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Abstract

I discuss the properties of the central charges c and a for higher-derivative and higher-spin

theories (spin 2 included). Ordinary gravity does not admit a straightforward identification

of c and a in the trace anomaly, because it is not conformal. On the other hand, higher-

derivative theories can be conformal, but have negative c and a. A third possibility is to

consider higher-spin conformal field theories. They are not unitary, but have a variety of

interesting properties. Bosonic conformal tensors have a positive-definite action, equal to

the square of a field strength, and a higher-derivative gauge invariance. There exists a

conserved spin-2 current (not the canonical stress tensor) defining positive central charges c

and a. I calculate the values of c and a and study the operator-product structure. Higher-

spin conformal spinors have no gauge invariance, admit a standard definition of c and a and

can be coupled to Abelian and non-Abelian gauge fields in a renormalizable way. At the

quantum level, they contribute to the one-loop beta function with the same sign as ordinary

matter, admit a conformal window and non-trivial interacting fixed points. There are

composite operators of high spin and low dimension, which violate the Ferrara–Gatto–Grillo

theorem. Finally, other theories, such as conformal antisymmetric tensors, exhibit more

severe internal problems. This research is motivated by the idea that fundamental quantum

field theories should be renormalization-group (RG) interpolations between ultraviolet and

infrared conformal fixed points, and quantum irreversibility should be a general principle of

nature.
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1 Statement of the problem

In the approach to quantum field theory as a radiative interpolation between pairs of conformal

fixed points (see [1] for a brief survey) important physical information is given by the values

of the central charges c and a at the fixed points and their dependence on the energy scale, in

particular the differences cUV − cIR and aUV − aIR. In a conformal theory, c and a are defined

by the trace anomaly computed in the presence of an external gravitational field. The quantity

c multiplies the square of the Weyl tensor W 2
µνρσ and is the coefficient of the two-point function

of the stress tensor. The quantity a multiplies the Euler density G4 = εµνρσεαβγδR
µναβRρσγδ .

A third term, 2R, is multiplied by a coefficient a′:

Θ =
1

(4π)2

[

−cW 2 +
a

4
G4 −

2

3
a′2R

]

. (1.1)

In various UV-free supersymmetric models it is possible to compute c and a exactly in the IR

limit [2]. In classically conformal renormalizable theories, a simple non-perturbative formula

for the total RG flow of a [3] holds, which shows the phenomenon of quantum irreversibility

(the inequality aUV ≥ aIR) [3, 4, 5]. The quantity a is interpreted as a counter of the massless

degrees of freedom.

A natural problem is to study the generalization of these results to higher-spin fields, gravity

in particular. It is not straightforward to define the central charges c and a for gravity or higher-

spin fields, because they are not conformal. The trace anomaly for higher-spin fields was studied

by Christensen and Duff [6] long ago and contains the square of the Ricci curvature R :

Θ =
1

(4π)2

[

−cW 2 +
a

4
G4 + ζR2 − 2

3
a′2R

]

,

a sign that the field is not conformal. The definition of c and a from the trace anomaly is

unambiguous only if there is no such term. Explicitly, for spin 3/2 and spin 2 we find, from

table II of ref. [6] (omitting the 2R-term):

Θ3/2 =
1

360(4π)2

[

255W 2 − 22
G4

4
+

61

2
R2

]

,

Θ2 =
1

360(4π)2

[

−297W 2 − 127
G4

4
− 717

2
R2

]

.

We see that the graviton and gravitino contributions to the R2-term have opposite signs. This

means that a suitable combination of gravitons and gravitinos can cancel the R2-term and might

define a good higher-spin generalization of conformal field theory. It would be interesting to

have a comprehensive list of the theories with vanishing R2-term, starting from the analysis of

Christensen and Duff, and understand if they can be considered conformal for all purposes. The

disappearance of the R2-term is a necessary condition, but might not be sufficient. Observe,

however, that it is not simple to construct manifestly gauge-invariant stress tensors for higher-

spin fields and the R2-term might depend on the definition, the gauge-fixing or the scheme
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choice. On the other hand, the conformal higher-spin fields, which are studied in this paper,

have better properties in connection with these issues.

If sensible definitions of c and a are not separately available, it might be interesting to look

for an appropriate generalization of the subclass of conformal field theories that have c = a.

These theories share various properties with two-dimensional conformal field theory [5]. We

see that the difference c − a multiplies the unique term containing the Riemann tensor in the

trace anomaly, R2
µνρσ in the trace anomaly. An appropriate definition of c = a theories of

gravitons and gravitinos, or higher-spin fields in general, might include the theories whose trace

anomaly contains only R2
µν , R

2 and 2R, but not R2
µνρσ . In arbitrary even dimensions the trace

anomaly of the c = a theories contains the “minimal amount” of Riemann tensors, as shown

in ref. [5]. However, the c = a theories, certainly mathematically interesting, appear to be

phenomenologically disfavoured (sect. 1.2).

In general, when do we have sensible definitions of c and a? We first demand that the

classical theory be conformal, so that no R2-term is present in the trace anomaly. Secondly, we

would like that c and a be both positive. Negative central charges represent a severe violation

of unitarity. The purpose of this paper is to explore a large variety of theories, old and new,

in this spirit. We begin with higher-derivative theories (section 2) and show that they have

negative c and a. We continue by classifying the higher-spin conformal theories. Fermions

admit a straightforward coupling to gravity and gauge fields, so that in this case our program

can be carried over to the end. There is evidence of a conformal window and that these theories

obey the irreversibility property. On the other hand, higher-spin conformal bosons do not admit

a straightforward coupling to gravity. Nevertheless, I show that there exists a suitable spin-2

current that has all the features to define appropriate c and a. I compute their values in a

simple case and show that they are positive.

Higher-spin conformal field theories are not unitary [7], but have a number of interesting

features (of which conformal invariance is just the most important), which makes them inter-

esting either as a laboratory for investigations in the spirit of [1] and the questions raised above,

or for the description of physical phenomena in limited energy ranges. In some cases, they have

a positive-definite action in the Euclidean framework. Symmetric conformal tensors have a

higher-derivative gauge symmetry, which is investigated in detail. It is the unique gauge trans-

formation compatible with the conformal symmetry. Moreover, these theories admit proper

definitions of field strengths, dual field strengths, Chern–Simons forms, topological invariants,

etc.

The non-unitarity of these theories can show up in the negative sign of c or a, as remarked

above. But even when c and a are positive, there might be effects on the anomalous dimensions

of the operators generated by the OPE of two stress tensors. For example, the Ferrara–Gatto–

Grillo theorem [9] states that, in a unitary theory, primary composite operators with spin s

should have a total dimension greater than or equal to 2 + s. This theorem is here manifestly

violated. Indeed, the higher-derivative gauge invariance allows for “multiply-conserved” cur-

rents with dimensions ∆ = 2 + s, 1 + s, . . ., 3. Some of these operators will be constructed

explicitly.
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There have been earlier works on conformal field equations of spin-2 [12, 13, 14, 15, 16] and

spin-3/2 [15] fields. These theories are particular cases of the ones presented below. To my

knowledge the relationship between conformal invariance and higher-derivative gauge invariance

was not known. Recently, related theories have attracted some interest in the domain of nuclear

physics, where the purpose is to account for the hadronic resonances, such as the spin-3/2

∆(1232) [17, 18]. I believe that the properties outlined here might be useful in this domain,

at least in a definite energy range. The hope is that dynamical effects might make these

theories consistent at low energies, thanks to quantum irreversibility itself (the ghosts might

disappear above the Planck length, far before the physically observable degrees of freedom) or

to a generalization of the Nachtmann theorem [8].

Finally, I remark that the study of higher-spin conformal field theory is in some sense

complementary to the Fradkin–Vasiliev higher-spin field theory [10], which is unitary, but not

conformal.

The plan of the paper is as follows. Before entering the technical part, I explain in sect. 1.1

the reasons why it is physically attractive to investigate higher-spin theories focusing on c and

a and the irreversibility. Section 2 contains observations about higher-derivatives conformal

field theories and the rest of the paper is about higher-spin conformal field theories. I present

the bosonic conformal fields in section 3, the fermionic fields in section 5. Section 4 is devoted

to a detailed analysis of the spin-2 field, with computations of c and a and a study of the

operator-product (OPE) structure. In section 5 the contribution to the gauge beta function

from conformal spin-3/2 matter fermions is computed. I work in the Euclidean framework

throughout this paper.

1.1 Other motivations for the approach suggested here

The search for a consistent formulation of higher-spin fields is difficult, and it might help to

establish some general guidelines. This section is devoted to explaining why the properties

of the central charges c and a and quantum irreversibility might be good for this. The ideas

contained here should be meant as a work hypothesis. They apply to renormalizable, unitary

theories of fields with spin 0, 1/2 and 1, but their generalization to higher-spin fields, gravity

in particular, is not evident. Yet, it is a bit uncomfortable that fields of spin 0, 1/2 and 1 have

such a different status from fields of higher spin and a “unified” description would be desirable.

The two principles underlying the proposed approach are: (i) a “conformal hypothesis”, say-

ing that every quantum field theory describing the phenomena of nature should be a renormaliza-

tion-group interpolation between a UV conformal field theory and an IR conformal field theory;

and (ii) the irreversibility principle, stating that all fundamental theories of nature should be

quantum irreversible, i.e. satisfy aUV ≥ aIR.
We can distinguish between a strong form of the conformal hypothesis, when the classi-

cal action is conformal-invariant and all dimensionful parameters descend from the RG scale

µ, and a weak form of this hypothesis, when Newton’s constant and, eventually, other non-

renormalizable parameters, descend from µ, like ΛQCD, but the classical action is allowed to
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contain super-renormalizable terms and masses and be conformal only in their absence. Massless

QCD obeys the strong form of the conformal hypothesis (the masses of hadrons are propor-

tional to ΛQCD and therefore descend from µ), while massive QCD obeys the weak form of the

conformal hypothesis (the pion masses and corrections to hadron masses are generated by the

quark masses, i.e. they do not descend from µ).

Theories obeying the strong conformal hypothesis fall under the treatment of refs. [3, 4]

and admit a general formula expressing the difference aUV− aIR [3] as the invariant area of the

graph of the beta function. Theories obeying the weak conformal hypothesis also satisfy the

inequality aUV ≥ aIR1, but the actual value of aUV − aIR is not measured by the same formula

[5]. These two cases can be assimilated to each other at the quantitative level when c = a [5].

It is not clear at present how to link these two forms of irreversibility in the general case c 6= a,

but presumably there is no need to either, since the effects of masses can usually be included

straightforwardly [11]. Observe that the irreversibility property implies that a perturbative

formulation of quantum field theory is meaningful only from the UV. Since degrees of freedom

are lost from the UV to the IR, a quantum field theory formulated from the IR (such as in

IR-free theories) should be plagued by inconsistencies or be trivial2.

If the ultimate theory of the world falls into one of the two classes mentioned here, then the

theories not obeying the (strong or weak) conformal hypothesis should be viewed as low-energy

effective theories descending from high-energy fundamental theories that obey the conformal

hypothesis. In particular, any non-renormalizable interaction, and gravity in particular, should

be a low-energy effect. Observe that, if it were not so, non-renormalizable terms, admitting that

we can make sense out of them without additional fields in the theory, are expected to violate

the irreversibility principle. For example, a term ϕ6/m2 forces the field ϕ to vanish identically

in the UV limit m → 0 and leaves the IR unchanged. In certain supersymmetric theories [11]

where some treatment of non-renormalizable terms has been claimed to be meaningful in the

context of the so-called electric–magnetic duality, it has been found that non-renormalizable

terms do violate the irreversibility statement (see section 6 of [11]).

Finally, a special place is occupied by the “c = a flows”, i.e. flows that connect UV and

IR fixed points in such a way that the difference c− a remains constant (not necessarily zero),

or at least aUV − aIR = cUV − cIR. The fixed points might or not have c = a. For example,

taking a direct product between a c = a flow connecting two c = a fixed points and a free-field

theory, we can obtain a c = a flow connecting c 6= a fixed points. These flows also fall under

the treatment of [5]. In such cases dimensionless parameters can be assimilated to dimensionful

coupling constants, for example masses and, conceivably, also the Newton constant, even if they

are not induced by µ. The weak point of these theories is that they are phenomenologically

disfavoured. A necessary condition fot a c = a flow is obtained by comparing the values of c

1 A mass term 1

2
m2ϕ2 or, in general, super-renormalizable terms, has the effect of killing degrees of freedom

in the IR, while the UV is left unchanged [19]. Roughly, this happens because the limit m → ∞ is compatible

only with ϕ ≡ 0.
2 For example, the Landau poles in QED, the non-perturbative triviality of the λφ4-theory, the perturbative

non-renormalizability of quantum gravity. There is a good amount of evidence that QCD, instead, is fully

consistent.
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and a at energies admitting (approximate) free-field descriptions. Using the free-field values

c = (Ns + 6Nf + 12Nv)/120 and a = (Ns + 11Nf + 62Nv)/360, Ns,f,v being the numbers of

real scalars, Dirac fermions and vectors, respectively, the differences between the numbers of

spin-0, 1/2, 1 fields at two such energies are related in this case by the formula

2∆Ns + 7∆Nf = 26∆Nv. (1.2)

Comparing the UV and IR limits of massless QCD, we find ∆Ns = −n2f + 1, ∆Nf = Ncnf ,

∆Nv = N2
c − 1, where Nc is the number of colours and nf is the number of quark flavours. It is

easy to check that the condition has no solution. Similarly, the spectra of the known low-energy

physics do not appear to obey (1.2). For example, in the IR we can neglect the electron, but

we have to include it at energies comparable with its mass. Formula (1.2) implies that as soon

as the electron, or other fermions, becomes important, also vector fields should appear. There

is no evidence of such a behaviour in nature. Finally, neither the Standard Model nor QCD

have c = a3.

We have analysed various phenomena of ordinary theories that might suggest valid guidelines

for possible generalizations to new theories and gravity. These are, in summary, the reasons why

I think that it is interesting to investigate higher-derivative theories and higher-spin conformal

field theories starting from the properties of c and a. We are now ready for the more technical

part. We first study higher-derivative theories and then higher-spin conformal theories.

2 Higher-derivative conformal field theories

I begin by studying c and a in higher-derivative conformal field theories. The free higher-

derivative scalar field is interesting because it corresponds to the induced action for the confor-

mal factor φ in an ordinary renormalizable theory and is described by the lagrangian

S =
1

2

∫

d4x
√
g

[

φ∆4φ+
Q

16π
G̃4φ

]

, (2.3)

where ∆4 = 2
2+2Rµν∇µ∇ν− 2

3R2+ 1
3 (∇µR)∇µ [20, 21] and G̃4 = G4− 8

32R is the “pondered”

Euler density [4]. Here Q is a background charge. It does affect the induced effective action

for the gravitational field, but its contribution is not of anomalous origin (see below). I keep Q

non-zero to show that it cannot be used to make either c or a positive.

The theory (2.3) has been studied in refs. [21, 22] and is the four-dimensional analogue of

the free two-dimensional scalar field. Non-unitarity is evident from the fact that c and a are

negative:

c = − 1

15
, a = − 7

90
−Q2. (2.4)

3We can check it in the free-field limits. QED has Nv = 1, Nf = 1 and c − a = −37/360. Massless QCD

has Nv = 8, Nf = 18 and c − a = −41/180. The electroweak theory has Nv = 4, Nf = 9/2, Ns = 4 and

c−a = −43/180. The Standard Model has c−a = −293/720. We see that c−a is always negative, which means

that there are many vector fields.
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The values at Q = 0 can be read from [20, 21] and are the contributions coming from the

determinant of ∆4. The contribution of the background charge is found after a translation in

the functional integral and the integration over φ:

S =
1

2

∫

d4x
√
g

(

φ+
Q

32π
G̃4

1

∆4

)

∆4

(

φ+
Q

32π
G̃4

1

∆4

)

− Q2

(4π)2
G̃4

1

∆4
G̃4

→ 1

2
tr ln [

√
g∆4]−

Q2

128(4π)2
G̃4

1

∆4
G̃4.

The term proportional to Q2 affects the quantity a by the shift written in (2.4). This can be

seen using for example the formulas of [20].

No real value of Q can give a positive a, as promised. Moreover, the background charge has

no effect on c. The negative value of c can be checked by computing the stress-tensor two-point

function and does not depend on Q. The stress tensor reads

Tµν =−∂µ2φ∂νφ− ∂ν2φ∂µφ−
4

3
∂µ∂αφ∂ν∂αφ+

2

3
∂µ∂ν∂αφ∂αφ+ 22φ∂µ∂νφ

+δµν

[

1

3
∂α2φ∂αφ+

1

3
(∂α∂βφ)

2 − 1

2
(2φ)2

]

+
Q

6π
(∂µ∂ν − δµν2)2φ.

The two-point function is

〈Tµν(x) Tρσ(0)〉 = −
1

120π4

∏(2)

µν,ρσ

(

1

|x|4
)

,

in agreement with the value of c given above. We see that the non-unitarity of the theory is

exhibited by a violation of reflection positivity. Similarly, the non-unitarity of non-conformal

higher-derivative theories, such as a scalar field with lagrangian L = 1
22φ(2+m2)φ, is exhibited

by poles with negative residues in the propagator [23].

A way to change the signs of both central charges it to consider “higher-derivative anticom-

muting scalar fields”, θ, θ̄. In this case Q = 0 and

S =

∫

d4x
√
gθ̄∆4θ, c =

2

15
, a =

7

45
.

This theory can be coupled to, say, the electromagnetic field. In a flat gravitational back-

ground the most general renormalizable lagrangian has a finite number of parameters due to

the statistics of θ :

L =
1

4
F 2
µν + |DµDµθ|2 + iFµνDµθDνθ + |DµθDνθ|2 + · · · ,

where D2 = DµDµ. Each term can be further multiplied by a polynomial 1 + hθ̄θ. Some

simplification comes from the invariance of the theory under the renormalizable change of

variables

Aµ → Aµ + iαθ̄
←→
∂µ θ,

α being a parameter of no physical interest.
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The change of the statistics of the fields does not eliminate the non-unitarity of the theory.

Indeed, the low-dimensionality of θ, θ̄ allows us to construct many operators violating the

Ferrara–Gatto–Grillo theorem. There are also operators satisfying reflection positivity before

the change of statistics and violating it afterwards. For example

〈(∂µθ̄∂µθ)(x) (∂ν θ̄∂νθ)(0)〉 = −(∂µ∂ν〈θ̄(x) θ(0)〉)2 < 0.

Finally, there are also operators that have a vanishing two-point function, such as two terms of

the electromagnetic current:

jµ = i

(

θ̄2∂µθ − ∂µ2θ̄θ +
1

3
∂αθ̄
←→
∂µ ∂αθ +

4

3
2θ̄∂µθ −

4

3
∂µθ̄2θ

)

, j′µ = − i
2
πµα

(

θ̄
←→
∂α θ

)

.

We find, defining Jµ = ajµ + bj′µ,

〈jµ(x) jν(0)〉 = 〈j′µ(x) j′ν(0)〉 = 0, 〈Jµ(x)Jν(0)〉 = −
ab

4π2
πµν

(

1

|x|4
)

.

Despite the unitarity problem, renormalization of this theory is well-behaved and very pre-

sumably there is a conformal window, at least when the gauge field is non-Abelian. Theories

such as these are a useful laboratory for the approach of [1].

For fermionic theories

L = ψ̄∂/2ψ,

we have found the stress tensor

Tµν = h
{

ψ̄(γµ∂ν + γν∂µ)2ψ −2ψ̄(γµ
←−
∂ν + γν

←−
∂µ)ψ + 32ψ̄(γµ∂ν + γν∂µ)ψ

−3ψ̄(γµ
←−
∂ν + γν

←−
∂µ)2ψ −

2

3
(∂µψ̄

←→
∂/ ∂νψ + ∂νψ̄

←→
∂/ ∂µ)ψ + 2∂αψ̄(γµ

←→
∂ν + γν

←→
∂µ )∂αψ

−10

3
(ψ̄
←−
∂/ ∂µ∂νψ − ∂µ∂νψ̄∂/ψ)−

2

3
(ψ̄∂/∂µ∂νψ − ∂µ∂ν ψ̄

←−
∂/ ψ)

+
1

3
δµν [7(ψ̄

←−
∂/ 2ψ −2ψ̄∂/ψ) − 2∂αψ̄

←→
∂/ ∂αψ]

}

, (2.5)

by imposing conservation and tracelessness. It is not straightforward to fix the overall factor

h from the coupling to gravity (a Weyl-invariant coupling to external gravity might not exist).

The factor could be fixed unambiguously with the OPE technique of sect. 4 or the Noether

method, but here we do not need it, since our primary concern is to show that c is negative,

independently of the value of h. We find

〈Tµν(x)Tρσ(0)〉 = −
8h2

15π4

∏(2)

µν,ρσ

(

1

|x|4
)

< 0.

We might wonder whether the situation changes in higher dimensions, but it is not so. I have

checked that a free scalar field with action 1
2(2φ)

2 in six dimensions has, again, c < 0. The
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stress tensor reads

Tµν = h

{

3

4
∂µ∂αφ∂ν∂αφ−

3

2
2φ∂µ∂νφ+ ∂ν2φ∂µφ+ ∂µ2φ∂νφ−

1

2
∂µ∂ν∂αφ∂αφ

−1

4
φ2∂µ∂νφ+ δµν

[

−1

4
∂α2φ∂αφ−

1

8
(∂α∂βφ)

2 +
1

4
(2φ)2

]}

and the two-point function is

〈Tµν(x)Tρσ(0)〉 = −
25h2

86016π6

∏(2)

µν,ρσ

(

1

|x|6
)

< 0.

Summarizing, higher-derivative theories with ordinary statistics have negative central char-

ges, which means that the ghost degrees of freedom prevail over the physical ones. Yet, these

theories can be conformal at the classical level and renormalizable at the quantum level. While

the unitarity violations can hardly be removed completely, it might be possible that in some

conformal theories certain problems are less serious, so that c and a be positive, despite of the

underlying non-unitarity. Higher-spin conformal field theories, which I analyse in the rest of

the paper, appear to have this property.

3 Conformal bosonic fields

The simplest example of higher-spin conformal field theory is the free spin-2 conformal field.

Let χµν be symmetric and traceless. The action

S =

∫

L1 =
∫

1

2
(∂µχνρ)

2 − 2

3
(∂µχµν)

2 (3.6)

is invariant with respect to the coordinate inversion xµ → xµ

|x|2 . Under this transformation the

tensor χµν transforms as

χµν(x)→ |x|2Iµρ(x)Iνσ(x)χρσ(x),

where Iµν(x) = δµν−2xµxν/|x|2. This invariance fixes uniquely the action S, and the lagrangian

L1 up to total derivatives. A better choice of the total derivatives leads to the lagrangian

L =
1

2
(∂µχνρ)

2 − 1

2
∂µχνρ∂νχµρ −

1

6
(∂µχµν)

2. (3.7)

L transforms as a scalar under coordinate inversion, L →|x|8L. The action S is invariant under

the higher-derivative gauge transformation

δχµν = ∂µ∂νΛ−
1

4
δµν2Λ, (3.8)

but not with respect to the diffeomorphism-type transformation δχµν = ∂µξν + ∂νξµ. The

lagrangian L is also invariant, while L1 is invariant up to a total derivative.
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The gauge transformation (3.8) is compatible with the conformal symmetry. This can be

proved by observing that Λ has dimension −1 and thus, under coordinate inversion, δχµν

transforms in the same way as χµν :

Λ→ |x|−2Λ, ∂µ∂νΛ−
1

4
δµν2Λ→ |x|2Iµρ(x)Iνσ(x)

(

∂ρ∂σΛ−
1

4
δρσ2Λ

)

.

To check this, observe that the derivative operator transforms as a vector of dimension 1:

∂µ → |x|2Iµν(x)∂ν .
The field equations read

2χµν =
2

3
∂ρ (∂µχνρ + ∂νχµρ)−

1

3
δµν∂ρ∂σχρσ.

Defining the vector field Aµ = ∂νχµν and its field strength Fµν = ∂µAν − ∂νAµ, the field

equations and gauge invariance imply

∂µFµν = 0, δAµ =
3

4
∂µ2Λ.

3.1 Field strength

The gauge symmetry (3.8) leads to the introduction of a natural field strength,

Fµνα = ∂µχνα − ∂νχµα −
1

3
δµα∂ρχρν +

1

3
δνα∂ρχρµ,

which is easily proved to be gauge-invariant. This field strength satisfies a number of noticeable

properties. First of all, we have the identities

Fµνα = −Fνµα, Fµνµ = 0, Fµνα + Fαµν + Fναµ = 0. (3.9)

The third identity will be called the cyclic identity. Secondly, the lagrangian (3.7) can be

written as

L =
1

4
(Fµνα)

2,

which implies, in particular, that it is positive-definite, a fact that was not evident from (3.6)

and (3.7). Since L is a conformal field of dimension 4, it is evident that the field strength is

itself a conformal field of dimension 2 and transforms as

Fµνα → |x|4Iµρ(x)Iνσ(x)Iαβ(x)Fρσβ

under coordinate inversion. The field equations read

∂µFµνα + ∂µFµαν = 0. (3.10)

It is convenient to introduce the dual of the field strength, as well as self-dual and anti-self-

dual field strengths:

F̃µνα =
1

2
εµνρσFρσα, F±

µνα =
1

2

(

Fµνα ± F̃µνα

)

.

10
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Each of these tensors satisfies the same symmetry identities (3.9) as Fµνα. We can also derive

the “Bianchi identity”

∂µF̃µνα + ∂µF̃µαν = 0.

There is a natural topological invariant and a “Chern–Simons” form:

FµναF̃µνα = ∂µ (εµνρσχναFρσα) .

Non-trivial interactions for conformal higher-spin theories can be constructed, as power

series in the field strength:

L =
1

4
(Fµνα)

2+
1

Λ4

{

a
[

(Fµνα)
2
]2

+ bFµναFνραFρσβFσµβ + cFµναFνρβFρσαFσµβ

}

+ · · · (3.11)

Λ being some mass scale and a, b, c being dimensionless parameters. These vertices are non-

trivial because they do not vanish when the field equations (3.10) are satisfied. Our interest,

however, is mostly to look for non-trivial renormalizable interactions, which preserve confor-

mality at the classical level. These are more difficult to construct, but are fundamental for the

conformal hypothesis stated in the introduction. Certain renormalizable interactions will be

studied in this paper (for fermionic higher-spin conformal theories), but a complete classification

will not be given here.

The coupling to gravity is not straightforward and might not exist at all. Simple attempts

to impose the compatibility between the gauge symmetry (3.8) and gravity generate terms that

cannot be reabsorbed. Nevertheless, this does not forbid a correct definition of c and a (see

section 3).

3.2 Propagator and ghosts

In this section I calculate the propagators and discuss a number of important features. The

quantization is performed in the BRS approach and in the framework of the functional integral.

The most natural gauge-fixing is

∂µ∂νχµν = ∂µAµ = 0. (3.12)

The gauge-fixed lagrangian becomes

L1 =
1

2
(∂µχνρ)

2 − 2

3
(∂µχµν)

2 + b ∂µ∂νχµν −
3

4
C2

2C

and the BRS transformation reads

sχµν = ∂µ∂νC −
1

4
δµν2C, sC = 0, sC = b, sb = 0.

Defining the projectors

P1µν,ρσ =
1

2
(δµρδνσ + δµσδνρ)−

1

4
δµνδρσ,

P2µν,ρσ =
1

3

(

∂µ∂ρδνσ + ∂µ∂σδνρ + ∂ν∂ρδµσ + ∂ν∂σδµρ − ∂µ∂νδρσ − ∂ρ∂σδµν +
1

4
2δµνδρσ

)

1

2
,

$µν = ∂µ∂ν
1

2
− 1

4
δµν ,

11
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we have the relations

P 2
1 = P1, P1P2 = P2, P 2

2 =
2

3
P2 +

4

9
$$, P1$ = $, P2$ = $, tr$$ =

3

4
.

The lagrangian, written as

L1 +
3

4
C22C = −1

2

(

χ b
)

Q

(

χ

b

)

= −1

2

(

χ b
)

2

[

P1 − P2 −$
−$ 0

](

χ

b

)

,

can be easily inverted to find the propagators, which are

〈(

χ

b

)

(

χ b
)

〉

= −
[

P1 + 3P2 − 16
3 $$ −4

3$

−4
3$ 0

]

1

2
.

The x-space propagators can be written using

−
(

1

2

)

(x,0)

=
1

4π2
1

|x|2 ,
1

22
= − 1

16π2
ln |x|2µ2, 1

23
= − |x|

2

128π2

(

ln |x|2µ2 − 3

2

)

.

The field b does not propagate, because 〈b(x) b(0)〉 =
〈

s
(

C(x) b(0)
)〉

= 0. Similarly, 〈b(x)χµν(0)〉
vanishes on-shell, i.e. when saturated by χ-polarizations satisfying the gauge-fixing condition

∂µ∂νχµν = 0.

The ghosts of the theory are the components Aµ and a way to single out the (two) physical

degrees of freedom is to set

Aµ = ∂µχµν = 0. (3.13)

This condition has no dynamical origin (the theory has Aµ 6= 0) and is here meant for a

pedagogical purpose. Observe that only when Aµ = 0 the field equations reduce to an ordinary

wave equation for χµν , 2χµν = 0. Moreover, the propagator, saturated with χ-polarizations,

becomes |χµν(k)|2/k2 in this case. The gauge-fixing condition ∂µ∂νχµν = 0 gives, in momentum

space,

χ00 + n̂in̂jχij = 2n̂iχ0i, (3.14)

where n̂i = ki/k0, i = 1, 2, 3, and k20 = k2i . When Aµ = 0, the additional conditions ∂µχµi = 0

give

n̂jχij = χ0i,

which, reinserted into (3.14), also give

χ00 = n̂iχ0i,

i.e. ∂µχµ0 = 0, justifying (3.13). The condition of vanishing trace for χµν gives χii = −χ00 =

n̂in̂jχij. We have therefore

|χµν |2 = |χij |2 + |χii|2 − 2|n̂jχij |2.

12
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Let us choose n̂i = (0, 0, 1). The condition χii = n̂in̂jχij gives χ22 = −χ11 and finally

|χµν |2 = 2(|χ11|2 + |χ12|2) ≥ 0.

Concluding, the two physical degrees of freedom are χ11 and χ12, the unphysical degrees of

freedom are Aµ. The question is which of the two prevail in c and a. If the central charges are

positive, the physical degrees of freedom prevail over the unphysical ones. We compute c and

a in section 4.

3.3 Arbitrary integer spin

Let χµ1···µs be a completely symmetric and completely traceless tensor. Invariance of the action

under the transformation

χµ1···µs → |x|2Iν1µ1
(x) · · · Iνsµs

(x)χν1···νs (3.15)

fixes uniquely the lagrangian

L1 =
1

2
(∂αχµ1···µs)

2 − s

s+ 1
(∂αχαµ2···µs)

2,

up to the overall factor and total derivatives. L1 reduces to the usual vector lagrangian for

s = 1 and to the free real-scalar theory for s = 0. The action is invariant under the gauge

transformation

δχµ1···µs = ∂µ1
· · · ∂µsΛ− traces,

which, as before, is compatible with (3.15), when taking into account that Λ has dimension

1− s and transforms as Λ→ |x|2(1−s)Λ under coordinate inversion.

The field strength reads

Fµνµ2···µs = ∂µχνµ2···µs − ∂νχµµ2···µs −
1

s+ 1

s
∑

i=2

(

δµµi
∂αχανµ2···µ̂i···µs

− δνµi
∂αχαµµ2···µ̂i···µs

)

.

A hat denotes indices that have to be omitted. As before, the field strength is gauge-invariant

and conformal. It is completely symmetric in µ2 · · ·µs and antisymmetric in µν. Furthermore, it

is completely traceless, not only in the indices µ2 · · ·µs, but also with respect to the remaining

contraction:

Fµννµ3···µs = 0. (3.16)

Finally, it satisfies the cyclic condition

Fµναµ3 ···µs + Fαµνµ3···µs + Fναµµ3···µs = 0. (3.17)

The conformal, positive-definite lagrangian can be written as

L =
1

4
(Fµνµ2···µs)

2.

13
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The field equations and Bianchi identities are

∂µFµα1···αs + perms(α1 · · ·αs) = 0, ∂µF̃µα1···αs + perms(α1 · · ·αs) = 0.

Dual and self-dual field strengths are defined as

F̃µνα2···αs =
1

2
εµνρσFρσα2···αs , F±

µνα2···αs
=

1

2

(

Fµνα2···αs ± F̃µνα2···αs

)

and satisfy the traceless and cyclic conditions (3.16) and (3.17).

There is a topological invariant, proportional to the integral of

Fµνµ2···µs F̃µνµ2···µs = ∂µ (εµνρσχνµ2···µsFρσµ2···µs) .

The equality can be proved by using the Bianchi identity and (3.16).

The stress tensor (see the discussion of sect. 4.1) is

Tµν = const. F+
µα1···αs

F−
να1···αs

.

Tracelessness is straightforward, while the proof of conservation follows the same line as in the

spin-2 case. The procedure to fix the overall factor and the comparison with the Noether tensor

are discussed in detail for s = 2. Higher-spin tensor currents can be constructed using the

recipes of [26, 27].

3.4 Implications of the higher-derivative gauge invariance on correlators

The general form of the two-point function of a conformal composite operator Oµ1···µs with spin

s is, in the notation of [26, 27]:

〈Oµ1···µs(x) Oν1···νs(0)〉 = cs
1

(|x|µ)2hs

∏(s)

µ1···µs,ν1···νs

(

1

|x|4
)

, (3.18)

where
∏(s)

µ1···µs,ν1···νs
is the unique differential operator of degree 2s that is completely symmetric

and traceless in µ1 · · ·µs and ν1 · · · νs, symmetric in the exchange µ↔ ν, conserved with respect

to any index. For example, πµν = ∂µ∂ν − δµν2 for s = 1, while
∏(2)

µν,ρσ = 1
2(πµρπνσ + πµσπνρ)−

1
3πµνπρσ. The factor cs is a constant (higher-spin central charge) and hs is equal to δs − s− 2,

where δs is the total dimension of the operator Oµ1···µs .

If the operatorOµ1···µs couples to a conformal higher-spin field χµ1···µs , via a vertex Oµ1···µsχµ1···µs ,

then the following “multiple-conservation” condition holds:

∂µ1
· · · ∂µsOµ1···µs = 0. (3.19)

An ordinary conservation condition ∂µsOµ1···µs = 0 implies hs = 0. Instead, applying the

multiple-conservation condition (3.19) to the correlator (3.18), we find that hs can take an

arbitrary integer value between 0 and 1 − s. Consequently, we have the following spectrum of

allowed dimensions:

δs = 2 + s, 1 + s, · · · , 3. (3.20)

14
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Observe that only the operators of dimension 3 need s divergences to be annihilated. Operators

of higher dimension are allowed to satisfy more restrictive conditions. In particular, operators

of dimension 2+s can be conserved in the usual sense (∂µ1
Oµ1···µs = 0), operators of dimension

1 + s can be annihilated by two divergences (∂µ1
∂µ2
Oµ1···µs = 0), etc.

The Ferrara–Gatto–Grillo theorem [9] says that in a unitary theory primary conformal

operators with spin-s have dimensions δs ≥ 2 + s. This property is here violated. We see

from (3.20) that the minimal allowed dimension is 3. This feature is relevant to the conformal

hypothesis stated in the introduction: the interaction vertex

Oµ1···µsχµ1···µs

is renormalizable if Oµ1···µs is such an operator of dimension 3; therefore, in our theories,

renormalizable higher-spin interactions are not ruled out in a trivial way (see section 5.1).

4 The spin-2 conformal boson in detail

In this section I study the stress tensor of the spin-2 conformal boson, compute its two-point

function and OPE, and extract the values of the central charges c and a. The result is that

both c and a have positive values.

4.1 Stress-tensor, spin-2 currents and the definitions of c and a

The Noether method produces a non-gauge-invariant, non-symmetric, traceful stress tensor

TN
µν = ∂µχαβFναβ −

1

4
δµνF

2
αβγ .

This operator is conserved in ν (∂νTµν = 0), gauge-invariant and traceless up to total derivatives,

and it does not transform simply under coordinate inversion xµ → xµ/|x|2. For this reason,

it is not easy to use the Noether tensor to extract c and a. Moreover, no improvement term

ψµνλ = −ψµλν appears to be such that TN
µν+∂λψµνλ transform correctly and be gauge-invariant.

There exists, nevertheless, a remarkable spin-2 tensor:

Tµν =
8

3
F+
µαβF

−
ναβ =

4

3
FµαβFναβ −

1

3
δµνF

2
αβγ , (4.21)

which appears to have the desired properties. We are going to show that this tensor gives

sensible definitions of c and a and compute their values.

The unusual factor will be fixed in the next section by checking the Poincaré algebra in the

operator-product expansion.

It is straightforward to show that Tµν is traceless, gauge-invariant and conserved when the

field equations (3.10) are satisfied, and transforms correctly under coordinate inversion. For

the proof of conservation we observe that the cyclic identity also implies

Tµν =
8

3
F+
µαβF

−
νβα.
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The difference ∆ between the two forms for Tµν is proportional to F+
µαβF

−
ν[βα], the brackets

denoting antisymmetrization. The cyclic identity in (3.9) can be expressed as Fµνα − Fµαν =

Fανµ. Similar expressions hold for F̃ and F±. We have therefore ∆ ∼ F+
µαβF

−
αβν . Using the

cyclic identity once more on F+ we arrive at ∆ ∝ F+
αβµF

−
αβν = 0.

We are going, with some abuse of language, to call “stress tensor” the spin-2 current (4.21),

because this helps us use formulas from the literature. It is clear, on the other hand, that it is a

fairly new object and demands a special study. At the moment, however, I cannot characterize

it any better, and the properties outlined here are meant to draw attention to it.

4.2 Computation of c

The field-strength propagator 〈Fµνα(x) Fρσβ(0)〉 is, by conformal invariance, 1/|x|2d times a

linear combination of the following three conformal structures:

C
(1)
µνα,ρσβ(x) = (Iµρ(x)Iνσ(x)− Iµσ(x)Iνρ(x))Iαβ(x),

C
(2)
µνα,ρσβ = (IµβIνρ − IνβIµρ)Iσα − (ρ↔ σ),

C
(3)
µνα,ρσβ = (δµαIνρ − δναIµρ)δσβ − (ρ↔ σ),

where d is the dimension of F (2 in the free-field limit). The trace and cyclic conditions (3.9) fix

the combination of C(1), C(2) and C(3) uniquely up to the overall factor, which can be found by

direct inspection, using the χ-propagator worked out in the previous section. The final result

reads

〈Fµνα(x) Fρσβ(0)〉 =
1

2π2
1

|x|4
(

2 C
(1)
µνα,ρσβ − C

(2)
µνα,ρσβ + C

(3)
µνα,ρσβ

)

. (4.22)

A good check is that this correlator satisfies the field equations (3.10).

With (4.22) we find the two-point function:

〈Tµν(x) Tρσ(0)〉 =
4

45π4

∏(2)

µν,ρσ

(

1

|x|4
)

,

and this defines the central charge c. We have

c =
32

45
.

4.3 OPE structure and computation of a

The OPE structure exhibits novel features with respect to the ordinary theories. In particular,

the presence of ghosts is exhibited by higher-spin composite operators of low dimensionality.

The OPE of two stress tensors contains: the central charge c, with singularity 1/|x|8; the stress
tensor itself, with singularity 1/|x|4; higher-spin currents of dimension 2+s, 1+s, · · · 3, where s
is the spin; descendants and regular terms. The first higher-spin current is a spin-4, dimension-4

operator appearing at the same level as the stress tensor (singularity 1/|x|4). This operator

reads

O(4)
µνρσ =

′
∑

perms(µνρσ)

F+
αµνF

−
αρσ − traces.
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The primed sum is understood to be divided by the number of permutations. The operator

O(4)
µνρσ satisfies the multiple-conservation condition ∂µ∂ν∂ρ∂σO(4)

µνρσ = 0. The proof of this fact

is lengthy and involves repeated use of the cyclic identity and the field equations. Observe in

particular that ∂µ∂νFαµν = 0 on the solutions to the field equations. I illustrate the strategy

of the proof on the most involved term, which is

∂ρ∂σF
+
αµν ∂µ∂νF

−
αρσ .

First, we exchange µ and ρ by using the property of self-duality in αµ and anti-self-duality in

αρ. We then use the cyclic identity on F−
αµσ and arrive at

−∂ρ∂σF+
αρν ∂µ∂ν(F

−
µσα + F−

σαµ).

We use the field equations to replace ∂µF
−
µσα with ∂µF

−
αµσ and observe that we obtain a term

identical to the one we started from. We move it on the left-hand side and write

∂ρ∂σF
+
αµν ∂µ∂νF

−
αρσ =

1

2
∂ρ∂σF

+
αρν ∂µ∂νF

−
ασµ.

Now we use the cyclic identity on F+
αρν and get

−1

2
∂ρ∂σ(F

+
ρνα + F+

ναρ) ∂µ∂νF
−
ασµ.

Using the field equation ∂ρF
+
ρνα = ∂ρF

+
αρν we finally arrive at

−1

4
∂ρ∂σF

+
ναρ ∂µ∂νF

−
ανµ = −1

4
∂ρ∂σF

+
σαρ ∂µ∂νF

−
ασµ = 0.

The other non-trace terms in O(4)
µνρσ can be shown to vanish in a similar way. Finally,

the trace terms always contain the stress tensor and obey the multiple-conservation condition

because the stress tensor is conserved.

In the basis of [26] we find the OPE expansion

Tµν(x) Tρσ(0) =
4

45π4

∏(2)

µν,ρσ

(

1

|x|4
)

+
1

4π2
Tαβ(0)

[

SPµν,ρσ;αβ

(

1

|x|2
)

+
3

32

∏(2)

µν,ρσ
∂α∂β

(

|x|2 ln |x|2µ2
)

− 5

32

∏(3)

µνα,βρσ

(

|x|2 ln |x|2µ2
)

]

+
1

4π2
O(4)

αβγδ(0)

[

− 1

45

∏(2)

µν,ρσ
∂α∂β∂γ∂δ

(

|x|4 ln |x|2µ2
)

+
5

126

∏(3)

µνα,ρσβ
∂γ∂δ

(

|x|4 ln |x|2µ2
)

− 1

216

∏(4)

µνρσ,αβγδ

(

|x|4 ln |x|2µ2
)

]

+ less singular terms + descendants + regular terms, (4.23)

17



99
A
6
R
en

or
m

the structure SPµν,ρσ;αβ

(

1
|x|2

)

being the generator of the Poincaré algebra. The overall coef-

ficient of Tµν has been fixed by matching the coefficient of TαβSPµν,ρσ;αβ

(

1
|x|2

)

in the OPE,

which is universal and has to be equal to 1/4π2.

In the calculation of the above OPE, it is necessary to extract the spin-2 content from the

product F+
µναF

−
ρσβ+F

−
µναF

+
ρσβ . It can be proved that the stress-tensor content of this expression

is fixed uniquely by the symmetry properties in the indices, the cyclic identity, the tracelessness

of F, and relations such as F+
αβνF

−
αβσ = 0, F+

µαβF
−
ναβ = 3

8Tµν , with the result

F+
µναF

−
ρσβ + F−

µναF
+
ρσβ →

3

128
(−2δµσδνρTαβ + 2δµρδνσTαβ + 3δβσδνρTαµ − 3δβρδνσTαµ

−3δβσδµρTαν + 3δβρδµσTαν − δβνδµσTαρ + δβµδνσTαρ + δβνδµρTασ − δβµδνρTασ − δασδνρTβµ
+δαρδνσTβµ + δασδµρTβν − δαρδµσTβν + 3δανδµσTβρ − 3δαµδνσTβρ − 3δανδµρTβσ + 3δαµδνρTβσ

+4δασδβνTµρ − 4δανδβσTµρ + 5δαβδνσTµρ − 4δαρδβνTµσ + 4δανδβρTµσ − 5δαβδνρTµσ

−4δασδβµTνρ + 4δαµδβσTνρ − 5δαβδµσTνρ + 4δαρδβµTνσ − 4δαµδβρTνσ + 5δαβδµρTνσ ) .

The expression on the left-hand side contains also O(4)
µνρσ , which is however orthogonal to the

stress tensor and so does not contribute to c and a.

We can define our a in the following way. The scalar, spinor and vector OPE terms (TT )T

are a basis for the OPE structure [26]. We use the stress-tensor two-point function and the

TT OPE to associate effective numbers ns,f,v of scalars, fermions and vectors to the spin-2

conformal field and then apply the free-fields formulas for c and a.

We write

〈(TT )T 〉 = ns〈(TT )T 〉s + nf 〈(TT )T 〉f + nv〈(TT )T 〉v .
Here (TT ) means that we take the limit in which the distance between the first two T -insertions

tends to zero, and so we can use the OPE calculated above. On the right-hand side, 〈(TT )T 〉s,f,v
denote the corresponding expressions for one free real scalar, one fermion and one vector, which

can be read in [26]. Clearly, only the T -content of the OPE is relevant in the limit we are

considering: 〈(TT )T 〉 = (TT )T 〈T T 〉, where (TT )T denotes the structure multiplying T in the

TT OPE. For example, (TT )T is the structure contained between the first square brackets in

(4.23). We have

c (TT )T =
1

120

[

ns(TT )
T
s + 6nf (TT )

T
f + 12nv(TT )

T
v

]

. (4.24)

Using the two-point functions and OPEs of free fields [26] we arrive, by comparison, at

ns = 0, nf =
256

27
, nv =

64

27
.

Observe that ns = 0 can be inferred immediately from the OPE. Scalar fields produce a structure

(TT )Ts with the maximal number of uncontracted xµ’s (six), vector fields give a structure (TT )Tv
with the minimum number (two) and (TT )Tf , for the spinors, contain four uncontracted xµ’s. A

quick inspection of the propagator shows that our structure (TT )T cannot contain more than

four uncontracted xµ’s.
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The final result is

c =
32

45
, a =

848

1215
,

c− a
c

=
1

54
.

We see that both c and a are positive, as well as nf and nv, and that c is “almost” equal to a,

but slightly greater.

The procedure used to calculate c and a (4.24) guarantees that these values parametrize the

trace anomaly in the appropriate way. However, we cannot write for the trace anomaly a closed

expression such as (1.1), which makes use of the coupling to external gravity, and we need to

work always at the level of correlators and OPEs. It is meaningful, nevertheless, to truncate

the right-hand side of (1.1) to the quadratic terms in an expansion of the gravitational field

around flat space.

We have therefore shown that c and a can be appropriately defined in our theories despite

the absence of a coupling to external gravity, and that they are positive. Some issues need to

be better understood, for example the relation (if any) between the gauge-invariant tensor Tµν
and the Noether tensor.

The O(4)
αβγδ-content of the OPE can be extracted with the replacement

F+
µναF

−
ρσβ + F−

µναF
+
ρσβ → δνσO(4)

αβµρ − δνρO
(4)
αβµσ − δµσO

(4)
αβνρ + δµρO(4)

αβνσ .

The presence of this multiply-conserved, spin-4, dimension-4 operator, absent in ordinary the-

ories, is here emphasized, as a good illustration of the new features of higher-spin conformal

field theory and the role of the multiple-conservation condition. The hope is that the ghost

degrees of freedom, or spin-s operators with dimension lower than 2+ s, might be controlled in

some way. A sufficiently strong interaction might raise the dimensions of all operators. I recall

that the Nachtmann theorem [8], in unitary theories, states that the anomalous dimensions

of the higher-spin currents generated by the singular terms of the OPE are to some extent

correlated [24, 25] (e.g. the anomalous dimensions increase with the spin and the magnitude of

the interaction). It is conceivable that a similar result here would ensure that below a certain

energy threshold, when the interaction is sufficiently strong, the theory is perfectly unitary, i.e.

all spin-s operators have dimension greater than or equal to 2 + s.

4.4 Antisymmetric conformal tensors

With antisymmetric tensors, many of the nice features of symmetric tensors disappear. In

particular, conformal invariance spoils both the positivity of the action and gauge invariance.

A 2-form Aµν has the conformal-invariant action

S =
1

2

∫

[

(∂αAµν)
2 − 4(∂αAαν)

2
]

.

With Aµν = ∂µζν − ∂νζµ we find S = −1
2

∫

(∂αAµν)
2, so that the action is not positive-definite

and gauge invariance is completely lost. The theory can be coupled in a (classically) conformal

way to Abelian and non-Abelian gauge fields, as well as gravity. Renormalizable couplings to
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symmetric higher-spin conformal fields is instead problematic. For example, a coupling of a

complex antisymmetric tensor with a spin-3 field of the Pauli type, such as

igFµναβAµαĀνβ = O(3)
µνρχµνρ + total derivatives

vanishes because of the cyclic identity.

The Aµν -field equations and propagator read

2Aµν−2∂α(∂µAαν+∂νAµα) = 0, 〈Aµν(x)Aρσ(0)〉 =
−1

8π2|x|2 (Iµρ(x)Iνσ(x)− Iµσ(x)Iνρ(x)) .

Observe that the propagator is reflection-negative. We conclude that antisymmetric conformal

tensor fields are much less interesting than the symmetric tensors.

5 Conformal fermionic fields

A spin-(s+ 1/2) field is described by a spinor ψµ1···µs with s Lorentz indices, completely sym-

metric and traceless.

The transformation of the spinor under coordinate inversion is

ψµ1···µs → |x|2x/γ5Iν1µ1
(x) · · · Iνsµs

(x)ψν1···νs .

The contraction γβψβµ2···µs
transforms as a spin-(s− 1/2) conformal spinor. Further contrac-

tions with gamma matrices are automatically zero, owing to complete tracelessness. Instead
∑s

i=1 γµi
γαψαµ1···µ̂i···µs

transforms as a spin-(s+ 1/2) spinor. Therefore we can always impose

γαψαµ2···µs = 0 (5.25)

and preserve conformal invariance. Under this condition the most general conformal lagrangian

is simply

L =ψµ1···µs
∂/ψµ1···µs , (5.26)

any other possible term vanishing because of (5.25). The proof that (5.26) transforms correctly

is rather lengthy, but straightforward. To make (5.25) manifest, we can insert appropriate

projectors:

L=
(

ψµ1···µs
− 1

2(s+ 1)

s
∑

i=1

ψαµ1···µ̂i···µs
γαγµi

)

∂/

(

ψµ1···µs −
1

2(s + 1)

s
∑

i=1

γµi
γαψαµ1···µ̂i···µs

)

=

=ψµ1···µs
∂/ψµ1···µs −

s

s+ 1
ψαµ2···µs

γα∂βψβµ2···µs
− s

s+ 1
ψαµ2···µs

γβ∂αψβµ2···µs

+
s(s+ 2)

2(s+ 1)2
ψαµ2···µs

γα∂/γβψβµ2···µs
.

The field equations are

∂/ψµ1···µs =
1

s+ 1

s
∑

i=1

γµi
∂αψαµ1···µ̂i···µs

.
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Condition (5.25) is not sufficient to eliminate the ghosts of the theory. We see that no

gauge invariance survives and the theory can be straightforwardly coupled to Abelian and non-

Abelian gauge fields, as well as gravity. In particular, c and a can be defined in the usual way.

In the next section, I discuss the case s = 1 in detail and compute the contribution of conformal

spinors to the gauge beta function.

5.1 Spin 3/2

For s = 1 the action

S =

∫

L =

∫

ψµ

[

∂/ψµ −
1

2
γα∂µψα −

1

2
γµ∂αψα +

3

8
γµ∂/γαψα

]

=

=

∫

ψµPµν∂/Pνρψρ, Pµν = δµν −
1

4
γµγν

is invariant under coordinate inversion, the field being transformed as

ψµ → |x|2x/γ5Iνµ(x)ψν .

The field equations are

∂/ψµ =
1

2
γµ∂ · ψ, (5.27)

bearing in mind that γ · ψ = 0. The field equations imply also

(2δµν − ∂µ∂ν)ψν = 0, ∂/∂ · ψ = 0.

The transversal component of ψµ obeys an ordinary wave equation, while ∂ ·ψ obeys the Dirac

equation. The transformation δψµ = ∂µε is not a symmetry, however, since it preserves neither

γ · ψ = 0 nor (5.27).

Our theory coincides with the theory called “singular” by Haberzett in the context of the

nuclear theory of hadronic resonances: see formula (40) of ref. [17]. Its conformal invariance,

and the unicity of the theory in this respect, is here emphasized.

I investigate in detail the coupling to Abelian and non-Abelian gauge fields, obtained by

covariantizing the derivatives:

L =
1

4
(F a

µν)
2 + ψ

i
µ

[

D/ijψj
µ −

1

2
γαD

ij
µ ψ

j
α −

1

2
γµD

ij
αψ

j
α +

3

8
γµD/

ijγαψα

]

.

Here a is the index of the fundamental representation of the gauge group G, and i, j are

indices of the matter representation R. The notation for the covariant derivative is Dij
µ ψ

j
ν =

∂µψ
i
ν + g(T a)ijAa

µψ
j
ν , as usual. The spin-3/2 propagator is

〈ψi
µ(k) ψ

j
ν(−k)〉=−

iδij

k2

[

k/δµν − kµγν − kνγµ +
1

2
γµk/γν +

2

k2
kµk/kν

]

=− iδ
ij

k2
Pµαk/

(

δαβ + 2
kαkβ
k2

)

Pβν
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and the vertex is

〈ψi
µ ψ

j
ν A

a
ρ〉 = −gT a

ijPµαγρPαν .

The theory is conformal at the classical level, and scale invariance is broken, as usual, by

the radiative corrections at the quantum level. I have computed the one-loop beta function of

this model in two different ways (gluon self-energy and three-gluon vertex), with the result

β(g) = − g3

48π2
[

11C(G) − 20C(R3/2)− 4C(R1/2)
]

.

The correction due to our spin-3/2 field is the term proportional to C(R3/2), while the term

proportional to C(R1/2) is the usual spin-1/2 contribution, here inserted for comparison.

We see that this peculiar type of “matter” contributes to the beta function with the same

sign as ordinary matter. For C(R3/2) .
11
20C(G) the one-loop beta function is arbitrarily small

with respect to the higher-order corrections, which allow us to conclude that there is a non-

trivial IR fixed point, trustable in perturbation theory, and a conformal window, which is the

main reason why these theories are an interesting laboratory of models for the ideas of [1].

Similar arguments extend to arbitrary half-integer spin. Note that our theories, in spite of

their non-unitarity, are renormalizable and are not higher-derivative. For this reason we do

not compare our results, for example, with the supergravity calculations, which cannot give

evidence of a conformal window.

6 Conclusions

We have explored higher-derivative theories and higher-spin conformal theories, and studied

the central charges c and a, their positivity properties, the existence of renormalizable cou-

plings and conformal windows. These theories are good toy models for investigations in the

spirit of [1, 5], the study of questions concerning quantum irreversibility and the search for

a unified description of higher- and lower-spin fields. Antisymmetric conformal tensors and

higher-derivative theories exhibit severe violations of positive-definiteness and reflection posi-

tivity. Instead, there is evidence that higher-spin conformal symmetric tensors and fermions

have positive c and a. The symmetric tensors, moreover, have a positive-definite action and

a peculiar gauge symmetry. These properties, I believe, make higher-spin conformal theories

worthy of attention, even if they are not unitary.
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[12] F. Bayen, Thèse, Université de Dijon (1970).

[13] M.S. Drew and J.D. Gegenberg, Conformally covariant massless spin-two field equations,

Nuovo Cim. A 60 (1980) 41.

[14] S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally flat

spaces, Phys. Lett. B 132 (1983) 321.

[15] A.O. Barut and B. Xu, On conformally covariant spin-2 and spin-3/2 equations, J. Phys.

A: Math. Gén. 15 (1982) L207.

[16] C. Delfino Galles, A conformal gauge for the spin-2 field, Nuovo Cim. Lett. 42 (1085) 382.

[17] H. Haberzett, Propagation of a massive spin-3/2 particle, nucl-th/9812043.

23



99
A
6
R
en

or
m

[18] V. Pascalutsa and R. Tiemmermans, Field theory of nucleon to higher-spin baryon transi-

tions, Phys. Rev. C 60 (1999) 042201 and nucl-th/9905065.

[19] T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11

(1975) 2856.

[20] R.J. Riegert, A non-local action for the trace anomaly, Phys. Lett. B 134 (1984) 56.

[21] I. Antoniadis and E. Mottola, 4-D quantum gravity in the conformal sector, Phys. Rev.

D45 (1992) 2013.

I. Antoniadis, P.O. Mazur and E. Mottola, Criticality and scaling in 4D quantum gravity,

Phys. Lett. B 394 (1997) 49 and hep-th/9611145.

[22] S.D. Odintsov, Curved space-time formulation of the conformal sector of 4D quantum

gravity, Z. Phys. C 54 (1992) 531.

[23] A. Pais and G.E. Uhlenbeck, On field theories with non-localized action, Phys. Rev. 79

(1950) 145.

[24] D. Anselmi, The N=4 quantum conformal algebra, Nucl. Phys. B 541 (1999) 369 and

hep-th/9809192.

[25] D. Anselmi, Quantum conformal algebras and closed conformal field theory, Nucl. Phys.

B 554 (1999) 415 and hep-th/9811149.

[26] D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys. B 541

(1999) 323 and hep-th/9808004.

[27] D. Anselmi, Higher-spin current multiplets in operator-product expansions, Class. and

Quantum Grav. 17 (2000) 1383 and hep-th/9906167.

24


	Statement of the problem
	Other motivations for the approach suggested here

	Higher-derivative conformal field theories
	Conformal bosonic fields
	Field strength
	Propagator and ghosts
	Arbitrary integer spin
	Implications of the higher-derivative gauge invariance on correlators

	The spin-2 conformal boson in detail
	Stress-tensor, spin-2 currents and the definitions of c and a
	Computation of c
	OPE structure and computation of a
	Antisymmetric conformal tensors

	Conformal fermionic fields
	Spin 3/2

	Conclusions

