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1 Introduction

Amid the exploration of new quantum field theories and their properties, complex poles
have made their appearance both as a general proof of concept [1-7] and in as diverse
physical scenarios as modified electrodynamics (Lee-Wick theory) [8-12], a modified Higgs
sector [13, 14], standard gauge theories and quantum chromodynamics (QCD) [15-21] and
quantum gravity [22-30] (see also [31, 32]). Interest in complex poles has been dictated
by the fact that, according to the evidence available in all known accounts, they respect
perturbative unitarity when they are present in complex-conjugate pairs. This can be
exciting news because, on one hand, one can construct higher-derivative theories based
on complex pairs, which have the improved renormalizability typical of higher-derivative
models without the hindrance of ghosts. On the other hand, in nonlocal theories such
as nonlocal quantum gravity [33-36] and fractional quantum gravity [30, 37, 38], complex-
conjugate pairs may be hidden in operators with infinitely many derivatives [39] but, again,
they do not spoil renormalizability and unitarity.

It may come as an unpleasant surprise that all these models suffer from a problem
which is not as well known as it would deserve: if scattering amplitudes are not defined
extra carefully, Lorentz invariance is broken at the quantum level. Nakanishi [12] was
the first to point it out in the context of Lee—Wick theory. Let P and P* denote the
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particles in a pair with complex-conjugate masses. For our purpose, we can assume that
such masses are purely complex, +iM? with M real. According to [12], the breaking of
Lorentz invariance already occurs at the level of a bubble diagram with P in an internal
line with momentum % and propagator!

i

Gk, iM?) = ——
( 7Z ) ka—}'ZMz’

M eR, (1.1)
and P* in the other internal line with momentum p+k and propagator —i/[(p+k)? —iM?].
This result does not change if one takes all combinations of bubble diagrams with the
particles P and P*, namely, the sum of four bubbles with internal lines corresponding to
P-P*, P*-P, P-P and P*-P*, even if the total is equivalent to a single bubble diagram with
a Lorentz-invariant integrand. In this case, internal lines correspond to the propagators of
the pairs —i/(k* + M*) and —i/[(p + k)* + M*] instead of the single particles.

In sections 2 and 3, we recall in a novel, simplified way that the problem arises because,
if one defines the physical amplitude of a theory with complex masses as the analytic
continuation of the Euclidean amplitude, in the same way as in standard quantum field
theory (QFT), then the optical theorem is violated. This problem is what led to the
Lee—Wick prescription in the first place [8-10]. Then, we show that Lorentz symmetry is
manifestly violated when one integrates the loop energy along the Lee—Wick complex path
while keeping the space components of the loop momentum real. We refer to this procedure
as the Lee-Wick—Nakanishi (LWN) prescription, to distinguish it from Lorentz preserving
approaches to Lee-Wick theories, such as the one of [11]. This symmetry breaking depends
neither on the details of the action nor on the choice of contour. Whether a complex pole
is isolated or paired to its conjugate is also irrelevant.

This sounds like a fatal blow to the above constructions in quantum gravity and in other
contexts, including relatively orthodox models of gauge theories and quark confinement in
QCD [16-20]. Fortunately, the cure has already been known since a while and the key
is how one defines loop integrals. As we show in an example with real masses, Lorentz
violation is actually not a physical issue intrinsic to complex masses but a general technical
problem arising when integrands have denominators with finite real and complex parts.
These integrals are of the type

f(x)
/dxm, R>y#0, (1.2)
where y is not infinitesimal. In theories with complex-valued masses, the LWN prescrip-
tion essentially leads to the same problems as for loop integrals with Euclidean internal
momenta and Lorentzian external ones. If one moves forward with respect to the plain
LWN prescription, Lorentz invariance may be restored at all perturbative orders without
altering unitarity. One manifestly Lorentz invariant approach is the one by Cutkosky—
Landshoff-Olive-Polkinghorne (CLOP) [11], which leaves room for ambiguities at high
orders. A different approach is to restore Lorentz invariance by deforming the integrals on
spatial momenta to complex paths [40]. The latter is one of the ingredients of the fakeon or

'We use signature (—,+,...,4).
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Anselmi-Piva (AP) prescription [40-45], a general recipe to remove ghost modes from the
physical spectrum of quantum field theories. This seemingly technical point is sufficient to
solve the physical problem of avoiding violations of one of the best constrained symmetries
in Nature. However, its involved formulation has so far contributed to the aura of mystery
around the topic of Lorentz symmetry in the presence of particles with complex masses.

Section 4 of the present paper aims at filling this gap and presenting the AP prescription
in as pedagogical terms as possible. We do this with a one-loop example with complex
poles in D = 1 + 1 spacetime dimensions, showing how a specific path in the complex
plane of spatial momentum restores Lorentz invariance of the bubble diagram. In the same
section, we also describe a notable simplification for calculations with this procedure, first
used in [26, 40].

The net conclusion we can draw from what is found in this paper are that, when we
define a scattering amplitude in QFT in the presence of complex poles, we face a choice
among the following four alternatives (table 1):

e By-the-book prescription: the calculation is done with Euclidean internal and exter-
nal momenta. At the end, the amplitude is Wick rotated by means of the usual
analytic continuation. Lorentz symmetry is preserved, analyticity holds but the opti-
cal theorem is violated. This is the standard prescription in ordinary QFT with real

poles.

e LWN prescription: the calculation is done with Lorentzian internal and external
momenta. The loop energy k° is integrated over the Lee-Wick path, which we dub
I'tw from now on, and the space components of the loop momenta are integrated
over real values. The optical theorem holds but Lorentz symmetry and analyticity

are violated.

e Fakeon or AP prescription: the same as for the LWN prescription but spatial internal
momenta are integrated on a specific complex path; equivalently, the calculation is
first done with Euclidean internal and external momenta and then one averages the
analytic continuations around branch cuts (this procedure is called average continu-
ation). The optical theorem and Lorentz symmetry hold but analyticity is violated.

o Direct Minkowski prescription: the calculation is done directly with Lorentzian loop
momenta (all integrated on R”) and Lorentzian external momenta. Then, Lorentz
invariance and analyticity are preserved but the optical theorem and the locality of
counterterms are violated (see [46] and appendix A).

In physical terms, the least harmful violation is that of analyticity, which is a mere mathe-
matical property. Lorentz symmetry and unitarity are, in contrast, requirements with wide
physical consequences. Having local counterterms is also important, since it is related to
the possibility to study renormalizability with power counting and to renormalize the the-
ory explicitly with the Bogoliubov—Parasiuk-Hepp—Zimmermann (BPHZ) scheme [47, 48].
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Prescription Features Lorentz Optical Power Analyticity
invariance  theorem  counting

By-the-book D, ki ke RP~! v/ v/ v/
E—L an. cont.

Lee-Wick—Nakanishi | p, k; k° € Tzw; k € RP™! v v
L, patch-wise

Anselmi-Piva p, k; kK € Tw; ke CP~1 v v v

i, ke; k € RP-1
E—L avg. cont.

Direct Minkowski p, k; k° € R; ke RP~! v v
L

Table 1. Prescriptions on scattering amplitudes in QFTs with complex poles. “E” stands for
Euclidean and “L” for Lorentzian.

The problem of the LWN prescription in preserving Lorentz invariance is that it forces
D —1 of the integration variables k* (k) to stay real, while only one of them (k°) is allowed
to take complex values. Lorentz transformations mix these variables and thus make it
impossible to satisfy the LWN condition on k in all references frames. In section 4, we
note that it is possible to restore Lorentz invariance by deforming the integration domain
of spatial momenta from real to complex regions (AP prescription).

We denote the internal and external momenta in Lorentzian signature with k£ and p,

respectively,
k=K k), K =—F)2+1k*, p=0"p), pP=-0")+Ip*, (13

reserving the symbols kg and pg for the internal and external momenta in Euclidean sig-
nature:

ki = (kp,k), ki=kh+|k*,  ph=(p.p), pPE=0phH+|p. (1.4)

Fuclidean amplitudes will be denoted by the symbol M, while Lorentzian amplitudes will
carry a subscript indicating the prescription adopted.

Appendix A recalls the problems of the direct Minkowski prescription, while ap-
pendix B revisits how modes with complex masses enter the optical theorem. Appendix C
reports the calculation as well as the analytic and average continuations of the one-loop
bubble amplitude of a prototypical ¢3 model. An example of Lorentz violation in a model
with real masses and mixed Euclidean-Lorentzian signature for internal and external mo-

menta is given in appendix D.

2 Optical theorem and analyticity

In this section, we argue that in the presence of a branch cut the relation between Euclidean
and Minkowskian amplitudes in QFT is not unique a priori: two options are viable, with
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different impacts on the physical contents of the theory, as revealed by the optical theorem.
The standard approach involves the analytic continuation on a specific side of the cut. A
non-analytic alternative, henceforth referred to as the average continuation, is to average
the two analytic continuations around the cut.

With the aim of showing what we mean, we consider the ordinary bubble diagram
in the massless A¢? theory. Using dimensional regularization, the amplitude in Euclidean

space
X[ dPky 1 1
M(pp) = —/ = = : 2.1
(P) 2 (2m)P k2 (kg + pe)? (2.1)
is
)\2 )\2 p2
2y -~ Pe _
M(pE) = (471')28 39,72 |:1n <47‘r> + Yem 2:| + O(E) , (2.2)

where D = 4 — ¢ and 7y is the Euler—-Mascheroni constant, and the logarithm is taken in
its principal branch, so that it is real for real positive values of its argument.

The dependence of the amplitude (2.2) on the external momentum is condensed in the
variable p2, with p2 > 0. We denote the analytic continuation of M(p2) from real positive
values p? to z € C by M(2).

Our task is to switch (2.2) to the Lorentzian signature and define the physical amplitude
in Minkowski spacetime. This demands to extend the function (2.2) from real positive to

real negative z, which can be achieved in two basic ways:?

(i) By analytic continuation pp — —ip® with p° € R} of the function M (p?) from below
the branch cut:

M (p?) = M(p® —ic) (2.3)

where “bb” stands for “by the book,” since this is the standard textbook way to
define the Lorentzian amplitude. As (2.2) has a branch point at z = p? = 0, its
analytic continuation is encoded in that of the function In(z) from real positive to

real negative z passing below the branch point at z = 0. The result is

A2 A2 p? —ie
2
=—————|L -2 O 2.4
Mbb(p ) (47’(’)26 3972 |: D( A > + Vem :| + (6)a ( )
where Ln(z) is the principal branch of the complex logarithm, so that Ln(z) :=
In|z| +iArgz, with —m < Argz < 7, and Ln2? = 2Ln z if Rez > 0, while Ln(2?) =
2Ln(—=z) if Rez < 0.

This procedure defines a complex amplitude with a branch-cut at p?> = 0, corre-
sponding to the threshold of production of real intermediate massless particles, as

we discuss below. Equivalently, one can analytically continue by passing above the
branch point at z = 0, obtaining the complex conjugate amplitude

My, (p%) = M(p? +ie) , (2.5)

2Turning on a mass, as we do in section 3, simply shifts the branch point from z = 0 to some other value
(z = —2 there), but does not change the conclusions below.
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which is useful for studying the optical theorem.

(ii) Alternatively, one can extend (2.2) to real negative z by defining a complex, non-
analytic function piecewise:

M(z) for Rez >0
= . 2.
Mar(2) { M(—=z) for Rez <0 (2:6)
Explicitly, (2.6) can be rewritten as
)\2 )\2 1 p2 2
Map(p?) = @ 32 {iLn [(473 ] + Yem — 2} +0(e). (2.7)

When evaluated for real p?, (2.7) is real. For negative p?, it coincides with the average
of the two analytic continuations (2.4)-(2.5) around the branch point at p? = 0. As a
result, the complex amplitude (2.7) does not have any threshold of production of real
intermediate states. This fact is related to the existence of purely virtual particles
(“fakeons”), which cannot be produced in scattering processes as intermediate real
states, as discussed below.

The two choices (i) and (ii) discussed above have different impacts on the optical
theorem, which encodes the unitarity condition SST = 1 on the S matrix as a condition
on the imaginary part of the complex amplitude. In the instances of interest to us, which
is the bubble diagram, the optical theorem can be graphically written as

21m [(—i)—O—] :/dnf ~<‘2 (2.8)

where the integral in the right-hand side is over the phase space of final states. A phys-

ical implication of this diagrammatic equation (which enforces unitarity at the one-loop
level) is that, if the complex amplitude has a non-zero imaginary part, then the particles
corresponding to the propagators of the internal loop momenta can be produced as real
intermediate states.

In the case (i), the amplitude (2.4) has a branch point at p? = 0, and it has a non-zero
imaginary part for real external momenta such that p?> < 0. That means that particles
corresponding to the internal lines in the bubble can be produced as intermediate states
and must be in the spectrum of the theory. Therefore, if one aims at quantizing fake
particles, e.g., modes which are excluded from the spectrum of the theory, one cannot
define the complex amplitude by means of the procedure of analytic continuation of (2.6)
defined in (i). However, the procedure described in (ii), corresponding to the “average”
between the two possible analytic continuations of (2.6) around the branch point at p? = 0,
gives the right answer for fake particles, as the amplitude (2.7) is real for any real p?, and
the particles in the loop can never be produced as real intermediate states.

Switching to theories with complex poles, the conclusion is the same. In appendix B,
we show that, since the tree propagators

- i (2.9)
(P2 + m2)2 + M4
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are purely imaginary, the contribution of the bubble diagram with circulating fake particles
to the amplitude must necessarily be real, for consistency with the optical theorem (2.8):

2Tm Map(p?) = 0. (2.10)

In conclusion, the simple example discussed in this section shows that consistency
with the optical theorem demands that the complex poles must not be quantized via the
standard analytic continuation (i) but as fake particles, e.g., by means of the averaging
procedure (ii).

3 Prescriptions preserving the optical theorem with complex masses

In this section, we compute the bubble diagram with the propagator (2.9). We show that if
we apply the “by the book” procedure (i.e., calculate the diagram in the Euclidean frame-
work and then define the Minkowskian amplitude by means of the analytic continuation),
the result is not real, in conflict with the optical theorem. If, instead, we use the AP recipe
(average continuation), the result is real (hence agrees with the optical theorem), but not
analytic. Moreover, we show that a new prescription emerges almost by accident through
a subtle yet natural misstep in the calculation.

It may help to view what follows as the generalization of the case discussed in the
previous section to complex-conjugate masses. Consider the Lagrangian

1 O — m?2 2

in D = 4 dimensions, where m and M are real masses. The tree-level propagator is

A
M- 26" (3.1)

. iM?
G(—k?) = NCETSEES T (3.2)

The Euclidean bubble amplitude, evaluated in appendix C.1, is

At [z(1 — 2)p2 + m2)% + (1 — 22)2M*
2 __ 1 E .

“In” being intended as the principal branch. Moreover, hereafter M(z) denotes the analytic
continuation of M (p2) from real positive values p2 to z € C.

We readily note the following fun fact: the argument of the logarithm, which is non-
negative for all Euclidean momenta pg, remains nonnegative when we replace p; with its
Lorentzian version p, for every p. Thus, we may be tempted to believe that the ana-
lytic continuation of (3.3) to Minkowski spacetime is the one obtained by means of the
replacement pg — p, which reads

A2 /1 deL [(1 —2)p? +m?)? + (1 — 2z)?M*
x Ln
0

2y —
Meu(p™) = 12872 [z(1 — x)p? + m?)? + M* ’

(3.4)

where “fM” stands for formal Minkowski. In appendix C.2, we show that this expression
is neither the analytic continuation of (3.3), nor the average continuation of it. The simple
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but non-trivial replacement p? — p? in the integrand of (3.3) is not the AP prescription

studied in the literature, which is given by the average continuation

[(M(©P* — i) + M(p® +ie)] . (3.5)

DO |

Map(p?) =

We have Map(p?) = M(p?) in the zero-mass case (2.6) and (2.7) of the previous
section. Indeed, a Euclidean amplitude is real for any positive z = p2: M(z > 0) € R. If
we further assume the reflection symmetry M(—z) = M(z), then there is no branch cut

on the whole real line. Hence the +ie displacements become irrelevant and
Map(p?) E M@?). (3.6)

If M(z) # M(—=z) for real z, then one cannot draw this conclusion. The specific model
discussed in this section has Map(p?) # M (p?).

In general, the analytic continuation may break the symmetry properties of the inte-
grand in the amplitude. In appendix C.2, we show this by analytically continuing from the
domain 0 < z < 2, which is asymmetric with respect to the imaginary axis. At the time
of writing, we do not have an argument showing that the condition M(z) = M(—z) for
z € R is also necessary.

4 Lorentz breaking and Lorentz restoring

In this section, we demonstrate that the LWN prescription violates Lorentz invariance and
show that the symmetry can be restored by deforming the integration domain in a suitable
way.

According to the LWN prescription, the scattering amplitude should be evaluated by
integrating the loop energy along the Lee-Wick complex path 'y (see figure 1), while
keeping the spatial momenta real. If the result were Lorentz invariant, we would have,
comparing two reference frames:

/ k() L [ 4P f(K ). (4.1)
T'wxRD-1

i xRP—1
However, a finite Lorentz transformation in momentum space
0 ,
ko= AREY = AJKD + A;‘kj (4.2)

does not turn the integration domain into an equivalent one. In fact, since k° is complex
and both the k% and the Lorentz matrix elements are real, then

K = AGE? + ALR (4.3)

must be complex. This violates the LWN prescription that would require k' € RP~!
independently of the frame choice.
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To be specific, observe that integrating the loop energy along the LW path is equivalent
to integrating it along the real line, which gives the “direct-Minkowski” amplitude (A.1),
and adding the contributions of certain residues (see figure 1). The direct-Minkowski
amplitude is manifestly Lorentz invariant (appendix A). On the other hand, the residue
associated with some pole k¥ = kY gives, in a specifice Lorentz frame, a contribution of
the form

/ dk° / Bk f(K° k,p) = / drd®k EO(1) f[K°(7), k. ] , (4.4)
r R3 [0,1]xR3

where I is a small circle around k° parametrized by a real parameter 7 and the dot denotes
the derivative with respect to 7. In another frame, we have the same expression with primes
everywhere. We are assuming that the integrand is a scalar, i.e., f(k”,k',p') = f(k°, k, p).
If there existed a change of variables 7,k — 7/, k’ that induces the Lorentz transformation,
then we could write

L [0k = [ R )R )
! 0,1]x

= / dr &k k(')
[0,1]xR3

Since the function f is arbitrary, to have (4.4) equal to (4.5) we need
o' k)| _ K(r)
8(7-, k;) B ];:O/(Tl) ’

The left-hand side is real, while the right-hand side is complex, since the curves I' and

(' k)

a(t, k) f[kO(T)’k’p]' (4.5)

(4.6)

I are located away from the real axis. This shows that the LWN prescription is not
manifestly Lorentz invariant. The explicit calculation below shows that it does violate
Lorentz symmetry.

The argument does not apply to the case where the poles are located on the real axis,
since the right-hand side of (4.6) is real when the curves I and I' are arbitrarily close to
the real axis.

Now we show that Lorentz invariance is broken by the LWN prescription but can be
restored by deforming the domain of spatial momenta to complex values. We also show
that the domain deformation is equivalent to the average continuation. Besides presenting
the domain deformation in a simpler way, we give a new proof of this equivalence.

The bubble diagram with propagators (2.9) contributes to the amplitude via the inte-

s / dk / Pk M2 M2 wn
- o 27 Jro-1 (2m)P71 (R2)2 + MY [(k +p)?)? + M* '

(0 (1)
where the momenta k and p are Lorentzian, with the caveat that the integral on the loop

gral

energy kU is performed along the Lee-Wick integration path depicted in figure 1.
The propagators have four poles each at k° = E?i, l%?i*, l%gi, %gi*:

BE = 20y, K9E = —po + Qgip,
(I) ];:O:I:* — QO (II) /{?Oi* _ 0 + O ’
1= k> 2 = k+p’
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Im (k]

U Re[k]

Figure 1. The Lee-Wick integration path I'w. The dots are the pY-independent poles, while the
crosses denote the p°-dependent ones.

respectively, where Qg = /q? — iM?.

We write each propagator as the sum of simple poles by partial fraction decomposi-
tion. Then we expand the integrand and integrate each term on k° with the Lee-Wick
contour prescription, using the residue theorem. We do not need to calculate the k integral
explicitly.

The result of the operations just mentioned is a linear combination of

1 1

A) = ; B) = )

( ) Qk+Qz+pip0 ( ) QZ+Qk+pip0

(C) = ! D) = !
_Qk—}—Qk+p:|:p07 _QZ+QZ+p:|:pO’

to be further integrated over k € RP~!. More precisely, we find

520t ME) = [ : 5| s
D;c QkaH’P(Qk? + Qker + p ) Dy, Qka+p(Qk + Qk+p + p )

1 1
/p;; e Qhap(U + Yerp +1°) S G (U + Q5 +9°)

/%
k

+ (" = "), (4.8)

where the integration measure d”~'k/(2m)P~! is understood. With Dy = Dy =D, =
Dy = RP~1 this is the loop integral as Lee and Wick intended it. Later on, we will
deform the integration domains to complex values. The notation used in (4.8) emphasizes
that we will do it by keeping the right-hand side real for p real.

We study M (p) for real spatial momentum p and complex energy p°. If p° is such
that no k makes a denominator vanish, the result is a function M(p) analytic in p°. If p°
is such that some k makes the integrand singular, the function M (p) needs not be analytic
in p°.

,10,
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\/
M

Figure 2. Non-analyticities of the bubble amplitude M(p) in the complex p° plane in D = 2
dimensions for k, € R, with M = 2 and p, = 1.

Note that the singularities of the k integrand occur where both propagators of M
are singular, i.e., (k?)2 4+ M* = 0 = [(k +p)?]2 + M*. (A) and (B) are the same, upon
translating k by —p and reflecting k to —k. Thus, it is sufficient to study one. Moreover,
the singularities of (C) and (D) have no intersection with the real axis and can be put
aside.

For clarity, it is convenient to study the problem in D = 2 dimensions, where the
computations can be done explicitly [49]. There, p and k have just one component: p,
and k;, respectively. Keeping p, € R fixed, the curves drawn by the singularities in the
complex p° plane by varying k, € R are shown in figure 2.

Explicitly, (A) and (B) give the curves

v P = VR i (ke +pe)? M2,
v p0 = —k2 —iM2? — \/(ky + pg)? + iM2. (4.9)

In figure 2, these are the ones that intersect the real p° axis. Such curves are reminiscent
of the branch cuts of an ordinary bubble diagram. The correct cuts, which we identify
below by means of a deformation of the integration domain Dy, to complex values, are half
lines on the real axis contained in the regions A, and A, bounded by  and ~'. The point
is that A, and A, are not cuts, but extended regions. Moreover, they are not Lorentz
invariant.

The singularities of (C) and (D) give the curves of figure 2 that do not intersect the
real axis. Because of this, we do not need to deform the integration domain Dj, to complex
values.

In D > 2 dimensions we reach similar conclusions, with the difference that the inte-
grands are singular not just on the curves v and +/, but everywhere inside A, and A.
The curves of (C) and (D) also turn into extended regions.

— 11 —
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When the external energy p is located outside the regions A, and A/, the function
M(p) coincides with the one given by the by-the-book prescription. Indeed, when p° is
continued to Euclidean values the LW integration path on k° is equivalent to the Euclidean
loop-energy integration.

We want to clarify the properties of the function M(p) when p° is located inside A,
and A/, or at their borders. In D > 2 the k integral on RP~1 is well defined, but the
result M(p) is neither analytic nor Lorentz invariant. In D = 2, M(p) is both analytic
and Lorentz invariant, but physically correct only for —p? > 2M?. The reason is that the
curve -y intersects the real axis in a point that does not have a Lorentz invariant meaning.

The troubles in both D > 2 and D = 2 dimensions are solved by the so-called domain
deformation. Instead of integrating k on RP~!, we integrate it on a deformed, complex
domain Dy, that shrinks the regions A, and A,/ into the expected branch cuts —p? > 2M?
on the real axis. Then we find that the result obtained by evaluating M (p) with —p? > 2M?
from inside A, or A,/ coincides with the average of the two analytic continuations of the
Euclidean M (pg) around the branch point —p? = 2M?2. This operation is what we call
average continuation of the Euclidean result [40].

In D = 2 dimensions (for details in D > 2, see [49]), the domain deformation is worked
out by inverting eqs. (4.9) and expressing k, as a function of the external momentum
p. Squaring (to treat both « and ' at once) and solving, the solutions for a Lorentzian
p* = —(p°)* +p; are

0
ky = —% - i%MZ + 279—]92\/(;92)2 — 4M*, (4.10)

When we keep both p® and p, real (because we want to shrink the whole regions onto
the real axis of the complex p° plane), formula (4.10) tells us that k, is complex. The two
solutions with p real and —p? > 2M? define the deformed domain Dy, in the complex k,
plane. It is plotted in figure 3.

The height of the deformation is proportional to p,. If we choose a Lorentz frame with
pz = 0 (which we can do, since —p? > 0 here), the right-hand side of (4.10) is real and
the regions A, and A,/ are already shrunk onto branch cuts: no domain deformation is
needed. The drawback is that we cannot compute the integral “from the inside.”

The different properties of the computation in different Lorentz frames (p, = 0, p, # 0)
is a manifestation that Lorentz invariance does not hold before the deformation. Yet, by
construction the AP procedure guarantees that Lorentz invariance is ultimately respected.
This means that if our purpose is a mere calculation, rather than studying Lorentz in-
variance and other general properties, we are allowed to choose a special frame at some
intermediate step. In particular, with due caution for integrable singularities, one can fix
p: = 0 before integrating on the internal spatial momenta. Replacing pg — —p? in the
final expression leads to the same result as in the full procedure [26, 40]. This shortcut to
the AP prescription avoids an explicit integration on a complex k path.

Going back to (4.8) and collecting the pieces of information uncovered so far, we can
interpret the integral M(p) in two equivalent ways, one from “outside” and one from
“inside” the regions A, and A

- 12 —
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1.0

0.5¢ .
Imk, 0.0°F
-05F ]
-1.0 .y P S |
-4 -3 -2 -1 0 1 2 3
Re k,

Figure 3. Deformed integration domain for k, in the (Re k,, Im k) plane, with M = 2 and p, = 1.
This is the locus of singularities of the integrand of the bubble diagram in the complex k, plane in
D = 2 dimensions for p° € R and (p°)? > p2 + 2M?, with M = 2 and p, = 1.

1. Average continuation from the outside. As we did in the previous section, we first
compute (C.1), which is the Euclidean version of (4.7), for a Euclidean external
momentum pg. Then we analytically continue the result to the Minkowski domain,
with the caveat that, when we meet the branch cut on the real axis (which occurs
for p such that —p? > 2M?), we average the two analytic continuations around the
cut. This way, the regions A, and A, are never met.

2. Domain deformation from the inside. We compute (4.8) by deforming the integration
domain in k, so as to shrink the regions A, and A,/ onto the real axis. We obtain an
integral that evaluates precisely to the average continuation from the outside. The
proof of this statement is given below.

The fakeon formulation of purely virtual particles is defined by either procedure. The
choice of which one to use practically may depend on the situation at hand.

Theorem 1. The calculations of M(p) by means of 1) the average continuation from the
outside and 2) the domain deformation from the inside give the same results.

Proof. The statement follows from a symmetry argument, combined with continuity. The
first thing to note is that, as long as the regions A, and A,/ have finite extensions, the
loop integral evaluates to a continuous function M (p), because, although the integrand is
divergent in those regions, the singularity is integrable and one-dimensional.

The second observation is that M(p) is real for p real, as is clear from (4.8). Extending
p° to complex values, we have

M(p) = M*(p) for every p. (4.11)

Now, take p° real inside one of the regions A, and A/, and calculate the integral M(p)
there, with Dy, = D), = RP~1. We know that the result is real.

Shrink each region onto the real axis by deforming the domain Djg. Formula (4.8)
ensures that (4.11) holds throughout the deformation. Thus, M(p) is still real for real p
located inside the shrunk regions A, or A./.

,13,
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Consider the limit of M(p) with respect to the shrinking operation, which we denote
by limgp,. What we have just said implies that the imaginary part of the limit “from the
inside” is zero:

Im (limgp, M) = 0. (4.12)

The real part is discussed below.

We compare this result with what we obtain by letting p° tend to the real axis while
staying outside the shrinking regions. In this case the result is not affected by the domain
deformation, because, by construction, the deformation does not cross any singularity of
the integrand. We have two options: reaching the real axis from above and from below.
Equation (4.11) ensures that the imaginary part of the limit from above the real axis is

equal to minus the imaginary part of the limit from below:
Im (limgp,y M) = —Im (limgpy M) . (4.13)

Generically speaking, the two limits can be non-zero. Yet, we do not need their values here.
We just need to know that they are opposite to each other. Since taking the imaginary
part commutes with the limit, we infer that both the imaginary part of the limit of M(p)
from the inside and the sum of the limits of the imaginary parts from above and from
below are zero:

limgp, Im M = 0 = limgp,, | Im M + limgp4Im M .

The relationship between the left-most and right-most sides of this expression can only be

linear, so we equate them up to an arbitrary coefficient «:
limgp, Im M = o (limgp, Im M 4+ limgp4Im M) . (4.14)

As far as the real parts are concerned, continuity and the symmetry (4.11) ensure that

the limit from above coincides with the limit from below, as well as the limit from inside:
limshr Re M = limshriRe M= limshrTReM . (415)

Thus, the limit of the real part from the inside coincides with the average of the limits of
the real parts from above and from below:

1
limg,, Re M = 5 (limshriRe M+ limshrTRe M) . (4.16)

Comparing this expression with (4.14), we can fix & = 1/2 and conclude the proof that the
limit of M(p) from inside one of the regions A, and A, is equal to the average of the two
analytic continuations of M(p) from above the real axis and from below:

limgp, M = (hmshu M+ hmshrT ./\/() , (4.17)

N |

as announced. [ |
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At this point, we know that the result of the domain deformation from the inside, which
is the left-hand side of (4.17), is Lorentz invariant. The line of reasoning is as follows: (7)
the Euclidean result is Lorentz invariant and coincides with the result of the calculation
from outside; (ii) the analytic continuations from above and from below the real axis are
Lorentz invariant; (i7i) so is the right-hand side of (4.17); (iv) so is the left-hand side. We
stress again that the right-hand side, which is calculated from the outside, is not affected
by the domain deformation, which does not cross singularities of the integrand.

5 Conclusions

In this work, we have studied and clarified four different ways to obtain Lorentzian ampli-
tudes in quantum field theories with complex poles: a textbook analytic continuation, the
LWN prescription [8, 9, 12], the fakeon or AP prescription [40—42] and a direct calculation
in Lorentzian signature, which fails to yield a viable quantum theory [46]. Of the above
four prescriptions, only AP is physically viable because it respects both the optical theorem
and Lorentz invariance.

These four ways need not be the only ones that make sense of field theories with
complex poles. We already know one such example, the CLOP procedure [11]. Both
CLOP and the domain deformation advanced here and in [40] deal with the same problem
from two different viewpoints. While the former is manifestly Lorentz invariant, the latter
recovers such symmetry at a second stage. Moreover, the former has ambiguities at high
orders. It would be interesting to better clarify the relationship between the two techniques.

The results presented in this paper are not limited to Lee-Wick models and generalize
to nonlocal theories which may also have a finite number of poles, such as nonlocal quantum
gravity [33-36] and fractional quantum gravity [30, 37, 38]. The only difference to take
into account is that these theories are typically defined in Euclidean momentum space
and then analytically continued ¢ la Efimov to Lorentzian signature [50-55] (Euclidean
external momenta are continued to Lorentzian ones after performing loop integrals). All
the above applies with only one modification, namely, that the integration path in the
internal energies can now be open (no arc at infinity). The classification of prescriptions
for scattering amplitudes presented here holds in these perturbative approaches to quantum
gravity and, in particular, puts unitarity results in fractional gravity on a more solid ground.
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A Troubles with the direct Minkowski prescription

In this appendix, we recall a result of [46], stating that loop integrals of higher-derivative
theories with complex poles have nonlocal divergent parts if they are defined directly in
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Minkowski spacetime. We study once again the bubble diagram of the model (3.1) but
take both internal and external momenta k and p to be Lorentzian from the start.
The amplitude reads

9 A2 dPk 5 o 5 9
Maso?) = 5 [ | =5 G4 6=+ ). (A1)
where “dM” stands for direct Minkowski. Clearly, Mqni(p?) is Lorentz invariant. Moreover,
it is real for real p, which is good for the optical theorem. The problem is that it does not
satisfy the locality of counterterms.

The common rules of power counting do not hold in the direct Minkowski approach
because the propagator does not fall off rapidly enough along light cones. Moreover, since
the propagators have poles located in the first and third quadrants of the complex loop
energy plane, the result is not straightforwardly related to the Euclidean one. Hence, it
does not inherit the usual power-counting behaviour of the Euclidean integral.

The consequence is that the direct Minkowski approach violates the locality of coun-
terterms and the theory is not BPHZ renormalizable. For example, the integral (A.1) has
a nonlocal divergent part in D = 6 dimensions. Nonlocal divergent parts also appear in
D = 4 if the integrand is multiplied by polynomials of £*, brought in by non-trivial vertices,
as in gravity theories.

We briefly describe what happens in D = 6 dimensions, directing the reader to [46] for
the case D = 4. We first integrate on the loop energy k° by means of the residue theorem.
Then we expand the integrand for large |k|. Finally, we integrate term by term in k, using
dimensional regularization. At the end, we obtain the nonlocal divergent part

Mgi\‘//[(p2) — 9 _ /1.3 (p2)2 - Z (AQ)

C2MEN? [ MY 3
3e(4m)3 '

where D =6 — ¢.

B Optical theorem with complex poles

In this appendix, we elaborate on the implications of the optical theorem for theories with
complex poles. Decomposing the S matrix as usual, S = 1 + iT, the optical theorem
—iT +iTT = TT" is another way to write the unitarity equation SSt = 1.

The optical theorem can be expressed diagrammatically by means Cutkosky-Veltman
diagrams, also knows as “cut diagrams”, which are made of two parts, separated by a cut.
One part corresponds to i7" and the other one (here denoted with an asterisk) corresponds
to —iT".

In the instances of interest to us, which are the propagator and the bubble diagram,
the diagrammatic identities read

2Tm [(—i)H] :>7é<+>;ﬁ< - /dnf >7
e [1-Or] - D+ - fon

2
. (B

2
(B.2)
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The vertical slash crossing propagators is the cut that divides the diagram in the two
portions just mentioned. The portion with an asterisk is built with complex conjugate
vertices and propagators. It is understood that positive energies flow from the portion
without asterisks into the portion with the asterisk.

The right-hand sides of the two equations represent the phase-space integrals involved
in the cross sections for the production of the particles associated with the cut propagators.
Such particles, and their cut propagators, can be derived from (B.1). Inserting the cut
propagators into (B.2), it is then possible to check the optical theorem.

For example, in the case of the Feynman prescription, we have

—1i

2m |

} = 0(K")(2m)6(k* + m?) + 0(—=k°)(2m)6(k* + m?), (B.3)

where the factor (—1) is due to the vertices (setting the coupling to one). On the right-hand
side, the product between a vertex and its complex conjugate gives +1.
We infer that the cut propagator of a physical particle is

7*L — O(KO) (2m)5(K? + m?) . (B.4)

Now we check (B.2) in the case of the bubble diagram with circulating physical particles
in the massless limit. Formula (2.4) gives

QImeb(pz) = 0(1_67?1'2) . (B.5)

The cut diagrams of (B.2) are bubbles calculated with the cut propagator (B.4). For
example, the first one gives

D
—(D— = 5 | GOm0 = )emil(p - k)

_ 00 0(=p?)
T — +O0(e). (B.6)

The second one gives the same with 8(p®) — 0(—p°). We see that, in total, (B.2) holds in
D = 4 dimensions for standard particles.

In the case of a propagator like (2.9), the left-hand side of equation (B.1) vanishes.
This implies that the cut propagators vanish. Hence, the left-hand side of (B.2) also
vanishes and (2.9) must be treated as fake particles. To make the right-hand sides of (B.1)
and (B.2) disappear as well, the modes associated with the complex conjugate poles must
be removed from the physical spectrum of asymptotic states. This “projection,” combined
with the average continuation (or the LW integration path for loop energies plus the domain
deformation for loop spatial momenta), completes the AP prescription for fake particles
and ensures consistency with the optical theorem.

C Massive ¢ bubble amplitude

In this appendix, we calculate the Euclidean bubble amplitude for an interacting cubic
scalar field theory and study ways to extend the result to Lorentzian signature.
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C.1 Calculation of (3.3)
The one-loop bubble amplitude for the model (3.1) is

M) = MQ/ R k) Gk + o)) (C.1)
pE - 2 RD (27T)D E E pE b .

where both kg and p; are Euclidean and the second ¢ is due to the analytic continuation
from Lorentzian to Euclidean internal momentum. Using Feynman parameters (see, e.g.,

[56]), we find

M(pp) = Miy(pp) + My (p7) + M _(p3) + M (p7) (C.2)
where
Moo () = A dP kg 1 1
TEVESTR e (2m)D k2 4+ m2 + iM?2 (kg + pg)? 4+ m2 + iM?2
N¥re-3%) 2 2 272
A? 2 ! 2 2, a2
= Tog3 g—i—ln(47r)—’yp,M— ; dx In [pEm(l—x)—i—m +iM ] +0(e) ¢,
(C.3)
R — !
e 8 Jro (2m)P k2 +m2 + iM? (kg + pg)? + m2 — iM?
AQF(Q_%) ! 2 2 ag2 22
)\2

= 2 In(4
BT R

- /1 dr In [plx(l — z) + m® — iM?(1 — 2z)] + (’)(a)} . (C4)
0

Here we have expanded D = 4 — ¢ for small €.
Summing the various contributions and sending € — 0, we find

1) = oy [ e P 2 o
’ 12872 J [p2x(1 — ) + m2)2 + M4 ) .

in D = 4 dimensions. We emphasize that the complex logarithm in the integral is meant
as its principal branch, since (C.1) is real.

C.2 Analytic and average continuations of (3.3)

In this section, we study the analytic continuation of (3.3), then perform the average
continuation and finally show the differences with respect to (3.4). First, we define the
following complex function

S ! [2(1 — )z + (m/M)?*]2 + (1 — 22)2
M(z) = W/o dzr In 20— 1)z + (m )P 11 , Rez >0, (C.6)
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where 2 is a complex variable, so that (3.3) corresponds to a real positive z = p?/M?. Note
the different mass scaling of z with respect to the convention used in the main body of the

paper.
To simplify the task without losing key properties, we choose m = 0. The first contri-
bution to (C.6) is given by the function

1
fi(z) = /0 dr In [2*(1 — 2)%2° + (1 — 22)?] (C.7)

= /1 dr{ln[z(l —x)z+i(1 —22)] + In[z(l —x)z —i(1 — 2x)]}, Rez > 0.
0

An explicit evaluation gives

o Va4 — 22 z+iv4 — 22
Z2)=— —4+1 Ln , Rez >0, C.8
f+() P P Z—im ( )

where we have used the notation Ln(z) to emphasize that the logarithm is intended in
its principal branch. We also define the square roots as their principal branches, even if
choosing the other branches would not change (C.8).

Let us study the analytic continuation of (C.8) to the whole complex z plane. We first
show that (C.8) has a simple zero (not a branch point) at z = 2. We use the following
expansion

00 j—1 .
Ln(z + p) = Ln(z) + Z % <g)ﬂ for |=| <1, (C.9)
j=1

where 1 = /4 — 22. The condition ‘,u2/z2‘ = !(4 —2?) /22| < 1 is verified in two disjoint
regions of the complex z plane, the region Re 2 > /2 + (Im 2)2 depicted in blue in figure 4

and the region Re z < —4/2 + (Im z)? depicted in red.
Indeed, in the neighborhood of z = 2 one finds the expansion

N
11/4—22Ln Z—Hiz
z — VA4 — 22

which shows that z = 2 is regular and it is a simple zero of the function f(z) defined in
(C.8).
Now, we want to study the analytic continuation of f;(z) to the region Rez < 0 of the

e’} +1
2 24\’
:E :Zy_j_l <22—2> , Rez>+/2+ (Imz2)%, (C.10)

Jj=0

complex z plane. It is obtained by the analytic continuation of the Ln in eq. (C.8), that is,

( B . T
‘/4_ 2
[ s A Rez >0

z — V4 — 22

In (C.11)

z —iv4 — 22

z+iv4 — z2] B
-z+i\/4— 22|

In|Z—Y "= | y27i, Rez<0

|2 —iv4— 22

In fact, the argument of the logarithm is real negative if, and only if, z is purely imaginary

and the two expressions on the right-hand side of (C.11) are the analytic continuation of
each other, as they coincide on the line Re z = 0.
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Imz

Figure 4. The regions Rez > /2 4 (Im 2)2 (blue) and Re z < —4/2 + (Im 2)? (red) of the complex
z plane which solve the condition |(4 — 22) /2% < 1.

The analytic continuation fa,(2) of f1(2) to the region Rez < 0 is

s Va4 — 22 z+i\/4—z2]

n(2) = — —4+1 In
fan(2) z z — V4 — 22

z

(on V4 — 22

I 2
U Y e A Rez > 0
z z z— V4 — 22
= . (C.12)
2 VA= 22 Vi — 22
T i 2R A ol Rez<o0
[ ? z z—iv4 — 22
Expanding (C.11) in z = 0, one has
z+iv4 — 22 22 dizV4 — 22 , 9
|25V 2 | —1+ 2 BT E 022, |2 <1, (Ca3

which implies that z = 0 is a regular point of fu,(z). Moreover, from (C.12) it is also
evident that z = —2 is a square-root branch point of fan(z). Indeed, fan(2) is analytic on
the complex z plane cut along the semi-line (—oo, —2].
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For completeness, we give the explicit expression of fa,(z) for real values of its argu-
ment, i.e., z =x € R:

2 24 Va? —4
_W_4+LLH T+ vam—4 > 2
z x x— Va2 —4
2 4 — x2 4 — x2
fan(z) = T 42 YT arctan [73317 0<z<2. (Cl14)
T T T
2 V4 — z? 4 — g2
1—4—24{w+arc‘can[7x]}, —-2<x<0
x T x

\

Moreover,

T+ Va2 —4
x—Vz2 -4

2 24
fan(x:tie):—ﬂ—ll—}—xi {Ln
x x

F 2m’} , r<—2. (C.15)
The second contribution to (C.6) is encoded in the function

1

g9(z) = / dz In [2*(1 — 2)%2% + 1] (C.16)
0
1

:/ de {ln[z(1 —z)z+i +In[z(l —x)z —i]}, Rez >0

0

which can be evaluated to

9(z) = 4+ g () +9-(), with
gu(2) = /zj;4z' In 1+ 2/ (z £ 4)

1— 2/ (- £ &)
Using the same expansion as in (C.9), one has

o0 ]
1 z J
=2 I 2. 1
=23 7 (25) . el (C.18)

(C.17)

, Rez > 0.

Therefore, the analytic continuation gan(z) of (C.16) is regular at z = 0, and has two
branch points at z = +4i. Moreover, the representation

z J V4 J
I 2 Nl
<z+4z'> +<z_4¢> L lm<2, (C19)

is valid on a strip of the complex z plane that includes the real axis. Furthermore, one

1
+ 25

o0
gw@):—4+2§%1
]:

has gan(2) = gan(—2), and ¢, (2) = gan(z*), SO gan(2) is symmetric under reflection with
respect the imaginary axis of the complex z plane, and it is real for real z.
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In conclusion, the analytic continuation of (C.6), that is to say,

)\2
Man(Z) = W [fan(z) - gan(z)] s (CQO)
has two branch points at z = +4¢ and a branch point at z = —2. Moreover, it is real for

real z > —2, while it has an imaginary part for real z < —2, given by

I repy

Im Moy (z +ie) = T Y2 =
m Map (2 £ i€) Sy

T < —2. (C.21)

The branch point at z = —2 corresponds to a threshold of production of intermediate real
states.

As an alternative to the analytic continuation of (C.6), one can define the average
continuation of (C.6) for real z < —2 as in eq. (3.5), that is,

)\2

Mar() = 5560

[fan(z — 7€) + fan(x + i€) — 2gan ()], zE€R, (C.22)

which cancels the imaginary part of fa,(z) for © < —2. This gives a complex scattering
amplitude that is real for any real x, which agrees with the optical theorem for purely
virtual particles.

Expression (3.4), instead, consists of the formal replacement p? — p? inside the inte-
grand of (3.3). In the case at hand (m = 0) we obtain

Man(2), Rez >0
M (2) = . (C.23)
Man(—2), Rez <0

This function satisfies Mp(z) = Mpi(—2) but is not analytic across the imaginary axis
of the complex z plane. Restricting to real z = x € R, (C.23) is real and has a corner in
x = 0, i.e., it is continuous but not C! (discontinuous derivatives) therein. The physical
meaning of this behaviour is obscure at the moment.

D Lorentz violation with real masses: mixed momenta prescription

In this appendix, we present a simple example that illustrates how easy it is to violate
Lorentz symmetry. We consider the ordinary bubble diagram with propagator

~ 1

G(=k2,m?) = T meR. (D.1)

However, instead of evaluating the integral in the Euclidean domain and then analytically
continuing the result to Minkowski spacetime, we choose hybrid momenta: a Euclidean
internal momentum in combination with a Lorentzian external momentum.

Specifically, we study

Mip) = [

dPlk, 1 1
(2m)P k2 +m? (kg +pu)? +m?2’

(D.2)
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where the integrated momentum ky = (kp, k) is Euclidean, the external momentum p =
(p°, p) is Lorentzian and p;, := (—ip°, p) denotes the Wick rotation of the Euclidean external
momentum pg = (pp,p). We want to show that M is not Lorentz invariant, which is
expected because (D.2) has the same structure as (1.2), where the imaginary contribution
comes from the 2kpp? = —2ikpp® term in 2k - p.. For definiteness, we assume p® > 0,
p? < 0.

Let us write p, = Wp, where W = diag(—i,1,1,1). We consider a Lorentz transfor-
mation p — Ap and combine it with a change of variables given by a rotation R. The only
ingredient of (D.2) that is not manifestly invariant is the square (kg + p.)2. It is easy to
check that (kg + pi)? is invariant for arbitrary kg and p; if, and only if,

R=WAW*. (D.3)

In particular, the rotation R must be complex, which is not a legitimate change of variables
in the integral. This signals that the result of (D.2) likely violates Lorentz invariance.

To show that indeed it does, we compute it explicitly and compare the result with
the one of the usual bubble diagram, which is obviously Lorentz invariant. In Euclidean

spacetime, the bubble integral is

dPk, 1 1
2m)P k2 + m?2 (kg + pg)? + m?’

M(pg) = X2 / (D.4)
where py = (pp,p) is also Euclidean. Then we have to perform the Wick rotation. We
denote the result of this operation by My (p).

While M(p) does not need any prescription because its integrand is never singular,
M_n(p) needs one for the Wick rotation. We take this into account by assuming that p°
has a small positive imaginary part e.

The functions M(p) and My, (p) do not coincide. To see this, we integrate on the loop
energies kp by means of the residue theorem.

In both cases, we have poles at kp = /;:31 = tiwg, where wg = /g% +m?. Then we
have poles at kp = 12:32 = ip® +iwg4p for M(p) and poles at kp = ];:32 = —pp T iWk4p for
M(pg). Closing the kp integral by means of an arc that crosses the positive real k° axis,
where k% = ikp, both M(p) and M (p;) pick the residue at the pole kp = 123571 = —iwg. In
addition, M(pyg) picks the residue at the pole kp = 12572 = —pp — iwWk4p. Instead, M(p)
picks the one at kp = /;:572 =ip¥ — iWk4p, but only if w4, > p?. After the calculation of
M (pg), the analytic continuation to M,y (p) is done by replacing pp with —i(p® + ie).

We focus on the combination

S Man(p) + 5 Mo D) (05)

U(p) = M(p) —

Since My, (p) is Lorentz invariant, it is sufficient to prove that U(p) is not.
After some work, we obtain

U(p) = 32 PV/ 0k 6"~ ki) < 1 - 1 )
2m)P~1 dwpwrsp \P°—Whgp —wr PO — WrypFwr/’
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where PV denotes the Cauchy principal value.
The integral is convergent in D = 4. After a translation k — k — p, we can evaluate
it straightforwardly at m = 0. The result is

dk k A2 p0

% Lo L |p|
u = —PV d = ———— tanh ~ — D.6
#) = 3 /1 “/o =R R g akplu g M o (DO

where k = |k|. Writing p = /s + p?, we find

Uip) =~ [3+

p2 4
5 +O(pl")| - (D.7)

s
We see that U(p) is not Lorentz invariant, because it does not depend on the invariant s
only, but also on the square of the spatial external momentum p.
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