Course

19S1 D. Anselmi
Theories of gravitation

Program

PDF

Book

D. Anselmi
From Physics To Life

A journey to the infinitesimally small and back

In English and Italian

Available on Amazon:
US: book | ebook  (in EN)
IT: book | ebook  (in IT)




Recent Papers




Renormalization group

I review recent results on conformal field theories in four dimensions and quantum field theories interpolating between conformal fixed points, supersymmetric and non-supersymmetric. The talk is structured in three parts: $i$) central charges, $ii$) anomalous dimensions and $iii$) quantum irreversibility.

PDF

PoS (trieste99) 013

arXiv:hep-th/9910255

I identify the class of even-dimensional conformal field theories that is most similar to two-dimensional conformal field theory. In this class the formula, elaborated recently, for the irreversibility of the renormalization-group flow applies also to massive flows. This implies a prediction for the ratio between the coefficient of the Euler density in the trace anomaly (charge $a$) and the stress-tensor two-point function (charge $c$). More precisely, the trace anomaly in external gravity is quadratic in the Ricci tensor and the Ricci scalar and contains a unique central charge. I check the prediction in detail in four, six and eight dimensions, and then in arbitrary even dimension.

PDF

Phys.Lett. B476 (2000) 182-187 | DOI: 10.1016/S0370-2693(00)00135-0

arXiv:hep-th/9908014

Some recent ideas are generalized from four dimensions to the general dimension $n$. In quantum field theory, two terms of the trace anomaly in external gravity, the Euler density $G_n$ and $\Box^{n/2-1}R$, are relevant to the problem of quantum irreversibility. By adding the divergence of a gauge-invariant current, $G_n$ can be extended to a new notion of Euler density, linear in the conformal factor. We call it pondered Euler density. This notion relates the trace-anomaly coefficients $a$ and $a’$ of $G_n$ and $\Box^{n/2-1}R$ in a universal way ($a=a’$) and gives a formula expressing the total RG flow of a as the invariant area of the graph of the beta function between the fixed points. I illustrate these facts in detail for $n=6$ and check the prediction to the fourth-loop order in the $\phi^3$-theory. The formula of quantum irreversibility for general n even can be extended to $n$ odd by dimensional continuation. Although the trace anomaly in external gravity is zero in odd dimensions, I show that the odd-dimensional formula has a predictive content.

PDF

Nucl.Phys. B567 (2000) 331-359 | DOI: 10.1016/S0550-3213(99)00479-4

arXiv:hep-th/9905005

The trace anomaly in external gravity is the sum of three terms at criticality: the square of the Weyl tensor, the Euler density and $\Box R$, with coefficients, properly normalized, called $c$, $a$ and $a’$, the latter being ambiguously defined by an additive constant. Considerations about unitarity and positivity properties of the induced actions allow us to show that the total RG flows of $a$ and $a’$ are equal and therefore the $a’$-ambiguity can be consistently removed through the identification $a’=a$. The picture that emerges clarifies several long-standing issues. The interplay between unitarity and renormalization implies that the flux of the renormalization group is irreversible. A monotonically decreasing $a$-function interpolating between the appropriate values is naturally provided by $a’$. The total $a$-flow is expressed non-perturbatively as the invariant (i.e. scheme-independent) area of the graph of the beta function between the fixed points. We test this prediction to the fourth loop order in perturbation theory, in QCD with $N_f \lesssim 11/2 N_c$ and in supersymmetric QCD. There is agreement also in the absence of an interacting fixed point (QED and $\phi^4$-theory). Arguments for the positivity of $a$ are also discussed.

PDF

Annals Phys. 276 (1999) 361-390 | DOI: 10.1006/aphy.1999.5949

arXiv:hep-th/9903059

Search this site

YouTube Channel

Quantum Gravity Youtube Channel Quantum Gravity Quantum Gravity - Youtube Channel

Book

14B1 D. Anselmi
Renormalization

Course on renormalization, taught in 2015.

Last update: September 15th 2023, 242 pages

The final (2023) edition is vaibable on Amazon:

US  IT  DE  FR  ES  UK  JP  CA


Contents:
Preface
1. Functional integral
2. Renormalization
3. Renormalization group
4. Gauge symmetry
5. Canonical formalism
6. Quantum electrodynamics
7. Non-Abelian gauge field theories
Notation and useful formulas
References


The pdf file of the 2015 Edition is available here: PDF