ(ti,x)=ϕ(tf,x)=0

[dϕ]
δ

δϕ(y)

[

X(ϕ) exp

(

iSλ(ϕ, φ0) +

∫ tf

ti

dt

∫

d3xJϕ

)]

= 0 (2.10)

holds, where ti < y0 < tf and X(ϕ) is a product of local functionals.

To prove (2.10), we define

[X] =

∫

ϕ(ti,x)=ϕ(tf,x)=0

[dϕ]X(ϕ) exp

(

iSλ(ϕ, φ0) +

∫ tf

ti

dt

∫

d3xJϕ

)

(2.11)

and let [X]α denote the same expression upon making the change of variables ϕ(t,x) →
ϕ(t,x) + α(t,x), where α(t,x) is assumed to vanish everywhere, but in a neighborhood of

y. This assumption ensures that we can integrate the α-dependent corrections by parts,

without worrying about boundary contributions. Since [X]α = [X], the left-hand side of

(2.10) (which is the functional derivative of [X]α with respect to α, calculated at α = 0)

must vanish.

Using (2.10), we can derive functional equations for the generating functionals. Noting

that the W equation is connected and the Γ equation is irreducible, we can prove that the

solutions W and Γ share the same properties. The restriction to finite τ does not pose

difficulties about this. For details see, for example, [20].

2.3 Propagator

The two-point function

Gλ(x, y) = 〈ϕ(x)ϕ(y)〉λ = Z−1
λ (0)

δ2Zλ(J)

iδJ(x)iδJ(y)

∣
∣
∣
∣
J=0

(2.12)

defines the propagator. In the free-field limit, G0(x, y) is uniquely determined by the

problem

(�x +m2)G0(x, y)=−iδ(4)(x− y), G0(y, x) = G0(x, y),

G0(x, y)= 0 for x0 = ti, x
0 = tf, y

0 = ti, y
0 = tf, (2.13)
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where � = ∂µ∂
µ and the subscript x specifies that the partial derivatives are calculated

with respect to x. The Klein-Gordon equation is derived from (2.10) with X(ϕ) = ϕ(x),

λ = 0 and J = 0. The second line follows from ϕ(ti,x) = ϕ(tf,x) = 0.

At the practical level, we solve (2.13) starting from the Feynman propagator, or any

other solution of the Klein-Gordon equation. Then we add the most general solution of

the homogeneous equation, and determine its arbitrary coefficients from the symmetry

property G0(y, x) = G0(x, y) and the conditions that appear in the second line of (2.13).

The result is reported in formula (3.5), after Fourier transforming the space coordinates.

The generating functional of the connected correlation functions in the free-field limit

is

iW0(J) = iW0(0)−
∫

d4xJ⊥(x)G0(x, y)J⊥(y)d
4x, (2.14)

where J⊥(x) = θ(tf − x0)θ(x0 − ti)J(x). The constant W0(0) is worked out in appendix A.

Formula Z0(J) = eiW0(J) shows that the Wick theorem works as usual.

Note that there is no need to project the propagator G0 to the interval ti < t < tf,

inside the diagrams, since it is always sandwiched in between vertices or sources J⊥, which

are already projected.

2.4 Interactions

Expanding Lλ(ϕ, φ0) in powers of ϕ, we find φ0-dependent vertices, which can be viewed

as local composite fields coupled to external sources. More explicitly, we can write

∫ tf

ti

dt

∫

d3xLI(ϕ, φ0) =

∫

d4x

∞∑

n=1

∑

α

Knα(x)Vnα(ϕ(x)), (2.15)

where Vnα(ϕ) is a monomial of degree n in ϕ and its derivatives, α is an extra label to

distinguish the various cases, and Knα(x) are appropriate functions, which we can interpret

as external sources. They collect the projector θ(tf − x0)θ(x0 − ti) onto the interval τ , as

well as the dependence on φ0. The latter is encoded in the shift (5.2) of the field, which

transfers directly into the generating functional Γ(Φ) as an identical shift of Φ.

3 Quantum mechanics

To work out explicit formulas, it is convenient to Fourier transform the space coordinates,

and reduce the problem to a continuum of oscillators in quantum mechanics. It is then

possible to focus on a single oscillator at a time.
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In this section we consider the anharmonic oscillator with Lagrangian

Lλ(q) =
1

2

(
q̇2 − ω2q2

)
− Vλ(q), (3.1)

where Vλ(q) is proportional to some coupling λ. The amplitude we want to study is

〈qf, tf |qi, ti〉 = 〈qf |e−iHτ |qi〉 =
∫

q(ti)=qi, q(tf)=qf

[dq] exp

(

i

∫ tf

ti

dtLλ(q(t))

)

,

where |q〉 denotes the position eigenstate.

As before, we shift q to q0 + q, where

q0(t) =
qf sin((t− ti)ω) + qi sin((tf − t)ω)

sin(ωτ)
(3.2)

is the solution of the classical equations of motion with boundary conditions q(ti) = qi,

q(tf) = qf. After the shift, the functional integral is done on fluctuations (still called q)

with boundary conditions q(ti) = q(tf) = 0.

The generating functional (2.8) is

Zλ(J) = eiWλ(J) =

∫

q(tf)=q(ti)=0

[dq] exp

(

i

∫ tf

ti

dt

∫

d3x (Lλ(q, q0)) + J(t)q(t))

)

, (3.3)

where Lλ(q0, q) = L0(q)− Vλ(q0 + q) + Vλ(q0) = L0(q) +O(λ).

From (2.13), we see that the free two-point function G0(t, t
′) = 〈q(t)q(t′)〉0 is the

solution of the problem

(
d2

dt2
+ ω2

)

G0(t, t
′) = −iδ(t− t′), G0(t

′, t) = G0(t, t
′), G0(ti, t

′) = G0(tf, t
′) = 0.

(3.4)

We start from the Feynman propagator e−iω|t−t′|/(2ω), and add the (symmetrized) solutions

aeiω(t+t′) + be−iω(t+t′) + c(eiω(t−t′) + e−iω(t−t′))

of the homogeneous equation, multiplied by arbitrary coefficients a, b, c. Then, we deter-

mine these constants from the boundary conditions that appear to the right of (3.4). The

result is

G0(t, t
′) = iθ(t− t′)

sin(ω(tf − t)) sin(ω(t′ − ti))

ω sin(ωτ)
+ (t↔ t′), (3.5)

where ti < t, t′ < tf.
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To check the limit tf → +∞, ti → −∞, we must assume, as usual, that ω has a small

negative imaginary part (ω → ω̃ = ω − iǫ, ǫ > 0). As expected, the propagator tends to

the Feynman one,

lim
tf→+∞

G0(t, t
′)=

θ(t− t′)

2ω
e−iω(t−t′)

(

1− e−2iω(t′−ti)
)

+ (t↔ t′),

lim
ti→−∞

lim
tf→+∞

G0(t, t
′)=

1

2ω
e−iω|t−t′|.

It is also interesting to derive the Fourier transform of (3.5), defined by extending its

expression to arbitrary times t and t′ (instead of restricting it to the interval ti < t, t′ < tf).

We find

G̃0(e, e
′) ≡

∫ +∞

−∞

dt

∫ +∞

−∞

dt′G0(t, t
′)ei(et+e′t′) = (2π)δ(e+ e′)

i

e2 − ω2

− iπ2e−iωτ

ω sin(ωτ)

[
δ(e+ e′)2ωδ(e2 − ω2)− δ(e− e′)(e−2iωtiδ(e+ ω) + e2iωtfδ(e− ω))

]
. (3.6)

In addition to the Feynman propagator, we have two “on shell” contributions, including

one proportional to δ(e − e′). The reason is that the boundary conditions break the

invariance under time translations, which causes a “spontaneous” symmetry breaking of

energy conservation.

When we use the propagator (3.6) inside the loop diagrams, the integrals on the loop

energies are straightforward, but the integrals on the loop momenta may be challenging.

The infinitely many singularities located at ωτ = nπ, n ∈ Z, cause further complications.

Yet, the final result is well defined. It is not easy to prove this fact in the position-eigenstate

framework, or a generic framework. Yet, it emerges quite naturally in the coherent-state

approach. Once it is evident there, it extends directly to the position-eigenstate approach,

as well as every other approach that can be reached from the coherent-state one by means

of a change of basis.

Note that we are using Fourier transforms (3.6) in time, rather than Fourier series,

because the latter make calculations much harder, and do not allow us to take advantage

of the Wick rotation. It is consistent to use Fourier transforms, for the following reason.

The projection onto the finite time interval ti < t < tf acts on the quadratic part of the

Lagrangian, as well as the interaction part. Inside the loop diagrams, the propagators are

sandwiched in between vertices, which are projected. Moreover, we can attach projected

sources J⊥ to the external legs, as in (2.14). Provided we do this, we can ignore the

projectors on the propagators. Thus, the simplest option is to extend formula (3.5) to

arbitrary times t and t′, after which we can use the Fourier transform (3.6).

The denominator Zλ(0) of (2.9) is worked out in appendix A at λ = 0.
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4 Coherent-state approach

The main virtue of the coherent-state approach [3] is that it moves all the details of the

restriction to finite τ outside the diagrams. The cores of the diagrams are then the same

as usual, so the final results are always well defined. The key properties also survive the

restriction to a compact space manifold Ω, where the internal sectors of the diagrams are

affected, but only in a minor way.

In this section we lay out the basic properties of the approach, starting by recalling

how it works in the case of the harmonic oscillator of frequency ω and Lagrangian

L0(q, q̇) =
1

2

(
q̇2 − ω2q2

)
(4.1)

at τ = ∞ (tf = +∞, ti = −∞), Ω = R
3. Introducing the momentum p = ∂L0/∂q̇, we can

consider the equivalent Lagrangian

L′
0(q, q̇, p, ṗ) =

1

2
(pq̇ − qṗ− p2 − ω2q2). (4.2)

The change of variables4

z =
1

2

(

q + i
p

ω

)

, z̄ =
1

2

(

q − i
p

ω

)

, q = z + z̄, p = −iω(z − z̄), (4.3)

turns L′
0 into

L0(z, z̄) ≡ iω(z̄ż − ˙̄zz)− 2ω2z̄z =
1

2
ηtQη, (4.4)

where

Q = 2ω




0 −i d

dt
− ω

i d
dt
− ω 0



 , η =




z

z̄



 . (4.5)

We call the functions z and z̄ coherent “states” by analogy with the operatorial approach,

even if they are just functions in the Lagrangian approach.

The free propagators are

〈z(t)z̄(t′)〉0 = θ(t− t′)
e−iω(t−t′)

2ω
, 〈z(t)z(t′)〉0 = 〈z̄(t)z̄(t′)〉0 = 0. (4.6)

When we include the interactions, the momentum p and the Hamiltonian Hλ(p, q),

which are

p =
∂Lλ

∂q̇
, Hλ(p, q) = pq̇ − Lλ(q, q̇) = H0(p, q) +HI(p, q),

4The notation we use differs from the popular ones, to save factors
√
2 in various places and reduce the

number of spurious nonlocalities brought in by the factors ω (in quantum field theory).
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allow us to replace (3.1) with

L′
λ(q, q̇, p, ṗ) =

1

2
(pq̇ − qṗ)−Hλ(p, q). (4.7)

As before, we assume that the interaction term HI(p, q) is proportional to some coupling

λ.

Expressing p and q as in (4.3), we obtain the interaction Lagrangian LI(z, z̄) = −HI(p, q),

which does not depend on the time derivatives of z and z̄. The total Lagrangian is thus

Lλ(z, z̄) = L0(z, z̄) + LI(z, z̄). (4.8)

For various purposes, it may be convenient to switch back and forth between the vari-

ables p, q and z, z̄. For example, when we upgrade from quantum mechanics to quantum

field theory, (4.2) is local, while (4.8) may contain spurious nonlocalities due to the depen-

dence of ω on the momentum.

Note that the propagator of z + z̄ is the usual Feynman one,

〈[z(t) + z̄(t)][z(t′) + z̄(t′)]〉0 =
e−iω|t−t′|

2ω
=

∫
de

2π

∫
de′

2π

i(2π)δ(e+ e′)e−i(et+e′t′)

e2 − ω2 + iǫ
. (4.9)

It is convenient to couple z and z̄ to independent sources ζ̄ and ζ and write the func-

tional integral as

Z(ζ, ζ̄) =

∫

[dzdz̄]exp

(∫ tf

ti

dtLλ(z, z̄) + i

∫

(ζ̄z + z̄ζ)dt

)

.

The reason is that the change of variables (4.3) amounts to lowering the number of time

derivatives of the kinetic terms from two to one, and doubling the number of propagating

independent fields: from q only to z and z̄ (or q and p). This way, the particle and

antiparticle poles e = ±ω in (4.9) are assigned to different fields. Doubling the sources as

well, we can distinguish the poles e = ±ω on the external legs of the diagrams.

4.1 Finite time interval

When we restrict to a finite time interval τ = tf − ti, the action becomes

Sλ(z, z̄) = −iω (z̄fz(tf) + z̄(ti)zi) +

∫ tf

ti

dtLλ(z, z̄), (4.10)

with initial and final conditions z(ti) = zi, z̄(tf) = z̄f, where Lλ(z, z̄) is given by (4.8).

The corrections to the integral of Lλ that appear on the right-hand side must be included
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in order to have the right classical variational problem. Indeed, the variation of those

corrections compensates the contributions due to the total derivative contained in the

expression

δL0(z, z̄) = iω
d

dt
(z̄δz − zδz̄) + 2iωδz̄(ż + iωz)− 2iω( ˙̄z − iωz̄)δz,

where δz and δz̄ denote the variations of z and z̄. The cancellation just mentioned is

crucial: without it, the variational problem gives the extra conditions z̄f = zi = 0, which

trivialize the set of solutions of the classical equations of motion. Note that the interaction

Lagrangian LI(z, z̄) does not generate total derivatives, since it does not depend on ż and

˙̄z.

Introducing the sources ζ and ζ̄, the transition amplitude is

〈z̄f, tf; zi, ti〉ζ,ζ̄ =
∫

z(ti)=zi, z̄(tf)=z̄f

[dzdz̄]exp

(

iSλ(z, z̄) +

∫ tf

ti

dt(ζ̄z + z̄ζ)

)

. (4.11)

By means of the change of variables

z(t) = z0(t) + w(t), z̄(t) = z̄0(t) + w̄(t), (4.12)

we shift the trajectories z(t), z̄(t) by the solutions

z0(t) = zie
−iω(t−ti), z̄0(t) = zfe

−iω(tf−t), (4.13)

of the classical problem at λ = 0, which is
(

i
d

dt
− ω

)

z0(t) = 0, z0(ti) = zi,

(

−i d
dt

− ω

)

z̄0(t) = 0, z̄0(tf) = z̄f.

Then the fluctuations w(t), w̄(t) are integrated with the simpler conditions w(ti) = 0,

w̄(tf) = 0.

The functional integral (4.11) turns into

〈z̄f, tf; zi, ti〉ζ,ζ̄ = exp

(

iSλ(z0, z̄0) +

∫ tf

ti

dt
(
ζ̄z0 + z̄0ζ

)
)

Zλ(ζ, ζ̄), (4.14)

where

Sλ(z0, z̄0)=−2iωz̄fe
−iωτzi +

∫ tf

ti

dtLI(z0, z̄0),

Zλ(ζ, ζ̄) = eiWλ(ζ,ζ̄) =

∫

w(ti)=w̄(tf)=0

[dwdw̄]exp

(

iSλ(w, w̄, z0, z̄0) +

∫ tf

ti

dt
(
ζ̄w + w̄ζ

)
)

, (4.15)
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while the action Sλ of the fluctuations w and w̄, and its Lagrangian are

Sλ(w, w̄, z0, z̄0)=

∫ tf

ti

dtLλ(w, w̄, z0, z̄0),

Lλ(w, w̄, z0, z̄0)=L0(w, w̄) + LI(z0 + w, z̄0 + w̄)− LI(z0, z̄0). (4.16)

As in (2.10), the functional integral of a functional total derivative vanishes:

∫

w(ti)=w̄(tf)=0

[dwdw̄]
δ

δw̃(t′)

[

X(w, w̄) exp

(

iSλ(w, w̄, z0, z̄0) +

∫ tf

ti

dt
(
ζ̄w + w̄ζ

)
)]

= 0, (4.17)

where ti < t′ < tf, w̃ can stand for w or w̄, and X(w, w̄) is a product of local function-

als. Standard arguments show that W (ζ, ζ̄) is the generating functional of the connected

diagrams, and its Legendre transform Γ is the generating functional of the amputated,

one-particle irreducible diagrams.

To study Zλ(ζ, ζ̄) and Wλ(ζ, ζ̄), it is sufficient to consider the diagrams of w and w̄.

We start from the free theory

Z0(ζ, ζ̄) = exp
(
iW0(ζ, ζ̄)

)
=

∫

w(ti)=w̄(tf)=0

[dwdw̄]exp

(

i

∫ tf

ti

dt
(
L0(w, w̄) + ζ̄w + w̄ζ

)
)

.

The key property of the coherent-state approach is that the free propagators of the quantum

fluctuations w, w̄ coincide with those of z, z̄ at τ = ∞, given in formula (4.6):

〈w(t)w̄(t′)〉0 = θ(t− t′)
e−iω(t−t′)

2ω
, 〈w(t)w(t′)〉0 = 〈w̄(t)w̄(t′)〉0 = 0. (4.18)

Indeed, they can be worked out by solving the same equations (which follow from (4.17)

with X(w, w̄) = w or w̄), with the initial and final conditions w(ti) = w̄(tf) = 0. The theta

functions in (4.18) ensure that the solutions do not depend on ti and tf, so the propagators

at τ = ∞ and τ <∞ are exactly the same.

In other words, in the coherent-state approach the propagators know nothing about tf

and ti, and all the features due the restriction to finite τ can be removed from the internal

sectors of the diagrams, and dumped on the external sectors. In the approach based on

position eigenstates, instead, the propagators include on-shell corrections that depend on

tf and ti in a complicated way, as shown by formulas (3.6).

We have

iW0(ζ, ζ̄) = − iωτ
2

−
∫ tf

ti

dt

∫ tf

ti

dt′ ζ̄(t)θ(t− t′)
e−iω(t−t′)

2ω
ζ(t′), (4.19)
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where W0(0, 0) = −ωτ/2 is calculated in appendix A.

Now we explain how to treat the vertices. From (4.16) we see that, expanding LI(z0 +

w, z̄0 + w̄)− LI(z0, z̄0) in powers of w and w̄, the vertices have the form

Vn,n̄,n′,n̄′ =

∫ tf

ti

dtwn(t)w̄n̄(t)ẇn′

(t) ˙̄wn̄′

(t)fV (t) =

∫ +∞

−∞

dtwn(t)w̄n̄(t)ẇn′

(t) ˙̄wn̄′

(t)FV (t),

where fV (t) is a certain function built with the solutions z0 and z̄0, while FV (t) =

fV (t)θ(tf − t)θ(t− ti). Performing the Fourier transform, we obtain

Vn,n̄,n′,n̄′ =

∫ +∞

−∞

(
N∏

i=1

dei
2π

w̃i(ei)

)

K(−E), N = n+ n̄+ n′ + n̄′, E =
N∑

i=1

ei,

where w̃i denotes the Fourier transform of w, w̄, ẇ or ˙̄w, depending on the case, and K(e)

is the Fourier transform of FV (t). We obtain an ordinary vertex coupled to an external

source K. To emphasize this fact, we write the interaction Lagrangian as

∫ tf

ti

dt (LI(z0 + w, z̄0 + w̄)− LI(z0, z̄0)) ≡
∫ +∞

−∞

dtLw
IK(w, w̄,K),

where Lw
IK collects the vertices coupled to the sources K. From now on, we understand

that the integration limits of the integrals are ±∞, when they are not specified.

We can write

exp
(
iWλ(ζ, ζ̄)

)
= exp

(

i

∫

dtLw
IK

(
δ

iδζ̄
+

δ

iδζ
,K

))

exp
(
iW0(ζ, ζ̄)

)
. (4.20)

Since the vertices of Lw
IK are projected to the interval ti 6 t 6 tf, it may be convenient

to extend the propagators to arbitrary times as explained before. To do so, we replace

W0(ζ, ζ̄) with

W̃0(ζ, ζ̄) = − iωτ
2

−
∫

dt

∫

dt′ ζ̄(t)θ(t− t′)
e−iω(t−t′)

2ω
ζ(t′)

and define

exp
(

iW̃λ(ζ, ζ̄)
)

= exp

(

i

∫

dtLw
IK

(
δ

iδζ̄
,
δ

iδζ
,K

))

exp
(

iW̃0(ζ, ζ̄)
)

. (4.21)

Then,

Wλ(ζ, ζ̄) = W̃λ(ζ⊥, ζ̄⊥), (4.22)

where ζ⊥(t) = ζ(t)θ(tf − t)θ(t− ti), ζ̄⊥(t) = ζ̄(t)θ(tf − t)θ(t− ti).

Formula (4.22) shows that, in order to work out Wλ(ζ, ζ̄), it is sufficient to calculate

W̃λ(ζ, ζ̄) and restrict its correlation functions to the time interval ti < t < tf. In addition,
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formula (4.21) shows that we can compute the correlation functions of W̃λ by means of the

usual diagrammatic rules, with standard propagators

〈w(e)w̄(−e)〉0 =
i

2ω(e− ω + iǫ)
(4.23)

(after Fourier transform5), using the vertices encoded in Lw
IK .

The correlation functions are the functional derivatives of 〈z̄f, tf; zi, ti〉ζ,ζ̄ with respect

to iζ̄(t) and iζ(t), calculated at ζ̄(t) = ζ(t) = 0. They give diagrams that look like the

ones at τ = ∞, internally, but carry an important difference externally: every vertex is

attached to a source K, which takes care of the restriction to finite τ . In some sense, there

exist no truly internal vertices. Examples of diagrams are shown in fig. 1.

For example, the bubble diagram (first diagram of fig. 1) may give (once we amputate

the external w, w̄ legs)

Π(t)G2(t, t′)Π(t′),

where G(t, t′) = 〈w(t)w̄(t′)〉0 is a propagator (4.18) and Π(t) = θ(tf − t)θ(t − ti) is the

projector onto the interval τ . Switching to Fourier transforms, we find

∫
de′

2π
K(e1 − e′)B(e′)K(e2 + e′), B(e′) =

∫
de

2π
G̃(e)G̃(e′ − e),

where G̃(e) = 〈w(e)w̄(−e)〉0 as in (4.23), K(e) is the Fourier transform of Π(t), and e1,2

are the external energies. We see that the core diagram B(e′) is the same as usual, while

the external sources K take care of the restriction to finite τ .

At τ = ∞ we are accustomed to express the transition amplitudes by means of correla-

tion functions on the vacuum state, which describe scattering processes between arbitrary

incoming and outgoing particles, through the LSZ reduction formulas [21]. At finite τ ,

instead, the initial and final configurations of the amplitudes 〈z̄f, tf; zi, ti〉0,0, calculated at

vanishing sources ζ and ζ̄, are enough to cover all the physical situations. This means that,

strictly speaking, we could limit ourselves to consider the diagrams that have no external

legs, which know about the initial and final configurations through the external sources

K. Yet, those diagrams are better studied by introducing the sources ζ and ζ̄, hence the

correlation functions, since propagators and subdiagrams are particular cases of diagrams

that do contain external legs.

5With an abuse of notation, we use the same symbols for the fields and their Fourier transforms, when

it is possible to understand which is which from their arguments. So, the functions w(e1) and w̄(e2) denote

the Fourier transforms of w(t1) and w̄(t2), respectively. In 〈w(e1)w̄(e2)〉0, we omit a factor 2π and the

delta function for the overall energy conservation. This gives (4.23).
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Figure 1: Diagrams at finite τ : every vertex (denoted by a dot) has a source K attached

to it (denoted by a double line), besides internal and possibly external legs (denoted by

single lines)

What we have done so far in quantum mechanics extends straightforwardly to quantum

field theory (at finite τ , on Ω = R
3). The formulas written for a specific frequency ω can

be generalized by assuming that each field depends on the position x (z(t) → z(t,x),

w(t) → w(t,x), etc.), and that every interaction term is a product among fields, sources

K and their derivatives, located at the same point x, integrated in d3x on R
3.

As far as the quadratic Lagrangian (4.4) is concerned, we must interpret it as

L0(w, w̄) →
∫

d3x
[

iw̄
√

−△+m2ẇ − i ˙̄w
√

−△+m2w − 2w̄(−△+m2)w
]

, (4.24)

where △ denotes the Laplacian. The first two terms in the square brackets are nonlocal,

and so may be the interaction terms Lw
IK , due to p dependence in (4.7). However, these

nonlocalities are spurious, because they disappear if we switch to the variables

Q ≡ w + w̄ = q − z0 − z̄0, P ≡ −iω(w − w̄) = p+ iω(z0 − z̄0), (4.25)

and view the dependencies on z0 and z̄0 as external sources.

It may be convenient to switch back and forth between the variables Q, P and w, w̄.

The former are more convenient for renormalization, because they have a standard power

counting. The latter are more clearly related to the initial and final conditions.

Ultimately, the difference between the diagrammatics of quantum field theory at τ = ∞
and the one at τ <∞ is limited to the external sources K. The result is that the diagrams

are the same as usual, internally, and obey all the known theorems. They even allow us

to generalize the prescription/projection to purely virtual particles, which we discuss in

section 9. In the next section we show that the key properties also survive the restriction

to a compact space manifold Ω.
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5 Compact space manifold

Now we study quantum field theory in a finite interval of time, and on a compact, smooth

space manifold Ω. We can study manifolds with a nontrivial boundary ∂Ω, or closed

manifolds Ω, such as the sphere or the torus (equivalent to the box with periodic boundary

conditions). When ∂Ω is nontrivial, we assume that the fields φ satisfy Dirichlet boundary

conditions

φ(t,x∂Ω) = f(t,x∂Ω) (5.1)

on ∂Ω, where f are regular functions and x∂Ω are the space variables restricted to ∂Ω.

Problems may appear when Ω is not smooth (as in the case Ω = cone), or the boundary

conditions (5.1) are singular. These situations must be treated case by case.

We assume that the Lagrangian density depends only on the field φ and its first deriva-

tives ∂µφ, and that each Lagrangian term contains at most two derivatives. Although we

write formulas for scalar fields, our formulation is general, and applies to bosons as well as

fermions, with obvious modifications. In the case of bosons of higher spins, it is sufficient

to view φ as a multiplet. In the case of gravity, where the curvature tensors Rµνρσ, Rµν and

R involve two derivatives ∂ρ∂σφµν of the fluctuation φµν of the metric tensor gµν around

flat space, we must eliminate them by adding total derivatives to the Lagrangian. This is

always possible, since we are assuming that the latter does not depend on higher deriva-

tives of φµν , and does not contain terms with more than two derivatives. Later we show

how to obtain the correct classical variational problem, once the Lagrangian is rearranged

as explained.

For example, in quantum gravity with purely virtual particles, we should not use the

higher-derivative formulation “R + R2 + C2” of [8] (where Cµνρσ is the Weyl tensor, and

C2 stands for CµνρσC
µνρσ), which contains Lagrangian terms with four derivatives or less,

but the two-derivative formulation of [22], obtained through the introduction of extra

fields. Moreover, we should include the total derivatives mentioned above, to make sure

that terms like φ1 · · ·φn−1∂∂φn are eliminated in favor of terms like φ1 · · ·φn−2∂φn−1∂φn.

The two-derivative formulation of quantum gravity with purely virtual particles is still

renormalizable (at τ = ∞, Ω = R
3; for its renormalizability at τ < ∞, Ω = compact

manifold, see section 6), although not manifestly.

The boundary conditions (5.1) are not straightforward to deal with, since we do not

know how to Fourier expand the field. It is better to first shift φ by any background field

φ0 that satisfies the same conditions:

φ(t,x) = φ0(t,x) + ϕ(t,x), φ0(t,x∂Ω) = f(t,x∂Ω), (5.2)
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so that the difference ϕ(t,x) satisfies the simplified Dirichlet boundary conditions ϕ(t,x∂Ω) =

0. Note that we are not requiring φ0 to be the solution of a particular differential equation.

Denote the Lagrangian density by

Lλ(φ, φ̇,∇φ) = L0(φ, φ̇,∇φ) + LI(φ, φ̇,∇φ), L0(φ, φ̇,∇φ) =
1

2
φ̇2 − 1

2
(∇φ)2 − m2

2
φ2,

(5.3)

where the interaction term LI is proportional to a coupling λ, which is treated perturba-

tively. After the shift (5.2), we write Lλ(φ, φ̇,∇φ) as L̃λ(ϕ, ϕ̇,∇ϕ, φ0) and obtain

L̃λ(ϕ, ϕ̇,∇ϕ, φ0) = Lλ(φ0, φ̇0,∇φ0) + ϕA(φ0) + ϕ̇B(φ0) +∇(ϕC(φ0)) + L̂λ(ϕ, ϕ̇,∇ϕ, φ0),

(5.4)

for some functions A(φ0), B(φ0) and C(φ0) of the background field φ0, where the last term

L̂λ(ϕ, ϕ̇,∇ϕ, φ0) = L0(ϕ, ϕ̇,∇ϕ) + O(λ) is at least quadratic in ϕ. The first three terms

on the right-hand side go unmodified to the generating functional Γ, while the fourth one

disappears when it is integrated on Ω.

5.1 Fourier expansion

Now we expand the shifted field ϕ(t,x) in a basis of eigenfunctions of the Laplacian on Ω.

Let en(x), where n is some label ranging in some set U , denote a complete set of

orthonormal eigenstates of the operator −△+m2 on Ω, defined by the Dirichlet boundary

conditions en(x∂Ω) = 0 on ∂Ω (if ∂Ω 6= ⊘). Let ω2
n denote their eigenvalues, which are real

and positive. The ϕ expansion and the orthonormality relations read

ϕ(t,x) =
∑

n∈U

ϕn(t)en(x),

∫

Ω

d3xe∗n′(x)en(x) = δnn′ . (5.5)

Since we are working with real fields ϕ, we can choose a basis of real eigenfunctions.

However, in various cases, complex eigenfunctions may be more convenient, because they

can highlight the momentum conservation at the vertices. In that case, the complex

conjugate e∗n(x) of en(x) is an eigenfunction with the same eigenvalue ω2
n. Thus, there

exists an n∗ ∈ U such that e∗n(x) = en∗(x).

In typical cases, n∗ = −n, but here we want to stay as general as possible. Note that

a real ϕ has ϕ∗
n(t) = ϕn∗(t). The formulas we write look the same with real or complex

eigenfunctions: we just have to interpret the range of n appropriately.

For example, if Ω is a three torus T 3, that is to say, a box with periodic boundary

conditions, we have

en(x) =
ein̄·x
√

|Ω|
, ωn =

√
n̄2 +m2, (5.6)
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where |Ω| = L1L2L3 is the volume of Ω, n = (n1, n2, n3) ∈ Z
3, n̄ = 2π(n1/L1, n2/L2, n3/L3)

and L1, L2 and L3 are the lengths of the sides of T 3.

If Ω is a generic box (with boundary), let L1/2, L2/2 and L3/2 denote the lengths of

its sides. The Dirichlet boundary conditions en(x∂Ω) = 0 on ∂Ω give

en(x) =

√

8

|Ω|

3∏

a=1

sin (n̄axa) , ωn =
√
n̄2 +m2, (5.7)

where n ∈ N
3
+.

If Ω is the sphere S3 of radius R, we expand ϕ into spherical harmonics Y klm with

frequencies

ωklm =
1

R

√

k(k + 2) +m2R2,

where (k, l,m) ∈ Z
3, k > l > 0, −l 6 m 6 l [23].

If Ω is a ball of radius R, en(x) are proportional to the usual spherical harmonics Y lm,

times Bessel functions of the first kind:

r1/2J(2l+1)/2(kr)Y
lm(θ, φ), l > 0, − l 6 m 6 l,

where k ≡
√
ω2 −m2 is fixed by the boundary conditions at r = R.

Let us briefly outline the plan from now, before entering into further details. After

the Fourier expansion (5.6), we switch to coherent states, to deal with the restriction to

finite τ . We obtain a propagator, for the quantum fluctuations, that is unaffected by the

initial and final conditions at ti and tf, and is affected by Ω only in a minor way. So doing,

we manage to develop a formalism that does not alter the spectral optical identities of

[2] in a significant way (this aspect will become clear only in section 9). Specifically, we

move all the details about the restriction to finite τ and compact Ω to the external sectors

of the diagrams (apart from the discretizations of the loop momenta, due to the Fourier

expansion). The formulation we obtain allows us to study unitarity via the spectral optical

identities, and extend the formulation to purely virtual particles.

Before dealing with the complete theory, we treat the quadratic part, and show that

the propagator has the form we want.

5.2 Free field theory

For the moment, we concentrate on the free Lagrangian L0(ϕ, ϕ̇,∇ϕ) for the fluctuation

ϕ, which coincides with the Lagrangian L̂λ(ϕ, ϕ̇,∇ϕ, φ0) of (5.4) at λ = 0. The integral

of L0(ϕ, ϕ̇,∇ϕ) must be equipped with “endpoint corrections” Ŝe0, so that the total gives

the correct classical variational problem.

22



23
A
1
R
en
or
m

Expanding ϕ as in (5.5), integrating by parts using the ϕ boundary condition ϕ(t,x∂Ω) =

0, and including unspecified endpoint corrections Ŝe, we consider the free action

Ŝfree(ϕ) = Ŝe +

∫ tf

ti

dt

∫

Ω

d3xL0(ϕ, ϕ̇,∇ϕ) = Ŝe +
1

2

∑

n∈U

∫ tf

ti

dt
(
ϕ̇n∗ϕ̇n − ϕn∗ω2

nϕn

)
. (5.8)

Then, we switch to coherent states6

zn =
1

2

(

ϕn + i
πn
ωn

)

, z̄n =
1

2

(

ϕn − i
πn
ωn

)

, (5.9)

by introducing the momenta πn(t) = ϕ̇n(t) (π
∗
n(t) = πn∗(t)), and applying the procedure

described in section 4 to each n. We repeat the derivation in detail in the next subsection,

when we include the interactions.

We denote the initial and final conditions by zn(ti) = zni, z̄n(tf) = z̄nf, and follow the

arguments that lead to (4.10). Putting a prime on Ŝfree, to emphasize that we are working

with new variables, the free action is

Ŝ ′
free = −i

∑

n∈U

(z̄n∗fωnzn(tf) + z̄n∗(ti)ωnzni) +

∫ tf

ti

dt
∑

n∈U

[
i(z̄n∗ωnżn − ˙̄zn∗ωnzn)− 2z̄n∗ω2

nzn
]
,

(5.10)

where the first sum on the right-hand side is Ŝe.

At this point, we expand the coherent states

z̄n(t) = z̄0n(t) + w̄n(t), zn(t) = z0n(t) + wn(t), (5.11)

around particular solutions

z0n(t) = znie
−iωn(t−ti), z̄0n(t) = z̄nfe

−iωn(tf−t), (5.12)

6It may be convenient to switch to real eigenfunctions by splitting the set U as the union Ur ∪ Uc ∪ U∗
c

of Ur, which collects the n such that ϕn
∗ = ϕn, and Uc ∪ U∗

c
, which collects the n such that ϕn

∗ 6= ϕn.

Putting one element of the pair (n,n∗) in Uc and the other in U∗
c
, we separate the sum on n ∈ Ur from

the sum on n ∈ Uc ∪ U∗
c
. Defining

ϕn =
ψn + iχn√

2
for n ∈ Uc,

where ψn and χn are real, we find

Ŝfree(ϕ) = Ŝe +
1

2

∫
tf

ti

dt

[
∑

n∈Ur

(
ϕ̇2
n
− ω2

n
ϕ2
n

)
+
∑

n∈Uc

(

ψ̇2
n
− ω2

n
ψ2
n
+ χ̇2

n
− ω2

n
χ2
n

)
]

.

At this point, we switch to coherent states by applying the procedure of section 4 to ϕn, ψn and χn

separately. Switching back to ϕn, n ∈ U , at the end, we find that the formulas can be written in compact

notation, summing over n ∈ U , as reported in this section.
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of the free equations with the same initial and final conditions,

iż0n − ωnz0n = 0, −i ˙̄z0n − ωnz̄0n = 0, z0n(ti) = zni, z̄0n(tf) = z̄nf, (5.13)

so that the quantum fluctuations w̄n, wn satisfy simpler initial and final conditions:

wn(ti) = w̄n(tf) = 0. (5.14)

The free action is finally

Sfree(w, w̄) = −2i
∑

n∈U

z̄n∗fωne
−iωnτzni +

∫ tf

ti

dt
∑

n∈U

[
i(w̄n∗ωnẇn − ˙̄wn∗ωnwn)− 2w̄n∗ω2

nwn

]
,

(5.15)

and the w propagators read

〈wn(e)w̄n′(−e)〉freec =
iδn∗n′

2ω(e− ωn + iǫ)
, 〈wn(e)wn′(−e)〉freec = 〈w̄n(e)w̄n′(−e)〉freec = 0,

(5.16)

after Fourier transform, where the subscript c means “connected”. We have inserted it to

use the formulas (5.16) below. Note that, due to finite volume effects (the linear terms of

(5.4), which are proportional to A and B), the full w-w̄ free propagator does not coincide

with the connected part of the z-z̄ one.

As expected, the propagators do not know of the initial and final conditions. Moreover,

they know of Ω only through the discretization of the frequencies and the momenta.

5.3 Interacting theory

Starting over from (5.4), the total action can be written as

Sλ(ϕ, φ0)=Se +

∫ tf

ti

dt

∫

Ω

d3xLλ(φ, φ̇,∇φ) =
∫ tf

ti

dt

∫

Ω

d3xLλ(φ0, φ̇0,∇φ0) + Ŝλ(ϕ, φ0),

Ŝλ(ϕ, φ0)=Se +

∫ tf

ti

dt

∫

Ω

d3x
[

L̂λ(ϕ, ϕ̇,∇ϕ, φ0) + ϕA(φ0) + ϕ̇B(φ0)
]

, (5.17)

where Se collects the endpoint and boundary corrections that must be included to have

the correct classical variational problem.

After the Fourier expansion (5.5), we have

Ŝλ(ϕ, φ0) =Se +

∫ tf

ti

dtĽλ(ϕn, ϕ̇n, φ0),

Ľλ(ϕn, ϕ̇n, φ0)≡
∫

Ω

d3x
[

L̂λ(ϕ, ϕ̇,∇ϕ, φ0) + ϕA(φ0) + ϕ̇B(φ0)
]

.
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Defining

An∗ ≡
∫

Ω

d3xA(φ0)en(x), Bn∗ ≡
∫

Ω

d3xB(φ0)en(x),

and separating the interactions ĽI(ϕn, ϕ̇n, φ0) from the rest, we write

Ľλ(ϕn, ϕ̇n, φ0) ≡
1

2

∑

n∈U

(
ϕ̇n∗ϕ̇n − ϕn∗ω2

nϕn + 2An∗ϕn + 2Bn∗ϕ̇n

)
+ ĽI(ϕn, ϕ̇n, φ0).

Note that φ0, A(φ0) and B(φ0) may not admit an acceptable expansion in the basis en(x),

within the same space of functions as ϕ does. Nevertheless, we do not need to interpret An∗

and Bn∗ as coefficients of a Fourier expansion. It is enough to view them as the integrals

shown. So doing, we can include the effects of φ0 into the external sources K0 (see below).

Then, we introduce the Hamiltonian

Hλ(πn, ϕn, φ0) =
∑

n∈U

πn∗ϕ̇n − Ľλ(ϕn, ϕ̇n, φ0),

where the momenta are

πn = ϕ̇n + Bn +∆n, ∆n ≡ ∂ĽI(ϕn, ϕ̇n, φ0)

∂ϕ̇n∗

,

and switch to the action

Ŝλ(ϕ, φ0) = S ′
e +

∫ tf

ti

dtL′
λ(ϕn, ϕ̇n, πn, π̇n, φ0), (5.18)

by means of the equivalent Lagrangian

L′
λ(ϕn, ϕ̇n, πn, π̇n, φ0)=

1

2

∑

n∈U

(πn∗ϕ̇n − π̇n∗ϕn)−Hλ(πn, ϕn, φ0),

=
1

2

∑

n∈U

(πn∗ϕ̇n − π̇n∗ϕn − πn∗πn − ϕn∗ω2
nϕn) (5.19)

+
1

2

∑

n∈U

(2Bn∗πn + 2An∗ϕn −Bn∗Bn) + LI(πn, ϕn, φ0),

and possibly different endpoint corrections S ′
e. The interaction part reads

LI(πn, ϕn, φ0) = ĽI(ϕn, ϕ̇n, φ0) +
1

2

∑

n∈U

∆n∗∆n.

Finally, we switch to coherent states zn, z̄n by means of (5.9), and to the quantum

fluctuations wn and w̄n by means of the shift (5.11).
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Now we are ready to determine the corrections S ′
e, so as to have the correct classi-

cal variational problem. They may depend on the initial, final and possibly boundary

conditions (5.1). Defining

z(t,x) =
∑

n∈U

zn(t)en(x), z̄(t,x) =
∑

n∈U

z̄n(t)en(x), (5.20)

the initial and final conditions are

z(ti,x) = zi(x) ≡
∑

n∈U

znien(x), z̄(tf,x) = z̄f(x) ≡
∑

n∈U

z̄nfen(x), (5.21)

where zi(x) and z̄f(x) are given functions on Ω. Note that they vanish on ∂Ω, which makes

them compatible with the boundary conditions (5.1).

It is easy to check that the correct endpoint action is

S ′
e = Ŝe = −i

∑

n∈U

(z̄n∗fωnzn(tf) + z̄n∗(ti)ωnzni) . (5.22)

The first thing to notice is that the Lagrangian L′
λ of (5.19) depends on the time derivatives

ϕ̇n in a very simple way. At the same time, the gradients of the fields have disappeared

after the Fourier expansion (πn, ϕn, zn and z̄n depend only on time). In particular, the

interaction Lagrangian LI(πn, ϕn, φ0) does not contain time derivatives żn and ˙̄zn, after

the switch to coherent states. Thus, when we study the variations δzn, δz̄n of zn and z̄n,

the endpoint contributions are compensated by the same endpoint corrections we had in

the free-field limit, as in (5.10).

5.4 Complete action

The final action (5.17) is, from (5.18), (5.19) and (5.22)

Sλ(w, w̄) ≡ Sλ(ϕ, φ0) =

∫ tf

ti

dt

∫

Ω

d3xLλ(φ0, φ̇0,∇φ0) + Ŝ ′
free

+
1

2

∫ tf

ti

dt
∑

n∈U

(2Bn∗πn + 2An∗ϕn −Bn∗Bn) +

∫ tf

ti

dtLI(zn, z̄n), (5.23)

where LI(zn, z̄n) = LI(πn, ϕn, φ0), with the substitutions πn = −iωn(zn−z̄n), ϕn = zn+z̄n,

and Ŝ ′
free is the expression of formula (5.10). It is understood that the relations between

zn, z̄n and wn, w̄n are still given by the shift (5.11), defined by the free-field solution (5.12)

with initial/final conditions (5.13). This way7, Ŝ ′
free coincides with the free w, w̄ action

Sfree(w, w̄) of formula (5.15).

7Another possibility is to define wn, w̄n by shifting zn, z̄n by the solution of the interacting equations

of motion. At the practical level, it does not make much of a difference, but some formulas would have to

be adapted to that choice.
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We see that Sλ(w, w̄) is made of three types of contributions: i) those that go unmod-

ified into the generating functional Γ, which are the first term after the equal sign in the

first line, and the sum in the second line; ii) the free part, which is (5.15) and gives the

propagators (5.16); iii) the interaction part, encoded in LI(zn, z̄n). For the calculations,

we can concentrate on the last two terms.

5.5 Amplitudes, correlation functions, and diagrams

The amplitudes we want to calculate are

〈z̄f, tf; zi, ti〉ζ,ζ̄ =
∫

z(ti)=zi, z̄(tf)=z̄f

[dzdz̄] exp

(

iSλ(w, w̄) + i

∫ tf

ti

dt

∫

Ω

d3x(ζ̄z + z̄ζ)

)

=

∫

w(ti)=w̄(tf)=0

[dwdw̄] exp

(

iSλ(w, w̄) + i

∫ tf

ti

dt

∫

Ω

d3x(ζ̄z0 + z̄0ζ + ζ̄w + w̄ζ)

)

, (5.24)

where w(t,x), w̄(t,x), z0(t,x) and z̄0(t,x) are defined from their Fourier coefficients in

analogy with (5.20). As usual, we have introduced sources ζ, ζ̄, to prepare for the dia-

grammatic approach. The initial and final “states” are described by the configurations

(5.21), which are compatible with the boundary conditions (5.1).

At LI(zn, z̄n) = 0 (which we call “free limit”, although some λ dependence remains in

A, B and Lλ(φ0, φ̇0,∇φ0)), we find, using (5.23),

〈z̄f, tf; zi, ti〉freeζ,ζ̄ = exp

(

iW̃0 + iŴ0(ζ
′, ζ̄ ′) + i

∫ tf

ti

dt

∫

Ω

d3x(ζ̄ ′z0 + z̄0ζ
′)

)

≡ eiW
free

, (5.25)

where

ζ ′ = ζ + A+ iωB, ζ̄ ′ = ζ̄ + A− iBω, (5.26)

and, from (4.14) and (4.19),

W̃0 =

∫ tf

ti

dt

∫

Ω

d3x

[

Lλ(φ0, φ̇0,∇φ0)−
1

2
B2(φ0)

]

,

Ŵ0(ζ, ζ̄)=−2i
∑

n∈U

z̄n∗fωne
−iωnτzni + i

∫ tf

ti

dt

∫ tf

ti

dt′
∑

n∈U

ζ̄n∗(t)θ(t− t′)
e−iωn(t−t′)

2ωn

ζn(t
′). (5.27)

In (5.26) ω stands for the operator
√

−△+m2, where the derivatives act away from B.

In (5.27) ζn and ζ̄n are the coefficients of the Fourier expansion of ζ and ζ̄ (which we can

assume to make sense, since the sources couple to z̄ and z). We have moved the infinite

contribution −(τ/2)
∑

n∈U ωn into the normalization of the functional integral.
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Switching LI(zn, z̄n) back on, the amplitudes of the interacting theory are

〈z̄f, tf; zi, ti〉ζ,ζ̄ = exp

(

i

∫ tf

ti

dtLI

(
δ

iδζ̄n∗

,
δ

iδζn∗

))

eiW
free

. (5.28)

So far, we have tacitly assumed tf > ti. For ti > tf, we have

〈z̄f, tf; zi, ti〉ζ,ζ̄ = 〈z̄i, ti; zf, tf〉∗ζ,ζ̄ , (5.29)

from (2.6).

The correlation functions are

〈z̄f, tf|z̃n1(t1) · · · z̃nk
(tk)|zi, ti〉 ≡

δk〈z̄f, tf; zi, ti〉ζ,ζ̄
iδζ̃n∗

1
(t1) · · · iδζ̃n∗

k
(tn)

∣
∣
∣
∣
∣
ζ=ζ̄=0

, (5.30)

where z̃nj
(tj) and ζ̃n∗

j
(tj) may stand for znj

(tj) and ζ̄n∗
j
(tj), or z̄nj

(tj) and ζn∗
j
(tj). Although

the amplitudes 〈z̄f, tf; zi, ti〉 have no external legs, since they are evaluated at ζ = ζ̄ = 0, the

correlation functions are useful for the diagrammatic calculations, since propagators and

subdiagrams are particular cases of diagrams with external legs. It is understood that the

correlation functions (5.30) vanish when an insertion z̃nj
(tj) lies outside the time interval

(ti, tf).

Note that the correlation functions (5.30) receive contributions from all the diagrams,

including those that factorize subdiagrams with no external legs. By definition, the con-

nected correlation functions do not include those types of diagrams.

We see that, ultimately, the ζ̃ derivatives of (5.30) and (5.28) act on the free amplitude

eiW
free

, whereW free is encoded in formulas (5.25) and (5.27). SinceW free is the exponential

of a quadratic form in the sources ζ̃, the derivatives bring down propagators or endpoints.

The endpoints are the normalized one-point function

e−iW free δeiW
free

iδζ̄n∗(t)

∣
∣
∣
∣
∣
ζ=ζ̄=0

= z0n(t) + i

∫ tf

ti

dt′ θ(t− t′)
e−iωn(t−t′)

2ωn

(An(t
′) + iωnBn(t

′)), (5.31)

and a similar expression for −i e−iW free
δeiW

free
/δζn(t)

∣
∣
∣
ζ=ζ̄=0

. We see that both the restric-

tion to finite τ and the one to compact Ω contribute to the endpoints.

By repeatedly differentiating eiW
free

, we can build the diagrams, and, ultimately, cal-

culate any amplitude 〈z̄f, tf; zi, ti〉 we want, perturbatively and diagrammatically. In fig. 2

we illustrate the diagrams with two and three cubic vertices, and no external legs. The

double lines stand for the sources K, while the little circles stand for the endpoints (8.11).

The internal lines are the propagators (5.16), while the vertices are studied below.
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tadpoles disconnected

2

Figure 2: Diagrams with two and three cubic vertices

From what we have said, it follows that, in the end, the diagrams look like the ones

we are accustomed to at τ = ∞, Ω = R
3, at least internally, apart from the discretization

of the loop momenta. Externally, the sources K attached to the vertices take care of the

restrictions to finite τ and compact Ω. These properties are going to be extremely useful

to study unitarity and extend the formulation to purely virtual particles.

5.6 Vertices

Going through the derivation just outlined, we see that the vertices have the form

∫ tf

ti

dt

∫

Ω

d3xK(t,x)QiP j

k
︷ ︸︸ ︷

∇Q · · · ∇Q
l

︷ ︸︸ ︷

∇P · · · ∇P , (5.32)

where, as in (4.25),

Q(t,x) =
∑

n∈U

(wn(t) + w̄n(t)) en(x), P (t,x) = −i
∑

n∈U

ωn (wn(t)− w̄n(t)) en(x),

(5.33)

while the source K(t,x) is built with z0, z̄0 and φ0. Defining the constants8

CKm1···ml
n1···nk

(t) = i−l|Ω|(k+l−2)/2

∫

Ω

d3xK(t,x)en1(x) · · · enk
(x)∇em1(x) · · · ∇eml

(x), (5.34)

the vertices can be arranged as

ik+l|Ω|v
∑

n,m

Πω

∫ tf

ti

dtCKm1···mk+l
n1···ni+j

wn1 · · ·wni
w̄m1 · · · w̄mk

wni+1
· · ·wni+j

w̄mk+1
· · · w̄mk+l

,

(5.35)

where v = (2− i− j − k − l)/2 and Πω stands for a product of frequencies ωn, ωm.

Let us examine some typical situations, focusing on Πω = 1 and K ≡ 1, and dropping

the superscript K in C.

8Note that we do not need to require that K(t,x) admits a Fourier expansion in the basis en(x), or

that it admits one in the same space of functions as ϕ does.
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If Ω is a three torus T 3, we find

C
ni+1···ni+j
n1···ni = n̄i+1 · · · n̄i+jδ(n1 + · · ·+ ni+j), δ(n) =







1 if n = 0,

0 otherwise,
(5.36)

so the discretized momentum is conserved at the vertices.

If Ω is a bounded box, the discretized momentum is not conserved at the vertices. We

can gain a form of momentum conservation by introducing external sources K to take care

of the restriction to finite volume, similar to the sources Knα introduced in (2.15) for the

restriction to finite τ . For simplicity, we focus on vertices that do not involve gradients,

since it is straightforward to generalize the results to include them.

We double the sides of the box by writing a typical vertex as

∫ tf

ti

dt

∫

Ω

d3xwiw̄j =

∫ tf

ti

dt

(
3∏

a=1

∫ La

0

dxa

)

K(x)wiw̄j,

where K(x) =
∏3

a=1 θ(La − 2xa). Moreover, we use

en(x) =
i√

L1L2L3

3∏

a=1

(ein̄axa − e−in̄axa) ≡
∑

π(n)

cπ(n)fπ(n)(x), fn(x) ≡
ein̄·x√
L1L2L3

,

to switch to the basis fn(x) with periodic boundary conditions, where cπ(n) = ±i are

certain coefficients, and the label π(n) collects all the ways (±n1,±n2,±n3) of flipping the

signs in front of the integer numbers. We obtain

∫

Ω

d3xwiw̄j ∝
∑

n0,n1···ni+j




∑

π(n)

δ

(

n0 +

i+j
∑

k=1

π(nk)

)
i+j
∏

k=1

cπ(nk)



Kn0wn1 · · ·wni
w̄ni+1

· · · w̄ni+j
,

where

Kn =

(
3∏

a=1

∫ La

0

dxa

)

f ∗
n(x)K(x).

We see that now we have momentum conservation at the vertices, provided we take into

account the momentum carried by Kn.

Each vertex can be imagined as a sum (the one in square brackets) of usual vertices

coupled to external sources. A diagram with I internal legs splits into a sum of copies that

have identical propagators, but different vertices, which correspond to the choices of signs

in front of the components of the internal momenta.

If Ω is the sphere S3, the boundary is absent. Invariance under translations on the

sphere means that there is no reflection, and the (angular) momentum is conserved. The
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coefficients C
Km1···mj
n1···ni can be worked out from the decomposition of the product of two (or

more) spherical harmonics in the same basis of spherical harmonics.

If Ω is a ball B, the angular momentum is conserved, but the boundary originates a

reflection. It is easier to first consider the analogue of this problem in two space dimensions,

where B is replaced by a disc D2. Viewing D2 as a hemisphere, we double it into the sphere

S2, and introduce a source K to make the vertex vanish in the extra hemisphere. The

boundary of D2 is the equator of S
2, and reflects the radial component of the momentum.

Going back to the ball B in three space dimensions, we double the ball by adding the

exterior space and the point at infinity, thereby obtaining S3, and make the vertex vanish

in the complement of B by means of an external source K. Then, the boundary of B

reflects the radial component of the momentum.

Further sources K must be introduced to deal with the restriction to finite τ , as ex-

plained in formula (2.15).

At the end, we achieve our goal: we move almost every detail about the restriction to

finite τ and compact Ω away from the interior sectors of the diagrams. “Almost every”

means every, but for the discretization of the loop momenta. The discretization does enter

the diagrams, since it affects the propagators. What is important is that it does not affect

the spectral optical identities of ref. [2] in an invasive way, because those identities hold

threshold by threshold, for arbitrary frequencies, without integrating on the loop momenta,

or summing over n ∈ U .
Now we are equipped with what we need to proceed. We first regularize and renormalize

the theory, then investigate unitarity, and finally extend the formulation to theories that

include purely virtual particles.

6 Regularization and renormalization

In this section we discuss the renormalization of quantum field theory in a finite interval

of time τ , on a compact space manifold Ω, and show that it coincides with the one of the

theory at τ = ∞, Ω = R
3. The ultraviolet behavior of a correlation function just depends

on its small-distance behavior in coordinate space, which should know nothing about the

restriction to a compact Ω (as long as Ω is smooth), as well as the restriction to a finite

τ . Specifically, for large values of n, the sums on n reduce to the usual integrals. The

behavior of a diagram at large n matches the ultraviolet behavior at τ = ∞, Ω = R
3.

The common power counting rules apply. If the theory is equipped with the countert-

erms that renormalize its divergences at τ = ∞, Ω = R
3, it is also renormalized at finite τ

31



23
A
1
R
en
or
m

on a compact Ω. Problems could appear if Ω has singularities, such as the tip of a cone.

These situations must be dealt with on a case by case basis.

6.1 Regularization

The simplest regularization procedure amounts to truncating the infinite sums by means

of a cutoff N on the sum over n. A more elegant option is to generalize the dimensional

regularization technique, which has the advantage of being manifestly gauge invariant.

Before describing how the generalization is done, it is convenient to briefly review two

variants of the usual technique at τ = ∞, Ω = R
3.

We dimensionally regularize the integrals on the loop momenta, by continuing them to

dimension D − 1, where D is complex. However, we do not dimensionally regularize the

integrals on the loop energies. As far as those are concerned, we have two options. The

first option is to integrate on the loop energies after integrating on the loop momenta. So

doing, the integrals on the energies are automatically regularized by means of an analytic

regularization9 (see below for an illustrative example). The second option is to integrate on

the loop energies first. In this respect, it is important to stress that in the coherent-state

approach the integrals on the loop energies are all convergent (if done first), apart from

the tadpoles. The reason is that, by (5.23), no time derivatives appear in the vertices. The

simplest way to calculate the energy integrals is by means of the residue theorem (and a

symmetric integration for the tadpoles, which is justified by the first option of integration).

The first option is more convenient to study the divergent parts of the diagrams, and

their renormalization. The second option is the one we prefer here, because it is more

convenient to study unitarity via the spectral optical identities of ref. [2].

We can generalize the regularization techniques just mentioned to finite τ and compact

Ω as follows. First, we observe that the restriction to finite τ poses no problem, because

it does not enter the diagrams in the approach we have formulated (based on coherent

states and Fourier transforms for energies). We just need to pay attention to the effects of

the restriction to a compact Ω inside the diagrams, due to the discretizations of the loop

momenta and the frequencies ωn.

In several cases it may be straightforward to continue the manifold Ω to D − 1 di-

mensions. This occurs, for example, in the cases of the torus, the box with boundary, the

9The analytic regularization [16] is obtained by raising the free propagators to a complex power δ,

which is treated analytically and sent to one after removing the divergent parts (which are poles in δ− 1).

Gauge invariance is recovered by means of finite local counterterms, up to anomalies. The dimensional

regularization [17] is a particular analytic regularization, which uses the number of dimensions as the

regularizing parameter, and has the advantage of being manifestly gauge invariant (up to anomalies).
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sphere and the ball. If we need to separate a radial coordinate r from angular coordinates

θi, as in the case of the ball, we dimensionally continue only the angular part, integrate

on that first, and then integrate on r. So doing, by an argument similar to the one used

above for the integrals on the loop energies, the r integral ends up being regularized by

means of the analytic regularization.

A more general, and conceptually elegant, possibility is available. We extend Ω to

Ω×Ωε by attaching an evanescent manifold Ωε to Ω, where ε = 4−D if we are interested

in four spacetime dimensions, ε = d−D if we want to regularize a theory in d spacetime

dimensions. Since we do not need to restrict the attachment Ωε to be compact, we just

choose the simplest option for it, which is Ωε = R
−ε. Then we use Fourier series for

the coordinates of Ω, but Fourier transforms for those of R−ε. And, of course, Fourier

transforms for times and energies. So doing, the diagrams involve integrals on the loop

energies, integrals on the momenta pε of R
−ε, and sums on the labels n of the Ω frequencies

ωn.

From the calculational point of view, the first option is to start by integrating on the

momenta pε of R
−ε, then sum on the labels n of Ω and finally integrate on the loop

energies. The last two operations can be freely interchanged, since both end up being

regularized by the analytic regularization. For example, let us consider the integral of a

power of a propagator (which might depend on Feynman parameters, if it is originated by

the product of more propagators). After integrating on pε, we obtain

∫
d−εpε

(2π)ε
1

(e2 − n̄2 − p2
ε −m2 + iǫ)α

=
Γ
(
α + ε

2

)
(−1)α

(4π)−ε/2Γ(α)(m2 + n̄2 − e2 − iǫ)(2α+ε)/2
, (6.1)

where n̄ are some functions of the labels n. At this point, the integral on the energy e and

the sum over n are analytically regularized by the ε-dependent exponent.

The second option, preferred to study the spectral optical identities, is to first integrate

on the loop energies by means of the residue theorem, with the help of a symmetric

integration (if needed), and then integrate on the momenta of R−ε. At the end, we may

sum on n, if needed. That sum is not necessary for the spectral optical identities, while it

is of course necessary for the calculations of the amplitudes.

6.2 The infinite time, infinite volume limit

Before discussing the renormalization, it is convenient to show that when τ tends to infinity

and Ω tends to R
3, we obtain the results of ordinary quantum field theory, that is to say,
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the usual vacuum-to-vacuum amplitudes, and the usual diagrams10.

We first give the rules to work out the limit on a generic manifold Ω, then consider some

explicit cases. We recall that n is the label of the eigenvalues of the Laplacian with Dirichlet

boundary conditions. The differences ∆n between the labels of two close eigenvalues are

of order unity, and the eigenvalues become a continuum in the limit Ω → R
3.

Recall that the eigenfunctions en(x) on Ω satisfy

−△en(x) +m2en(x) = ω2
nen(x) in Ω, en(x) = 0 on ∂Ω. (6.2)

We make an overall rescaling of Ω by a factor η, and denote the resulting manifold by Ωη.

Replacing x by x/η in (6.2), we see that the functions fn(x) ≡ en(x/η) are eigenfunctions

on Ωη, since they satisfy

−△fn(x) +m2fn(x) = ω̂2
nfn(x) in Ωη, and fn(x) = 0 on ∂Ωη, (6.3)

with ω̂2
n = m2 + (ω2

n − m2)/η2. This means that there exists a p(n, η), ranging in some

domain Up, such that

êp(n,η)(x) = η(1−D)/2en(x/η), x ∈ Ωη, (6.4)

is an orthonormal basis of eigenfunction on Ωη, where the power of η in front of en is fixed

to have the right normalization, and the hat on e emphasizes that êp(n,η) possibly involves

a different notation for the subscript (n and p being generic labels, so far), better suited

to study the limit of infinite volume.

At this point, we take the limit η → ∞, with p fixed. This means, in particular, that

n is understood as a function of η. Let us start from the summation. We can write

∑

n∈U

≡
∫

U

dD−1n =
∑

p(n,η)∈Up

≡
∫

Up

dD−1p

(2π)D−1
J, J ≡ (2π)D−1 det

(
∂n

∂p

)

, (6.5)

where J is the Jacobian, apart from a normalization. The “integrals” on U and Up are just

other ways to write the sums on U and Up.

Define constants cJ and dJ so that J ≃ cJη
dJ when η tends to infinity. On general

grounds, we can view the sum on p as the sum on the states obtained after rescaling Ω.

When η is large, it is also the sum on the phase space cells. This means that we can choose

variables such that J ∼ |Ωη| = |Ω|ηD−1. Then, (6.5) gives

lim
η→∞

η1−D

|Ω|
∑

n∈U

= lim
η→∞

η1−D

|Ω|
∑

p(n,η)∈Up

=

∫

RD−1

dD−1p

(2π)D−1
. (6.6)

10Here and below, words such as “ordinary” and “usual” refer to quantum field theory with τ = ∞ and

Ω = R
3.
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Using this formula, we find

êp(x) =
∑

p′∈Up

δp,p′ êp′(x) ≃ |Ω|ηD−1

∫

RD−1

dD−1p

(2π)D−1
δp,p′ êp′(x). (6.7)

Let e∞p (x) denote the basis of the Fourier transform in R
D−1. We clearly have

e∞p (x) =

∫

RD−1

dD−1p

(2π)D−1
(2π)D−1δ(D−1)(p− p′)e∞p′(x). (6.8)

Since e∞p /êp ≃ e∞p′/êp′ , the comparison between (6.7) and (6.8) gives

lim
η→∞

|Ω|ηD−1δn,n′ = lim
η→∞

|Ω|ηD−1δp,p′ = (2π)D−1δ(D−1)(p− p′). (6.9)

Then, we also have

|Ω|ηD−1

∫

Ωη

dD−1xê∗p(x)êp′(x) = |Ω|ηD−1δp,p′

→ (2π)D−1δ(D−1)(p− p′) =

∫

RD−1

dD−1xe∞∗
p (x)e∞p′(x),

which implies

lim
η→∞

|Ω|1/2η(D−1)/2êp(n,η)(x) = e∞p (x). (6.10)

Next, we use this formula to compare the Fourier expansions of a field χ(t,x) before and

after the limit,

χ(t,x) =

∫

RD−1

dD−1p

(2π)D−1
χ∞
p (t)e∞p (x) =

∑

p(n,η)∈Up

χ̂p(n,η)(t)êp(n,η)(x).

We find

lim
η→∞

|Ω|1/2η(D−1)/2χ̂p(n,η)(t) = χ∞
p (t). (6.11)

As far as the vertices are concerned, making the change of variables x → x/η in (5.34)

and using (6.4) and (6.10), we obtain

lim
η→∞

ηD−1|Ω|Cm1···ml
n1···nk

= C∞q1···ql
p1···pk

≡ i−l

∫

RD−1

dD−1xe∞p1
(x) · · · e∞pk

(x)∇e∞q1
(x) · · · ∇e∞ql

(x).

(6.12)

The same steps show that the coefficients C
m1···mj
n1···ni of Ω coincide with the coefficients Ĉ

q1···qj
p1···pi

of Ωη.

The first example we consider is the torus. As explained above, we can dimensionally

regularize it by extending it to TD−1 or T 3 × R
−ε. We adopt the first option, which is
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more symmetric. The diagrams on a torus have expressions that are similar to the usual

ones (with external sources attached to the vertices), apart from the discretizations of the

loop momenta and the frequencies.

We rescale each side Li by a factor η and denote the rescaled torus by TD−1
η . Given

the labels n, m, etc., define momenta p, q, etc., through

n = (ni) = η

(
piLi

2π

)

, m = (mi) = η

(
qiLi

2π

)

, (6.13)

etc. Clearly, J = |TD−1
η |.

When we sum on n, we sum on values that are separated by a ∆n of order unity. If

we make a change of variables from n to p, we end up by summing on values separated by

dp = (2π/η)(∆ni/Li), which becomes arbitrarily small when the sides of the box tend to

infinity. There, by definition, the sum becomes an integral. This means that we have the

relation

lim
η→∞

1

ηD−1|TD−1|
∑

n∈ZD−1

=

∫
dD−1p

(2π)D−1
.

The other relations can be checked similarly: (6.4) follows from (5.6), while (6.10) gives

e∞p (x) = eip·x. In particular, formula (5.36) shows that C
m1···mj
n1···ni = Ĉ

q1···qj
p1···pi , and (6.12)

holds with

C
∞pi+1···pi+j
p1···pi = pi+1 · · ·pi+j(2π)

D−1δ(D−1)(p1 + · · ·+ pi+j).

Another example is the box with Dirichlet boundary conditions. We stick to a segment

for more clarity, since the extension to arbitrary space dimensions is straightforward. If L/2

is the length of the segment, the eigenfunctions en(x) can be read from (5.7). Centering

around the origin by means of the shift x = y + (L/4), rescaling L by a factor η, and

defining p = 4πk/(ηL), p′ = 2π(2k + 1)/(ηL), the functions e2k(x) and e2k+1(x), k ∈ N+

give

êp(y) =
2 sin(py)√

ηL
, êp′(y) =

2 cos(p′y)√
ηL

.

Then (6.10) gives

lim
η→∞

|Ω|1/2η(D−1)/2







êp(y)

êp′(y)
=







√
2 sin(py)

√
2 cos(p′y)

,

which is just an unusual basis for the Fourier transform in R.

Finally, we consider the sphere in two dimensions. The kinetic Lagrangian of a massive

scalar field χ can be written in the form
∫ +∞

−∞

du

∫ +πR

−πR

dv

[
∂2χ

∂u2
+
∂2χ

∂v2
−m2χ2

(

1− tanh2
( u

R

))]

, (6.14)
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where

u = Rarctanh (cos θ) , v = R(φ− π).

and R, θ and φ are the usual spherical coordinates. Due to the function that multiplies

m2, the eigenfunctions of the kinetic operator blow up exponentially at infinity, unless the

eigenvalues are restricted to the correct, discrete set. When R is rescaled by η, and η tends

to infinity, the eigenvalues tend to a continuum, and (6.14) tends to the Lagrangian in R
2.

Similar arguments hold for the sphere in three dimensions, the ball, the cylinder and

the disc.

As far as the external sources K attached to the vertices are concerned, we can dis-

tinguish the sources Kτ that restrict the time integrals to the interval τ , and just tend to

one in the limits ti → −∞, tf → ∞, from the sources K0 due to the solutions φ0 and z0,

z̄0 of formulas (5.2) and (5.12), which may know about the boundary function f of (5.1).

The sources K0 must tend to whatever we need to describe transition amplitudes between

arbitrary states at τ = ∞, Ω = R
3.

Normally, we are interested in vacuum-to-vacuum amplitudes at τ = ∞, Ω = R
3.

Formula (5.12) shows that z0n(t) and z̄0n(t) tend to zero, if we assume that zni and z̄nf are

kept constant, and the prescription −iǫ is attached to ωn. If, in addition, we make f tend

to zero when η → ∞, we obtain the desired vacuum-to-vacuum amplitudes.

Choosing different behaviors for zni and z̄nf, and keeping a nonvanishing f , we can

describe amplitudes between nontrivial states with arbitrary behaviors at infinity. The

convergence of those limits must be studied case by case.

6.3 Renormalization

We distinguish the interior parts of the diagrams from the exterior parts. We know that

the restriction to finite τ does not enter the diagrams, but only affects the exterior parts,

which we discuss later. The restriction to finite volume affects the interior parts of the

diagrams by means of the discretization of the loop momenta, and the sums on n, which

replace the usual integrals.

The ultraviolet behaviors of the diagrams coincide with those of the usual diagrams,

and the ultraviolet divergences are renormalized by the same Lagrangian counterterms.

The basic reason is as follows. Ultraviolet divergences may appear when the sums on n

do not converge. Whenever we vary n by an amount ∆n, which is of order unity, and

take |n| large, the ratio ∆n/n becomes infinitesimal, so the sums become integrals. This

means that the large n behaviors can be studied by means of the formulas of the previous

37



23
A
1
R
en
or
m

subsection. All the details about the restriction to finite volume disappear from the interior

parts of the diagrams, and their divergent parts are the same as usual.

Let us check this statement in a simple example, the bubble diagram on a torus,

regularized as T 3 × R
−ε. The diagram gives an expression proportional to

∫ +∞

−∞

de

2π

∑

n

∫
d−εpε

(2π)ε
1

e2 − n̄2 − p2
ε −m2 + iǫ

1

(e− eext)2 − (n̄− n̄ext)2 − p2
ε −m2 + iǫ

,

where eext and n̄ext are the energy and momentum that flow inside the diagram. For the

purposes of renormalization, we introduce a Feynman parameter and integrate on pε by

means of formula (6.1). Integrating on the energy as well, we find

B ≡ iΓ
(
3+ε
2

)

2
√
π(4π)−ε/2

∫ 1

0

dx
∑

n

1

(m2 + n̄2
x − x(1− x)e2ext − iǫ)(3+ε)/2

,

where

n̄2
x = (n̄− xn̄ext)

2 + x(1− x)n̄2
ext.

We first work below the threshold (|e2ext − n̄2
ext| < 4m2). The divergent part can be isolated

from the rest by means of a Schwinger parameter. We approximate n̄2
x − x(1 − x)e2ext to

n̄2, since we are interested in n̄ large, and keep the mass m nonzero, to avoid spurious

infrared divergences.

Summing on n with the help of the theta function θ3(q) =
∑+∞

n=−∞ qn
2
, and using

θ3(e
−x) ∼

√

π/x for x→ 0+, we obtain

Bdiv =
i(4π)ε/2

2
√
π

∫ ∞

0

β(1+ε)/2e−βm2

dβ
∑

n

e−βn̄2

∣
∣
∣
∣
∣
div

=
i(4π)ε/2

2
√
π

∫ ∞

0

β(1+ε)/2e−βm2

dβ
3∏

i=1

θ3

(

e−β(2π)2/L2
i

)
∣
∣
∣
∣
∣
div

=
i|Ω|
8π2ε

,

having used (6.6) to convert the sum into an integral. The divergent part we have obtained

coincides with the usual one. Above the threshold the finite part changes, but the divergent

part remains the same.

If we introduce a cutoff N for the sum, the divergence is clearly logarithmic in N . We

find

Bdiv =
i|Ω|
8π2

lnN.

The identifications

N =
Λ

µ

|Ω|1/3
2π

,
1

ε
= ln

Λ

µ
,
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where µ is the dynamical scale, show that the counterterm matches the usual one, apart

from a change of scheme, which can be adjusted without changing the physical quantities.

Sticking to the example of the torus, whenever a momentum p appears in the usual

integral, n̄ appears in the sum. While the integrals are replaced by sums in the limit

Ω → R
D−1, the integrands are the same as usual with p → n̄. Thus, the divergences are

the same as usual, with the same replacement. In particular, they are local and insensitive

to total derivatives (because so they are at τ = ∞, Ω = R
D−1).

In this respect, note that at finite τ , on a compact Ω, we are not allowed to alter the

total derivatives of the Lagrangian (unless their contributions to the action are topological,

in which case their variations vanish), because they are determined by the requirement of

having the correct classical variational problem.

We know that every vertex has an external source K attached to it. This means that

we can view it as a local composite field Ot,x(w, w̄), that is to say, a product of fields

w(t,x), w̄(t,x) at the same spacetime point. The correlation functions we are considering

are thus

〈w(t1,x1) · · ·w(tn,xn)w̄(t
′
1,x

′
1) · · · w̄(t′r,x′

r)O
(1)

t′′1 ,x
′′
1
(w, w̄) · · · O(s)

t′′s ,x
′′
s
(w, w̄)〉. (6.15)

What it important is that, once we switch to the energy-momentum framework, the dia-

grams contributing to these correlation functions are the same as usual, internally, apart

from the discretization of the momenta. Moreover, their divergent parts are same as usual,

because the discretization does not affect the ultraviolet behavior. So, once a correlation

function is equipped with the right counterterms at τ = ∞, Ω = R
D−1, it is also well

defined at τ <∞, Ω = compact manifold.

Externally, the correlation functions (6.15) are equipped with sources Kτ and sources

K0. The former restrict the time integrals to τ , which presents no difficulty. The latter are

due to the solutions φ0 and z0, z̄0, introduced by the shifts (5.2) and (5.12). The particular

solutions z0, z̄0 are regular functions of time, to be integrated in the finite interval τ . Their

space dependencies are also regular, since they describe the initial and final states of the

transition amplitude we are calculating. As far as φ0 is concerned, it must be assumed to

the regular as well, because it encodes the boundary conditions on Ω. It is not necessary to

assume that it admits a Fourier expansion in the same domain as w, w̄ do. These remarks

prove that the diagrams and the correlation functions (6.15) lead to well-defined radiative

corrections.

Since the part where the vertex turns into a composite field may be confusing, we

describe some aspects of the statements made so far in more detail. The shifts (5.2) and

(5.12) generate replicas of the diagrams, which are automatically renormalized by the same
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counterterms. For example, a shift φ = φ0 + ϕ of a vertex φ4 gives

φ4 = φ4
0 + 4φ0ϕ

3 + 6φ2
0ϕ

2 + 4φ3
0ϕ+ ϕ4. (6.16)

There is no substantial difference between using ϕ4 in a diagram, where two ϕ legs are

internal and the other two are external, and using φ2
0ϕ

2 with two ϕ internal legs and the

external factor φ2
0. Note that the further factor 6 rearranges the combinatorics as needed.

Internally, the diagrams are the same, so they need the same wave-function renormalization

constants externally.

At the practical level, we start from the usual renormalized Lagrangian and perform

all the operations we have described so far on it, that is to say, on the renormalized fields.

Then the renormalization constants (and, possibly, the field redefinitions: see below) are

distributed correctly.

For example, the renormalized Lagrangian of the φ4 theory at τ = ∞, Ω = R
3 is

Lλ(φ) =
Zφ

2

[
(∂µφ)(∂

µφ)− Zmm
2φ2
]
−
λZλZ

2
φ

4!
φ4.

The shift (5.2) generates a renormalized Lagrangian where Zλ and Zm remain the renor-

malization constants of the coupling λ and the mass m, respectively, and Z
1/2
φ becomes

the wave-function renormalization constant of both ϕ and φ0. The correlation functions

are then externally equipped with the right renormalization constants.

Consider, for definiteness, the term Lλ(φ0, φ̇0,∇φ0) of (5.23). Although it does not

contain ϕ external legs, it contains renormalization constants: they are those that provide

the right counterterms for the diagrams with no ϕ external legs, built with vertices such

as those of (6.16). In turn, those diagrams are replicas of the diagrams that do contain ϕ

external legs.

Similarly, the contribution

−2i
∑

n∈U

z̄n∗fωne
−iωnτzni

to (5.15) ends up being equipped with the right renormalization constants, which subtract

divergent parts of the same form.

We see that, not surprisingly, the initial, final and boundary conditions must be applied

to the renormalized fields, rather than the bare ones. For example, in formula (4.11), the

initial and final conditions z(ti) = zi, z̄(tf) = z̄f concern the renormalized coherent states

z(t) and z̄(t), not the bare ones.

In conclusion, to ensure that the theory at finite τ and compact Ω is equipped with

the right counterterms, we start from the classical action, multiply the couplings and the
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other parameters by the usual renormalization constants, and equip the fields and their

shifts with the usual wave-function renormalization constants (or field redefinitions). The

counterterms are uniquely specified, including the total derivatives, up to topological terms.

In the same way as the classical action is uniquely specified by the classical variational

problem (up to topological terms), so is the renormalized action.

Often, nontrivial field redefinitions may be required, instead of multiplicative wave-

function renormalization constants, to absorb the divergences proportional to the field

equations. Actually, in the coherent-state approach counterterms proportional to the field

equations appear more than often, because they are necessary to reduce the number of time

derivatives to one in the kinetic terms, and remove them completely from the vertices,

to match the structure (5.23) of the starting action. In the presence of such types of

counterterms, renormalization still works as explained above.

6.4 Power counting and locality of counterterms

As far as power counting and the locality of counterterms are concerned, we make some

further remarks.

Power counting is not so transparent in the coherent-state variables w and w̄. Never-

theless, we can restore the usual power counting by switching to the variables P and Q of

(5.33). Note that the endpoint corrections S ′
e of (5.22) are linear in P and Q, so they can

be ignored in this discussion.

In the case of quantum gravity with purely virtual particles, we must use the two-

derivative formulation of [22], and include suitable total derivatives, to make sure that

no more than one derivative acts on each field. The theory is renormalizable at τ = ∞,

Ω = R
3, but not manifestly: unwanted divergences may be generated in the intermediate

calculations. When we gather them together, we discover that they “miraculously” cancel

out in the physical quantities. This means they do not need any renormalization (or, that

they can be renormalized without introducing new physical parameters). The cancelations

survive the restrictions to τ < ∞, Ω = compact manifold, because the divergent parts

(and the field equations, which are used to subtract certain divergences by means of field

redefinitions) do not depend on such restrictions.

The locality of counterterms can be proved by mimicking the standard arguments,

even without relating the diagrams to the usual ones. It is sufficient to pretend that

the external momenta are continuous variables, and differentiate with respect to them a

sufficient number times, and so kill the overall divergences (in the variables P and Q). We

can take care of the subdivergences by proceeding iteratively.
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In a bounded box with Dirichlet boundary conditions, as well as in other manifolds

with boundary, the boundary reflections generate many copies of similar diagrams. Con-

sequently, there are many copies of similar counterterms. Yet, the copies do not have to

be added anew, since they are just generated by the restrictions of the usual counterterms

to a compact Ω, due to the same boundary reflections.

7 Unitarity

Unitarity is the statement that the evolution operator U(tf, ti) is unitary, i.e.,

U †(tf, ti)U(tf, ti) = 1, (7.1)

for every ti and tf. Equation (1.1) is more general, since it says that U(t3, t2)U(t2, t1) is

equal to U(t3, t1) for arbitrary t1, t2 and t3. Formula (7.1) can be seen as a particular case

of (1.1) for t3 = t1 = ti, t2 = tf.

Equation (1.1) holds under relatively mild assumptions. In the functional integral

approach, it just amounts to dividing the integral into two portions, and integrating on

all the configurations in between. A theory with physical particles only (no ghosts) does

satisfy (1.1). Even a theory with ghosts (particles with kinetic terms multiplied by the

wrong signs) satisfies it, but then (7.1) is not interpreted as the unitarity equation, due

to the presence of negative-norm states, or a free Hamiltonian not bounded from below11.

For the time being, we assume that no ghosts are present. Later on (see section 9) we

explain how they can be included.

In this section we derive the diagrammatic version of the more general equation (1.1),

and decompose it into thresholds and spectral optical identities, by generalizing the results

of [2]. To make the notation less heavy, we understand the subscripts n, n∗ everywhere,

as well as the sums and products on n ∈ U . We denote the intermediate initial and final

conditions (i.e., those referring to the intermediate time t2 of equation (1.1)), by means of

variables v and v̄. Then, dv̄dv stands for
∏

n∈U dv̄ndvn, ωv̄v stands for
∑

n∈U v̄n∗ωnvn, etc.

Similar notations are understood for the variables of the functional integrals. The times

t1 and t3 of (1.1) are ti and tf, respectively, while t2 will be simply denoted by t.

Although unitarity is obvious in the operatorial approach (if the Hamiltonian is Her-

mitian, as we are assuming here), we take our time to prove it directly in the functional-

integral approach, assuming that the Lagrangian is Hermitian, because the proof leads us

straightforwardly to the diagrammatic version of the unitarity equation itself.

11In that case, (7.1) is called pseudounitarity equation.
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tatbtatb t t
U(tb, t)U(t, ta) U†(t, tb)U(t, ta)

Figure 3: The evolution operator U(tb, ta) is equal to the products shown here. The

manifold Ω is depicted as a vertical segment

Relabeling t1, t2 and t3 as ta, t and tb, respectively, we show that (1.1) is equivalent to

the identity

〈z̄b, tb; za, ta〉ζ,ζ̄ =
∫

〈z̄b, tb; v, t〉ζ,ζ̄dµv̄,v〈v̄, t; za, ta〉ζ,ζ̄ , dµv̄,v ≡
ωdv̄dv

iπ
e−2ωv̄v, (7.2)

while (7.1) is equivalent to

∫

〈z̄f, tf; zi, ti〉∗ζ,ζ̄dµz̄f,zf〈z̄f, tf; zi, ti〉ζ,ζ̄ = e2ωz̄izi . (7.3)

Formula (7.2) states that if we break the amplitude in two, and integrate on all the

intermediate possibilities as shown, we get the correct result. What is nontrivial is the

integration measure in between. The initial condition z(t+) = v to the left and the final

condition z̄(t−) = v̄ to the right show that we need to keep z(t+) and z̄(t−) fixed. However,

the extra integrals on v̄ and v in between restore the missing integrals on z̄(t−) and z(t+).

In the end, the integrals on the right-hand side of (7.2) exactly match the integrals on the

left-hand side, and the trajectories contributing to the functional integral on the right-hand

side coincide with those contributing to the normal integral of two functional integrals that

appears on the left-hand side.

Formula (7.3) is the functional-integral version of the operatorial unitarity equation

(7.1), since e2ωz̄izi is the matrix element of the identity matrix in the coherent-state ap-

proach. Because 〈z̄b, tb; v, t〉ζ,ζ̄ = 〈v̄, t; zb, tb〉∗ζ,ζ̄ for t > tb, by (5.29), (7.3) can be seen as

a particular case of (7.2) with v = zf, v̄ = z̄f, t = tf and zb = za = zi, z̄b = z̄a = z̄i,

tb = ta = ti. Thus, we can focus on the proof of (7.2).

We can distinguish three cases: ta < t < tb, t > tb and t < ta. The third one is a mirror

of the second one, so we concentrate on the first two, illustrated in fig. 3.
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7.1 Proof of unitarity – case I

We start from the situation illustrated to the left in fig. 3, which is ta < t < tb. We

first prove (7.2) in the free limit LI = 0 and later show that it can be extended to the

interacting case.

The identity

〈z̄b, tb; za, ta〉freeζ,ζ̄ =

∫

〈z̄b, tb; v, t〉freeζ,ζ̄ dµv̄,v〈v̄, t; za, ta〉freeζ,ζ̄ (7.4)

for ta < t < tb easily follows from the formula

∫
ωdv̄dv

iπ
e−2ω(v̄v−āv−v̄a) = e2ωāa, (7.5)

upon using the explicit expression (5.25). First, it is obvious that

W̃0(tb, ta) = W̃0(tb, t) + W̃0(t, ta), (7.6)

with self-evident notation. Second, at ζ̄ ′ = ζ ′ = 0, we just have the identity

exp(2z̄bωe
−iω(tb−ta)za) = e2ωz̄0(t)z0(t) =

∫

e2ωz̄0(t)v
ωdv̄dv

iπ
e−2ωv̄ve2ωv̄z0(t), (7.7)

which is true by (7.5). Third, at nonvanishing sources ζ̄ ′ and ζ ′, we have shifts of a and

ā in (7.5), which complete the match. In particular, they provide the correct two-point

functions 〈z(t1)z̄(t2)〉 for ta < t1 < t, t < t2 < tb and t < t1 < tb, ta < t2 < t.

The interactions can be included by means of formula (5.28), once we observe that the

right-hand side of (7.2) can be viewed as the action of the operator

exp

(

i

∫ tb

t

dt′LI

(
δ

iδζ̄(t′)
,

δ

iδζ(t′)

))

exp

(

i

∫ t

ta

dt′LI

(
δ

iδζ̄(t′)
,

δ

iδζ(t′)

))

(7.8)

on the right-hand side of (7.4). The reason why we can move these expressions outside

the v̄, v integral is that they do not depend on v̄ and v, as shown by the definition

LI(zn, z̄n) = LI(πn, ϕn, φ0) given right below (5.23): the dependencies on v̄ and v, z̄0 and

z0 are brought into LI only after the shift (5.11). Formula (7.8) is just the exponential of

the integral between ta and tb, which is the correct operator that gives the left-hand side

of (7.2) by acting on the left-hand side of (7.4), as in (5.28).

Incidentally, we remark that the correct measure dµv̄,v can be derived by reversing the

procedure just outlined. It is sufficient to work in the free case (7.4), starting from the

most general candidate for the measure.
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7.2 Useful identities for integrals on coherent states

Before switching to the second part of the proof of unitarity, we derive some useful identities

for integrals with coherent states. First note the formulas
∫

dµv̄,vv
nv̄m =

n!δnm
(2ω)n

,

∫
ωdσ̄dσ

iπ
e2ω(v̄−σ̄)σg(σ̄) = g(v̄), (7.9)

where g is an arbitrary function. The first identity is proved by evaluating the integral

in polar coordinates v = ρeiθ, v̄ = ρe−iθ, where dµσ̄,σ = 2ωρdρdθ/π. The second identity

is the delta function representation for coherent states, and follows from the first one by

expanding e2ωv̄σg(σ̄) in powers of σ and σ̄.

Moreover, we have
∫
ωdv̄dv

iπ
e−2ω(v̄v−āv−v̄a)+εf(v̄,a)−εf(ā,v) = e2ωāa+O(ε2), (7.10)

for every function f , where ε is a small parameter. To prove it, it is sufficient to expand

the integrand in powers of ε and check that the first order vanishes by the second formula

of (7.9).

7.3 Proof of unitarity – case II

Now we consider the situation illustrated to the right in fig. 3. For t > tb, we have

〈z̄b, tb; v, t〉ζ,ζ̄ = 〈v̄, t; zb, tb〉∗ζ,ζ̄ , from (5.29), so the equation we need to prove reads

〈z̄b, tb; za, ta〉ζ,ζ̄ =
∫

〈v̄, t; zb, tb〉∗ζ,ζ̄dµv̄,v〈v̄, t; za, ta〉ζ,ζ̄ . (7.11)

Using (7.2), we may write the right-hand side as
∫

〈v̄, t; zb, tb〉∗ζ,ζ̄dµv̄,v〈v̄, t; σ, tb〉ζ,ζ̄dµσ̄,σ〈σ̄, tb; za, ta〉ζ,ζ̄ .

It is actually sufficient to prove the formula
∫

〈v̄, t; zb, tb〉∗ζ,ζ̄dµv̄,v〈v̄, t; σ, tb〉ζ,ζ̄ = e2ωz̄bσ, (7.12)

because it turns the right-hand side of (7.11) into
∫
ωdσ̄dσ

iπ
e2ω(z̄b−σ̄)σ〈σ̄, tb; za, ta〉ζ,ζ̄ ,

which is equal to the left-hand side of (7.11) by the second identity of (7.9). Note that

formula (7.12) is the unitarity equation (7.3) after a suitable relabeling.
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Having reduced the task to proving (7.12), we divide the interval (t, tb) into n + 1

intervals (tk, tk+1), k = 0, 1, . . . n, where tk = tb + kε, ε = (t− tb)/(n+ 1), and apply (7.2)

for every k. So doing, we obtain

〈v̄, t; σ, tb〉ζ,ζ̄ =
∫
(

n∏

k=1

〈v̄k+1, tk+1; vk, tk〉ζ,ζ̄dµv̄k,vk

)

〈v̄1, t1; v0, t0〉ζ,ζ̄ ,

where v0 = σ, v̄n+1 = v̄. Doing the same for 〈v̄, t; zb, tb〉ζ,ζ̄ and conjugating, formula (7.12)

turns into

∫

E

(
n∏

j=1

dµσ̄j ,σj
〈σ̄j+1, tj+1; σj, tj〉∗ζ,ζ̄

)

dµv̄,v

(
n∏

k=1

〈v̄k+1, tk+1; vk, tk〉ζ,ζ̄dµv̄k,vk

)

F = e2ωz̄bσ,

(7.13)

where σ̄0 = z̄b, σn+1 = v, E = 〈σ̄1, t1; σ0, t0〉∗ζ,ζ̄ , F = 〈v̄1, t1; v0, t0〉ζ,ζ̄ . We can prove (7.13)

for the n we want, since the left-hand side of (7.12) is equal to the left-hand side of (7.13) for

every n. It is convenient to prove (7.13) in the limit n→ ∞, where ε becomes infinitesimal.

Then we can further reduce the task to the one of proving
∫

〈σ̄j+1, tj+1; σj , tj〉∗ζ,ζ̄ dµv̄j+1,σj+1
〈v̄j+1, tj+1; vj, tj〉ζ,ζ̄ = e2ωσ̄jvj+O(ε2). (7.14)

Indeed, with the help of the relation
∫

e2ωσ̄nvn〈v̄n, tn; vn−1, tn−1〉ζ,ζ̄dµv̄n,vn = 〈σ̄n, tn; vn−1, tn−1〉ζ,ζ̄ ,

which follows from the second formula of (7.9), the identity (7.14) for j = n allows us to

turn (7.13) into

∫

E

(
n−1∏

j=1

dµσ̄j ,σj
〈σ̄j+1, tj+1; σj , tj〉∗ζ,ζ̄

)

dµv̄,v

(
n−1∏

k=1

〈v̄k+1, tk+1; vk, tk〉ζ,ζ̄dµv̄k,vk

)

F = e2ωz̄bσ+O(ε2),

with v̄n = σ̄n = v̄, σn = v, which is the same as (7.13) with n→ n−1, t→ tn, up to O(ε2)

in the exponent. Iterating in n, the last step is (7.14) with j = 0. Taking ε to zero, (7.13)

follows for n→ ∞, as desired.

It remains to prove (7.14) for infinitesimal ε, which is relatively easy. Using (5.28) and

(5.25), we have

〈v̄j+1, tj+1; vj, tj〉ζ,ζ̄ = eiW̃0j+2v̄j+1ω(1−iωε)vj+iε(ζ̄′jvj+v̄j+1ζ
′
j)+iεLI(vj ,v̄j+1)+O(ε2),

where W̃0j, ζ̄
′
j and ζ ′j are the restrictions of W̃0, ζ̄

′ and ζ ′ to the (j + 1)-th interval. We

see that (7.14) is just a particular case of formula (7.10), with ā = σ̄j , a = vj, v̄ = v̄j+1,
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v = σj+1 (recalling that the Lagrangian is assumed to the Hermitian). This concludes the

proof.

Equation (7.11) turns into the unitarity equation S†S = 1 obeyed by the S matrix when

t → +∞, tb → −∞, ta → −∞, τ → 0. Indeed, the left-hand side is equal to e2ωz̄bza for

τ = 0, which is the matrix element of the identity matrix in the coherent-state approach.

8 Unitarity equations

In this section we work out the diagrammatic versions of the unitarity equation, which are

also known as Cutkosky-Veltman identities [4]. To this purpose, it is useful to define the

cut correlation functions

〈z̃(t1) · · · z̃(tk)|z̃(tk+1) · · · z̃(tk+n)〉ζ,ζ̄ ≡
∫ δk〈v̄, t; zb, tb〉∗ζ,ζ̄
iδζ̃(t1) · · · iδζ̃(tk)

dµv̄,v

δn〈v̄, t; za, ta〉ζ,ζ̄
iδζ̃(tk+1) · · · iδζ̃(tk+n)

,

(8.1)

where z̃(tj) and ζ̃(tj) stand for z(tj) and ζ̄(tj), or z̄(tj) and ζ(tj), depending on the case.

We choose to write formula (8.1) in the form that is more convenient for t > tb, since the

simpler case t < tb can be easily reached by means of formula (5.29), i.e., by understanding

〈v̄, t; zb, tb〉∗ζ,ζ̄ as 〈z̄b, tb; v, t〉ζ,ζ̄ . Strictly speaking, we should set ζ = ζ̄ = 0 at the end, but

it is not really necessary to do so for the validity of the identities that we are going to

study. It is understood that the correlation functions we write vanish when an insertion

z̃(tj) lies outside the right time interval, which is identified by the functional differentiation

it originates from. In (8.1), we have zero when tj /∈ (tb, t) for j 6 k, or tj /∈ (ta, t) for

j > k.

The correlation functions (8.1) are made of two parts, identified by two sets of insertions,

which stand on the opposite sides of what we may call a “cut”, denoted by the vertical

bar. The diagrams contributing to (8.1) are called “cut diagrams”. In fig. 4 we list the

cut diagrams associated with the last diagram of fig. 1.

Similarly, we can define cut correlation functions that contain insertions of composite

fields. Cut correlation functions with insertions of w and w̄ follow from the change of

variables (4.12), or (5.11).

An important remark is that the correlation functions

〈|z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , 〈z̃(t1) · · · z̃(tn)|〉ζ,ζ̄ , 〈z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , (8.2)

do not coincide at finite τ on a compact Ω. The first two are cut correlation functions

where all the external legs are located on the same side with respect to the cut. The third
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Figure 4: Cut diagrams associated with the last diagram of fig. 1. The cut is denoted by

a dashed double line

one is the correlation function defined in (5.30) (omitting z̄b, tb and za, ta, for simplicity,

and keeping arbitrary sources ζ, ζ̄), which has no cut. Recall that every vertex is attached

to an external source K, which takes care of the restriction to finite τ and compact Ω.

We show below that every propagator that crosses a cut (called “cut propagator”) flows

(positive) energy towards the same side of the cut (as occurs at τ = ∞, Ω = R
3). We

know, however, that there is no energy conservation at the vertices, because a source K

can flow energy in or out. For example, a vertex can be cut out of a diagram and still

contribute: the left diagram of fig. 4 is nontrivial, because energy may flow in and out

through the upper source K. Diagrams like these make the difference between the third

correlation function of (8.2) and the other two.

Now we show how to use the cut correlation functions to express unitarity diagram-

matically, by means of the cut diagrams. Differentiating (7.11), we obtain the identities

δn
∫
〈v̄, t; zb, tb〉∗ζ,ζ̄dµv̄,v〈v̄, t; za, ta〉ζ,ζ̄

iδζ̃(t1) · · · iδζ̃(tn)
=
δn〈z̄b, tb; za, ta〉ζ,ζ̄
iδζ̃(t1) · · · iδζ̃(tn)

≡ 〈z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , (8.3)

for every n > 0. Using the Leibniz rule on the left-hand side, we obtain the Cutkosky-

Veltman equation obeyed by the n-point function, which reads

n∑

k=0

∑

πk

(−1)k〈z̃(tπ(1)) · · · z̃(tπ(k))|z̃(tπ(k+1)) · · · z̃(tπ(k+n))〉ζ,ζ̄ = 〈z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , (8.4)

where πk denotes the set of k-combinations (π(1), . . . , π(k)) of the set (1, . . . , n).

The identities (8.4) are particularly interesting for t > tb, which is the case of the

unitarity equation (7.1). When tj > tb for some j the right-hand sides of (8.3) and (8.4)

vanish.

Now we explain how to build diagrams for the cut correlation functions (8.1) and the

identities (8.4). Each side of the cut is built as explained in section 5, so we can concentrate

on the cut itself, which is given by the integral on v and v̄. The left-hand side of the cut

depends on v, while the right-hand side depends on v̄. Formulas (5.25), (5.27) and (5.28)
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show that, if we treat the interaction Lagrangian LI as in (5.28), the dependence on v and

v̄ stems from the free generating functional W free (which is at most linear in v, or v̄, on

each side of the cut), and spreads around due to the functional derivatives contained in

LI .

We expand in powers of v to the left of the cut, and in powers of v̄ to the right of

the cut. Then, the integration measure dµv̄,v makes the v-v̄ integrals convergent. Every

v-v̄ integral we obtain can be evaluated with the help of the first identity of (7.9), which

can be viewed as Wick’s theorem for v and v̄. Indeed, 1/(2ω) is the “elementary” v-v̄ cut

propagator, and the factor n! takes care of all the possibilities of associating a v to some

v̄. In the end, the two sides of the cut are connected by the v-v̄ integrals.

It is convenient to introduce different sources ζ, ζ̄ for 〈v̄, t; zb, tb〉∗ζ,ζ̄ and 〈v̄, t; za, ta〉ζ,ζ̄
in (8.3). We denote them by means of subscripts − and +, respectively. Then (8.3) can

be written as

D−+
n

∫

〈v̄, t; zb, tb〉∗ζ−,ζ̄−
dµv̄,v〈v̄, t; za, ta〉ζ+,ζ̄+

∣
∣
∣
∣
+=−

= 〈z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , (8.5)

where

D−+
n ≡

n∏

j=1

(

δ

iδζ̃−(tj)
+

δ

iδζ̃+(tj)

)

and “+ = −” stands for ζ+ = ζ− = ζ, ζ̄+ = ζ̄− = ζ̄. Separating the interactions LI from

the rest by means of (5.28), we also have

D−+
n D−∗

I D+
I

∫

〈v̄, t; zb, tb〉free∗ζ−,ζ̄−
dµv̄,v〈v̄, t; za, ta〉freeζ+,ζ̄+

∣
∣
∣
∣
+=−

= 〈z̃(t1) · · · z̃(tn)〉ζ,ζ̄ , (8.6)

where

D±
I ≡ exp

(

i

∫ t

t±

dt′LI

(
δ

iδζ̄±(t′)
,

δ

iδζ±(t′)

))

.

t+ standing for ta, and t− standing for tb. As explained after (7.8), we can move these

expressions outside the v̄, v integral, because LI does not depend on v̄ and v before the

shift (5.11). Formula (8.6) shows that it is sufficient to calculate

eiW
free
−+ ≡

∫

〈v̄, t; zb, tb〉free∗ζ−,ζ̄−
dµv̄,v〈v̄, t; za, ta〉freeζ+,ζ̄+

, (8.7)

since everything else follows from it by means of repeated functional differentiations. The

calculation is straightforward. Basically, we have already done it earlier to prove (7.4).
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∗ ∗ ∗

Figure 5: Cutkosky-Veltman identity for the propagator

The result is

iW free
−+ = i W̃0 + 2ωz̄0(t)z0(t) +

∫ t

tb

dt′
∫ t

ta

dt′′ζ̄ ′−(t
′)
e−iω(t′−t′′)

2ω
ζ ′+(t

′′)

−i
∫ t

tb

dt′ (ζ̄ ′−z0 + z̄0ζ
′
−)
∣
∣
t′
−
∫ t

tb

dt′
∫ t

tb

dt′′ζ̄ ′−(t
′)θ(t′′ − t′)

e−iω(t′−t′′)

2ω
ζ ′−(t

′′)

+i

∫ t

ta

dt′ (ζ̄ ′+z0 + z̄0ζ
′
+)
∣
∣
t′
−
∫ t

ta

dt′
∫ t

ta

dt′′ζ̄ ′+(t
′)θ(t′ − t′′)

e−iω(t′−t′′)

2ω
ζ ′+(t

′′), (8.8)

where W̃0 is the same as in (5.27), the functions z̄0(t) and z0(t) are the same as in (4.13),

while ζ ′± = ζ± + A+ iωB, ζ̄ ′± = ζ̄± + A− iBω, as in (5.26).

Now we explain the meanings of the various terms that appear in (8.8). The double

integral in the last line encodes the usual propagator (4.18)-(5.16), which connects vertices

placed to the right of the cut. The double integral in the second line encodes the conjugate

propagator, which connects vertices placed to the left of the cut. The double integral in

the first line encodes the cut propagator, which connects vertices located on opposite sides

of the cut.

Differentiating with respect to ζ̄−(t1) and ζ+(t2), and concentrating on the connected

part of the two-point function (denoted by the subscript c), we find

〈z(t1)|z̄(t2)〉freec =
e−iω(t1−t2)

2ω
, 〈z(e)|z̄(−e)〉freec = (2π)θ(e)δ(e2 − ω2), (8.9)

before and after the Fourier transform. Differentiating with respect to ζ̄+(t1) and ζ−(t2),

we find 〈z̄(t1)|z(t2)〉freec = 0, instead. This proves that positive energies flow through the

cut in a unique direction (from the right to the left).

Note that W free
−+ includes several contributions that are linear in ζ± and ζ̄±. When the

functional derivatives act on those, the legs associated with them do not connect vertices,

but end into external sources (endpoints), built with φ0, z0 and z̄0, which carry information

about the restrictions to finite τ and finite volume.

The result confirms that the cut propagators (8.9) know nothing about the restriction

to finite times (and little enough about the restriction to finite volume, which amounts to

the discretization of the frequencies ω), like the (uncut) propagators (5.16). This property
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ensures that the spectral optical identities expressing unitarity coincide with the usual ones,

internally (apart from the discretization of the loop momenta), and differ only externally.

Details on this are given in the next section, where we use them to introduce purely virtual

particles at finite τ on a compact Ω.

The simplest examples of equations (8.4) are those of the one- and two-point functions.

Formula (8.3) with n = 1, t > t1 > tb, gives

〈z(t1)|〉 = 〈|z(t1)〉, 〈z̄(t1)|〉 = 〈|z̄(t1)〉. (8.10)

In the free limit LI → 0, we find

e−iW free0
−+ 〈z(t1)|〉free =

e−iW free
−+ δeiW

free
−+

−iδζ̄−(t1)

∣
∣
∣
∣
∣
ζ±=ζ̄±=0

= z0(t1) + i

∫ t

ta

dt′θ(t1 − t′)
e−iω(t1−t′)

2ω
(A+ iωB)|t′ ,

(8.11)

where W free0
−+ ≡ W free

−+

∣
∣
ζ±=ζ̄±=0

. The same result is obtained for 〈|z(t1)〉free, which is calcu-

lated as −iδeiW free
−+ /δζ̄+(t1). The second identity of (8.10) is verified similarly at LI = 0.

For t1 < tb, we have 〈|z(t1)〉 = 〈z(t1)〉, 〈|z̄(t1)〉 = 〈z̄(t1)〉, which are trivial in the free

limit.

Formula (8.4) for n = 2, z̃(t1) = z(t1), z̃(t2) = z̄(t2), gives

〈|z(t1)z̄(t2)〉 − 〈z(t1)|z̄(t2)〉 − 〈z̄(t2)|z(t1)〉+ 〈z(t1)z̄(t2)|〉 = 〈z(t1)z̄(t2)〉.

In the free limit, the connected components give

θ(t1 − t2)
e−iω(t1−t2)

2ω
− e−iω(t1−t2)

2ω
− 0 + θ(t2 − t1)

e−iω(t1−t2)

2ω
= 0,

for t > t1,2 > tb, after simplifying the common normalization factor eiW
free0
−+ . This identity

is illustrated in fig. 5. For tb > t1,2, t1 > tb > t2 and t2 > tb > t1, we have 〈|z(t1)z̄(t2)〉 =
〈z(t1)z̄(t2)〉, 〈|z(t1)z̄(t2)〉 = 〈z(t1)|z̄(t2)〉 and 〈|z(t1)z̄(t2)〉 = 〈z̄(t2)|z(t1)〉, respectively,

which are also trivial in the free limit.

The unitarity equations (7.3) and (7.12) are studied by assuming t > tb = ta in (8.3).

Then the right-hand sides of (8.3) and (8.4) vanish for every n > 0. Separating the uncut

diagram G (and its conjugate diagram G∗) from every other contributions to the left-hand

side, equation (8.4) can be written in the usual form, which is

G+G∗ +
∑

c

Gc = 0, (8.12)

where the sum is on all the diagrams that contain nontrivial cuts, including those coming

from the first two correlation functions of (8.2). The minus signs of (8.4) are included into

the definitions of cut diagrams. We illustrate the equation in fig. 6.

51



23
A
1
R
en
or
m

∗ ∗
Σc

c

0

Figure 6: Diagrammatic unitarity equations

The diagrammatic rules for the identities (8.12) are as follows.

— Draw a vertical bar, which denotes the cut.

— Distribute the external legs in all possible ways on the two sides, with a minus sign

for each leg to the left.

— Do the same for the vertices and the endpoints (“one-leg vertices”) that contribute

to the order you are interested in.

— Draw the diagrams by connecting (internal and external) legs to vertices and end-

points in all possible ways.

— Two legs z, z̄ are connected to each other by means of ordinary propagators (when

they both lie to the right of the cut), conjugate propagators (when they both lie to the

left), or cut propagators (when they lie on opposite sides).

Ultimately, formulas (8.12), and the rules just stated, are the same as usual. The only

differences are that: i) the loop momenta are discretized; ii) each vertex has an external

source K attached to it; iii) there are endpoints, due to the restrictions to finite τ and

compact Ω. Endpoints are actually common at τ = ∞, Ω = R
3 as well (for example, when

the field is shifted by a nontrivial background).

In fig. 7 we show examples of cut diagrams with two cubic vertices. Note that the cut

may also cross legs attached to endpoints. This is because the endpoints (8.11) receive

contributions from both sides of the cut.

As said, the identities (8.12) encode the unitarity equation (7.1), which is also (7.3),

(7.12), or the cases t > tb = ta of (7.11) and (8.3). When we relax these restrictions, we

have other diagrammatic identities, which encode the more general equation (1.1). They

look similar to (8.12), but for the following differences. First, the right-hand side needs

not be zero: it is replaced by the diagrammatic version of the right-hand side of (8.4). In

addition, when tb > t, no minus signs are attached to the legs and the vertices located to

the left of the cut, the conjugate propagators are replaced by (unconjugate) propagators

and the cut propagators across the cut coincide with the same (uncut) propagators.
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etc.

Figure 7: Cut diagrams with two vertices

9 Purely virtual particles

In this section we introduce purely virtual particles at finite τ on a compact space manifold

Ω, after briefly recalling what they are at τ = ∞, Ω = R
3, and how they are introduced

there, following [2]. For the time being, we assume that all the particles have kinetic terms

with the correct signs, and explain how to render some physical particles purely virtual.

Later, we explain how to render ghosts purely virtual as well. We recall that tachyons

cannot be rendered purely virtual.

Consider an arbitrary Feynman diagram G in momentum space, where, by assumption,

the propagators are defined by means of the usual iǫ prescription. Label each internal leg

by means of an index a, b, . . .. Let ma denote the mass of the a-th leg, and kµ − pµa its

four-momentum. Here kµ = (k0,k) denotes a loop four-momentum, or a combination of

loop four-momenta, while pµa = (ea,pa) is an external four-momentum. The frequency of

the a-th leg is ωa =
√

m2
a + (k− pa)2. Note that each internal leg is equipped with its own

pµa . This redundant notation (various pµa may depend on one another) makes the formulas

more symmetric and easier to handle.

We integrate on the loop energies k0 with measure dk0/(2π), by means of the residue

theorem, and completely ignore the integrals on the loop momenta k. The reason is that

the identities we derive, which are crucial to switch to purely virtual particles, hold for

arbitrary values of the frequencies ωa.

After integrating on the loop energies, we rearrange the results in order to remove the

differences of frequencies from the denominators12. We remain with denominators of the

form
1

E −∑i ωai + iǫ
,

where E is a linear combination of external energies. At this point, we make the “threshold

decomposition”, to separate the on-shell contributions from the off-shell ones, by carefully13

12We know that they must cancel out, thanks to the iǫ prescription. A quick proof is that differences of

frequencies in denominators are not well prescribed, while the diagram as a whole is well prescribed.
13Starting from the box diagram, certain caveats require further rearrangements in order to make the

decomposition properly. See [2] for details. Nuisances like these can be avoided by switching to the
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applying the identity
i

x+ iǫ
= P i

x
+ πδ(x), (9.1)

where P denotes the Cauchy principal value. The number of delta functions is called

“level” of the threshold decomposition.

What just said applies to the diagrams that contain ordinary, physical particles, which

we denote by Gph. A certain surgical operation on Gph allows us to define new diagrams

Gpv, where some internal legs are purely virtual. This is achieved by removing all the on

shell contributions that involve the particles we want to render purely virtual14. Let ωpv

denote the frequencies of those particles in Gph. Given the threshold decomposition of

Gph, the threshold decomposition of Gpv is obtained by dropping every contribution that

involves delta functions with ωpv-dependent supports. Finally, Gpv itself is defined from

its own threshold decomposition.

At the tree level, the w-w̄ propagator of formula (5.16) loses the delta function and

becomes a principal value:

〈w(e)w̄(−e)〉freec → P i

2ω(e− ω)
, 〈w(t)w̄(t′)〉freec → sgn(t− t′)

e−iω(t−t′)

4ω
, (9.2)

where sgn(t) = θ(t)− θ(−t) is the sign function.

In a one-loop diagram, the identity (9.1) separates quantities such as

Pab ≡ P 1

ea − eb − ωa − ωb

, ∆ab ≡ πδ(ea − eb − ωa − ωb).

Once the threshold decomposition is completed, we remove all the contributions that con-

tain a ∆ab where ωa, or ωb, or both, are the frequencies of particles that we want to render

purely virtual. In diagrams with more loops similar rules apply. Sums of more than two

frequencies may appear in the supports of the delta functions.

For example, the usual bubble diagram gives a result proportional to

i

e1 − e2 − ω1 − ω2 + iǫ
+

i

e2 − e1 − ω1 − ω2 + iǫ
, (9.3)

after integrating on the loop energy. If we want to render the particles propagating in one

or two internal legs purely virtual, we replace the result by i times

P12 + P21, (9.4)

equivalent approach of ref. [1].
14By “on shell” we always mean “on the mass shell” here.
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by dropping the contributions ∆12 and ∆21. For details of the triangle, the box, etc., and

diagrams with more loops, see [2, 1].

The prescription just recalled takes care of the internal sectors of the diagrams. For

consistency, we must also restrict the external sectors, by demanding that only physical

particles lie on the external legs. So doing, we project the set of states to the physical

subspace. The physical amplitudes are the amplitudes between incoming and outgoing

physical particles. Any other amplitude is dropped because unphysical.

The combination made by this projection and the prescription described above defines

a map Mpv from a starting theory to a new theory. The starting theory contains physical

particles (and possibly ghosts). The final theory contains physical particles and purely

virtual particles15.

The map Mpv is consistent with unitarity as follows: i) if the starting theory is unitary

(i.e., it has no ghosts), the final theory is unitary; ii) if the starting theory has ghosts, the

final theory is unitary, provided all the ghosts are turned into purely virtual particles. In

other words, if we convert a subset of physical particles (and all the ghosts, if present) into

purely virtual particles, we preserve (or gain) unitarity.

The reason why unitarity is preserved, or gained, relies on an important fact: that the

thresholds are independent from one another, so the unitarity equations (8.12) split into a

large number of independent “spectral optical identities” [2], one for each threshold, which

hold algebraically, before integrating on the loop momenta. Suppressing certain types of

thresholds everywhere, the identities (8.12) remain true. Moreover, the cut diagrams where

a cut crosses one or more legs of purely virtual particles disappear entirely, because the cut

propagators associated with those legs are delta functions with ωpv-dependent supports.

This is consistent with projecting the purely virtual particles away externally.

In the case of theories with physical particles only (no ghosts), the Cutkosky-Veltman

identities (8.12) encode the unitarity of the starting theory. After implementing the pre-

scription/projection to purely virtual particles, they encode the unitarity of the final theory.

In the presence of ghosts, instead, the identities (8.12) do not express unitarity, since the

starting theory is not unitary. Yet, they are still valid (they are called pseudounitarity

15It may be useful to make a parallel with what we normally do to quantize gauge theories. There,

we drop all the scattering amplitudes with incoming and outgoing Faddeev-Popov ghosts C, C̄, and/or

temporal/longitudinal components A0, AL of the gauge fields. The internal sectors of the diagrams are

automatically taken care of by the gauge symmetry. In the case of purely virtual particles, where no

symmetry is helping us, we need to make the surgical operation described above, on the internal sectors

of the diagrams, which amounts to dropping the delta functions with ωpv-dependent supports. Applied

to gauge theories, the prescription/projection operations return the same physical results we obtain with

the usual quantization method [24].
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equations), and very useful. What is important is that, after the prescription/projection,

they encode the unitarity of the final theory, provided all the ghosts are rendered purely

virtual.

It is important to stress that the diagrammatics of purely virtual particles is not gov-

erned by time ordering [1], so the map Mpv does not commute with the diagrammatic

rules: it acts on the amplitudes and the diagrams as such. More precisely, a loop diagram

containing purely virtual particles cannot be built by using the projected propagators of

(9.8) inside an ordinary diagram: it should be built by projecting the ordinary diagram

as a whole. An explicit example can clarify this point. We know that the tree propagator

(5.16) is mapped into (9.2), and the ordinary bubble diagram (9.3) is mapped into (9.4).

However, if we build a bubble diagram with two propagators (9.2), we do not obtain (9.4):

we obtain something that is very different, and not even consistent with unitarity (see

[25]). For the same reason, simple separations between the free and interaction parts, such

as those encoded in formulas (4.20), (5.28) and (8.6), do not commute with the map Mpv

(beyond the tree level).

The extension to purely virtual particles is an interesting option that was overlooked

before. Nevertheless, it is allowed by quantum field theory, and might be the solution to

the problem of quantum gravity [8, 12].

9.1 Purely virtual particles in a finite interval of time and on a

compact manifold

What we have just said holds at τ = ∞, Ω = R
3. We can generalize it to finite τ and

compact Ω as follows.

A purely virtual particle is not associated with a dynamical degree of freedom, since

its on shell contributions are removed from the physical quantities. In this respect, it is

a sort of fake particle. Consequently, it cannot have nontrivial initial or final conditions.

This means that, at finite τ , on a compact Ω, the projection to purely virtual particles

mentioned earlier is the set of conditions

z(ti) = z̄(tf) = 0. (9.5)

The particles we want to render purely virtual are thereby removed from the external

sectors of the diagrams.

As far as the boundary conditions are concerned, we can keep them in the general form

(5.1), since they are not associated with degrees of freedom. For example, the integral in
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between the right-hand side of (7.2) does not concern them. Besides, the function f(t,x∂Ω)

might describe some property of our experimental apparatus.

Next, we have to free the interior parts of the diagrams from the on shell contributions

due to the particles that we want to render purely virtual. This goal can be achieved

exactly as before, since the internal parts of the diagrams are basically the same as at

τ = ∞, Ω = R
3.

Let us recapitulate what we know. We have shown that quantum field theory (with

physical particles and possibly ghosts) can be formulated diagrammatically at finite τ and

on a compact space manifold Ω. The diagrams are the same as usual, internally, apart from

a non invasive change, which is the discretization of the loop momenta. Every other detail

about the restriction to finite τ and compact Ω is moved away to the external sourcesK (by

which we also mean the endpoints). We have seen that the Cutkovsky-Veltman identities

(8.12) are the same as usual, apart from the external sources and the discretization of the

loop momenta. They encode the unitarity or pseudounitarity equation (7.1) of the starting

theory (depending on whether ghosts are absent or present).

We also know that at τ = ∞, Ω = R
3 the identities (8.12) can be split into independent

spectral optical identities, one for every threshold, which hold for arbitrary frequencies

ω, before integrating on the loop momenta. In exactly the same way, we can split the

identities (8.12) at finite τ and on a compact Ω. The identities we obtain hold for arbitrary

frequencies ωn, before summing on n. Similarly, the threshold decomposition of a diagram

can be performed at τ <∞, Ω = compact manifold in the same way as it is performed at

τ = ∞, Ω = R
3.

Now that we have the threshold decomposition, we can apply the map Mpv to it as

before, by dropping all the delta functions that have ωpv-dependent supports, where ωpv

denotes any frequency of the particles that we want to render purely virtual. For this op-

eration to be meaningful, it does not matter whether the frequencies are discretized or not.

What we obtain is the threshold decomposition of the diagrams containing physical and

purely virtual particles. The identities (8.12) remain true after the prescription/projection.

Ultimately, we define a new theory, which is unitary and contains physical, as well

as purely virtual particles. We gain or preserve unitarity, in the form of equation (7.1),

depending on whether the starting theory contains ghosts, or not.

We denote the evolution operator of the final theory by Uph(tf, ti) and its amplitudes

by

Mpv

(
〈z̄f, tf; zi, ti〉ζ,ζ̄

)
, (9.6)

where it is understood that the initial and final conditions zi, z̄f only refer to the physical
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particles. The unitarity equations (7.3), which express (7.1), lose the integrals dµz̄f,zf on

the variables z̄f, zf associated with the purely virtual particles, and become
∫

M∗
pv

(
〈z̄f, tf; zi, ti〉ζ,ζ̄

)
dµph

z̄f,zfMpv

(
〈z̄f, tf; zi, ti〉ζ,ζ̄

)
= e2ωz̄izi , (9.7)

where the measure dµph
z̄f,zf is restricted to the subspace of physical particles. A sum over

the physical particles in understood in the exponent of e2ωz̄izi . Formula (9.7) expresses

the unitarity equation U †
ph(tf, ti)Uph(tf, ti) = 1ph of the final theory, where 1ph denotes the

identity matrix restricted to the subspace of physical particles.

We can explain the disappearance of the v̄, v integrals for purely virtual particles as

follows. For convenience, we relabel zf = v, z̄f = v̄, tf = t, zi = zb = za, z̄i = z̄b = z̄a,

ti = tb = ta in (9.7), to match the notation used in sections 7 and 8 (equation (7.11)

in particular). Using t > tb = ta in formulas (8.7) and (8.8), we see that those integrals

provide: i) the cut propagators; and ii) contributions from the endpoint corrections (8.11).

The latter occur when the cut crosses a leg attached to an endpoint (as in the last two

drawings of fig. 7). Their contributions can be of two types: a) the ones depending

on the initial and final conditions, through z0 and z̄0; and b) the ones depending on the

boundary conditions, through φ0, A and B. As shown in (8.11), the latter are attached

to propagators, so they are interested by the prescription/projection, while the former are

not attached to propagators16.

We know that the cut propagators of purely virtual particles vanish, because of the

prescription/projection. The mentioned corrections to the endpoints also vanish: those

of type a) vanish because of the conditions (9.5) (and their conjugates, for the conjugate

amplitude); those of type b) vanish because they are attached to cut propagators.

In the end, we can succinctly write Mpv (dµv̄,v) = dµph
v̄,v and Mpv (1) = 1ph. In the

coherent-state approach, 1ph means e2ωz̄izi , recalling that z̄i and zi are nontrivial only for

physical particles.

We first check our claims at the tree level in the case of a single purely virtual particle,

where the left-hand side of (9.7) becomes just a product. We can calculate it from (8.8).

Setting tf = t > tb = ta = ti, using the conditions (9.5) (and their conjugates) and

implementing the prescription with the help of (9.2), we obtain

iW free
−+pv =−

∫ t

ta

dt′
∫ t

ta

dt′′ζ̄ ′−(t
′)sgn(t′′ − t′)

e−iω(t′−t′′)

2ω
ζ ′−(t

′′)

−
∫ t

ta

dt′
∫ t

ta

dt′′ζ̄ ′+(t
′)sgn(t′ − t′′)

e−iω(t′−t′′)

2ω
ζ ′+(t

′′). (9.8)

16To be pedantic, the two types of contributions should be graphically distinguished from each other.

As long as we know what we are doing, it is not really necessary to insist on this.
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Clearly, iW free
−+pv = 0 for ζ+ = ζ−, ζ̄+ = ζ̄−. Moreover, (8.6) is trivially satisfied, if we

restrict it to the tree diagrams.

In the case of the bubble diagram, we still obtain (9.4) (with discretized frequencies),

when some internal leg belongs to purely virtual particles. One proceeds similarly for the

other loop diagrams.

In the operatorial language, the states on which we are summing in the left-hand side

of (9.7) (which are the states of the physical subspace) are built by means of creation

operators of physical particles only, acting on the vacuum state |0〉: there are no creation

operators for purely virtual particles.

There is an important (to some extent unexpected) turn of events, though. The starting

theory also satisfies the more general identity (1.1), i.e., U(tf, t)U(t, ti) = U(tf, ti) for

arbitrary tf, t and ti. What is the fate of that identity under the map Mpv? The answer

is that it is lost. We can check this claim already in the free-field limit, with a single

purely virtual particle. Applying the map Mpv to (5.25) and (5.27), we get U(tf, ti) =

exp
(
iW free(tf, ti)

)
, where

iW free(tf, ti) = W̃0(tf, ti)−
∫ tf

ti

dt′
∫ tf

ti

dt′′ζ̄ ′(t′)sgn(t′ − t′′)
e−iω(t′−t′′)

2ω
ζ ′(t′′). (9.9)

However, applying the mapMpv to (7.2) with ta = ti < t < tf = tb, we get U(tf, t)U(t, ti) =

exp
(
iW free(tf, t) + iW free(t, ti)

)
. We see that the missing contribution, which is equal to

iW free(tf, ti) − iW free(tf, t) − iW free(t, ti), is precisely the one associated with the missing

integral in between.

The reason why U(tf, t)U(t, ti) = U(tf, ti) cannot be preserved for tf > t > ti is actually

intuitive: the identity (7.2) means that we can break an amplitude into a sum on all

the intermediate states. However, those intermediate states must be built with physical

particles (or at most ghosts: see below), which are associated with arbitrary initial and final

conditions, on which we must integrate in the middle. They cannot be built with purely

virtual particles, because the only physical state that is acceptable for a purely virtual

particle is the vacuum state. When we break the amplitude, we just get the vacuum in the

middle of (7.2) (for purely virtual particles), which makes us unable to recover the right

result. The case tf → ti, t→ tf, is different, in this respect, because the right-hand side of

(7.1) is trivial.

9.2 Hamiltonian for purely virtual particles?

We have shown that the theories of physical and purely virtual particles admit a unitary

evolution operator Uph(tf, ti), built from the evolution operator U(tf, ti) of ordinary theories
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by means of a certain map Mpv. A natural question, at this point, is: can we define a

Hamiltonian for Uph(tf, ti)? This is not an easy task. We could, for example, differentiate

Uph(t, t
′) with respect to t, or t′, but the result,

Hph(t, t
′) ≡ i

∂Uph(t, t
′)

∂t
U †
ph(t, t

′), (9.10)

depends on both t and t′. Then we would not know how to reconstruct Uph(t, t
′) from it.

The time-ordered exponential cannot be the right answer, since time ordering does not

apply to the diagrammatics of purely virtual particles [1].

The question might have no answer, or multiple answers: each candidate Hamiltonian,

such as (9.10), must be equipped with a procedure to reconstruct the evolution operator

Uph(tf, ti) from it. What is the correct definition of energy, then? And what is the fate of

energy conservation? What we can say at present is that energy is conserved at τ = ∞,

and is approximately conserved any time τ is longer enough than the duration ∆t of

the interactions, as well as when τ is longer than 1/mpv, where mpv is the mass of the

lightest purely virtual particle. When τ violates these restrictions, micro violations are not

excluded: the energy might be conserved only upon averaging on time.

Be that as it may, the answer to this and any other question is encoded into the

unitary evolution operator Uph(tf, ti). From a strictly physical point of view, Uph(tf, ti)

is everything we need: it allows us to make (and hopefully test) physical predictions for

processes between arbitrary initial and final states, with arbitrary initial and final times ti

and tf, and arbitrary boundary conditions (5.1).

9.3 From ghosts to purely virtual particles

We have mentioned ghosts, but we did not give enough details about them, and their

diagrammatic rules. Ghosts are particles φ with negative kinetic terms. The correct way

to treat them, by means of the functional integral, is as follows. We split the set of couplings

λ into λodd and λeven, where the couplings λodd multiply the vertices that contain an odd

number of ghosts, while the couplings λeven multiply the vertices that contain an even

number of ghosts. Denoting the action by S(φ, λodd, λeven), we perform the non-Hermitian

change of variables φ = iφ̃, and the non-Hermitian redefinition λodd = iλ̃odd, and switch

to the action

S̃(iφ̃, iλ̃odd, λeven) ≡ S(φ, λodd, λeven),

which has no ghosts and is itself Hermitian. Next, we treat φ̃ as an ordinary physical par-

ticle, including its initial, final and boundary conditions, and derive its diagrammatics, the
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unitarity equation (7.1), as well as equation (1.1), as before. The coherent-state approach

and every other tool we have used for ordinary physical particles extend straightforwardly

to φ̃.

We switch φ̃, λ̃odd, λeven back to −iφ,−iλodd, λeven in the final results. At that point, of

course, the converted version of equation (7.1) can no longer be interpreted as the unitarity

equation. Note that the ghost propagator turns out to be

− i

p2 −m2 + iǫ

in the variables φ. The iǫ prescription shown here is implied by the convergence of the

functional integral in the variables φ̃. Also note that the functional integral is not con-

vergent is the original ghost variables φ (which is the reason why we need to switch to

φ̃).

The map Mpv must be applied while working in the parametrization φ̃, iλ̃odd, λeven,

where it is the same as before. This gives the identity (9.7) in those variables. Then,

the conversion φ̃, λ̃odd, λeven → −iφ,−iλodd, λeven gives the right unitarity equation (9.7)

obeyed by the evolution operator Uph(tf, ti). As far as the initial and final conditions of

the ghosts are concerned, they are trivialized by the map Mpv. As far as the integral in

between (9.7) is concerned, it is trivialized as well, so we do not even need to worry about

its convergence before the switch φ→ iφ̃.

10 Conclusions

Perturbative quantum field theory can be formulated in a finite interval of time τ and on a

compact space manifold Ω by expressing the transition amplitudes between arbitrary initial

and final states, with arbitrary boundary conditions on ∂Ω, in terms of diagrams, which

coincide internally with the ones we commonly use for the S matrix amplitudes at τ = ∞,

Ω = R
3 (apart from the discretization of the loop momenta), and differ externally by the

presence of sources attached to every vertex (including endpoints). The sources take care of

the other details about the restriction to finite τ and compact Ω. The usual diagrammatic

properties apply, or can be generalized with little effort, provided we use the approach

based on coherent states. Every other approach exhibits remarkable complications, which

can be avoided if we reach it from the coherent-state approach through a change of basis.

We have extended the dimensional and analytic regularization techniques to finite τ and

compact Ω, by attaching an evanescent (noncompact) manifold R
−ε to Ω. We have proved,

under general assumptions, that renormalizability holds whenever it holds at τ = ∞,

Ω = R
3, and that the divergences are removed by the same counterterms.
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Unitarity can be studied by means of the diagrammatic version of the unitarity equation

U †(tf, ti)U(tf, ti) = 1, obeyed by the evolution operator U(tf, ti), and its threshold decom-

position into spectral optical identities. The more general identity U(t3, t2)U(t2, t1) =

U(t3, t1) is also studied diagrammatically.

Purely virtual particles are introduced by rendering some physical particles χ and

ghosts χgh purely virtual. This is done as follows: i) the χ, χgh initial and final conditions

are trivialized, while their boundary conditions can stay nontrivial; and, ii) the on-shell

contributions involving χ and χgh are removed from the diagrams.

If all the ghosts are rendered purely virtual, we obtain a theory of physical and purely

virtual particles, and its evolution operator Uph(tf, ti) is unitary. However, Uph(tf, ti) does

not satisfy the more general identity Uph(t3, t2)Uph(t2, t1) = Uph(t3, t1).

The breakdown of this property is not totally upsetting, because, on a second thought,

it is inherent to the very concept of purely virtual particle. Yet, it is a remarkable fact,

because it implies that Uph(tf, ti) cannot be derived from a Hamiltonian in a standard way.

In this context, it is interesting to explore the fate of energy conservation at microscales.

Microviolations might make the pair with the violations of microcausality, which are typical

of the theories with purely virtual particles.
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Appendix

A Calculation of W0(0)

In this appendix, we calculate the quantity W0(0) of (2.14) and the quantity W0(0, 0) of

(4.19) in quantum mechanics. In the approach based on position eigenstates, we have

Z0(0) = eiW0(0) =

∫

q(ti)=q(tf)=0

[dq] exp

(

i

∫ tf

ti

dtL0(q(t))

)

= 〈0q |e−iH0τ |0q〉,

where H0 is the free Hamiltonian of the harmonic oscillator (of unit mass) and |0q〉 is the
position eigenstate with eigenvalue zero. Inserting complete sets of H0 eigenstates |n〉, |m〉
we can also write

〈0q |e−iH0τ |0q〉 =
∞∑

n,m=0

〈0q |n〉〈n|e−iH0τ |m〉〈m|0q〉 =
∞∑

n=0

|ψn(0)|2e−iE0nτ ,

62



23
A
1
R
en
or
m

where

ψn(q) =
ω1/4

√
2nn!π1/4

e−ωq2/2Hn(ω
1/2q)

is the normalized H0 eigenfunction with eigenvalue E0n = (2n + 1)ω/2, Hn denoting the

nth Hermite polynomial. We have

Hn(0) =







(−2)n/2(n− 1)!! for n even,

0 for n odd.

Hence,

Z0(0) =
(ω

π

)1/2

e−iωτ/2

∞∑

n=0

((2n− 1)!!)2

(2n)!
e−2inωτ .

Normally, the result is written as (ω/π)1/2/
√

2i sin(ωτ) for | sin(ωτ)| < 1. To be more

general, we keep the expansion explicit. Actually, it is more convenient to write it as

eiW0(0), where the expansion simplifies. We easily find

W0(0) = −ωτ
2

− i

2
ln
ω

π
− i

∞∑

n=1

e−2inωτ

2n
.

In the case of coherent states, we have

exp (iW0(0, 0)) =

∫

w(ti)=w̄(tf)=0

[dwdw̄]exp

(

i

∫ tf

ti

dtL0(w, w̄)

)

=
C√
detQ

,

where Q is given in (4.5) and C is a numerical factor, which we choose so thatW0(0, 0) = 0

at τ = 0. It is convenient to first work out the Q eigenstates

iẇn − ωwn = λnw̄n, −i ˙̄wn − ωw̄n = λnwn, wn(ti) = 0, w̄n(tf) = 0,

and the Q eigenvalues λn. We find that σn(ω) ≡
√

λ2n − ω2 is the solution of the equation

2τσn − ln(ω + iσn) + ln(ω − iσn) = 0.

At ω = 0 we have σn(0) = (2n + 1)iπ/(2τ), n ∈ Z. At ω 6= 0, we work out σn(ω) as a

series expansion in powers of ω, around σn(0). We find

ln

√

detQ(0)

detQ(ω)
= −1

2

∑

n∈Z

ln
λn(ω)

λn(0)
= − iωτ

2
.

Fixing C as said, we conclude that W0(0, 0) = −ωτ/2.
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