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Dipartimento di Fisica “E.Fermi”, Università di Pisa, Largo B.Pontecorvo 3, 56127 Pisa, Italy

INFN, Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa, Italy

damiano.anselmi@unipi.it

Abstract

We formulate a new quantization principle for perturbative quantum field theory, based

on a minimally non time-ordered product, and show that it gives the theories of physical

particles and purely virtual particles. Given a classical Lagrangian, the quantization pro-

ceeds as usual, guided by the time-ordered product, up to the common scattering matrix

S, which satisfies a unitarity or a pseudounitarity equation. The physical scattering ma-

trix Sph is built from S, by gluing S diagrams together into new diagrams, through non

time-ordered propagators. We classify the most general way to gain unitarity by means

of such operations, and point out that a special solution “minimizes” the time-ordering

violation. We show that the scattering matrix Sph given by this solution coincides with

the one obtained by turning the would-be ghosts (and possibly some would-be physical

particles) into purely virtual particles (fakeons). We study tricks to descend and ascend

in a unique way among diagrams, and illustrate them in several examples: the ascending

chain from the bubble to the hexagon, at one loop; the box with diagonal, at two loops;

other diagrams, with more loops.
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1 Introduction

Unitarity is a fundamental principle of quantum field theory. It states that the scattering

matrix S satisfies the unitarity equation S†S = 1. Equivalently, the T matrix defined by

S = 1 + iT satisfies the optical theorem

iT − iT † = −T †T. (1.1)

The virtue of this formula is that it can be converted into Cutkosky-Veltman identities

[1, 2, 3, 4], which are diagrammatic relations, satisfied by each diagram separately. The

diagrams of T are built by means of the usual vertices and propagators. The diagrams

of T † are built by means of the conjugate vertices and the conjugate propagators. The

diagrams of T †T have two sides, one for T † and one for T , separated by a “cut”. The

product between T † and T is rendered diagrammatically by means of “cut propagators”,

which are on shell and encode the physical contents of the theory.

Thus, while the matrix T is given by the usual Feynman diagrams, the identity (1.1)

involves the larger class of Cutkosky-Veltman diagrams, which are also called “cut dia-

grams”. It was shown in ref. [5] that the identities obeyed by the “skeletons” of the

diagrams (where we ignore the integrals on the space components of the loop momenta)

split into independent spectral optical identities, one for every (multi)threshold. The virtue

of these relations is that they are algebraic and relatively straightforward to manipulate.

Moreover, they provide the threshold decomposition of a diagram, which can be used to

quantize the would-be ghosts, and possibly some would-be physical particles, as purely

virtual particles, thereby projecting the matrix T onto a reduced matrix Tph, which may

be physically acceptable even if T is not.

Purely virtual particles, also called fake particles, or fakeons, are defined by this new

diagrammatics [5]. The projection allows us to remove degrees of freedom from the physical

spectrum at all energies, and satisfy the optical theorem in a manifest way. The main

application of the idea is the formulation of a consistent theory of quantum gravity [6],

which is observationally testable due to its predictions in inflationary cosmology [7]. At

the phenomenological level, fakeons evade common constraints that limit the employment

of normal particles (see [8] and references therein).

In this paper, we study the scattering matrix of quantum field theory under a new light.

We inquire what transformations we can make on the usual S matrix, which is defined by

the time-ordered product, to turn it into a different scattering matrix Sph, possibly better

suited to describe the physics we observe in experiments. We end up by uncovering purely
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virtual particles again, in an independent way. The results confirm and upgrade the ones

of [5] and provide an alternative understanding of the concept of purely virtuality.

Unitarity is not an automatic consequence of the usual quantization principle, and

should not be taken for granted. For example, if we start from a theory that contains

fields with negative kinetic terms, and quantize it as usual, we obtain a matrix T that is

not physically acceptable, because it does not satisfy the unitarity equation (1.1). Even in

that case, though, T satisfies a mathematically useful identity, which reads [3, 4]

iT − iT † = −T †CT (1.2)

and is called pseudounitarity equation, where C is a diagonal matrix with eigenvalues

equal to 1, −1 and possibly 0 (if auxiliary fields are present). Higher-derivative theories

are typical examples of theories satisfying (1.2) with C 6= I.

Normally, the quantization ends with the S matrix, which means that if T = i − iS

is physically unacceptable the theory is discarded. What if the quantization did not end

there? What if the derivation of T were just the first step of a longer, more elaborate

quantization procedure? To make this happen, we need a new quantization principle,

equivalent to the old one whenever the old one was successful, but possibly differing from

it in every other case. In particular, it should contemplate a second step, defined by new

diagrammatic rules, and a map T → Tph from the “interim” matrix T satisfying (1.2), to

the “finalized”, hopefully physical, matrix Tph, satisfying (1.1).

The first task is to classify all the possibilities we have to build a unitary scattering

matrix Sph = 1 + iTph from another unitary scattering matrix, or from a pseudounitary

one, S = 1 + iT . Since the time-ordered product leads to the usual S matrix, and leaves

no room for alternatives, the second part of the new quantization principle must be based

on non time-ordered products.

The set of solutions to the problem just stated is large, but a very special one can be

singled out among the others. It is the one that minimizes, so to speak, the violation of

the time ordering. A bonus is that it provides an alternative way to uncover the physics

of purely virtual particles.

The new quantization principle

We briefly describe the new diagrammatics, and state the quantization principle they

lead to. If ϕ denotes the fields, the diagrams of the physical matrix Tph are built by means

of the usual vertices, the usual (time-ordered) free-field propagators

〈0|θ(x0 − y0)ϕ(x)ϕ(y) + θ(y0 − x0)ϕ(y)ϕ(x)|0〉0 (1.3)
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and the non time-ordered free-field propagators

〈0|ϕ(x)ϕ(y)|0〉0. (1.4)

The rules to build the diagrams with these ingredients are encoded into a compact for-

mula, which is eq. (2.16) of section 2, and an iterative procedure to eliminate a certain

arbitrariness Ω contained in that same formula.

Curiously enough, the non time-ordered propagators (1.4) coincide with the cut prop-

agators mentioned earlier. However, the cut propagators are not used to build the T

diagrams, which define the ordinary transition amplitudes. They appear in the Cutkosky-

Veltman diagrams, when we study the (pseudo)unitarity equations (1.1) and (1.2) obeyed

by T . Specifically, they connect T † and T through the products appearing on the right-

hand sides of those equations. The first, crucial novelty of the new diagrammatics is

that the non time-ordered propagators (1.4) are ingredients of the diagrams that give the

physical transition amplitudes, collected in Tph. This way, the physical scattering matrix

Sph = 1 + iTph is no longer dictated by the time-ordered product. The inclusion of non

time-ordered propagators multiplies the number of diagrams we have to consider by a large

factor. However, the new diagrams are not more difficult than the usual ones, and their

large number can be easily dealt with by means of computer programs, like the popular

ones used nowadays in phenomenology [9].

Briefly, the usual diagrams contributing to T are glued together in certain, prescribed

ways, by means of the non time-ordered propagators, to build the new diagrams, those of

Tph. A certain formula mapping the standard matrix T to the physical matrix Tph, and a

certain procedure, guide the assembly of the new diagrams.

The new quantization principle is thus made of two parts. The first part amounts to

build the matrix T as usual. The second part amounts to work out the physical matrix Tph

as explained. The map T → Tph is sometimes called “projection”, other times “reduction”,

interchangeably.

We show that the most general reduced matrix TΩ built from T , which obeys the

unitarity equation, depends on an arbitrary anti-Hermitian matrix Ω. A special Ω is

singled out by requiring that the projection of a product diagram is equal to the product

of the projected factors, and the factorization survives basic diagrammatic operations. Due

to the violation of time ordering, this factorization requirement is nontrivial. It amounts

to assume that the violation is a “minimum” one, rather than the most brutal one: it is

confined inside non factorizable diagrams, which we call “prime” diagrams. The reason

why we call it minimum violation is that it does not seem possible to violate it less than
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this. With this particular choice of Ω, the large number of diagrams collapses to an amount

that is comparable to the one generated by the usual time-ordered product.

We show that the reduced matrix TΩ obtained this way coincides with the matrix Tph

of a theory of physical and purely virtual particles, as given in ref. [5]. Once we decide

which particles we want to quantize as physical and which ones we want to quantize as

purely virtual, Tph follows uniquely.

We briefly mention the other results of the paper. We work out a number of tricks to

descend from bigger to smaller diagrams, but also ascend in a unique way from smaller to

bigger diagrams, and relate their Ω corrections and their threshold decompositions. We

illustrate these properties in various examples. At one loop, we study the ascending chain

bubble → triangle → box → pentagon → hexagon.

At two loops, we focus on the first nontrivial arrangement, which is the box diagram with

diagonal. Classes of diagrams with arbitrarily many loops are also discussed. Agreement

with the formulas of [5] is found in every example.

A diagram may need an overall Ω correction, but also inherit Ω corrections from its

subdiagrams. In all the cases we consider, nontrivial corrections are present when the

diagram is not prime, and also when it is prime, but factorizes under the contraction of

some internal legs. We find that it is always possible to ascend through the threshold

decompositions in a unique way. We conjecture that these are general properties of the

physical matrix Tph.

Since the time-ordered product is not a physical principle, we should be open to the

possibility that the physical laws may break it, one way or another. Purely virtual particles

provide the most elegant and economic way of implementing such a breaking. In physical

applications, purely virtual particles are expected to be massive, and generically heavy.

For example, one spin-2 purely virtual particle χµν of mass mχ ∼1012−13GeV is enough to

make sense of quantum gravity [6]. In that case, the violation of time ordering is restricted

to distances . 1/mχ, and so is the violation of microcausality associated with it (as well

as the violation of microlocality, when χµν is integrated out). Tiny violations like these are

not detectable in realistic situations, even if we take into account the possibility of boosting

the systems. We also recall that purely virtual particles in curved space lead to a sharp

prediction for the tensor-to-scalar ratio r in primordial cosmology (0.0004 . r . 0.0035

[7]). The first observational results on this are expected to become available in the present

decade [10].
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The results of this paper provide a quantization, in perturbation theory, of any theory

for which the usual Feynman diagram calculation of the T matrix gives a result satisfying

(1.2). In particular, no assumption about gauge invariance is used. This means that we can

make sense of a very wide class of theories usually thought unacceptable. Many workers

in quantum field theory believe that negative probability modes can only be removed if

the theory has a gauge invariance, and that the physical states are selected through that

symmetry. The construction of this paper provides counterexamples to that belief.

Ultimately, the correctness of the new ideas must be proven by experiment, for example

by confirming the prediction for r, or the viability of standard model extensions such as the

one of [11]. If theories constructed with these methods turn out to be phenomenologically

correct, then we need to expand our orthodox ideas about fundamental physics. Further

insight on this aspect could come from the investigation of an important open problem,

that is to say, establish whether the S matrix generated by the prescription for purely

virtual particles is the result of a Hamiltonian evolution, as we normally understand it, or

we need to relax the basic axioms of quantum mechanics. Although this issue is beyond

the scope of this paper, it ought to be explored.

The paper is organized as follows. In section 2 we work out the most general map

that converts a matrix T satisfying the (pseudo)unitarity equation (1.2) into a reduced

matrix Tred that satisfies the unitarity equation (1.1). In section 3 we outline the basic

rules for the new diagrams. In sections 4 and 5, we discuss the reduction T → Tred in

the cases of tree and disconnected diagrams. In section 6 we study the simplest one-loop

diagrams (bubble, triangle and box). In section 7 we study diagrams with more loops,

focusing on the box with diagonal, which is the first truly new arrangement. In section

8 we discuss a number of tools to have control on pure virtuality, and relate smaller and

bigger diagrams. In section 9 we explain how to use those tricks to ascend and descend

through the diagrams and their threshold decompositions. In section 10 we summarize

the diagrammatic rules, and compare the main options (Feynman diagrams, Cutkosky-

Veltman diagrams, and the diagrams defined here), and their uses. In section 11 we show

that the projection preserves the global and local symmetries of a theory, the cancellation

of anomalies and the renormalizability. Section 12 contains the conclusions. In appendix

A we explain how to switch from the scattering matrix to single diagrams, without loss

of information, and vice versa, to derive the diagrammatic identities. In appendix B we

prove some identities for product distributions, used in the paper.
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2 The key issue and its solution

In this section we describe how to reduce the scattering matrix of a possibly nonunitary

theory to a unitary scattering matrix. We classify the set of solutions without assuming

physical inputs.

We decompose the usual S matrix as

S = 1 + V, (2.1)

where V = iT , and T collects the common transition amplitudes, defined by the time-

ordered product. From now on, we refer to V , or, more generally, the difference between

a scattering matrix and the identity matrix, by simply calling it “amplitude”.

The unitarity of the S matrix, i.e., the identity S†S = 1, gives the identity

V + V † = −V †V (2.2)

for the amplitude V . Various quantum field theories do not allow us to prove an equation

of this form right away. When the theory has fields with negative kinetic terms, we can

just prove a pseudounitarity equation

V + V † = −V †CV, (2.3)

where C is some Hermitian matrix. We can diagonalize and normalize C so as to put it

into the form

diag(

n+
︷ ︸︸ ︷

1, · · · , 1,

n
−

︷ ︸︸ ︷

−1, · · · ,−1,

n0
︷ ︸︸ ︷

0, · · · , 0). (2.4)

The corresponding Fock space decomposition is written as W = W+⊕W−⊕W0, where W

is the total Fock space.

A quick derivation of (2.3) from (2.2) goes on as follows. We integrate out the auxiliary

fields, for simplicity, and use ϕ̂ to denote the fields that have negative kinetic terms. If,

for a moment, we change the signs of the ϕ̂ propagators, we obtain a modified theory

that satisfies (2.2). Consider a diagram G of the modified theory, and the diagrammatic

equation satisfied by it, generated by (2.2). If we multiply that equation by a factor (−1)nG,

where nG denotes the number of the ϕ̂ legs, we restore the factors of the original theory in

front of the propagators of the internal ϕ̂ legs due to V † and V . However, the cut ϕ̂ legs

connecting V † and V also get factors (−1). This converts the unit matrix I between V †

and V into the matrix C, leading to formula (2.3).

Our goal is to project the amplitude V and the space W , so as to obtain an equation

like (2.2) from (2.3), holding in a “physical” subspace Wph of W .
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Let

Πph = diag(

Nph

︷ ︸︸ ︷

1, · · · , 1,

Npv

︷ ︸︸ ︷

0, · · · , 0), (2.5)

denote the projector onto Wph, and W = Wph ⊕Wpv the corresponding W decomposition,

where Nph 6 n+, Npv = n+ +n− +n0 −Nph. It is enough to find a reduced amplitude Vred

that solves the equation

Vred + V †
red = −V †

redΠphVred. (2.6)

Indeed, this equation implies that the physical amplitude Vph ≡ ΠphVredΠph solves

Vph + V †
ph = −V †

phVph, (2.7)

so the physical S matrix Sph ≡ Πph + Vph satisfies S†
phSph = Πph. In other words, if we

manage to solve (2.6), we achieve unitarity in the subspace Wph. Then we can legitimately

claim that Vph is the physical amplitude, and Wph is physical space of the theory.

Summarizing, our goal is to find the most general solution Vred of (2.6), given the

physical projector Πph.

We can generalize the problem a little bit with no effort: given Hermitian matrices C

and A, and given a matrix V that satisfies (2.3), we want to find the most general solution

Vred of the equation

Vred + V †
red = −V †

redAVred. (2.8)

This is a merely mathematical problem about matrices, and A, C do not need to be

projectors or linear combinations of projectors. For convenience, we write

B = C −A. (2.9)

A particular solution of (2.8) is Vred = V0, where

V0 =

(

1 +
1

2
V B

)−1

V. (2.10)

This formula can be understood recursively as

V0 = V −
1

2
V BV0 = V −

1

2
V BV +

1

4
V BV BV + · · · .

Note that, despite its appearance, the solution is left-right symmetric, since we can also

write

V0 = V −
1

2
V0BV = V −

1

4
V0BV −

1

4
V BV0.
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The proof that (2.10) solves V0 + V †
0 = −V †

0 AV0 follows straightforwardly from the

identities

V † = −V (1 + CV )−1 , V †
0 = −V

(

1 + AV +
1

2
BV

)−1

, (2.11)

which are implied by (2.3) and then (2.10).

Starting from the particular solution (2.10), we can write the most general solution Vred

as

Vred = V0 + Ω0. (2.12)

In order to fulfill (2.10), the matrix Ω0 must satisfy the equation

Ω0 + Ω†
0 = −V †

0 AΩ0 − Ω†
0AV0 − Ω†

0AΩ0. (2.13)

As before, we can solve this equation recursively in powers of V0, starting from an arbitrary

anti-Hermitian matrix Ω̃ that is at least of order V0. Indeed, if we write Ω0 = Ω̃ + ∆Ω,

with Ω̃ + Ω̃† = 0 and assume that ∆Ω is of higher order in the expansion, we obtain the

equation

∆Ω +∆Ω† = −Ω†
0AΩ0 − V †

0 AΩ0 − Ω†
0AV0,

which can be solved iteratively as claimed. This also proves that the matrix Ω̃ parametrizes

the most general solution of (2.13).

It is simple to show that the explicit solution Ω0 of (2.13), and its inverse, are

Ω0 =

(

1−
1

2
Ω̃A

)−1

Ω̃ (1 + AV0) , Ω̃ = Ω0

(

1 +
1

2
AΩ0 + AV0

)−1

. (2.14)

The proof follows by writing (2.13) in the form E + E† = 0, where

E = Ω†
0

(

1 +
1

2
AΩ0 + AV0

)

.

Using the expression (2.14) of Ω0, and Ω̃† = −Ω̃, we see that the matrix

E = −
(

1 + V †
0 A
)(

1 +
1

2
Ω̃A

)−1

Ω̃

(

1−
1

2
AΩ̃

)−1

(1 + AV0)

is indeed anti-Hermitian.

The solution (2.12), with V0 given in (2.10) and Ω0 given in (2.14), needs some rear-

rangement, since it is not written in a manifestly left-right symmetric form. The sym-

metrization can be obtained by redefining Ω̃ within the realm of its own arbitrariness.

Define

Ω = (1 + V0A)
−1/2 Ω̃ (1 + AV0)

1/2 . (2.15)
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It is easy to prove that Ω is anti-Hermitian. To this purpose, note that, since Vred = V0

solves (2.8), we have the formula

V †
0 = −V0 (1 + AV0)

−1 .

Equipped with (2.15), the first expression of (2.14) can be recast into the form

Ω0 = (1 + V0A)
1/2

(

1−
1

2
ΩA

)−1

Ω (1 + AV0)
1/2 ,

which is manifestly left-right symmetric. Then, so is (2.12).

Going back to formula (2.12) and summarizing the results we have found so far, we

have proved that, given a matrix V that satisfies

V + V † = −V †AV − V †BV,

where A and B are arbitrary Hermitian matrices, the most general matrix Vred that satisfies

Vred + V †
red = −V †

redAVred

and coincides with V up to corrections of higher orders in V itself, is Vred = VΩ(A,B),

where

VΩ(A,B) =
(
1 + 1

2
V B
)−1

V

+
(

1 +
(
1 + 1

2
V B
)−1

V A
)1/2 (

1− 1
2
ΩA
)−1

Ω
(

1 + AV
(
1 + 1

2
BV

)−1
)1/2

(2.16)

and Ω is an arbitrary anti-Hermitian matrix, to be considered of order two in V , or higher.

Formula (2.16) is the key formula of the paper.

An interesting case is when the physical space Wph is just made of the vacuum state |0〉.

Then A is |0〉〈0| and B is C − |0〉〈0|. If C has the form (2.4), the solution VΩ(|0〉〈0|, C −

|0〉〈0|) can be used to remove the whole on-shell contents of the diagrams, and describe the

situation where every particle is rendered purely virtual. To achieve this goal, Ω must be

determined so as to remove any residual on-shell contributions. As we are going to show in

the next sections, this is a nontrivial task, but has a well defined answer. Unfortunately,

the answer is not just Ω = 0. Indeed, the Ω = 0 solution

V̊ ≡ V0(|0〉〈0|, C − |0〉〈0|) ≡

(

1 +
1

2
V (C − |0〉〈0|)

)−1

V (2.17)
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turns out to be correct only in a certain subset of simpler diagrams. In general, a nonvan-

ishing Ω is to be expected. We will show that the solution VΩ(|0〉〈0|, C− |0〉〈0|), equipped

with the right Ω, provides an alternative way to make the threshold decomposition of [5].

By affinity with the notion of prime number, we say that a diagram is prime if it

cannot be factorized as a nontrivial product of smaller diagrams, in momentum space. We

show that, for arbitrary A, Ω can be chosen to make VΩ obey the following factorization

property: the projection of a non prime diagram is the product of the projections of its

prime factors, and the factorization survives basic operations of ascent and descent among

diagrams. This is a nontrivial requirement, in the realm of non time-ordered products.

We also show that the amplitude VΩ determined by this Ω gives precisely the diagrams

of physical and purely virtual particles, as per ref. [5]. We identify such a VΩ with the

physical amplitude Vph.

We first proceed by explicit examples, then gather the lessons we learn along the way.

3 Diagrams: the old and the new

In this section we lay out the rules to build the new diagrams, and compare them with the

Feynman rules.

So far, we have been merely playing with matrices: the theorems proved in the previous

section hold under assumptions that are more general than the ones we need for physical

applications. To move forward towards the physics, let Φ = {ϕ, χ} collect all the fields,

which include the physical fields ϕ and the fields χ we want to project away (for one

reason or another). The physical subspace Wph contains the vacuum state |0〉 and the

states that are built by means of the ϕ creation operators, but no χ creation operators.

The complementary subspace Wpv contains the states that are built by means of at least

one χ creation operator. The idea is that a single excitation due to the fields that we want

to get rid of is sufficient to drop the whole state from the physical spectrum.

From our definition (2.1), it follows that the amplitude V collects the usual Feynman

diagrams. In operatorial notation,

V = T exp

(

−i

∫ +∞

−∞

HI(t)dt

)

− 1, (3.1)

where HI is the interaction Hamiltonian and T denotes the time-ordered product.

The V diagrams are defined by the usual Feynman rules. In particular, the ϕ free-field

propagators are the time-ordered ones, given by the Feynman iǫ prescription. For scalars
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ϕ, we have

〈0|T ϕ(x)ϕ(y)|0〉0 =

∫
d4p

(2π)4
e−ip(x−y) i

p2 −m2 + iǫ
. (3.2)

The propagators of the χ fields are the same, apart from the possibility of being multiplied

by minus signs. Thus, χ scalars may have propagators

〈0|T χ(x)χ(y)|0〉0 =

∫
d4p

(2π)4
e−ip(x−y) (±i)

p2 −m2 + iǫ
, (3.3)

The 0 eigenvalues of the matrix C of (2.4) correspond to auxiliary fields χ. From now on,

we assume that they are integrated away.

The right-hand side −V †CV of formula (2.3) collects the usual Cutkosky-Veltman

diagrams, which are graphically rendered by means cut diagrams. The cut is unique, and

represents the matrix C separating V † from V . While the V diagrams are time-ordered,

and the V † diagrams are anti-time-ordered, the product V †CV is just a plain (non time-

ordered) product of field operators. This means that, when we apply Wick’s theorem, the

Wick contraction between a field Φ(x) that belongs to a conjugate vertex v̄1 of V †, and

a field Φ(y) that belongs to an ordinary vertex v2 of V is the non time-ordered two-point

function

〈0|Φ(x)Φ(y)|0〉0 = ±

∫
d3p

(2π)32ω
e−ip(x−y) = ±

∫
d4p

(2π)4
(2π)θ(p0)δ(p2−m2)e−ip(x−y), (3.4)

where the sign is + or − according to the sign of the C eigenvalue associated with Φ, as

in (3.2) and (3.3). In momentum space these “cut propagators” are thus

±(2π)θ(p0)δ(p2 −m2). (3.5)

Now we describe the diagrams of the reduced amplitude VΩ. We assume that A is the

projector Πph onto the physical space Wph, C has the form (2.4), and B = C − A. The

VΩ diagrams follow from formula (2.16), by expanding the right-hand side in powers of

V . Each term of the expansion is graphically represented as a cut diagram, multiplied by

a coefficient inherited from the expansion itself. We must distinguish two types of cuts,

standing for the matrices A and B. A VΩ diagram may contain an arbitrary number of

such cuts.

It is convenient to draw the cuts as vertical lines and place the vertices in the strips

between pairs of consecutive cuts, and in the half planes located at the sides. Every strip,

or half plane, must contain at least one vertex.

The vertices and the uncut propagators of the VΩ diagrams coincide with those of V . In

particular, no conjugate vertices, nor conjugate propagators, are involved. As above, a line

12



22
A
5
R
en
or
m

crossed by a cut stands for the propagator (3.5), the energy flowing conventionally from

the right to the left. The cut propagator contributes to A, or B, depending on whether

the field Φ of (3.4) belongs to the subset of physical fields ϕ, or the subset of fields χ we

want to project away. A cut A can only cut ϕ legs, while a cut B must cut at least one χ

leg.

The diagrams we consider in the examples of the next sections have a different particle

on each internal leg. In appendix A we show that we can always enlarge the set of fields

enough to fit this arrangement, with no gain nor loss of information, by means of a Pauli-

Villars trick [12]. Diagrams with internal legs associated with the same ϕ, or the same χ,

can be seen as particular cases.

We distinguish the various fields ϕ and χ by means of indices i, and write Φ = {ϕi, χi}.

It is easy to show that the diagrams where every χi appears an even number of times to

the right (left) of a B cut vanish. Indeed, the Wick contraction makes the creation and

annihilation operators of all the χ fields disappear to the right (left) of that cut. This means

that only creation and annihilation operators of physical fields ϕi act on |0〉 (〈0|) before B.

Since B vanishes on the physical space Wph, we obtain something like 〈0|(physical fields

ϕi)B, or B(physical fields ϕi)|0〉, which vanish as well.

Once we decide what theory we want to build, we have the physical space Wph, and

know what fields χ we want to project away. This means that we have the matrix A,

which is the projector onto Wph, as well as the matrix B, which is equal to C − A. At

that point, we are ready to study the VΩ diagrams encoded in (2.16). Although they are

a large number, there is no difficulty to list them by means of computer software.

What can we obtain with a generic Ω? In principle, anything we want. We can even

jump from the S matrix of one theory, say the ϕ4 theory, to the S matrix of a completely

different theory, say the standard model. The identities proved in the previous section are

general properties of matrices, with no constraints from physics. In physical applications,

Ω cannot be completely arbitrary. For example, it should be at least O(V 2), as mentioned

right after formula (2.16). Moreover, it should not change the basic contents of the theory.

This requirement can be phrased more precisely by stating that: it should not change

the Euclidean version of the theory; equivalently, it should not change the zeroth level

of the threshold decomposition of diagrams (see the beginning of section 6). Finally, Ω

cannot introduce singularities that are not present in the Feynman diagrams (such as new

thresholds, or new types of singular behaviors around existing thresholds).

A particular solution VΩ must give the diagrammatics of physical and purely virtual

particles, derived in ref. [5]. Indeed, the diagrams defined there also solve the problem of
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building a unitary matrix Tph out of the ordinary (pseudo)unitary matrix T . Thus, there

must exist an Ω that makes the VΩ diagrams coincide with those of [5]. Unfortunately,

such an Ω is not just Ω = 0, nor something comparably simple, but must be worked out

iteratively. The examples studied in the next sections tell us how, and make us appreciate

what makes the solution of [5] so special.

The operations we have described are not all straightforward, so we must spend some

time to describe them in detail, starting from the connected tree diagrams and the product

diagrams, to conclude with the loop diagrams. We mostly work with plus signs in front

of the propagators (3.3) and (3.5), which means C = I =
∑

n |n〉〈n|, where |n〉 is an

orthonormal basis of states. The other cases are easily obtained by flipping overall signs

in front of formulas and identities.

4 Tree diagrams

In this section and the next one, we apply the results of section 2 in relatively simple cases,

which, however, show some surprises. This helps us illustrate the meaning of the various

formulas and their ingredients.

The simplest example is the free propagator. We take the interaction Lagrangian

LI = K1ϕ+K2ϕ = −HI ,

where ϕ denotes a scalar field of mass m and standard propagator (3.2), while K1 and

K2 are external sources. Differentiating (3.1) with respect to iK once for each source and

setting the sources to zero afterward, we get

δ2V

iδK1(x)iδK2(y)

∣
∣
∣
∣
K=0

= T ϕ(x)ϕ(y).

Averaging on the vacuum state, we obtain the propagator (3.2).

The theory is unitary (it is just a free field theory), so C = I ≡
∑

n |n〉〈n|. More-

over,
∑

n〈0|ϕ(x)|n〉〈n|ϕ(y)|0〉 = 〈0|ϕ(x)ϕ(y)|0〉. In a product such as V CV , the Wick

contraction between a ϕ due to the left V and a ϕ due to the right V is just a product of

field operators, with no time ordering, which gives the cut propagator (3.5), with energy

conventionally flowing from the right to the left.

Now, choose A = |0〉〈0|, so B = I−|0〉〈0|. Let us assume, for the moment, that the Ω

correction vanishes. Then, the amplitude VΩ is given by (2.10):

V0 =

(

1 +
1

2
V B

)−1

V = V −
1

2
V BV +

1

4
V BV BV +O(V 4). (4.1)
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We can understand the meaning of this expression by concentrating on the first correction,

−VBV/2. Differentiating (4.1) with respect to iK1 and iK2, and setting the sources to

zero afterward, we obtain

δ2V0

iδK1(x)iδK2(y)

∣
∣
∣
∣
K=0

=
δ2V

iδK1(x)iδK2(y)

∣
∣
∣
∣
K=0

−
1

2

[
δV

iδK1(x)
B

δV

iδK2(y)
+

δV

iδK2(y)
B

δV

iδK1(x)

]

K=0

.

Averaging on the vacuum state, we find

〈0|T ϕ(x)ϕ(y)|0〉0 −
1

2
〈0|ϕ(x)ϕ(y)|0〉0 −

1

2
〈0|ϕ(y)ϕ(x)|0〉0,

that is to say, after Fourier transform,

i

p2 −m2 + iǫ
−

1

2
(2π)θ(p0)δ(p2 −m2)−

1

2
(2π)θ(−p0)δ(p2 −m2) = P

i

p2 −m2
, (4.2)

where P denotes the Cauchy principal value. The projected free propagator is just the

principal value, which contains no on-shell part. This is precisely the free propagator of

a purely virtual particle [5]. Thus, the correction to V subtracts the on-shell part of the

Feynman propagator, and renders the particle described by ϕ purely virtual.

In passing, we recall that the propagator (4.2) cannot be used as such inside loop

diagrams: not surprisingly, a non time-ordered product must be worked out on a diagram

by diagram basis. Thus, the result (4.2) is not sufficient to claim that we are dealing with

purely virtual articles: it is just the first hint.

4.1 Two propagators

Now we consider a tree diagram made of two adjacent propagators, which we denote by

means of the symbol ∧. We take the interaction Lagrangian

LI = K1ϕ1 +K12ϕ1ϕ2 +K2ϕ2 = −HI ,

where ϕj denote scalar fields with diagonalized kinetic terms, masses mj and standard

propagators

iFj ≡
i

p2 −m2
j + iǫ

,

Ki and K12 being external sources. For the moment, we consider the case where we project

both ϕ1 and ϕ2 away. Then we have, again, C = I =
∑

n |n〉〈n|, A = |0〉〈0|, B = I−|0〉〈0|.
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Figure 1: Tree diagram with two propagators

If we differentiate VΩ, (4.1) and identities like (2.3) and (2.8) once with respect to

iK1(x1), iK2(x2) and iK12(x), and set the sources to zero afterward, we can study the

correlation function 〈0|T ϕ1(x1)ϕ1(x)ϕ2(x)ϕ2(x2)|0〉 and its projection. We start again

from Ω = 0.

Denote the matrix B by means of a vertical bar, standing for a cut across which the

energy conventionally flows from the right to the left. We can drop O(V 4) in formula (4.1),

because it does not contribute here. We remain with diagrams that have two, one and zero

cuts.

We have to distribute the vertices of LI in between the vertical bars, as well as to the

left and to the right of them, in all possible ways. We must also include the exchanges of

ϕ1 and ϕ2, and pay attention to the fact that each zone should contain at least one vertex.

The diagrams we obtain are shown in fig. 1. It is understood that the vertices are equal

to unity.

What is the meaning of a leg that is cut twice? Nothing particular, just the propagation

of a free particle in the stripe between two cuts. We have seen above that a cut is a missing

time ordering: when a field to the left of a cut is contracted with a field to the right of the

cut, we have the non time-ordered propagator (3.5). It follows that two cuts on the same

line are the same as one cut.

Collecting the various contributions, we obtain

V0(∧,PV
2) = (iP1)(iP2)−∆+

1 ∆
−
2 −∆−

1 ∆
+
2 , (4.3)

where the subscripts 1 and 2 refer to the legs ϕ1 and ϕ2. We have defined

Pi = P
1

p2i −m2
i

, ∆±
i = πθ(±p0i )δ(p

2
i −m2

i ),
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where pµi = (p0i ,pi) is the momentum of the ith leg, flowing from the right to the left

with respect to the ordering x1-x-x2, and ωi =
√

p2
i +m2

i is the ith frequency. Here and

below, we use the notations V0 and VΩ with a different meaning with respect to before.

Specifically, they stand for the derivatives of the matrices V0 and VΩ of (2.10) and (2.16)

with respect to the sources K. Their arguments are the type of diagram we are considering

(here ∧) and the types of particles propagating inside.

We see that the result (4.3) is not the product (iP1)(iP2) of the projected propagators

of the two legs. This means two things: that the projection of a product diagram is

not the product of the projected factors; that we do not get the result predicted by the

diagrammatics of purely virtual particles, as per [5].

Both these issues can be solved by advocating a nonvanishing matrix Ω, as allowed by

formula (2.16). For our purposes, that formula can be truncated to

VΩ → V −
1

2
V CV +

1

4
V CV CV + Ω.

Besides dropping O(V 4), which cannot contribute here, we have also dropped the terms

containing A = |0〉〈0|. Indeed, any diagram with an A cut is disconnected, because it

contains some V |0〉〈0|V , while the diagram we are considering is connected (and so are its

cut versions).

If we set
δ3Ω

iδK1iδK2iδK12

∣
∣
∣
∣
K=0

= ∆+
1 ∆

−
2 +∆−

1 ∆
+
2 , (4.4)

we cancel the last two terms of (4.3) and obtain the desired result

VΩ(∧,PV
2) = (iP1)(iP2). (4.5)

The correction (4.4) is indeed generated by an anti-Hermitian contribution to the matrix

Ω.

Formula (4.5) is what we wanted: the result factorizes and coincides with the one

predicted by having purely virtual particles on the internal legs. We thus learn that a

possible role of Ω is to convert the result to a better diagrammatic form, since the matrix

formula (2.16) is not constrained to have a satisfactory one.

Assume now that one particle, say particle 1, is physical and the second particle needs

to be quantized as purely virtual. Recall that the matrix A projects onto the physical

subspace, made by the states built with ϕ1, while B projects onto the complementary

subspace. We must reinstate all the contributions of the diagrams of fig. 1, where the left

side, or the right side, of any B cut are physical. This happens: i) when they contain no
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. . .

. . . . . .

Figure 2: Examples of tree diagrams with three propagators

fields ϕ2, and ii) when they contain two fields ϕ2 (which are going to disappear after Wick

contraction). Specifically, we must restore the 2nd, 3rd, 6th, 7th and 8th diagram, plus

the one obtained from the 8th by exchanging the legs 1 and 2. The sum of these diagrams

is

−(iF2)(∆
+
1 +∆−

1 ) + (∆+
1 +∆−

1 )(∆
+
2 +∆−

2 ) = −(iP2)(∆
+
1 +∆−

1 ).

Subtracting from (4.3), we obtain

V0(∧,Ph-PV) = (iF1)(iP2)−∆+
1 ∆

−
2 −∆−

1 ∆
+
2 , (4.6)

at Ω = 0. Again, the result is not the one dictated by a theory of physical and purely

virtual particles. However, it becomes the desired one, as soon as we choose the same Ω

as in (4.4), which subtracts the last two terms. We finally obtain the factorized result

VΩ(∧,Ph-PV) = (iF1)(iP2). (4.7)

4.2 Three propagators

Now we study two tree diagrams with three propagators. We have contributions from cut

diagrams that contain up to three cuts, shown in fig. 2.

In the first example, which we denote by ⊥, the three lines meet at the same point,

so we take

LI = K1ϕ1 +K2ϕ2 +K3ϕ3 +K123ϕ1ϕ2ϕ3,

differentiate once with respect to each source (times i) and then set the sources to zero.

It is easy to show that, if A = |0〉〈0|, B = I−|0〉〈0|, and Ω is chosen to be zero, formula
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Figure 3: Subdiagrams that need Ω correction

(2.10) for V0 gives

V0

(
⊥,PV3

)
= (iP1)(iP2)(iP3)−

[
(iP1)(∆

+
2 ∆

+
3 +∆−

2 ∆
−
3 ) + cyclic permutations

]
, (4.8)

where the energy flows are oriented towards the common vertex. The terms in between

the square brackets are then subtracted by means of Ω. The reduced amplitude VΩ finally

gives the non-amputated vertex of three purely virtual particles,

VΩ

(
⊥,PV3

)
= (iP1)(iP2)(iP3), (4.9)

as desired.

An interesting configuration is the one where one leg, say ϕ3, is physical, while the

other two need to be quantized as purely virtual. At Ω = 0 we must discard the diagrams

of (2.16) where a B cut crosses only the physical leg ϕ3. We obtain

(iP1)(iP2)(iF3)−
[
(iP1)(∆

+
2 ∆

+
3 +∆−

2 ∆
−
3 ) + cyclic permutations

]

−(∆+
1 ∆

+
2 +∆−

1 ∆
−
2 )(∆

+
3 +∆−

3 ). (4.10)

The first term is the result we expect. The middle term can be subtracted away by means

of an overall anti-Hermitian Ω correction for the diagram. However, the last term cannot

be adjusted that way, which would require a non anti-Hermitian correction. Luckily, it

disappears by itself, as we show right away.

The point is that at Ω = 0 we miss the whole second line of formula (2.16). So doing, we

ignore not only the overall Ω corrections to the diagram, we can be adjusted when needed,

but also the Ω corrections inherited from the subdiagrams, which cannot be neglected, nor

modified. Expanding the right-hand side in powers of V , formula (2.16) truncates to

VΩ = V −
1

2
V BV +

1

4
V BV BV −

1

8
V BV BV BV + Ω +

1

2
ΩAV +

1

2
V AΩ. (4.11)

The third to last term, Ω, can be used to adjust the middle term of (4.10): this is the

overall Ω correction to the diagram. The last two terms are the crucial ones, because
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they are inherited from the subdiagrams. Now we show that they remove the difficulty

mentioned above.

Specifically, we have to use the Ω of formula (4.4) for the subdiagrams made by the

two adjacent legs ϕ1 and ϕ2. The last two contributions to (4.11) are shown to the left in

fig. 3, where the double line denotes the A cut. Since A is the projector onto the physical

subspace Wph, the A cut can only cross physical legs, in our case just ϕ3. Noting that the

conventions for the orientations of the energy flows turn (4.4) into ∆+
1 ∆

+
2 + ∆−

1 ∆
−
2 , the

last two contribution to (4.11) are

(∆+
1 ∆

+
2 +∆−

1 ∆
−
2 )∆

±
3 .

Once we include them, as per formula (4.11), we find the expected, factorized result, which

is

VΩ

(
⊥,PV2-Ph

)
= (iP1)(iP2)(iF3),

again in agreement with what predicted by the diagrammatics of the theories of physical

and purely virtual particles.

Now we consider the case where ϕ2 and ϕ3 are both physical, and only ϕ1 needs to

be purely virtual. At Ω = 0 we must drop the diagrams containing a cut that does not

cross the leg ϕ1. Again, the last two terms of (4.11) tell us that we have to include the

Ω corrections for the subdiagrams. The interested subdiagrams are two: the one made

by the legs ϕ1 and ϕ2, plus the one made by the legs ϕ1 and ϕ3. Note that there is no

Ω correction for the subdiagram made by the legs ϕ2 and ϕ3, because A cannot cut the

leg ϕ1. We also have to include an overall Ω correction, corresponding to the third to last

term of (4.11), to subtract the anti-Hermitian contributions

−
[
(iP2)(∆

+
1 ∆

+
3 +∆−

1 ∆
−
3 ) + (iP3)(∆

+
1 ∆

+
2 +∆−

1 ∆
−
2 )
]
.

At the end, we find the desired, factorized result

VΩ

(
⊥,PV-Ph2

)
= (iP1)(iF2)(iF3).

The second example of tree diagram with three legs is the one where the propagators

are adjacent, shown to the right of fig. 2. We take

LI = K1ϕ1 +K12ϕ1ϕ2 +K23ϕ2ϕ3 +K3ϕ3.

If all the legs are to be quantized as purely virtual, formula (2.16) gives

(iP1)(iP2)(iP3)−
[
(iP1)(∆

+
2 ∆

−
3 +∆−

2 ∆
+
3 ) + cyclic permutations

]
(4.12)
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at Ω = 0, the energy flows being ordered according to the sequence x1-x2-x3. Again, the

terms between the square brackets, which violate the factorization rule, can be subtracted

away by means of an overall Ω correction. No Ω corrections due to subdiagrams contribute,

since there is no physical leg that can be cut by A (which is just |0〉〈0|).

If the third leg is physical, the other two being purely virtual, the right result, which

is (iP1)(iP2)(iF3), is obtained by including, again, the overall Ω correction that subtracts

the terms in square brackets of (4.12), plus the Ω corrections due to the subdiagram made

by the two adjacent legs ϕ1 and ϕ2. Here the convention for the energy flow orientations

is the same as in (4.4).

If the middle leg is physical and the other two are purely virtual, we obtain the desired

result, which is (iP1)(iF2)(iP3), with the same overall Ω correction as for (4.12). No Ω

corrections for subdiagrams contribute, because the subdiagrams obtained by cutting the

physical leg are just simple propagators.

If the physical legs are at the sides and the middle leg is purely virtual, we obtain the

factorized result (iF1)(iP2)(iF3) after including: i) the Ω corrections for the two subdia-

grams made by a physical leg and a purely virtual one, and ii) the overall Ω correction,

which now reads

[
(iP1)(∆

+
2 ∆

−
3 +∆−

2 ∆
+
3 ) + (iP3)(∆

+
1 ∆

−
2 +∆−

1 ∆
+
2 )
]
, (4.13)

instead of the square bracket of (4.12).

An interesting case is when the legs ϕ1 and ϕ2 are physical and the leg ϕ3 is purely

virtual. We obtain

(iF1)(iF2)(iP3)− (∆+
1 +∆−

1 )(∆
+
2 ∆

−
3 +∆−

2 ∆
+
3 )− (∆+

3 +∆−
3 )(∆

+
1 ∆

−
2 +∆−

1 ∆
+
2 )

−
[
(iP1)(∆

+
2 ∆

−
3 +∆−

2 ∆
+
3 ) + (iP2)(∆

+
1 ∆

−
3 +∆−

1 ∆
+
3 )
]

(4.14)

at Ω = 0. The first contribution, (iF1)(iF2)(iP3), is the expected, factorized result. We

obtain it after including the right Ω corrections as follows. The second line of (4.14) is

subtracted by means of a new, overall Ω correction. The middle terms of the first line are

subtracted by the Ω corrections of formula (4.4), due to the subdiagram made by the legs

ϕ2 and ϕ3. The right terms of the first line are subtracted in a new, probably unexpected

way: they are canceled by the Ω corrections, derived in formula (5.3) below, associated

with the disconnected subdiagrams made by the leg ϕ3 and the endpoint of the leg ϕ1.

These corrections, illustrated in the last two diagrams of fig. 3, read

1

2
V AΩ →

1

2

(
2∆−

1 2∆
+
2

) ∆+
3 +∆−

3

2
,

1

2
ΩAV →

1

2

∆+
3 +∆−

3

2

(
2∆+

1 2∆
−
2

)
.
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The arrows stand for dropping the source factors iK.

We see that only when we take care of everything properly, we obtain the desired,

factorized result, and find agreement with the diagrammatics of a theory of physical and

purely virtual particles. What is important is that we can always determine the needed Ω

corrections, and that they are unique.

5 Disconnected diagrams

Now we study the disconnected diagrams, which unexpectedly hide a number of nontrivial

caveats.

We start from the product of two constant vertices, with

LI = λ1K1 + λ2K2,

the constants λ1 and λ2 being inserted to make the discussion more transparent.

Nothing is propagating, so we just have the vacuum state |0〉. As an exercise, let us

first check what happens if we take A = 0, B = C = |0〉〈0| = I at Ω = 0. Differentiating

VΩ = V0 with respect to iK for each source, and then setting the sources to zero, we find

δ2V0

iδK1(x)iδK2(y)

∣
∣
∣
∣
K=0

=
δ2V

iδK1(x)iδK2(y)

∣
∣
∣
∣
K=0

−
1

2

δ2V

iδK1(x)

∣
∣
∣
∣
K=0

δ2V

iδK2(y)

∣
∣
∣
∣
K=0

−
1

2

δ2V

iδK2(x)

∣
∣
∣
∣
K=0

δ2V

iδK1(y)

∣
∣
∣
∣
K=0

= λ1λ2 −
1

2
λ1λ2 −

1

2
λ2λ1 = 0. (5.1)

We cannot use the Ω arbitrariness to correct this result into the expected one, λ1λ2, because

Ω should be anti-Hermitian. The reason why we find zero, instead of λ1λ2 is that, by taking

A = 0, we have subtracted too much, including the contributions of the vacuum state.

If we take A = |0〉〈0|, we have nothing to subtract (B = 0), so the result of formula

(2.16) for VΩ at Ω = 0 is just λ1λ2, i.e., the product of the two vertices.

Let us now consider the product of a propagator and a constant vertex. We start from

LI = K1ϕ1 +K2ϕ1 +K3.

Formula (2.16) gives, at A = Ω = 0,

−
1

2
(∆+

1 +∆−
1 ),

which can be subtracted away by an appropriate Ω correction. Then, the final result is

zero, but, again, we have subtracted too much.
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The physical space Wph cannot be empty: it must contain at least the vacuum state

|0〉. If we want to quantize ϕ1 as a purely virtual particle, we must take A = |0〉〈0|. Then

(2.10) gives

iP1 −
1

2
(∆+

1 +∆−
1 ). (5.2)

The expected result for a purely virtual particle is not this, but just iP1. We obtain iP1

by means of the Ω subtraction

δ3Ω

iδK1iδK2iδK3

∣
∣
∣
∣
K=0

=
1

2
(∆+

1 +∆−
1 ). (5.3)

We see that the Ω corrections are crucial and generically nontrivial, even in an arrangement

as simple as the product of a propagator times a constant.

The product of a purely virtual propagator and two constant vertices can be studied

by taking

LI = K1ϕ1 +K2ϕ1 +K3 +K4.

Then (2.10), or (2.16), give

iP1 −∆+
1 −∆−

1

for A = |0〉〈0| at Ω = 0. The bad news is that we cannot subtract the last two terms of

this expression by means of an anti-Hermitian Ω for the overall diagram. The good news

is that there is no need to, because they disappear by themselves once we include the Ω

corrections (5.3) due to the disconnected subdiagrams made by a propagator and a single

vertex, as required by the last two terms of (4.11). At the end, the result is just iP1, as

desired.

The disconnected product of two purely virtual propagators is studied from

LI = K1ϕ1 +K ′
1ϕ1 +K2ϕ2 +K ′

2ϕ2,

by differentiating with respect to each iK once, and then setting the sources to zero. If we

apply formula (2.16) with A = |0〉〈0|, Ω = 0, we find

V0(| |,PV
2) = iP1iP2 −

1

2

[
iP1

(
∆+

2 +∆−
2

)
+ iP2

(
∆+

1 +∆−
1

)]
. (5.4)

We obtain the expected result, VΩ(| |,PV
2) = iP1iP2, once we remove the terms in square

brackets by means of an overall Ω correction.

If the leg ϕ1 is purely virtual and the leg ϕ2 is physical, formula (2.10) gives

V0(| |,PV-Ph) = iP1iF2 −
(
∆+

1 +∆−
1

) (
∆+

2 +∆−
2

)
−

1

2

[
iP2

(
∆+

1 +∆−
1

)]
. (5.5)
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The middle term is subtracted by including the Ω correction (5.3) associated with the dis-

connected subdiagrams made by the ϕ1 propagator and any endpoint of the ϕ2 propagator.

The last term is subtracted by the overall Ω correction. At the end, we find the expected,

factorized result VΩ(| |,PV-Ph) = iP1iF2.

We have learned that the projections of the tree diagrams and those of the disconnected

diagrams are not as straightforward as we might have hoped. Yet, they always give the

expected, factorized results once we choose the Ω corrections appropriately. The examples

we have studied suggest that the right Ω is determined uniquely by this requirement.

6 One-loop diagrams

In this section and the next one we study loop diagrams. We use the conventions of [5].

Specifically, we integrate on the loop energies k0, with measure dk0/(2π), and ignore the

integrals on the space components k of the loop momenta. The reason is that the identities

we write hold for arbitrary values of the frequencies ω of the internal and external legs of

the diagrams. Moreover, we conventionally multiply every propagator by a factor 2ω. So

doing, we obtain the so-called “skeleton diagrams”, which allow us to study unitarity by

means of simple algebraic operations.

Every internal leg is labeled by an index a, b, . . .. The a-th leg has mass ma and carries

momentum kµ − pµa , where kµ = (k0,k) denotes the loop momentum and pµa = (ea,pa) is

an external momentum. The frequency of the a-th leg is ωa =
√

m2
a + (k− pa)2. In the

notation we are adopting, each internal leg has its own external momentum pa. So doing,

the external momenta are redundant, but make the formulas more symmetric and easier

to handle.

After multiplying by 2ω, the Feynman propagator P , its conjugate P ∗ and the cut

propagators P± become

P =
i

e− ω + iǫ
−

i

e+ ω − iǫ
, P ∗ =

i

e+ ω + iǫ
−

i

e− ω − iǫ
, P± = (2π)δ(e∓ ω).

(6.1)

For example, the skeleton of a one-loop Feynman diagram with N internal legs is

Gs
N =

∫
dk0

2π

N∏

a=1

(
i

k0 − ea − ωa + iǫa
−

i

k0 − ea + ωa − iǫa

)

. (6.2)

We have a different overall factor with respect to [5], since we assume that the vertices are

equal to one (while in [5] they are equal to −i).
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For future use, we define

∆ab = πδ(ea − eb − ωa − ωb), Pab = P
1

ea − eb − ωa − ωb
,

Qab =Pab − P
1

ea − eb − ωa + ωb
, P̂ab = Pab + Pba.

In particular, Pab and ∆ab are the basic ingredients of the “threshold decomposition” of a

skeleton diagram Gs, which organizes the contributions to Gs according to the number of

delta functions, which are on shell. This number is called level of the decomposition.

We recall that, starting from the threshold decomposition of a Feynman diagram, the

threshold decomposition of a diagram with purely virtual particles f is obtained by sup-

pressing the delta functions whose arguments contain any frequency ωf of such particles

[5].

In all the examples we consider, C = I, A is the projector Πph onto the physical space

Wph, and B = I−Πph is the projector onto the complement Wpv. We study the case where

all the internal legs are quantized as purely virtual particles (A = |0〉〈0|), as well as the

cases where some internal legs are physical and the others are purely virtual.

6.1 Bubble and double bubble

To study the bubble diagram, we take

LI = Kϕ1ϕ2 +K ′ϕ1ϕ2

differentiate with respect to iK and iK ′ and then set K = K ′ = 0. After integrating on

the loop energy, the skeleton bubble diagram with two physical internal legs is

iP̂12 +∆12 +∆21, (6.3)

as in [5], apart from the different overall sign, due to the new notation for the vertices.

With two purely virtual internal legs, or one physical leg and one purely virtual leg,

formula (2.10), or formula (2.16) at Ω = 0, give the skeleton

Gs
2

(
PV2

)
= iP̂12. (6.4)

This result is the right one for the purely virtual bubble [5], so there in no need of overall

Ω corrections. There are no Ω corrections inherited from subdiagrams.

The square bubble (two bubble diagrams with a common vertex) is studied by taking

LI = Kϕ1ϕ2 +K ′ϕ1ϕ2ϕ3ϕ4 +K ′′ϕ3ϕ4
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and following the usual procedure. First, we quantize all the internal legs as purely virtual.

Formula (2.16) gives

(iP̂12)(iP̂34)−∆12∆43 −∆21∆34 (6.5)

at Ω = 0, where the energies e1 and e3 flow from the left to the right, while the energies

e2 and e4 flow from the right to the left. This is not the result of [5]: the last two terms of

(6.5) should not be there.

The point is that the double bubble is a product of diagrams, in momentum space. As

before, the projection (6.5) of the product does not coincide with the product (iP̂12)(iP̂34)

of the projected factors, at Ω = 0. Yet, it is sufficient to choose an anti-Hermitian Ω such

that
δ3Ω

iδKiδK ′iδK ′′

∣
∣
∣
∣
K=0

= ∆12∆43 +∆21∆34 (6.6)

to subtract away the last two terms of (6.5). In the end, VΩ gives the expected result, as

in [5].

If the first bubble contains one or two purely virtual legs and the second bubble contains

two physical legs, formula (2.16) at Ω = 0 gives

(iP̂12)(iP̂34 +∆34 +∆43)−∆12∆43 −∆21∆34.

The last two terms are subtracted, again, by means of the Ω correction (6.6). In the end,

we obtain the expected result, i.e, the product of a purely virtual bubble times a physical

bubble.

6.2 Triangle

Now we study the triangle diagram. We take

LI = K12ϕ1ϕ2 +K23ϕ2ϕ3 +K31ϕ3ϕ1.

differentiate with respect to iK once for every K and then set K = 0. We recall that the

threshold decomposition of the triangle made of Feynman propagators is [5]

Gs
3 = −P3 + i

∑

perms

∆abQac +
1

2

∑

perms

∆ab(∆ac +∆cb), (6.7)

where

P3 =
1

2

∑

perms

(PabPac + PbaPca) = P12P13 + cycl + (e → −e)
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− 1
2 + +perms + 1

4
+perms

Figure 4: Triangle

is its purely virtual part. An extra factor i for every vertex with respect to [5] is due to

the different notation we are using here for the vertices.

We first study the case where all the internal legs have to be quantized as purely virtual.

The reduced amplitude VΩ of formula (2.16) at Ω = 0 gives the diagrams shown in fig. 4.

The result is the same as in [5], i.e.,

Gs
3

(
PV3

)
= −P3. (6.8)

This means that we do not need overall Ω corrections. Moreover, there are no Ω corrections

due to subdiagrams.

For completeness, we report the two basic cut diagrams of fig. 4:

2i∆32[Q31 − i∆31 − i∆12], 4∆13∆23. (6.9)

The former is the triangle with a single cut, where the uncut leg 1 is placed on the right-

hand side. The latter is the triangle with two cuts, where leg 3 is cut twice and the vertex

ϕ1ϕ3 is placed on the left-hand side. The other diagrams are obtained from (6.9) by means

of permutations, or by flipping the signs of the energies.

If one internal leg is physical and the other two have to be quantized as purely virtual,

the result is the same, because all the diagrams of fig. 4 still contribute. Instead, if two

internal legs (ϕ2 and ϕ3) are physical and the other one is purely virtual, we must drop

the diagrams that have no field ϕ1, or two fields ϕ1, to the left or right of a B cut, as

explained in section 3. We obtain the result

Gs
3

(
PV-Ph2

)
= −P3 + iQ21∆23 + iQ31∆32, (6.10)

for Ω = 0, which agrees again with the one of [5].

We see that we never need Ω corrections for triangle diagrams.
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6.3 Box

The box diagram is studied from

LI = K12ϕ1ϕ2 +K23ϕ2ϕ3 +K34ϕ3ϕ4 +K41ϕ4ϕ1,

with the usual procedure. The threshold decomposition of the skeleton made of Feynman

propagators, derived in ref. [5], reads

Gs
4 = −iP4−

1

2

∑

perms

∆abQacQad+
i

2

∑

perms

∆ab(∆ac+∆cb)Qad+
1

6

∑

perms

∆ab(∆ac∆ad+∆cb∆db),

(6.11)

where

−iP4 ≡ −
i

6

∑

perms

PabPacPad −
i

4

∑

perms

PabPacPdb + (e → −e) (6.12)

is the purely virtual part of the diagram.

Again, we find that formula (2.16) with A = |0〉〈0| gives

Gs
4

(
PV4

)
= −iP4 (6.13)

at Ω = 0, with matches the result of [5], when all the internal legs are purely virtual. When

one internal leg is physical and the other three are purely virtual, the result is the same.

When two adjacent internal legs (say, ϕ1 and ϕ2) are physical and the other two must

be quantized as purely virtual, we obtain

−iP4 −∆12Q13Q14 −∆21Q23Q24 −
[
∆12(∆32∆14 +∆42∆13) + ∆21(∆31∆24 +∆41∆23)

]

from VΩ at Ω = 0. The result of [5] is made by the first three terms of this expression. The

final part of the formula, the one in square brackets, cannot be subtracted away by means

of an overall Ω correction for the diagram. Luckily, it disappears automatically when we

include, as per the last two terms of (4.11), the Ω corrections (4.4) due to the subdiagrams

made by the two purely virtual legs, shown in the first two drawings of fig. 5. We easily

find

1

2
V AΩ → ∆21(∆31∆24 +∆41∆23),

1

2
ΩAV → ∆12(∆13∆42 +∆14∆32),

and finally get

Gs
4

(
Ph2-PV2

)
= −iP4 −∆12Q13Q14 −∆21Q23Q24. (6.14)
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Figure 5: Ω corrections from box subdiagrams

When the legs ϕ1 and ϕ3 are physical, while the legs ϕ2 and ϕ4 are purely virtual,

formula (2.16) at Ω = 0 gives

Gs
4

(
Ph-PV-Ph-PV

)
= −iP4 −∆13Q12Q14 −∆31Q32Q34, (6.15)

which agrees with the result of [5]. In this case, no Ω corrections are involved, since the

subdiagrams obtained by cutting the physical legs are just simple propagators.

Finally, when three internal legs are physical and only ϕ4 is purely virtual, VΩ gives

−iP4 −
∑

p(1,2,3)

∆abQacQa4 +
i

2

∑

p(1,2,3)

∆ab(∆ac +∆cb)Qa4

−
[
∆12(∆32∆14 +∆42∆13) + ∆21(∆31∆24 +∆41∆23)

]

−
[
∆14(∆34∆12 +∆24∆13) + ∆41(∆31∆42 +∆21∆43)

]
(6.16)

at Ω = 0, where p(1, 2, 3) is the set of permutations {a, b, c} of 1, 2 and 3. The result of

[5] is just the first line. The other two lines are subtracted by the Ω corrections (4.4) that

originate from the subdiagrams made by the legs ϕ3 and ϕ4, and the subdiagrams made

by the legs ϕ1 and ϕ4, respectively, shown in fig. 5. As before, no Ω corrections come from

the A cut of the legs ϕ1 and ϕ3. The final result, given by the complete VΩ formula, is

thus

Gs
4

(
Ph3-PV

)
= −iP4 −

∑

p(1,2,3)

∆abQacQa4 +
i

2

∑

p(1,2,3)

∆ab(∆ac +∆cb)Qa4, (6.17)

as desired.

7 Diagrams with more loops

In this section we study diagrams with more loops. The diagrams of a certian subclass are

equivalent to one-loop diagrams, and can be treated with no extra effort. This happens
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1
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3

4

5

Figure 6: Stacks of propagators and box diagram with diagonal

when an internal leg is replaced by a stack of legs with the same endpoints, as shown to

the left of fig. 6. At the level of skeleton diagrams, we have the identity

Ss
n = Ss

1

(
n∑

i=1

ei,
n∑

i=1

ωi

)

, (7.1)

where Ss
n denotes the skeleton of the diagram made by the stack of n propagators, Ss

1 is

a single propagator, ei are the external energies of the various legs, oriented from right to

left, and ωi are frequencies of the legs. The identity (7.1) holds for “Feynman stacks”, as

well as “non time-ordered stacks”. The former are made by n Feynman propagators, in

which case Ss
1 is a single Feynman propagator P of (6.1). The latter are made by n cut

propagators, in which case Ss
1 is a single cut propagator P+ of (6.1).

If the stack Ss
n contains one or more purely virtual legs, while the other legs are Feynman

propagators, no overall Ω correction is required, as well as no Ω corrections for subdiagrams.

Combining the facts just stated, the reduction V → V0 of formula (2.10) shows that the

projection of the stack Ss
n is just the propagator

P

(
i

∑n
i=1(ei − ωi)

−
i

∑n
i=1(ei + ωi)

)

(7.2)

of a single purely virtual particle with energy equal to the total incoming energy and

frequency equal to the total frequency.

The bubble with “pseudodiagonal” is the stack n = 3. If all the legs are physical, its

expression is the analogue of (6.3), i.e., (7.1) for a Feynman stack. If a leg is purely virtual,

the reduced amplitude is (7.2).

The triangle with pseudodiagonal is the triangle where one leg is replaced by a stack Ss
2 .

Let us assume that the first and fourth legs have the same endpoints, and their energies

e1 and e4 have the same orientations. Then, we easily retrieve the formulas of subsection

6.2 with e1 → e1 + e4, ω1 → ω1 + ω4.
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The same works for the box with pseudodiagonal, where the endpoints of the fifth

leg coincide with those of one of the first four legs. And the same works for diagrams

with arbitrarily many loops: when the internal legs can be grouped together into stacks,

the results coincide with those of a diagram with fewer loops, obtained by replacing each

stack with a single leg, with energy equal to the total energy flowing into the stack, and

frequency equal to the total frequency. An example is shown in the middle of fig. 6, which

is a diagram equivalent to the hexagon. These properties hold for the Feynman diagrams,

as well as for the diagrams of the reduced scattering matrices derived in section 2.

The first nontrivial arrangement at two loops is the box with (true) diagonal, shown

to the right of fig. 6. The arrows are opposite to the orientations of the external energies

ei. From [5], the threshold decomposition reads

Gs
4D =−iP4D +∆12G̃sPV

3|345 +∆21G̃sPV
3|345 +∆45G̃sPV

3|123 +∆54G̃sPV
3|123

+
i

2

∑

s4D

(Qa3c − 2i∆a3c)∆ab∆cd + i
∑

s4D

∆a3c
[
iQab(Qcd − i∆cd) + ∆abQcd

]

+
i

2

∑

s4D

∆a3c
[
∆a3d(Qab − i∆ab) + ∆b3c(Qcd − i∆cd)

]
, (7.3)

where

P4D =
∑

s4D

Pa3c

[

PabPcd +
1

2
PabPa3d +

1

2
Pb3cPcd +

1

2
Pa3dPb3c

]

,

and ∆abG̃sPV
3|cdf = ∆ab GsPV

3|cdf

∣
∣
∣
e3→e3−eb−ωb

, GsPV
3|abc being the skeleton (6.8) of the purely virtual

triangle with legs abc. Moreover, Pa3c, Qa3c and ∆a3c are the same as Pa3, Qa3 and ∆a3,

respectively, with ea → ea+ec and ωa → ωa+ωc. The sums
∑

s4D are over the permutations

a, b of 1, 2, the permutations c, d of 4, 5, plus (e → −e).

We start from the case where every internal leg is quantized as purely virtual. If we

apply formula (2.16) with Ω = 0, we find

−iP4D − i
[
∆21∆54Q235 + (e → −e)

]
(7.4)

which is the expected result, −iP4D, plus a term that can be canceled by means of an

overall anti-Hermitian Ω correction. In the end, we obtain

Gs
4D

(
PV5

)
= −iP4D, (7.5)

as desired.

The reason why it is necessary to include the correction just mentioned is easily ex-

plained. Although Gs
4D is a prime diagram, it factorizes when we “contract” the diagonal.
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The contraction operation, denoted by C3, is studied in detail in section 8. It amounts to

multiplying the skeleton diagram by im3/2 and taking the limit m3 → ∞.

Diagrammatically, the result of the contraction is a purely virtual double bubble, which

is obviously not prime. We know from section 6 that such a diagram needs the Ω correction

(6.6). A consistency check is to multiply the square bracket of (7.4) by im3/2, take the

limit m3 → ∞, and verify that what we obtain is indeed canceled by the analogue of (6.6).

Now we consider the physical box with a purely virtual diagonal, i.e., the case where

the diagonal is the only purely virtual leg. This time, the contraction C3 gives the physical

double bubble, which does not need any Ω correction. Indeed, formula (2.16) at Ω = 0

correctly gives

Gs
4D

(
Ph2-PV-Ph2

)
= Gs

4D|3 ,

where Gs
4D|a,b,··· means the expression (7.3) upon suppression of all the terms where any

frequency ωa, ωb, · · · appears in the argument of some delta function. No Ω corrections

for subdiagrams are involved, since the subdiagrams in question are triangles.

When the legs 1 and 3 are purely virtual, while all the other ones are physical, the

contraction C3 gives, again, the purely virtual double bubble, so the same Ω correction as

for (7.4) must be included. The reduced amplitude VΩ gives

Gs
4D

(
PV-Ph-PV-Ph2

)
= Gs

4D|1,3 ,

in agreement with [5].

An interesting case is the one where two adjacent non diagonal legs, say 2 and 5, are

purely virtual, while the others are physical. We find the same overall Ω correction as

above, because C3 gives the purely virtual double bubble. However, we also find some

unwanted terms that cannot be subtracted by means of an overall, anti-Hermitian Ω.

Luckily, they cancel out automatically, as in the other cases analyzed so far, once we

include the Ω corrections due to the subdiagrams, as per the last two terms ΩAV/2 and

V AΩ/2 of formula (4.11).

The unwanted terms are subtracted away by the diagrams where the three physical

legs, which are 1, 3 and 4, are crossed by the A cut. One side of the cut contains the

vertex ϕ1ϕ3ϕ4, while the other side contains the Ω corrections (4.4) to the subdiagram

made by the legs 2 and 5. At the end, we correctly find

Gs
4D

(
Ph-PV-Ph2-PV

)
= Gs

4D|2,5 ,

The other cases can be treated similarly.
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8 Managing pure virtuality: methods and theorems

In this section and the next one we describe methods and tricks to study the virtual and

on-shell contents of the skeleton diagrams Gs, and relate the threshold decompositions of

different diagrams to one another. We can even derive the threshold decompositions of

bigger diagrams from the ones of smaller diagrams in a unique way. The results allow

us to gain insight into the threshold decompositions themselves and the roles of the Ω

corrections. In section 10 we recap the lessons learned through the various examples.

The two main tricks are integration and contraction, which stand for: a) integrating

on the external energies, and b) sending the masses to infinity.

8.1 Integration

Using the notation (6.1) (where, we recall, we multiply every propagator by 2ω with

respect to the usual definitions), a basic tool is to integrate a skeleton diagram Gs on an

independent external energy e:

Ie(G
s) ≡

∫ +∞

−∞

de

2π
Gs(e). (8.1)

The virtue of this operation is that it turns the Feynman propagator, as well as the cut

propagators into unity:

∫ +∞

−∞

de

2π

(
i

e− ω + iǫ
−

i

e + ω − iǫ

)

=

∫ +∞

−∞

de

2π
(2π)δ(e± ω) = 1. (8.2)

Moreover, it turns a purely virtual (tree) propagator into zero:

P

∫ +∞

−∞

de

2π

(
i

e− ω
−

i

e + ω

)

= 0. (8.3)

We denote the operation (8.1), applied to the internal leg ℓ, by Iℓ, or Ieℓ . It is a useful

tool to inspect the diagrams and, for example, check whether they are purely virtual or

not, and quantify their virtual contents versus their on-shell contents. It is also useful, as

we show in the next section, to ascend and descend among the diagrams.

If we prefer to use the standard notation (3.3), (3.5), then the operation Iℓ is

Ie(Ḡ
s) ≡ 2ω

∫ +∞

−∞

de

2π
Ḡs(e),

where Ḡs denotes the skeleton diagram with propagators (3.3), (3.5).
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We can apply Iℓ to one or more internal legs of a diagram Gs. We begin by studying

what happens when we integrate on all the independent external energies ei. Taking into

account that, by definition, we are already integrating on all the internal energies of a

skeleton diagram, we end up integrating on all the independent energies of the diagram.

So doing, all the Feynman propagators collapse to unity.

The result of this operation is called avirtuality of the skeleton diagram Gs and mea-

sures its “on-shellness”. If Gs is the skeleton of an ordinary Feynman diagram with v

(nonderivative) vertices, its avirtuality is equal to one1.

The purely virtual contents of the one-loop prime diagrams considered so far were

singled out by reduced amplitude V̊ of formula (2.17). Denote the skeleton diagrams

associated with V̊ by G̊s. We show that the avirtuality of an arbitrary G̊s with v vertices

is

Av = 1 +
v−1∑

k=1

(−1)k

2k
ak+1,v, (8.4)

where ak+1,v is defined by the recursive relation

an,v = nv −
n−1∑

k=1

(
n

k

)

ak,v, a1,v = 1. (8.5)

Formula (8.4) is proved as follows. Expand the right-hand side of equation (2.17) in

powers of v. The nth power contains n− 1 vertical cuts, and each cut is equal to

−
1

2
(C − |0〉〈0|).

The cuts identify n − 2 vertical strips. Two half planes lie at the sides, their boundaries

being the first and the last cuts. We consider them as further strips. The v vertices of G̊s

must be distributed inside the n strips in all possible ways. If we include the possibility to

leave some strips empty, there are nV ways of doing so. However, such a possibility must

be excluded.

Let an,v denote the number of distributions where such a possibility is indeed excluded.

Clearly, an,v is equal to nv minus the distributions that contain empty strips. Such dis-

tributions can be distinguished according to the number k of empty strips, which ranges

from 1 to n − 1. There are
(
n
k

)
ways of choosing the k empty strips. In each case, the v

vertices can be distributed in an−k,v ways. This gives the recurrence relation (8.5).

1We recall that we are working in the notation where each nonderivative vertex is equal to 1. In the

usual notation, where a vertex is equal to −iλ, λ denoting some coupling, we would have (−iλ)v. Diagrams

with derivative vertices can be reduced to sums of diagrams with nonderivative vertices, as explained in

[5].
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Each arrangement gives a contribution equal to unity, once the operation (8.1) is applied

to all the independent external energies. Expanding (2.17), we thus find formula (8.4).

We see that the avirtuality of a diagram depends only on the number of vertices, not

on the type of diagram G̊s. We can easily check that Av vanishes for every even v. The

avirtualities of the first odd values of v are

A1 = 1, A3 = −
1

2
, A5 = 1, A7 = −

17

4
, A9 = 31, A11 = −

691

2
.

Let us apply formula (8.4) to the examples of the previous sections. The simplest case

is the avirtuality of the purely virtual propagator (4.2), which we know to be zero by

formula (8.3). This is the case v = 2.

Triangle

Now we check that the avirtuality of the triangle of purely virtual particles is indeed

A3 = −1/2, using formula (6.8). To this purpose, we need the identity (B.1), proved in

appendix B. We have to calculate

Ie1Ie2 G
s
3

(
PV3

)
= −

∫ +∞

−∞

de1
2π

∫ +∞

−∞

de2
2π

[
P12P13 + cycl + (e → −e)

]
.

Particular attention has to be paid to the convergence of the integrals at infinity. Ignoring

the integral over e1 for a moment, we find

−

∫ +∞

−∞

de2
2π

(P23P21+P32P12)−

∫ +∞

−∞

de2
2π

(P12+P23)P13−

∫ +∞

−∞

de2
2π

(P21+P32)P31. (8.6)

The last two integrals of this list are convergent for e2 → ±∞, and give zero. The first

integral can be worked out by means of (B.1) and gives

Ie2 G
s
3

(
PV3

)
= −

π

2
[δ(e1 − e3 − ω1 + ω3) + δ(e1 − e3 + ω1 − ω3)]. (8.7)

At this point, the operation Ie1 gives −1/2, as we wanted to show.

One may wonder if we can add Ω corrections to obtain zero, instead. If not, we must

infer that (8.7) and A3 = −1/2 are intrinsic to the diagram.

We recall that Ω cannot change the level 0 of the threshold decomposition, which

matches the Euclidean diagram. It cannot change the odd levels of the decomposition

either, because they are not anti-Hermitian. So, the first level that can be affected by

Ω is the second one. There are two possibilities to remove (8.7) by means of Ω. One is

to add something containing ∆12∆32, plus (e → −e), because the operation Ie2 on it can
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compensate (8.7). However, the symmetries under the permutations of the internal legs,

and (e → −e), imply that we would have to add the whole sum

∆12∆32 + cycl + (e → −e).

The operation Ie2 on the additional terms gives contributions proportional to ∆13, which

must not be there.

The second possibility is to add

π2[δ(e1 − e3 − ω1 + ω3)δ(e1 − e2 − ω1 + ω2) + δ(e1 − e3 + ω1 − ω3)δ(e1 − e2 + ω1 − ω2)].

This is not acceptable either, since the double singularities due to these delta functions

are not present in the starting triangle diagram. A quick way to see this is by noting

that differences of frequencies appear, which cannot be traded for sums of frequencies. By

stability, it must be possible to express all the singularities of a skeleton diagram defined by

means of the Feynman iǫ prescription in terms of sums of frequencies (see [5] for details).

We conclude that the avirtuality A3 = −1/2 is an intrinsic property of the purely

virtual triangle diagram.

Box

The avirtuality A4 of the box diagram with circulating purely virtual particles is equal

to zero. We can verify this result as before, from formulas (6.12) and (6.13), using the

identities (B.1) and (B.5) of appendix B.

We apply Ie3Ie2Ie1 to (6.13): we first integrate on e1, then on e2 and finally on e3.

We can distinguish terms PabPcdPef with three, two and one indices equal to 1. The e1

integral gives zero on the terms that just have one index 1, since they can be organized

into the sums

−
i

2

∫ +∞

−∞

de1
2π

PabPac
(
2Pa1 + P1b + P1c

)
= −

i

2

∫ +∞

−∞

de1
2π

PbaPca
(
2P1a + Pb1 + Pc1

)
= 0,

where {a, b, c} is any permutation of {2, 3, 4}. These integrals are separately convergent.

Each term with two or three indices equal to 1 is separately convergent, and can be

calculated by means of (B.1) and (B.5). After the operation Ie2, the result is

Ie2Ie1G
s
4

(
PV4

)
= −

i

2
(P34 + P43).

When we finally apply Ie3 , we get zero, as we wanted to show.
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Following the same guidelines, we have checked the avirtualities of the purely virtual

pentagon and the purely virtual hexagon (formulas (9.1), A5 = 1, A6 = 0), finding agree-

ment with (8.4). The projection V̊ of the purely virtual box diagram with diagonal gives

(7.4), which also satisfies A4 = 0. The inclusion of the Ω correction, which leads to (7.5),

does not change A4.

8.2 Contraction

Another useful operation is the limit of infinite masses, after multiplying by the masses

themselves. The basic identities are

lim
m2→∞

(im2)i

p2 −m2 ± iǫ
= 1, lim

m2→∞
(im2)(2π)θ(±p0)δ(p2 −m2) = 0, (8.8)

which select the principal-value part and kill the on-shell part, and allow us to measure

the virtuality of a skeleton diagram. The operation, which we denote by Cℓ, where the

letter C stands for “contraction” and the suffix ℓ denotes the leg that is being contracted,

has other interesting virtues. The first one is that it allows us to jump from one diagram

to a simpler diagram, in momentum space. Later on we show that it also allows us to

jump from simpler diagrams to more complicated diagrams, once it is combined with the

integration trick mentioned before.

We start from an ordinary Feynman skeleton diagram Gs, and denote the diagram

obtained by contracting the leg ℓ by Cℓ(G
s). For example, if Gs is the box and ℓ is one of

its internal legs, Cℓ(G
s) is the triangle. If Gs is the triangle, Cℓ(G

s) the bubble. If Gs is the

bubble, Cℓ(G
s) is the tadpole. If we contract the third leg of the diagram made by three

adjacent propagators, we obtain the diagram made by two adjacent propagators. Etc.

Note that a connected diagram Gs is mapped into a connected diagram Cℓ(G
s). Instead,

a prime diagram Gs can be mapped into a factorized diagram Cℓ(G
s). For example, we

have seen that the box with diagonal turns into the double bubble, by contraction of the

diagonal leg.

The other interesting property of the operation Cℓ is that it applies straightforwardly

to the projected skeleton diagrams, the reduced scattering matrices, and every term of the

expansion of the right-hand side of formula (2.16), including the Ω corrections. Precisely:

the contraction Cℓ and the projection VΩ commute.

To prove this statement, we work on the amplitude VΩ of (2.16), starting from Ω = 0.

Let Ĝs denote the projection of the Feynman skeleton diagram Gs, Ĉℓ(Gs) the projection

of the contracted diagram Cℓ(G
s), and Cℓ(Ĝ

s) the contraction of the projected diagram

Ĝs. By (8.8), Cℓ sends the cut propagators of the leg ℓ to zero. This means that every
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cut diagram contributing to Ĝs, where the leg ℓ is crossed by a cut, disappears. Thus,

the surviving diagrams of Cℓ(Ĝ
s) are precisely the ones of Ĉℓ(Gs). We conclude that the

projection encoded in the reduced amplitude VΩ commutes with the contraction Cℓ at

Ω = 0: Ĉℓ(Gs) = Cℓ(Ĝ
s).

It then follows that the two operations also commute at nonzero Ω, if Ω is the one that

gives a theory of physical and purely virtual particles. The reason is that the diagrammatics

of a theory of physical and purely virtual particles, recalled at the beginning of section 6,

amounts to a projection that manifestly commutes with the contraction: starting from the

threshold decomposition of a Feynman diagram, it suppresses the delta functions whose

arguments contain the frequencies ωf of the purely virtual particles f. The contraction Cℓ

suppresses the delta functions that contain ωℓ, via the second limit of (8.8). The order

with which we remove the two is clearly immaterial.

These Cℓ properties can be used to relate the Ω corrections of bigger skeleton diagrams

to the Ω corrections of smaller diagrams, and check the results of the previous sections.

For example, if we apply C2 to (4.3), we find the purely virtual propagator (4.2), with

m → m1. If we apply C2 to (4.4) we find 0, since the single propagator has no Ω. If we

apply C3 to (4.8), we find (4.3) (with ∆±
2 → ∆∓

2 , due to the different conventions for the

energy flows). If we apply C3 to the difference between (4.9) and (4.8), we correctly find

(4.4) (again with ∆±
2 → ∆∓

2 ). If we apply C3 to (4.12) we obtain (4.3) again. If we apply

C3 to (4.14), we obtain iF1iF2, as expected. If we apply C2 to (4.14), we correctly obtain

(4.6) with 2 → 3. If we apply C2 to (5.4), we find (5.2). If we apply C2 to (5.5), we also

find (5.2). If we apply C1 to (5.5), we correctly find the physical propagator iF2. And so

on.

In loop diagrams we switch to the notation where every propagator is multiplied by 2ω

with respect to the usual definitions. The basic identities are then

lim
m→∞

im

2

i

e± (ω − iǫ)
= ∓

1

2
, lim

m→∞

im

2
P

i

e± ω
= ∓

1

2
, lim

m→∞

im

2
(2π)δ(e± ω) = 0.

It is easy to check that C4 turns the purely virtual box skeleton (6.13) into the purely

virtual triangle skeleton (6.8), and C3 turns (6.8) into the purely virtual bubble skeleton

(6.4). Similarly, C4 turns (6.15) into (6.10) with 1 ↔ 2, and C4 turns (6.17) into (6.7), etc.

The operation Cℓ preserves the threshold decomposition, by which we mean that it

maps level i to level i, for each i. For example, the decomposition (6.11) of the box

diagram is sent term by term into the decomposition (6.7) of the triangle diagram, by

the operation C4. The integration operation Iℓ considered before, instead, mixes different

levels (see below).
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9 Ascending and descending among skeleton diagrams

Now we explain how to use the operations Iℓ and Cℓ to ascend and descend among the

skeleton diagrams. We have already described the descent Cℓ in various cases, which

is rather straightforward and preserves the threshold decomposition. The operation Iℓ,

instead, deserves a more detailed analysis.

We start from purely virtual diagrams. They are simpler, because they just contain

principal values Pab, and no delta functions ∆ab. We have already proved the descent

relations

Gs
4

(
PV4

) C4−→ Gs
3

(
PV3

) C3−→ Gs
2

(
PV2

) C2−→ Gs
1

(
PV
)
= 0,

where Gs
1

(
PV
)
is the purely virtual tadpole, which vanishes. Using the formulas of [5], we

can extend these results to the hexagon and the pentagon:

Gs
6

(
PV6

) C6−→ Gs
5

(
PV5

) C5−→ Gs
4

(
PV4

)
,

where2

Gs
5

(
PV5

)
=

1

4!

∑

perms

PabPac
[
Pad(Pae + 4Ped) + 2PdbPec

]
+ (ei → −ei),

Gs
6

(
PV6

)
=

i

5!

∑

perms

PabPacPad
[
Pae(Paf + 5Pfe) + 5Ped

(
Pef + 2Pfc

)]
+ (ei → −ei).

(9.1)

We want to show that we can ascend through these skeletons by means of the sole

operations Cℓ, and the requirement of correct behaviors at large energies (which are the

convergence conditions for the operations Iℓ).

From bubble to triangle

The purely virtual triangle can only be proportional to P3, because of the symmetries

under the exchanges of the internal legs, and e → −e. The proportionality constant can

be fixed from the purely virtual bubble (6.4), by requiring Gs
3

(
PV3

) C3−→ Gs
2

(
PV2

)
. We

then find (6.8).

2We point out two typos in [5]: the factors 1/5! and 1/6! in front of the pentagon and hexagon

expressions reported there, formula (8.2), should be replaced by 1/4! and 1/5!, respectively, to match the

analogous factors of the triangle and the box. Further factors i and −1 in formulas (9.1) are due to the

different notation we are using here for the vertices.
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From triangle to box

By the symmetries mentioned above, the purely virtual box can only be a linear combina-

tion

−a1
i

6

∑

perms

PabPacPad − a2
i

4

∑

perms

PabPacPdb + (e → −e). (9.2)

It is obtained by listing the monomials Pa1a2Pa3a4 · · · according to the following rules

(codified by the “snowflake diagrams” of ref. [5]): each index ai must appear at least

once; if it is repeated, it must be always to the left, or always to the right; no squares or

higher powers of the same Paiaj can appear; the monomial Pa1a2Pa3a4 · · · cannot factorize

into the product of unlinked monomials (which means: monomial factors with no index in

common).

Next, the total should be integrable in every independent external energy. In particular,

it should decrease faster than 1/e4 for large e4. Applied to (9.2), this condition gives

a2 = a1. It is easy to check that the requirement Gs
4

(
PV4

) C4−→ Gs
3

(
PV3

)
then implies

a1 = 1, thus giving (6.13).

From box to pentagon

The purely virtual pentagon must be a linear combination

∑

perms

PabPac
[
Pad(a1P

ae + a2P
ed) + Pdb(a3P

de + a4P
eb + a5P

ec)
]
+ (ei → −ei),

obtained by listing the terms with 4, 3 and 2 identical left indices. After (ei → −ei),

the second and forth terms are identical, as well as the third and fifth terms, so we can

set a4 = a5 = 0. The requirement that the total falls faster than 1/e5 for large e5 gives

a2 = 4a1. Finally, the requirement Gs
5

(
PV5

) C5−→ Gs
4

(
PV4

)
gives a1 = 1/4! and a3 = 1/12.

At the end, we get Gs
5

(
PV5

)
, as in (9.1).

From pentagon to hexagon

Listing the terms as before, the purely virtual hexagon must be a linear combination

∑

perms

PabPac
{
Pad

[
Pae(a1P

af + a2P
fe) + Ped(a3P

fd + a4P
ef + a5P

fc)
]
+ a6P

dbPecPef
}
,

plus (ei → −ei). The requirement that the total falls faster than 1/e6 for large e6 gives

a2 = 5a1, a3 = (15a1 + a4 − 2a5)/4 and a6 = (2a4 − a5)/2. The requirement Gs
6

(
PV6

) C6−→

Gs
5

(
PV5

)
gives a1 = i/5! and a4 = i/4!. The parameter a5 multiplies a combination that

is identically zero (see [5]). Setting a5 = i/12, we get the correct Gs
6

(
PV6

)
, as in (9.1).
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9.1 Ascending through the threshold decompositions

Similarly, we can derive the threshold decompositions of bigger skeleton diagrams Gs
big from

those of smaller skeleton diagrams Gs
small. The goal is achieved by first parametrizing the

most general decompositions of Gs
big. After that, the arbitrary coefficients are determined

by descending to smaller diagrams Gs
small in all possible ways by means of the operations

Iℓ and Cℓ. The result is unique.

We illustrate this property by studying the chain

bubble → triangle → box

on Feynman skeletons, which means that we assume that all the internal legs are physical.

So doing, we cover all the situations obtained by the various projections, with arbitrary

combinations of physical and purely virtual internal legs.

We have already shown how to ascend through the purely virtual versions of the dia-

grams, which is equivalent to ascend through the zeroth levels of the threshold decompo-

sitions of the Feynman diagrams. The next task is to ascend through the other levels. We

do so by writing the most general linear combinations of the allowed terms, built with Pab

and ∆cd according to the rules explained above and satisfying the symmetries given earlier.

Then we fix the free constants by descending with the help of the operations Iℓ and Cℓ.

The operations Cℓ relate the decompositions level by level, so there is no need to rearrange

the decompositions after applying them. Instead, the operations Iℓ mix different levels.

This means that, after applying Iℓ to a bigger skeleton Gs
big, the result must be decomposed

anew before comparing it to the threshold decomposition of the smaller skeleton Gs
small.

From bubble to triangle

We know that the zeroth level of the threshold decomposition of the triangle skeleton

diagram is −P3. We can parametrize the most general nonzero levels as

level 1: iα
∑

perms

∆ab(Pac + Pcb),

level 2:
β

2

∑

perms

∆ab(∆ac +∆cb).

where α and β are coefficients to be determined.

First, we require that the contraction C3 gives the bubble diagram (6.3). This implies

α = 1. Then, we require that the bubble diagram is also obtained by applying the in-

tegration I3. This gives β = 1. At the end, we obtain the decomposition Gs
3 of formula

(6.7).
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From triangle to box

The zeroth level of the threshold decomposition of the box skeleton diagram was deter-

mined from the parametrization (9.2). It coincides with −iP4, given in formula (6.12).

Distributing the repeated indices in all possible ways, and using the symmetries men-

tioned earlier, the most general nonzero levels of the decomposition can be parametrized

as

level 1:
∑

perms

Pab
[
Pac(α1∆

ad + α2∆
db) + (α3P

db + α4P
dc)∆ac

]
+ (e → −e),

level 2:
∑

perms

∆ab
[
∆ac(β1P

ad + β2P
db) + (β3∆

db + β4∆
dc)Pac

]
+ (e → −e),

level 3:
∑

perms

∆ab∆ac(γ1∆
ad + γ2∆

db) + (e → −e).

where αi, βi and γi are the coefficients that must be determined.

It is easy to check that α2 and α3, as well as β2 and β3, multiply identical terms, so

we can set α3 = β3 = 0. Next, we impose the convergence of the operations Iℓ. This

gives α4 = α1 − (α2/2) and β2 = β1. Third, we require that the contraction C4 gives

the threshold decomposition of the triangle skeleton. Matching the various levels, we find

α1 = −1/2 and β1 = i/2.

Fourth, we require that the integration I4 also gives the triangle. When we apply the

operation I4, we find that it does not preserve the levels of the threshold decomposition.

The easiest way to see this is that I4 returns terms that cannot be written by means of

Pac and ∆cd, because they depend on differences ωi − ωj of frequencies rather than just

sums ωi + ωj . The corresponding singularities must cancel out, since they do not belong

to the triangle skeleton. Their cancellation is achieved by means of identities like (B.4),

whose right-hand sides contain remnants that correct the lower levels. Once we reorganize

the decomposition properly, we can match the various levels as required. We then find

γ1 = 1/6 and γ2 = −α2/2.

After these substitutions we find that α2 and β4 multiply trivial terms, so we can set

α2 = β4 = 0. At the end, we obtain the correct decomposition (6.11).

10 Diagrammatic rules recap

It is useful to summarize here the various diagrammatic options we have.

a) Feynman diagrams
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They give the usual scattering amplitudes, collected in the matrix V = iT . The

ingredients are the vertices and the propagators defined by the Feynman iǫ prescription.

The rules to build the diagrams follow from the time-ordered product (3.1).

b) Cutkosky-Veltman diagrams

They are not used for the scattering amplitudes of the theory, but to express the

unitarity equation (1.1) as a set of diagrammatic identities. The ingredients are the same

as in (a), plus: the conjugate vertices, the conjugate propagators, the cut propagators.

The rules to build the diagrams follow from the time-ordered product (3.1) and the optical

identity (1.1). Precisely: the cut is unique; one side of the cut is built with the rules (a);

the other side is built with the conjugate rules; the cut is given by cut propagators.

c) Minimally non time-ordered diagrams

They give the scattering amplitudes of the reduced matrix VΩ. The ingredients are

the same as in (a), plus the non time-ordered propagators, which coincide with the cut

propagators of (b). No conjugate vertices, nor conjugate propagators are involved. The

instructions to assemble the diagrams are encoded in formula (2.16). The diagrams may

contain arbitrary numbers of cuts. The rules (a) are used in between two cuts, and at

the sides, while the cut propagators are non time-ordered. The anti-Hermitian matrix Ω

is determined step by step to match the amplitude VΩ = iTph of a theory of physical and

purely virtual particles.

d) Cut diagrams of minimally non time-ordered diagrams

They include the minimally non time-ordered diagrams of VΩ, as in (c), their conjugates

V †
Ω, and the gluing of V †

Ω to VΩ by means of further cuts. They are used to convert

the unitarity equation (2.8) satisfied by the reduced amplitude Vred = VΩ of (c) into

diagrammatic identities.

11 Symmetries and renormalizability

In this section we show that the projection V → VΩ preserves the symmetries of the theory,

as well as its renormalizability, under extremely mild assumptions, which are satisfied by

the minimally non time-ordered product and the new quantization principle.

The diagrammatic formulation of ref. [5] provides a particular solution to the problem

considered here, i.e., map the usual amplitude V , which is defined by the time-ordered

product (3.1) and satisfies the (pseudo)unitarity equation (2.3), into a unitary amplitude

Vph = iTph. Since (2.16) is the most general solution to the problem, there must exist

43



22
A
5
R
en
or
m

an Ω that turns VΩ into the diagrammatics of [5]. We denote it by Ωph(A). In the

previous sections, we have shown how to derive Ωph(A), by requiring that the projection

of a product diagram equals the product of its projected prime factors, and that this

factorization property survives the basic operations of ascent and descent through the

diagrams. This ensures, in particular, that Ωph(A) itself is diagrammatic. Its diagrams

can be obtained by comparing those of [5] with those of V0, encoded in formula (2.10).

The comparison must be done iteratively for each contribution to Ω, as soon as it appears

as an overall correction to some diagram.

Now we show how to obtain the threshold decomposition of a diagram from formula

(2.16). Once we choose the physical space Wph, we know A = Πph, which is the projector

onto Wph. Let Vph(A) denote the physical solution VΩph(A). Since Vph(A) depends just on

V (A and B = C −A being given), we can invert its expression and expand V in terms of

Vph(A).

Let us do this in the particular case A = |0〉〈0|, where Wph is just made of the vacuum

state |0〉. Then, the projection Vph(|0〉〈0|) singles out the purely virtual contents of the

diagrams. Inverting the formula (2.16) of Vph(|0〉〈0|), we can write V as an expansion

in powers of Vph(|0〉〈0|): this is precisely the threshold decomposition of the Feynman

diagrams collected in V .

The levels of the decomposition are the numbers of cuts, plus the levels of the Ωph(|0〉〈0|)

corrections. The latter are determined by comparison with what they correct, which is

easier to do when they appear as overall corrections.

Lorentz invariance

The threshold decomposition of ref. [5] is not manifestly Lorentz invariant, because

the skeleton diagrams are defined by ignoring the integrals on the space components of the

loop momenta. It is easy to show that Lorentz invariance is recovered when those integrals

are resumed.

We recall that the projection to purely virtual particles amounts to consider the thresh-

old decomposition, and remove the contributions where some delta functions, such as ∆ab,

depend on the frequencies ωf of some purely virtual particles f. This operation is Lorentz

invariant (as long as it is performed consistently in all the diagrams of the theory), since

it amounts to remove a certain type of singularity everywhere from Feynman diagrams.

Different types of singularities do not talk to one another.

Formula (2.16) is manifestly Lorentz invariant, as long as the subspace Wph is Lorentz

invariant and the Ω correction is Ωph(A). The Lorentz invariance of Ωph(A) follows by

comparison between the projection obtained here and the one of [5].
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Gauge symmetry, general covariance, generalized local symmetries

The physical amplitude Vph(A) is manifestly invariant under such symmetries, as long

as A projects onto an invariant subspace Wph. This excludes subspaces containing the

Faddeev-Popov ghosts, the temporal and longitudinal components of the gauge fields, etc.

A quick way to prove the preservation of the symmetries is by means of the techniques

recently developed in refs. [13]. There, it was shown how to dress the elementary fields to

make them manifestly gauge invariant, without altering the fundamental theory. Working

with dressed fields, and recalling that they reduce to the ordinary elementary fields at the

level of on-shell asymptotic states, it is evident that the operations involved in formula

(2.16) are manifestly gauge invariant. As far as Ωph(A) is concerned, we can proceed as

before, by comparison with [5], and recalling that: a) the projection to purely virtual parti-

cles amounts to remove certain types of singularities everywhere from Feynman diagrams;

and b) different singularities do not talk to one another.

Thus, once we assume that the physical space Wph is invariant (e.g., it is made of phys-

ically observable particles), the projection V → Vph(A) is invariant, and the preservation

of symmetries is always guaranteed, including the cancellation of anomalies to all orders

by means of the Adler-Bardeen theorem [14].

The results of this paper extend to the off-shell amplitudes of gauge invariant fields

defined in [13]. We also recall that a particular projection is the one that gets rid of the

Faddeev-Popov ghosts, as well as the temporal and longitudinal components of the gauge

fields, in gauge theories. Applying the map V → Vph(A) to that case, we recover the proof

of unitarity in gauge theories given in ref. [15].

Renormalizability

The renormalizability of the projected amplitudes is manifest, whenever the unpro-

jected amplitudes are renormalizable. Indeed, formula (2.16) tells us the reduced ampli-

tude VΩ is equal to the usual amplitude V plus terms that involve one or more cuts. A

single cut is sufficient to kill the overall divergence of a diagram, since the delta function

due to the cut restricts the integration domain of the overall integral to a compact sub-

set. The subdivergences are automatically taken care of as usual. The Ω corrections are

compatible with renormalizability as long as they do not affect the zeroth levels of the

threshold decomposition, as we have required.

Finally, we remark that the difference VΩ − V between the projected amplitude and

the time-ordered one vanishes identically when the incoming energy Ein is smaller than

the mass of the lightest purely virtual particle. Indeed, the diagrams of VΩ − V contain

at least one cut leg of type χ, so they can be nontrivial only if Ein exceeds the χ mass.
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In particular, VΩ − V vanishes in the Euclidean region, and the renormalization of the

projected theory coincides with the one of the parent Euclidean theory.

12 Conclusions

We have formulated a new quantization principle for quantum field theory, based on a

special type of non time-ordered product, and shown that it gives the theories of physical

and purely virtual particles.

The diagrams of the physical amplitude Vph = iTph are built by means of the usual

vertices and propagators, plus non time-ordered propagators. The instructions to assemble

the diagrams are encoded in a formula that maps the standard amplitude V = iT into Vph.

If V obeys the unitarity or pseudounitarity equation, the most general reduced amplitude

VΩ that obeys the unitarity equation depends on an arbitrary anti-Hermitian matrix Ω. A

special Ω, called Ωph(A) in section 11, is determined by requiring that the projection of a

product diagram is equal to the product of the projected factors, and that the factorization

survives basic operations of ascent and descent through the diagrams. The idea is that the

time ordering should be violated in a sort of “minimum” way, inside prime diagrams. The

amplitude Vph(A) = VΩph(A) coincides with the amplitude Vph of a theory of physical and

purely virtual particles, as given in ref. [5].

We have worked out a number of techniques to relate different diagrams. Besides

descending from bigger to smaller diagrams, it is also possible to ascend in a unique

way from smaller to bigger diagrams, derive their Ω corrections, and match the threshold

decompositions level by level. We have illustrated these properties in various examples. At

one loop, we have considered the ascending chain bubble → triangle → box → pentagon →

hexagon. At two loops, we have focused on the first nontrivial arrangement, which is the

box with diagonal. In all the cases we have considered, nontrivial Ω corrections are present

when the diagram factorizes, and when it factorizes under the contractions of some internal

legs. Moreover, it is always possible to ascend through the threshold decompositions in a

unique way. We conjecture that these are general properties of the physical amplitude Vph.

Purely virtual particles provide the most elegant way to break the crystal glass of time

ordering. To give the reader an idea of how inelegant the most general solution (2.16) is,

consider that, when Ω is generic (including Ω = 0), a diagram with non-amputated ex-

ternal legs is not straightforwardly related to the same diagram with amputated external

legs, and has to be calculated anew. Moreover, the usual definitions of generating func-

tionals of connected and irreducible Green functions do not apply. Only for Ω = Ωph(A),
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we have that, if Z(J) denotes the generating functional all the correlation functions, its

logarithm W (J) = −i lnZ(J) is the generating functional of the connected ones, and the

W Legendre transform Γ(Φ) = W (J)−
∫
ΦJ , Φ = δW/δJ , is the generating functional of

the amputated, one-particle irreducible ones.

Yet, we cannot exclude that unforeseen physical principles might one day point to one

of the many alternative options. In the absence of experimental data, the only thing we

can do is single out the options that have remarkable formal and diagrammatic properties.

In this spirit, it may be also worth to search for alternative Ω corrections, which may break

the time ordering in non minimal ways, but have other interesting properties. In any case,

the right solution chosen by nature must lie somewhere in formula (2.16), determined by

the Ω that fits the physics.

We conclude with a brief summary of the formulations of purely virtual particles worked

out so far. First, a nonanalytic Wick rotation was introduced in refs. [16], as a way to

get rid of ghosts with complex masses, and reformulate the Lee-Wick models [17]. Its key

ingredient is the average continuation around the branch cuts of amplitudes. It was soon

realized that the procedure was actually a way to formulate models of new types, rather

different from the original Lee-Wick idea (see [18] for a detailed comparison), and could be

extended to remove ghosts with real masses (as well as physical particles), to give sense of

quantum gravity as a power counting renormalizable theory, like the standard model [6].

The proof of unitarity to all orders in this approach was given in ref. [18]3.

The second, equivalent formulation of purely virtual particles was introduced by means

of the diagrammatic threshold decomposition of [5], and the spectral optical identities

derived from it. The third formulation, equivalent to the other two, is the one of the

present paper, based on the minimally non time-ordered product. With respect to [18],

the gain offered by the two new formulations is considerable, not only for the clarity of the

proofs to all orders, but also from the practical point of view. Indeed, the new formulations

offer several ways to make calculations with not much more effort than computing Feynman

diagrams (check [8]).

We end by mentioning some perspectives for the future. One goal is to develop the oper-

atorial/Hamiltonian approach to purely virtual particles, and maybe study their quantum

mechanics, where the evolution operator is no longer the usual time-ordered exponential,

but follows from the minimally non time-ordered product. Another challenging objective is

to pursue the off-shell formulation of transition amplitudes, by combining the approach of

3For Lee-Wick approaches to quantum gravity, we address the reader to refs. [19]. Among other

approaches to the problem of removing ghosts in quantum field theory, we point out [20].

47



22
A
5
R
en
or
m

this paper with the results recently obtained in refs. [13], where it was shown how to define

off-shell physical amplitudes of colored states in QCD and point-dependent observables in

quantum gravity, consistently with the (off-shell version of the) optical theorem.

All in all, we think that we have achieved a satisfactory understanding of the nature

of purely virtual particles, and revealed the main mysteries behind them, in view of the

challenges just mentioned.

Appendices

A From diagrams to scattering matrix, and back

Although the matrix V = iT is a collection of diagrams, in the paper we have been able

to concentrate on single diagrams, and isolate the identities satisfied by them. In this

appendix we show how to switch from T to single diagrams, with a different particle in

each internal leg (and vice versa), with no loss and no gain of information.

For definiteness, we start from a Lagrangian L(ϕ) that depends on a single field ϕ. We

separate the kinetic (i.e., quadratic) part Lkin(ϕ,m), where m denotes the mass of ϕ, from

the interaction part Lint(ϕ, λ) (made by anything that is not quadratic in ϕ, including the

linear terms, if present), where λ denotes the couplings:

L(ϕ) = Lkin(ϕ,m) + Lint(ϕ, λ). (A.1)

Then we use a Pauli-Villars trick [12] to introduce many fields ϕi without changing the

diagrams. Specifically, we replace the ϕ kinetic part with the sum of the ϕi kinetic parts,

having the same mass. Moreover, we replace ϕ with the sum of all the ϕi in the interaction

part:

L′(ϕ) = N
N∑

i=1

Lkin(ϕi, m) + Lint (φ, λ) , φ =
N∑

i=1

ϕi. (A.2)

The diagrams GE with E external legs, generated by this Lagrangian, coincide with those

generated by (A.1), multiplied by N−E/2 and an appropriate combinatorial factor. To

prove this, it is sufficient to note that each internal leg carries the φ propagator, which

is the sum of the ϕi propagators, which in turn is equal to the ϕ propagator. We can

choose the external legs ϕi we want, and the diagram GE is always the same, apart from

the factors in front.
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At this point, we give a different mass mi to each field ϕi, and a different coupling λI

to each vertex obtained by expanding the interaction part, where the subscript I refers to

the various possibilities we have. We obtain

Lext(ϕ) = N

N∑

i=1

Lkin(ϕi, mi) + L̃int (ϕi, λI) ,

for a certain, new interaction Lagrangian L̃int. We know that we retrieve the diagrams GE

of the starting theory when we set all the masses mi equal to m, and all the couplings λI

equal to the appropriate values λ.

Now we show that the extended Lagrangian Lext(ϕ) allows us to isolate the diagrams as

needed. Let V = iT and Vext = iText denote the usual (unprojected) amplitudes, associated

with L(ϕ) and Lext(ϕ), respectively. Let G and Gext denote diagrams contributing to them.

For any G there exists a generalization Gext with the same topology as G, where each

internal leg propagates a different field ϕi. It is sufficient to take N sufficiently large, to

have a sufficient number of different fields ϕi, and differentiate Vext with respect to suitable

couplings λI . After that, we set λI = 0 for every I.

After building the diagram Gext with this method, we can study the diagrammatic

identities satisfied by it, and build the projections we need, by differentiating formula

(2.16) with respect to the appropriate couplings. If the Ω corrections are determined as

explained in the paper, the right identities are obtained by differentiating (2.16) at Ω 6= 0

as well.

An advantage of Gext is that its combinatorics are trivial, since there is only one Wick

contraction for each field ϕi participating in it. When we set the masses equal to one

another, and identify the couplings appropriately to go back to the original theory (A.1)-

(A.2), several diagrams give identical contributions and restore the right combinatorics of

L(ϕ).

In the paper, we built diagrams with independent internal legs and no external legs,

replaced by external sources K. The sources can be replaced by products of physical fields

without affecting the results we have obtained, as long as the external legs are amputated.

When we need to include propagators on the external legs, we can use the factorization

property, since we know that the right Ω gives the factorized result. With a generic Ω,

instead, the factorization property does not hold and we must redo the whole projection.
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B Identities for product distributions

In this appendix we prove some identities for product distributions that we have used in

the paper. The first one is

P

∫ +∞

−∞

dy

2π

1

y(x+ y)
=

π

2
δ(x), (B.1)

where x is real. It be proved by integrating the expression
[

1

(x+ iǫ)(y + iǫ)
−

1

(x+ iǫ)(x+ y + 2iǫ)

]

+
1

(y + iǫ)(x+ y + 2iǫ)
= 0,

on y from −∞ to +∞. Since the integral of the terms in square brackets gives zero, we

obtain ∫ +∞

−∞

dy

2π

1

(y + iǫ)(x + y + 2iǫ)
= 0. (B.2)

Formula (B.1) then follows by using

1

x+ iǫ
= P

(
1

x

)

− iπδ(x) (B.3)

twice inside the integral (B.2). Below, we reassure the reader that it is correct to use the

decomposition (B.3) in products.

More quickly, formula (B.1) can be also proved from the identity

P
1

x

(
1

y
−

1

x+ y

)

− P
1

y(x+ y)
= −π2δ(x)δ(y), (B.4)

derived in ref. [5]. The y integral of the left term is convergent and gives zero, so the rest

gives (B.1).

The second identity we need is

P

∫ +∞

−∞

dz

2π

1

(x+ z)(y + z)z
=

π

2
P

[
δ(x)

y
+

δ(y)

x
−

δ(x− y)

x

]

. (B.5)

We start from the formula

P

[
1

xyz
−

1

x+ y + z

(
1

xy
+

1

xz
+

1

yz

)]

= 0,

which was derived again in ref. [5]. First, we reflect z to −z, then translate x and y by

z/2, finally rescale z by a factor 2. Integrating on z, we get

0 = P

∫ +∞

−∞

dz

2π

[
1

(x+ z)(y + z)z
+

1

x+ y

(
2

(x+ z)(y + z)
−

1

(x+ z)z
−

1

(y + z)z

)]

.
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Every integral is separately convergent, so using (B.1) we obtain (B.5).

Now we show that it is correct to use the decomposition (B.3) in products. Consider

∫
φ(x, y)

(x+ iǫ)(y + iǫ′)
,

where φ(x, y) is a generic test function in two variables and the integral is over the plane

xy, with measure dxdy/(2π)2. Decompose φ(x, y) as the sum of

φστ (x, y) =
1

4
[φ(x, y) + σφ(−x, y) + τφ(x,−y) + στφ(−x,−y)] ,

according to the x and y parities, where σ and τ can be +1 or −1. Note that
∫

φ−−(x, y)

(x+ iǫ)(y + iǫ′)
=

∫
φ−−(x, y)

xy
= P

∫
φ(x, y)

xy
,

since φ−−(x, y)/(xy) is regular for x ∼ 0 and y ∼ 0. Moreover,

∫
φ−+(x, y)

(x+ iǫ)(y + iǫ′)
= −i

∫
ǫ′φ−+(x, y)

(x+ iǫ)(y2 + ǫ′2)
= P

∫
−iπδ(y)

x
φ(x, y)

and ∫
φ++(x, y)

(x+ iǫ)(y + iǫ′)
= −

∫
ǫǫ′φ++(x, y)

(x2 + ǫ2)(y2 + ǫ′2)
= −

∫

π2δ(x)δ(y)φ(x, y).

Thus,
∫

φ(x, y)

(x+ iǫ)(y + iǫ′)
=

∫
φ++(x, y) + φ−+(x, y) + φ+−(x, y) + φ−−(x, y)

(x+ iǫ)(y + iǫ′)

=

∫ [

P
1

x
− iπδ(x)

] [

P
1

y
− iπδ(y)

]

φ(x, y).
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