Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Gauge anomalies

We prove the Adler-Bardeen theorem in a large class of general gauge theories, including nonrenormalizable ones. We assume that the gauge symmetries are general covariance, local Lorentz symmetry and Abelian and non-Abelian Yang-Mills symmetries, and that the local functionals of vanishing ghost numbers satisfy a variant of the Kluberg-Stern–Zuber conjecture. We show that if the gauge anomalies are trivial at one loop, for every truncation of the theory there exists a subtraction scheme where they manifestly vanish to all orders, within the truncation. Outside the truncation the cancellation of gauge anomalies can be enforced by fine-tuning local counterterms. The framework of the proof is worked out by combining a recently formulated chiral dimensional regularization with a gauge invariant higher-derivative regularization. If the higher-derivative regularizing terms are placed well beyond the truncation, and the energy scale $\Lambda $ associated with them is kept fixed, the theory is super-renormalizable and has the property that, once the gauge anomalies are canceled at one loop, they manifestly vanish from two loops onwards by simple power counting. When the $\Lambda $ divergences are subtracted away and $\Lambda $ is sent to infinity, the anomaly cancellation survives in a manifest form within the truncation and in a nonmanifest form outside. The standard model coupled to quantum gravity satisfies all the assumptions, so it is free of gauge anomalies to all orders.

PDF

Phys. Rev. D 91 (2015) 105016 | DOI: 10.1103/PhysRevD.91.105016

arXiv: 1501.07014 [hep-th]

Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

PDF

Phys. Rev. D 92 (2015) 025027 | DOI: 10.1103/PhysRevD.92.025027

arXiv: 1501.06692 [hep-th]

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF