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Abstract

We study the free and dressed propagators of physical and purely virtual particles in a

finite interval of time τ and on a compact space manifold Ω, using coherent states. In the

free-field limit, the propagators are described by the entire function (ez − 1− z)/z2, whose

shape on the real axis is similar to the one of a Breit-Wigner function, with an effective

width around 1/τ . The real part is positive, in agreement with unitarity, and remains

so after including the radiative corrections, which shift the function into the physical

half plane. We investigate the effects of the restriction to finite τ on the problem of

unstable particles vs resonances, and show that the muon observation emerges from the

right physical process, differently from what happens at τ = ∞. We also study the case of

purely virtual particles, and show that, if τ is small enough, there exists a situation where

the geometric series of the self-energies is always convergent. The plots of the dressed

propagators show testable differences: while physical particles are characterized by the

usual, single peak, purely virtual particles are characterized by twin peaks.
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1 Introduction

Widths are key quantities in quantum field theory, and a link between perturbative and

nonperturbative quantum field theory. A perturbatively stable particle may decay after the

resummation of its self-energies into the so-called dressed propagator. Yet, the resumma-

tion, which is normally considered a straightforward operation, has unexpected features,

when it comes to explain the observation of long-lived unstable particles, like the muon

[1].

The S matrix amplitudes allow us to study scattering processes between asymptotic

states, which are separated by an infinite amount of time. In this scenario, a long-lived un-

stable particle always has enough time to decay, before being actually observed. Although

it is possible to make room for the muon observation in a rough and ready way within the

usual frameworks, too many important details are missed along the way by doing so. It

is much better to study the problem where it belongs, which is quantum field theory in a

finite interval of time.

It is possible to formulate quantum field theory in a finite time interval τ , and on

a compact space manifold Ω, by moving most details about such restrictions away from

the internal sectors of the diagrams into external sources [2]. Then the diagrams are the

same as usual, apart from the discretization of the loop momenta, and the presence of

sources attached to the vertices. Most known properties of the usual S matrix amplitudes

generalize straightforwardly, and allow us to study the systematics of renormalization and

unitarity [2]. The formulation is well-suited to be generalized so as to include purely virtual

particles, i.e., particles that do not exist on the mass shell at any order of the perturbative

expansion. At τ = ∞, Ω = R
3, they are introduced by removing the on-shell contributions

of a physical particle χph (or a ghost χgh, which is a particle with the wrong sign in front of

its kinetic term) from the internal parts of the diagrams [3], and restricting to the diagrams

that do not contain χph, χgh on the external legs. At finite τ and on a compact Ω, they

are introduced by removing the same on-shell parts from the core diagrams, and choosing

trivial initial and final conditions for χph, χgh [2]. The evolution operator of the resulting

theory is unitary, provided all the ghosts are rendered purely virtual.

In this paper, we study the propagators of physical and purely virtual particles in

a finite interval of time τ , and on a compact space manifold Ω. In the free-field limit,

the typical pole 1/z of the usual propagator at τ = ∞ is replaced by an entire function,

which is f(z) = (ez − 1 − z)/z2. Although f(z) is very different from 1/z (and from a

Breit-Wigner function) in most of the complex plane, its shape on the real axis z = ix,
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x ∈ R, does remind the one of a Breit-Wigner function, with an effective width equal to

16/(3τ). When we include the radiative corrections, the function f(z) is shifted into the

physical half plane, where the real part of the propagator remains positive, consistently

with unitarity. The width is enlarged by an amount equal to Γ (the usual width at τ = ∞).

The muon observation emerges rather naturally from the right physical process: there

is no need to confuse the observation of an unstable particle with the observation of its

decay products, as one normally does to adjust the matter at τ = ∞.

In the case of purely virtual particles, we show that, for τ small enough, there is an

arrangement where the geometric series of the self-energies is always convergent. In that

situation, we can resum the radiative corrections rigorously to the very end, and obtain the

dressed propagator. Comparing the plot of its real part with the one of physical particles,

testable differences emerge: while the physical particles are characterized by the common,

single peak, purely virtual particles are characterized by two twin peaks.

The results confirm the ones of ref. [1], where they were derived by arguing, on general

grounds, what the main effects of the restriction to finite τ were going to be.

Both physical particles and ghosts can be rendered purely virtual. At the same time,

purely virtual particles are not Lee-Wick ghosts [4]1, as shown in [6]. In particular, they

do not need to have nonvanishing widths, and decay. And even if they have a nonvanishing

width Γf, its meaning is not the reciprocal of a lifetime, nor the actual width of a peak.

In the case studied here, where the resummation of the dressed propagator can be done

rigorously to the very end, Γf is a measure of the height of the twin peaks, while their

distance is universally fixed to 2π (in suitable units). In every other case, the “peak

region” of a purely virtual particle is nonperturbative. Certain arguments suggest that

Γf may measure a “peak uncertainty” ∆E > Γf/2, telling us that, when we approach the

peak region too close in energy, identical experiments may give different results [1].

At the phenomenological level, purely virtual particles may have other interesting ap-

plications, because they evade many constraints that are typical of normal particles (see

[7, 8, 9] and references therein).

The paper is organized as follows. In section 2 we study the free propagator at finite τ .

In section 3 we resum the self-energies into the dressed propagator. In section 4 we study

the free and dressed propagators of purely virtual particles. In section 5 we investigate

the problem of unstable particles. Section 6 contains the conclusions. We work on bosonic

fields, since the generalization to fermions and gauge fields does not present problems.

1For Lee-Wick ghosts in quantum gravity, see [5]
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2 Free propagator in a finite interval of time

In this section, we study the free propagator in a finite interval of time τ . For most

purposes of this paper, we can Fourier transform the space coordinates, understand the

integrals on the loop momenta, and concentrate on time and energy. This means that we

can basically work with quantum mechanics, where the coordinates q(t) stand for fields

φ(t,x). We assume that the Lagrangian has the form

Lλ(q, q̇) =
1

2

(

q̇2 − ω2q2
)

− Vλ(q, q̇), (2.1)

where Vλ(q) is proportional to some coupling λ. If the space manifold Ω is compact,

the frequencies ω are restricted to a discrete set ωn, for some label n. This affects the

propagator only in a minor way. Effects like these will be understood, from now on, so the

formulas we write look practically the same as on Ω = R
3.

We use coherent “states” [10] (so we call them, although we work in the functional-

integral approach)

z =
1

2

(

q + i
p

ω

)

, z̄ =
1

2

(

q − i
p

ω

)

, (2.2)

where p = ∂Lλ/∂q̇ is the momentum2. So doing, we double the number of coordinates,

or fields, lower the number of time derivatives from two to one, and treat the poles of the

propagator
i

k2 −m2 + iǫ
=

i

2ω

(

1

e− ω + iǫ
− 1

e+ ω − iǫ

)

(2.3)

separately3, where kµ = (e,k) is the four-momentum and ω =
√
k2 +m2 denotes the

frequency.

The first pole gives the propagator

G+(t, t′) = 〈z(t)z̄(t′)〉0 = θ(t− t′)
e−iω(t−t′)

2ω
, (2.4)

while the other pole gives G−(t, t′) = 〈z̄(t)z(t′)〉0 = G+(t′, t). Moreover, 〈z(t)z(t′)〉0 =

〈z̄(t)z̄(t′)〉0 = 0. The sum

G(t, t′) = G+(t, t′) +G−(t, t′) =
e−iω|t−t′|

2ω
(2.5)

is indeed the Fourier transform of the Feynman propagator (2.3).

2We use the notation of [2], where details about the switch to coherent states can be found.
3A redefinition on ǫ is understood between the left- and right-hand sides of (2.3).
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When τ = ∞, the propagators are (2.3) and (2.4) for all real values of t and t′. When

τ is finite, the propagators are unaffected, in the coherent-state approach, apart from the

restrictions of t and t′ to the interval (ti, tf). To make this restriction explicit, we multiply

both sides of G±(t, t′) and G(t, t′) by projectors Πτ (t) ≡ θ(tf − t)θ(t− ti) and Πτ (t
′). The

projected propagators are then

Gτ (t, t
′) = Πτ (t)G(t, t′)Πτ (t

′), G±
τ (t, t

′) = Πτ (t)G
±(t, t′)Πτ (t

′). (2.6)

For simplicity, we take tf = τ/2, ti = −τ/2.

It is interesting to study the Fourier transforms of (2.6), which can be calculated by

assuming that ω has a small, negative imaginary part. We start from

G̃+
τ (e, e

′) =

∫ +∞

−∞

dt

∫ +∞

−∞

dt′G+
τ (t, t

′)ei(et+e′t′). (2.7)

Due to the lack of invariance under time translations, the result does not factorize the

usual energy-conservation delta function (2π)δ(e+ e′). Instead, we can factorize a

2 sin
(

e+e′

2
τ
)

e+ e′
, (2.8)

which is the Fourier transform of Πτ (t) with energy e + e′. Furthermore, we assume that

τ is large enough, so that we can restrict the coefficient of (2.8) in G̃+
τ (e, e

′) to e+ e′ = 0.

Factorizing a 2ω/τ for convenience, we approximate G̃+
τ (e, e

′) to

G̃+
τ (e, e

′) ≃ 2 sin
(

e+e′

2
τ
)

e+ e′
τ

2ω
f(z), (2.9)

where z = i(e− ω)τ . We find

f(z) = 2 lim
e′→−e

(e+ e′)ωG̃+
τ (e, e

′)

τ sin
(

e+e′

2
τ
) =

2ω

τ 2
lim

e′→−e
G̃+

τ (e, e
′) =

ez − 1− z

z2
.

Interestingly enough, f(z) is an entire function: the propagator at finite τ has no pole,

and no other type of singularity.

Writing z = ix, it is useful to single out the real and imaginary parts:

f(z) =
1− cos(x)

x2
+ i

x− sin(x)

x2
.

To verify that the limit τ → ∞ gives the usual result, we first rescale τ by a factor λ and

then let λ tend to infinity by means of the identities

lim
λ→∞

sin (λx)

x
= πδ(x), lim

λ→∞

1− cos(λx)

λx2
= πδ(x), lim

λ→∞

λx− sin(λx)

λx2
= P 1

x
(2.10)
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(which can be easily proved by studying them on test functions), where P denotes the

Cauchy principal value. Thus,

lim
τ→∞

G̃+
τ (e, e

′) = (2π)δ(e+ e′)
1

2ω

i

e− ω + iǫ
= G̃+(e, e′).

Summing it to G̃−
τ (e, e

′) = G̃+
τ (e

′, e), we go back to the Feynman propagator at τ = ∞:

G̃(e, e′) = G̃+(e, e′) + G̃−(e, e′) = (2π)δ(e+ e′)
i

k2 −m2 + iǫ
. (2.11)

Finally, the Fourier transform of the total propagator Gτ (t, t
′) at finite τ is

G̃τ (e, e
′) ≃ 2τ 2 sin

(

e+e′

2
τ
)

e+ e′
h(x+, x−), (2.12)

where

h(x+, x−) ≡
f(ix+) + f(−ix−)

x− − x+

, x± ≡ (e∓ ω)τ.

We see that the propagator at finite τ is encoded into the key function f(z). It is

convenient to compare it to a “twin” Breit-Wigner (BW) function fBW(z), determined so

that f(z) and fBW(z) have the same values at z = 0 and the same L2(R) norms on the

real axis (by which we mean for z = ix, x ∈ R). We find

fBW(z) =
4

8− 3z
, lim

z→0
fBW(z) = lim

z→0
f(z),

∫ +∞

−∞

|fBW(ix)|2dx =

∫ +∞

−∞

|f(ix)|2dx.
(2.13)

The width Γeff of the twin function fBW(z) is a good measure of the effective width of the

function f(z) on the real axis. We find

Γeff =
16

3τ
, fBW(i(e− ω)τ) =

4i

3τ
(

e− ω + iΓeff

2

) . (2.14)

In fig. 1 we compare the square moduli, the real parts and the imaginary parts of f(z)

and fBW(z). We see that their slices on the real axis are similar, although the functions

differ a lot in the rest of the complex plane.

It is also possible to approximate the total propagator (2.12) by replacing the function

f with the twin BW function fBW. The approximation is good enough when the distance

x− − x+ between the two peaks (the one of the particle and the one of the antiparticle)

is large. When x− − x+ decreases, effects due to the superposition between the two peaks

start to become important, although the approximation remains good qualitatively.
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Figure 1: Comparison between f(z) (in blue) and fBW(z) (in red): square modulus (left),

real part (middle) and imaginary part (right)

Now we describe f(z) for generic complex z. We shift z = ix by a real constant a, with

x also real, and compare parallel slices fa(ix) ≡ f(ix + a). The typical behaviors of the

real and imaginary parts of fa(ix) are shown in figure 2, for positive and negative a. We

see that the real part is always positive for a < 0, but can have both signs for a > 0.

For a < 0, the function Re[fa(ix)] still looks like the real part of a BW function, but

with a larger width. The physical meaning of this behavior is explained by the radiative

corrections. Specifically, we show that a negative a originates from the resummation of the

self-energy diagrams into the dressed propagator, and is ultimately proportional to −Γ,

where Γ is the usual particle width.

3 Dressed propagator

In this section we study the dressed propagator, by resumming the corrections due to the

self-energy diagrams.

Let Σ(t, t′) denote the usual self-energy (at τ = ∞) and Στ (t, t
′) the one at finite

τ . For what we are going to say, it is sufficient to focus on the one-loop corrections in

the simplest case, where −iΣ(t, t′) is the bubble diagram in coordinate space (e.g., the

product of two propagators between the same, non coinciding points). Then, Στ (t, t
′) =

Πτ (t)Σ(t, t
′)Πτ (t

′).

The dressed propagator Gτd(t, t
′), obtained from the mentioned resummation, reads

Gτd(t, t
′) =Πτ (t)Ĝτd(t, t

′)Πτ (t
′),

Ĝτd(t, t
′)≡G(t, t′) +

∫

dt1dt2G(t, t1)(−i)Στ (t1, t2)G(t2, t
′)

+

∫

dt1dt2dt3dt4G(t, t1)(−i)Στ (t1, t2)G(t2, t3)(−i)Στ (t3, t4)G(t4, t
′) + · · · , (3.1)
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Figure 2: Real and imaginary parts of the function fa(x) = f(ix+ a) for various values of

a

where Ĝτd(t, t
′) is a sort of unprojected dressed propagator.

We can work out the resummation in two ways, which are equivalent within the ap-

proximations we are making here.

In the first method we first show that Στ can be replaced by Σ inside Ĝτd(t, t
′). This

makes Ĝτd(t, t
′) coincide with the usual dressed propagator Gd(t, t

′) at τ = ∞. Then,

Gτd(t, t
′) is the projected version of Gd(t, t

′), which can be worked out as we did in the

previous section.

In Fourier transforms, the usual bubble diagram can be approximated by a constant

around the peak, which encodes the mass renormalization ∆m2 and the (nonnegative)

width Γ:

Σ(t, t′) ≃ δ(t− t′)(∆m2 − imphΓ), Σ̃(e, e′) ≃ (2π)δ(e+ e′)(∆m2 − imphΓ), (3.2)

where m2
ph ≡ m2 + ∆m2. We ignore the radiative corrections to the normalization factor

Z of the propagator, since we can reinstate Z at a later time. Using the approximation

(3.2) as the whole self-energy, the Fourier transform of Στ (t, t
′) is

Σ̃τ (e, e
′) ≃ 2 sin

(

e+e′

2
τ
)

e+ e′
(∆m2 − imphΓ). (3.3)
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As before, we neglect the energy nonconservation at the vertices, by assuming that τ

is large enough so that we can replace the factor in front by (2π)δ(e + e′). We obtain

Σ̃τ (e, e
′) ≃ Σ̃(e, e′), which means that the restriction to finite τ has negligible effects on

Ĝτd(t, t
′), and we can replace it with Gd(t, t

′). Then (3.1) gives

Gτd(t, t
′) = Πτ (t)Gd(t, t

′)Πτ (t
′). (3.4)

Resumming the geometric series, the Fourier transform of Gd(t, t
′), which is

G̃d(e, e
′) = (2π)δ(e+ e′)

i

k2 −m2
ph + imphΓ

, (3.5)

is the same as G̃(e, e′), formula (2.11), with the replacement m2 → m2
ph − imphΓ. Then,

by comparing the first formula of (2.6) with (3.4), and using (2.12), we conclude that the

Fourier transform of Gτd(t, t
′) is

G̃τd(e, e
′) ≃ G̃τ (e, e

′)
∣

∣

∣

m2→m2
ph

−imphΓ
=

2τ 2 sin
(

e+e′

2
τ
)

e+ e′
h(x+ph, x−ph), (3.6)

where

ω̃ph =
√

ω2
ph − imphΓ, ωph =

√

k2 +m2
ph, x±ph ≡ (e∓ ω̃ph)τ.

We see that we just need to make the replacements

±ix± → ±ix±ph = ±ix± + a+ ib, a+ ib = iτ (ω − ω̃ph) ,

inside the functions f , with a, b ∈ R. While b is a simple translation of x±, the quantity

a = τ Im[ω̃ph] < 0 (3.7)

measures the displacement of the plot profile into the physical half plane. Assuming

Γ ≪ mph, we have a ≃ −τmphΓ/(2ωph). Moreover, a ≃ −τΓ/2 in the static limit.

The total propagator G̃τd(e, e
′) is described by the function

g(x, y, a) =
f(i(x− y) + a) + f(−i(x+ y) + a)

2(y + ia)
, y > −a > 0, (3.8)

where x = (x++x−)/2 = τe, y = (x−−x+− 2b)/2 = ωτ − b = τRe[ω̃ph]. The quantity 2y

is a measure of the separation between the particle peak and the antiparticle peak. If we

choose y large enough, we can compare the properties of the two resummation methods

9
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Figure 3: Plots of Re[g(x, y, a)] (in blue) and Re[g′(x, y, a)] (in red) for y = 40, a = −1/10

(left), a = −1 (middle) and a = −10 (right).

more clearly, because we avoid the superposition of the two peaks. The validity of our

results does not depend on this assumption.

The parameter −a measures the extra width due to the radiative corrections. The

inequality y + a > 0 holds because ω̃2
ph lies in the fourth quadrant of the complex plane,

so Re[ω̃ph]+ Im[ω̃ph] > 0. It is easy to check that the real part of g(x, y, a) is positive, in

agreement with unitarity (see fig. 3).

The second way of resumming the self-energies amounts to working directly on the

Fourier transforms, by means of (2.12) and (3.3). For simplicity, we assume ∆m2 = 0 from

now on, since the mass redefinition is not crucial for what we are going to say. We take

care of the energy conservation by approximating the factor (2/(e + e′)) sin ((e+ e′)τ/2)

to (2π)δ(e + e′) everywhere in the sum, and switching back to the original factor only in

the final formula. Then we get a straightforward geometric series, which sums to

(e+ e′)G̃′
τd(e, e

′)

2τ 2 sin
(

e+e′

2
τ
) ≃ h(x+, x−)

∞
∑

n=0

(

−mΓτ 2h(x+, x−)
)n ≡ g′(x, y, a). (3.9)

We find

g′(x, y, a) =
f(i(x− ȳ)) + f(−i(x+ ȳ))

2ȳ (1 + γf(i(x− ȳ)) + γf(−i(x+ ȳ)))
, (3.10)

where

x = τe, γ =
τmΓ

2ω
= −ay

ȳ
, ȳ = τω =

√

y2 − a2.

In fig. 3 we compare Re[g(x, y, a)] to Re[g′(x, y, a)] for y = 40, a = −1/10, −1 and

−10. We see that the approximation (3.9) captures the effects of the restriction to finite τ

much better when |a| is large, while the approximation (3.8) tends to smear them out. It

is also easy to show that the real parts are not positive when a is positive.

We can estimate the total effective width Γtot of the dressed propagator by means of

twin BW approximations, obtained by replacing f with the function fBW of (2.13) inside

10
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(3.8) or (3.10). We assume that y and ȳ are large, to avoid superpositions between the

particle and antiparticle peaks. Making the replacement f → fBW in g(x, y, a), the shift

x → x− ia in (2.14) gives

Γtot ≃ Γeff −
2a

τ
=

16

3τ
− 2Im[ω̃ph] ≃

16

3τ
+

mphΓ

ωph

≃ 16

3τ
+ Γ, (3.11)

the last-but-one approximation being for Γ ≪ mph, and the last one being at rest.

These results prove that the radiative corrections generate a shift into the physical half

plane. The effective width Γeff of the free propagator, due to the restriction to finite τ , is

enlarged to the total width Γtot of the dressed propagator by an amount proportional to

the usual width Γ at τ = ∞.

4 Purely virtual particles

In this section we study purely virtual particles χ, taking ∆m2 = 0 again for simplicity.

As recalled in the introduction, purely virtual particles are introduced by removing the

on-shell contributions of ordinary particles, or ghosts, from the diagrams, perturbatively

and to all orders. If we do this on the Feynman propagator (2.3), we lose πδ(k2−m2) and

remain with

P i

k2 −m2
=

i

2ω

(

P 1

e− ω
− P 1

e+ ω

)

.

where P denotes the Cauchy principal value. The first pole gives, after Fourier transform,

G+
pv(t, t

′) =
θ(t− t′)− θ(t′ − t)

2

e−iω(t−t′)

2ω
.

The second pole gives G−
pv(t, t

′) = G+
pv(t

′, t).

The diagrams we are considering do not have χ legs inside loops (the self-energy Σ

being treated as a whole), so the χ free propagator is everything we need. Working out the

Fourier transform G̃+
τ pv(e, e

′) of G+
τ pv(t, t

′) ≡ Πτ (t)G
+
pv(t, t

′)Πτ (t
′), defined as in formula

(2.7), with tf = −ti = τ/2, we find the result (2.9) with f(z) replaced by

fpv(z) =
sinh(z)− z

z2
.

Hence, by (2.12), the total propagator reads

G̃τ pv(e, e
′) ≃ 2τ 2 sin

(

e+e′

2
τ
)

e+ e′
hpv(x+, x−), hpv(x+, x−) ≡

fpv(ix+) + fpv(−ix−)

x− − x+

.

11
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The key function is now

fpv(ix) = i
x− sin(x)

x2
,

which satisfies the important bound

|fpv(ix)| 6
1

π
. (4.1)

As in (3.9), the dressed propagator is a geometric series

(e+ e′)G̃′pv
τd (e, e

′)

2τ 2 sin
(

e+e′

2
τ
) ≃ hpv(x+, x−)

∞
∑

n=0

(

−mΓτ 2hpv(x+, x−)
)n ≡ g′pv(x, y, a), (4.2)

but we cannot resum it without checking its actual convergence. The reason is that the

prescription for purely virtual particles is not analytic [11, 12], so we cannot advocate

analyticity to justify the continuation of the sum from its convergence domain to the rest

of the complex plane, as we normally do for physical particles.

The bound (4.1) ensures that there is a situation where the series is always convergent

(on the real axis). It occurs when the quantity raised to the power n in the sum of (4.2)

has a modulus that is always smaller than 1. In turn, this requires γ = τmΓ/(2ω) < π/2,

which is true for every energy e and every frequency ω, if τΓ < π. Thus, it is sufficient to

assume

∆E ≡ π

2τ
>

Γ

2
, (4.3)

to obtain

g′pv(x, y, a) =
fpv(i(x− ȳ)) + fpv(−i(x+ ȳ))

2ȳ (1 + γfpv(i(x− ȳ)) + γfpv(−i(x+ ȳ)))
. (4.4)

When ȳ is large, the “particle” and “antiparticle” contributions separate well enough,

and we can write

g′pv(x, y, a) ≃
f̃pv(x− ȳ, γ) + f̃pv(x+ ȳ, γ)

2ȳ
, f̃pv(x, γ) =

fpv(ix)

1 + γfpv(ix)
.

It is easy to prove that the twin peaks of Re[f̃pv(x, γ)] occur at x = ±π, and have

Re[f̃pv(±π, γ)] = γ/(π2 + γ2). Thus, γ (hence Γ) is related to the heights of the peaks,

while their positions are universal. The stationary points of Re[f̃pv(x, γ)] are at x = nπ, n

= odd, and have heights γ/(n2π2 + γ2).

In fig. 4 we compare the properties of physical and purely virtual particles through the

functions Re[g′(x, y, a)] and

Re[g′pv(x, y, a)] = g′∗pv(x, y, a)(mτ 2Γ)g′pv(x, y, a), (4.5)

12



23
A
2
R
en
or
m

10 20 30 40 50
0.000

0.001

0.002

0.003

0.004

0.005

Figure 4: Comparison between the dressed propagators Re[g′(x, y, a)] and Re[g′pv(x, y, a)]

of physical (in blue) and purely virtual (in red and green) particles in a situation (γ = 3/2)

where we can trust the resummations for both. We have taken ȳ = 30. The green plot is

the convolution (4.6)

taking ȳ = 30 and γ = 3/2. The right-hand side of expression (4.5) looks like the decay

rate of the purely virtual particle χ, because it is the product of the propagator, times

(minus the real part of) the bubble diagram, times the conjugate propagator (times a

further factor τ 2, introduced for convenience). Since χ does not exist on the mass shell,

the expression “decay rate” just refers to the existence of a channel mediated by it.

Fig. 4 includes the plot of the convolution

∫ +∞

−∞

du
4

(4u)2 + π2
Re[g′pv(x− u, y, a)] (4.6)

with a Lorentzian function of width π/2 = ∆x = τ∆E. The convolution is useful if we

want to interpret ∆E as the resolving power of our instrumentation on the energy.

Since we are working in a finite interval of time τ , we are implying that the resolving

power ∆t on time itself is better than that: ∆t < τ . Then, the energy-time uncertainty

relation ∆t∆E & 1 tells us that the uncertainty ∆E on the energy is bigger than ∼
1/τ . The best situation is when that uncertainty is close to its minimum value, which is

approximately equal to the ∆E defined in formula (4.3). Thus, we can view the condition

(4.3) as a condition on the resolving power on the energy. If we resolve the energies too well,

we cannot have enough precision in time to claim that we are working in a finite interval

τ . The convoluted profile of fig. 4 is probably closer to what we can see experimentally.

The plots show rather different phenomenological behaviors: while physical particles

exhibit the usual peak, purely virtual particles show two smaller humps. What is important

is that the difference between the two cases is experimentally testable, at least in principle.
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Qualitatively, we may expect similar differences at τ = ∞. However we cannot make

this statement rigorous, because when τ grows we eventually violate (4.3) and enter a

nonperturbative region, where we cannot trust the resummation for purely virtual particles.

At the nonperturbative level, the condition (4.3) might turn into an uncertainty relation

of new type [1], a “peak uncertainty” ∆E > Γ/2, telling us that, when we approach the

peak region k2 ∼ m2 of a purely virtual particle too closely, identical experiments may

give different results.

If purely virtual particles with relatively small masses exist in nature, the predictions

of this section could be tested exprimentally. Standard model extensions that are worth of

attention, in this context, have been studied in refs. [7, 8]. Those models (which violate the

bound (4.3), because they have τ = ∞) can be used without modifications for qualitative

tests. Consider, for example, processes that involve exchanges of purely virtual particles,

like Z → µµµµ [8]: once we reach enough precision, it should be easy to realize that the

shapes of the plots are more similar to the red and green curves of fig. 4, rather than the

blue curve. For quantitative tests, we need to extend the predictions of [7, 8] to a τ that

is sufficiently small. The results of this paper and [2] give us the techniques we need, to

achieve that goal.

More generally, the restriction to finite τ , as well as the restriction to a compact space

manifold Ω, can be used to amplify effects that are otherwise too tiny to be observed,

taking advantage of the nontrivial interplay between the observed process and the external

environment (in particular, through the boundary of Ω).

5 The problem of the muon (unstable particles vs res-

onances)

In this section we study the problem of describing the muon decay in quantum field theory.

Since the muon is unstable, the right framework is not the one at τ = ∞, because a too

large τ gives the muon enough time to decay and, strictly speaking, makes it unobservable.

If we ignore this fact and insist on describing the muon decay at τ = ∞, quantum field

theory retaliates by generating mathematical inconsistencies [1].

The point is that we are demanding something that violates the uncertainty principle:

as stressed before, if we want to resolve a finite time (the muon lifetime in this case), we

must have a finite time uncertainty ∆t, which needs a nontrivial uncertainty ∆E on the

energy. There are no such things in quantum field theory at τ = ∞. On the other hand,

14



23
A
2
R
en
or
m

a finite τ implies a finite time uncertainty ∆t < τ , so quantum field theory on a finite

time interval is better equipped to address the problem we are considering. Moreover, if

we want to be able to see the muon, we must have τ < ωτµ/mµ, where τµ = 1/Γµ is the

muon lifetime at rest, mµ is the muon mass and ω/mµ is the boost factor, which is crucial

to make the muon live longer.

Let us imagine a process where certain incoming particles X collide and produce the

unstable particle, or resonance, we want to study, which we denote by φ. The total cross

section σtot can be split into the sum of the cross section for the production of φ itself

(in which case φ does not decay during the process, and is the sole outgoing state), and

the cross section for the products of the φ decay. The optical theorem tells us that σtot

is proportional to the real part of the forward scattering amplitude X → φ → X, which

receives its most important contribution around the φ peak from the φ dressed propagator.

For example, we can take X = e+e− and φ = Z to describe the Z production at LEP.

The φ propagator we work with is the function

g′(x, y, a) =
h(x+, x−)

1 + 2γȳh(x+, x−)
, (5.1)

from formula (3.10). Its real part can be written as the sum Re[g′] = (Ωparticle+Ωdecay)/τ
2

of the two terms

Ωparticle

τ 2
=

h1

|1 + 2γȳh|2 ,
Ωdecay

τ 2
=

2γȳ|h|2
|1 + 2γȳh|2 = g′∗(mτ 2Γ)g′, (5.2)

where h stands for h(x+, x−) and h1 is its real part. The factor 1/τ 2 takes care of the

analogous factor appearing on the left-hand side of (3.9). The reason behind the separation

(5.2) is relatively simple to understand: Ωdecay, which captures the φ decay, is the part

proportional to the self-energy itself (i.e., proportional to Γ, in our approximation), while

Ωparticle, which captures the particle observation, is the rest. The detailed resummation of

the diagrams involved in the two cases can be found in [1].

The structure of Ωdecay/τ
2 matches the one of (4.5), while the first expression has no

analogue in the case of purely virtual particles (which admit no particle observation, by

definition, but just a “decay” channel).

We want to study Ωparticle and Ωdecay in two limiting situations of physical interest:

unstable particles and resonances.

Although we just need to take τ smaller than the boosted muon lifetime ωτµ/mµ, it is

convenient to take τ ≪ ωτµ/mµ, both because it is realistic to do so, but also because it
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simplifies the results. Furthermore, in all the colliders built, or planned, so far, the muon

mass mµ is much larger than the resolving power on the energy, so we may assume

mµ ≫ 1

τ
≫ mµ

ωτµ
=

mµΓµ

ω
. (5.3)

It is easy to prove the inequality |h(x+, x−)| 6 1/(2ȳ), which implies that under the

assumptions (5.3), the denominator of g′(x, y, a) in (5.1) can be approximated to one,

and the function g′(x, y, a) can be approximated to its free value h(x+, x−) (which implies

Ωdecay → 0).

Furthermore, the conditions (5.3) imply ȳ ≫ 1. Then it is easy to prove4, from the

second limit of (2.10), that

Ωparticle ≃ πδ(e2 − ω2). (5.4)

In other words, Ωparticle tends to the delta function that describes the muon observation,

while Ωdecay tends to zero.

Note that we have not taken τ to infinity to prove this result. Actually, it is impossible

to obtain it by working at τ = ∞ [1], because in that case

τ 2g′(x, y, a) → i

e2 − ω2 + i(ǫ+mµΓµ)
,

which means

Ωparticle →
ǫ

(e2 − ω2)2 + (ǫ+mµΓµ)2
, Ωdecay →

mµΓµ

(e2 − ω2)2 + (ǫ+mµΓµ)2
. (5.5)

Since Γµ is nonzero and ǫ is a mathematical artifact, we get Ωparticle → 0, while Ωdecay

tends to the Breit-Wigner function of a resonance. Normally, people confuse Ωparticle and

Ωdecay, and say that, because the muon width Γµ is very small, one can let it tend to zero

in Ωdecay|ǫ=0, which gives πδ(e2−ω2). However, the desired delta function should not come

from Ωdecay (it would be like resuscitating the muon by making it eternal after its decay):

it must come from Ωparticle. This can happen only at τ < ∞, as in (5.4).

In the case of a resonance, like the Z boson, there is no reason why we should keep

τ finite, since in all the experiments of collider physics, so far, the Z lifetime τZ is much

4We need to take |τe| large and comparable to ȳ = τω, otherwise we miss the delta function support.

Basically, we are rescaling e and ω by a common factor, and letting it tend to infinity. At the same time,

we keep τ fixed.
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shorter than the interval τ separating the incoming particles from the outgoing ones (we

are very far from observing the Z boson directly):

mZ > ΓZ =
1

τZ
≫ 1

τ
. (5.6)

This means that we can use the formulas (5.5) with µ → Z, where Ωparticle correctly

gives zero, while Ωdecay tends to the right Breit-Wigner formula.

The processes observed in colliders fall in one of the situations just described, where the

particle lifetimes τφ are much longer, or much shorter than τ . If we want to test formulas

such as (5.1) beyond the approximations considered above, τ must be comparable with

τφ, and the energy precisions must be comparable with the widths. We can reach the

required τ with muons and tauons (a tauon with an energy equal to the maximum LHC

energy, 13.6TeV, travels 66 centimeters). It is much harder to reach the required energy

resolutions, because a huge gap separates the widths of the known renonances from the

ones of the long-lived unstable particles: there are 19 and 12 orders of magnitude between

the width of the Z boson and the ones of the muon and tauon, respectively. The conclusion

is that, right now, it is hard to figure out realistic intermediate situations between the two

limits that we have consided. Still, it is worth to point out that, if a chance of that type

ever becomes available, a way to test formulas like (5.1) is to count only particle traces

with specific features, e.g., longer/shorter than some given length ℓ (the critical value being

ℓ ∼ τφĒ/mφ, where Ē is the mean particle energy and mφ is its mass). Plotting the data

as functions of the muon energy, one should find a distribution with a width that is larger

than Γ, as predicted by (3.11).

6 Conclusions

We have studied the propagators of physical and purely virtual particles in quantum field

theory in a finite interval of time τ , and on a compact manifold Ω. In the free-field limit,

the typical pole 1/z is replaced by the entire function f(z) = (ez − 1− z)/z2. The shape

of the latter on the real axis z = ix reminds the one of a Breit-Wigner function, with an

effective width equal to 16/(3τ). The two functions are very different in the rest of the

complex plane.

When we include the radiative corrections, the key function remains f(z), but it is

shifted into the physical half plane. The width is enlarged by an amount equal to Γ (the
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usual width at τ = ∞). The real part of the propagator is always positive, in agreement

with unitarity.

We have studied the case of purely virtual particles, and showed that, for τ small

enough (τ < π/Γ), there is an arrangement where the geometric series of the self-energies

is always convergent. The key reason is that the function f(z) is bounded on the real axis

and on the physical half plane. In that situation, it is possible to rigorously resum the

series into the dressed propagator, and compare the result with what we find in the case

of physical particles. The plots differ in ways that can in principle be tested: physical

particles are characterized by the usual, single peak; instead, purely virtual particles are

characterized by two twin peaks, which are separated from one another in a universal way,

and have heights that depend on the width of the particle.

Finally, we have investigated the effects of the restriction to finite τ on the problem

“muon vs Z boson” (i.e., unstable particles vs resonances). It is crucial to work at τ < ∞,

if we want to properly explain the observation of an unstable particle. Once we do that,

the muon observation emerges naturally from the right physical process. In particular,

there is no need to confuse the observation of a particle with the observation of its decay

products, and pretend that the particle resuscitates after its decay (which is basically how

one normally adjusts the matter by sticking to τ = ∞). The results confirm those argued

in ref. [1] on general grounds.

Examples of time-dependent problems where it might be interesting to use the tech-

niques studied here and in [2] are neutrino oscillations and kaon oscillations, as well as

phenomena of the early universe and quark-gluon plasma. Hopefully, the investigation

carried out here can stimulate the search for ways to overcome the paradigms that have

dominated the scene in quantum field theory since its birth, by searching for purely virtual

particles, on one side, and outdoing the S matrix and the diagrammatics based on time

ordering, on the other side. In this spirit, it may be interesting to merge the results with

those of approaches like the Schwinger-Keldysh “in-in” formulation, which applies to ini-

tial value problems, and also involves a diagrammatics that is different from the standard

“in-out” one.
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