We construct local, unitary gauge theories that violate Lorentz symmetry explicitly at high energies and are renormalizable by weighted power counting. They contain higher space derivatives, which improve the behavior of propagators at large momenta, but no higher time derivatives. We show that the regularity of the gauge-field propagator privileges a particular spacetime breaking, the one into into space and time. We then concentrate on the simplest class of models, study four dimensional examples and discuss a number of issues that arise in our approach, such as the low-energy recovery of Lorentz invariance.
Annals Phys. 324 (2009) 874-896 | DOI: 10.1016/j.aop.2008.12.005
arXiv:0808.3470 [hep-th]
Embedded PDFFullscreen PDF view