Predictions in inflationary cosmology from quantum gravity with purely virtual quanta

Marco Piva

Based on: arXiv:2005.10293

In collaboration with:

D. Anselmi (Università di Pisa) E. Bianchi (Penn State University)

Quantum gravity and purely virtual quanta (fakeons)

• Fakeon:

a degree of freedom that mediates interactions and circulate inside loops but cannot appear as asymptotic state.

[D. Anselmi, JHEP 1706 (2017) 086, D. Anselmi and MP, JHEP 1706 (2017) 066]

Quantum gravity and purely virtual quanta (fakeons)

• Fakeon:

a degree of freedom that mediates interactions and circulate inside loops but cannot appear as asymptotic state.

[D. Anselmi, JHEP 1706 (2017) 086, D. Anselmi and MP, JHEP 1706 (2017) 066]

Quantum gravity with fakeon

• Degrees of freedom of the theory:

massless spin-2
$$h_{\mu\nu}$$
, massive scalar ϕ , massive spin-2 $\chi_{\mu\nu}$. (graviton) (inflaton) (fakeon)

• Parameters:

$$M_{\rm Pl}, \quad \Lambda_{CC}, \quad m_{\phi}, \quad m_{\chi}.$$

• Physical content in cosmology:

Scalar perturbations Tensor perturbations No vectors

• Amplitudes and spectral indices in de Sitter and quasi de Sitter.

$A_{\mathcal{R}}$	A_T	r	$n_{\mathcal{R}}-1$	n_T
$\frac{m_\phi^2 N^2}{3\pi M_{\rm Pl}^2}$	$rac{4m_{\phi}^2}{\pi M_{ m Pl}^2} rac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$\frac{12}{N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$-\frac{2}{N}$	$-\frac{3}{2N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$

Black: Starobinsky inflation.

• Amplitudes and spectral indices in de Sitter and quasi de Sitter.

$A_{\mathcal{R}}$	A_T	r	$n_{\mathcal{R}}-1$	n_T
$\frac{m_\phi^2 N^2}{3\pi M_{\rm Pl}^2}$	$rac{4m_{\phi}^2}{\pi M_{ m Pl}^2} rac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$\frac{12}{N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$-\frac{2}{N}$	$-\frac{3}{2N^2}\frac{2m_{\chi}^2}{m_{\phi}^2+2m_{\chi}^2}$

Black: Starobinsky inflation.

• A consistency condition gives a bound on the fakeon mass

$$m_\chi > m_\phi/4$$

• Amplitudes and spectral indices in de Sitter and quasi de Sitter.

$A_{\mathcal{R}}$	A_T	r	$n_{\mathcal{R}}-1$	n_T
$\frac{m_\phi^2 N^2}{3\pi M_{\rm Pl}^2}$	$rac{4m_{\phi}^2}{\pi M_{ m Pl}^2} rac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$\frac{12}{N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$-\frac{2}{N}$	$-\frac{3}{2N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$

Black: Starobinsky inflation.

• A consistency condition gives a bound on the fakeon mass

$$m_{\chi} > m_{\phi}/4$$

• The bound restricts the possible values for the tensor-to-scalar ratio r

$$\frac{1}{9} \lesssim \frac{N^2}{12} r \lesssim 1.$$

$$N=60 \qquad 0.4 \lesssim 1000 r \lesssim 3,$$

$$-0.4 \lesssim 1000 n_T \lesssim -0.05$$
.

• Amplitudes and spectral indices in de Sitter and quasi de Sitter.

$A_{\mathcal{R}}$	A_T	r	$n_{\mathcal{R}}-1$	n_T
$\frac{m_\phi^2 N^2}{3\pi M_{\rm Pl}^2}$	$rac{4m_{\phi}^2}{\pi M_{ m Pl}^2} rac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$\frac{12}{N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$-\frac{2}{N}$	$-\frac{3}{2N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$

Black: Starobinsky inflation.

• A consistency condition gives a bound on the fakeon mass

$$m_{\chi} > m_{\phi}/4$$

$$\frac{1}{9} \lesssim \frac{N^2}{12} r \lesssim 1.$$

$$N = 60 \qquad 0.4 \lesssim 1000r \lesssim 3,$$

$$-0.4 \lesssim 1000 n_T \lesssim -0.05.$$

N in the range $n_R = 0.9649 \pm 0.0042$ at 68% CL.

Action and properties

$$S_{\rm QG}(g) = -\frac{M_{\rm Pl}^2}{16\pi}\int\sqrt{-g}\left[R + \frac{1}{2m_\chi^2}C_{\mu\nu\rho\sigma}C^{\mu\nu\rho\sigma} - \frac{R^2}{6m_\phi^2}\right] \label{eq:SQG}$$

Properties:

- Unitarity
 [D. Anselmi and MP, PRD 96 (2017) 045009, D. Anselmi, JHEP 02 (2018) 141].
- Renormalizability (once Λ_{CC} is reinstated).
- Violation of microcausality [D. Anselmi and MP, JHEP 11 (2018) 21].
- No violation of macrocausality
 [D. Anselmi and A. Marino, Class. Quantum Grav. 37 (2020) 095003].

Frameworks

Classical background: FLRW $g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^2 - a(t)^2 (dx^2 + dy^2 + dz^2)$. De Sitter expansion

$$\varepsilon = -\frac{\dot{H}}{H^2}, \qquad \eta = 2\varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon}.$$

• Geometric framework

$$S_{\rm geom}(g) = -\frac{M_{\rm Pl}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m_{\chi}^2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m_{\phi}^2} \right]$$

 m_{ϕ} and H are unrelated

$$\varepsilon \sim m_\phi^2(6H^2) \ll 1, \qquad m_\chi \sim H \qquad \text{or} \qquad m_\chi \sim m_\phi.$$

Frameworks

Classical background: FLRW $g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^2 - a(t)^2 (dx^2 + dy^2 + dz^2)$. De Sitter expansion

$$\varepsilon = -\frac{\dot{H}}{H^2}, \qquad \eta = 2\varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon}.$$

• Geometric framework

$$S_{\text{geom}}(g) = -\frac{M_{\text{Pl}}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m_{\chi}^2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m_{\phi}^2} \right]$$

 m_{ϕ} and H are unrelated

$$\varepsilon \sim m_{\phi}^2(6H^2) \ll 1, \qquad m_{\chi} \sim H \qquad \text{or} \qquad m_{\chi} \sim m_{\phi}.$$

Two possible expansions:

- Expand in ε with H^2/m_χ^2 fixed;
- Expand in ε with m_{χ}^2/m_{ϕ}^2 fixed.

Frameworks

Classical background: FLRW $g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^2 - a(t)^2 (dx^2 + dy^2 + dz^2)$. De Sitter expansion

$$\varepsilon = -\frac{\dot{H}}{H^2}, \qquad \eta = 2\varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon}.$$

• Geometric framework

$$S_{\rm geom}(g) = -\frac{M_{\rm Pl}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m_\chi^2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m_\phi^2} \right] \label{eq:Sgeom}$$

 m_{ϕ} and H are unrelated

$$\varepsilon \sim m_{\phi}^2(6H^2) \ll 1, \qquad m_{\chi} \sim H \qquad \text{or} \qquad m_{\chi} \sim m_{\phi}.$$

Two possible expansions:

- Expand in ε with H^2/m_χ^2 fixed;
- Expand in ε with m_{ν}^2/m_{ϕ}^2 fixed.
- Inflaton framework

$$S_{\rm infl}(g) = -\frac{M_{\rm Pl}^2}{16\pi} \int \sqrt{-g} \left(R + \frac{1}{2m_\chi^2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right) + S_\phi(g,\phi),$$

$$S_\phi(g,\phi) = \frac{1}{2} \int \sqrt{-g} \left(\nabla_\mu \phi \nabla^\mu \phi - 2V(\phi) \right), \qquad V(\phi) = \frac{m_\phi^2}{2\hat{\kappa}^2} \left(1 - e^{\hat{\kappa}\phi} \right)^2$$

Action for cosmological perturbations

$$S(u) = \frac{1}{2} \int dt \ a(t)^3 \left[f(t)\dot{u}^2 - h(t)\ddot{u}^2 - g(t)u^2 \right], \qquad u \equiv u_{\mathbf{k}}(t)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$S'(U,V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right).$$

Action for cosmological perturbations

$$S(u) = \frac{1}{2} \int dt \ a(t)^3 \left[f(t)\dot{u}^2 - h(t)\ddot{u}^2 - g(t)u^2 \right], \qquad u \equiv u_{\mathbf{k}}(t)$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$S'(U,V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right).$$

Procedure:

- i) Solve the EOM for the V by means of the <u>fakeon Green function</u>;
- ii) Insert the solution back in S';
- iii) Quantize the new action with the standard methods.

Action for cosmological perturbations

$$S(u) = \frac{1}{2} \int dt \ a(t)^3 \left[f(t)\dot{u}^2 - h(t)\ddot{u}^2 - g(t)u^2 \right], \qquad u \equiv u_{\mathbf{k}}(t)$$

$$\Downarrow$$

$$S'(U,V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right).$$

Procedure:

- i) Solve the EOM for the V by means of the <u>fakeon Green function</u>;
- ii) Insert the solution back in S';
- iii) Quantize the new action with the standard methods.
- The physical variable is still u = F(U, V).
- After the procedure, the two-point function is

$$\langle uu \rangle = \langle F(U, V)F(U, V) \rangle, \quad \text{with} \quad V = V(U).$$

Fakeon prescription and fakeon Green function

 \bullet The fake on prescription comes from high-energy physics and deals with scattering amplitudes.

$$\mathcal{A}_+(p) = \mathcal{A}(p+i\epsilon)$$

Fakeon prescription and fakeon Green function

 $\text{Re}[p^0]$

 \bullet The fakeon prescription comes from high-energy physics and deals with scattering amplitudes.

$$\mathcal{A}_+(p) = \mathcal{A}(p+i\epsilon)$$

Fakeon prescription and fakeon Green function

 The fakeon prescription comes from high-energy physics and deals with scattering amplitudes.

$$\mathcal{A}_{\mathrm{AV}}(p) = \frac{1}{2} \left[\mathcal{A}_{+}(p) + \mathcal{A}_{-}(p) \right].$$

• Classical level: fakeon Green function.

$$G_{\rm f} = \frac{1}{2} \left(G_{\rm adv} + G_{\rm ret} \right).$$

Example:

$$\ddot{V} + \omega^2 V = \left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + \omega^2\right) V = F(t) \qquad \Rightarrow \qquad V(t) = (G_\mathrm{f} * F)(t).$$

This is enough for tree level correlation functions in cosmology.

• In flat spacetime

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + A^2\right) G_{\mathrm{f}}(t, t') = \delta(t - t'), \qquad A = \text{const.}$$

$$G_{\mathrm{f}}(t, t') = \frac{\sin(A|t - t'|)}{2A}.$$

• In flat spacetime

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + A^2\right) G_{\mathrm{f}}(t, t') = \delta(t - t'), \qquad A = \text{const.}$$

$$G_{\mathrm{f}}(t, t') = \frac{\sin(A|t - t'|)}{2A}.$$

• In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + H^2 n_\chi^2 + \frac{k^2}{a^2}\right) G_{\mathrm{f}}(t,t') = \delta(t-t'), \qquad n_\chi = \sqrt{\frac{m_\chi^2}{H^2} - \frac{1}{4}}.$$

• In flat spacetime

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + A^2\right) G_{\mathrm{f}}(t, t') = \delta(t - t'), \qquad A = \text{const.}$$

$$G_{\mathrm{f}}(t, t') = \frac{\sin(A|t - t'|)}{2A}.$$

• In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + H^2 n_\chi^2 + \frac{k^2}{a^2}\right) G_{\mathrm{f}}(t,t') = \delta(t-t'), \qquad n_\chi = \sqrt{\frac{m_\chi^2}{H^2} - \frac{1}{4}}.$$

- There are two cases where $G_{\rm f}$ is known
 - $\circ k/(aH) \to \infty$ (flat space in conformal time);
 - \circ $k/(aH) \rightarrow 0$ (flat space in cosmological time);

• In flat spacetime

$$\left(\frac{\mathrm{d}^2}{\mathrm{d}t^2} + A^2\right) G_{\mathrm{f}}(t, t') = \delta(t - t'), \qquad A = \text{const.}$$

$$G_{\mathrm{f}}(t, t') = \frac{\sin(A|t - t'|)}{2A}.$$

• In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

$$\left(\frac{{\rm d}^2}{{\rm d}t^2} + H^2 n_\chi^2 + \frac{k^2}{a^2}\right) G_{\rm f}(t,t') = \delta(t-t'), \qquad n_\chi = \sqrt{\frac{m_\chi^2}{H^2} - \frac{1}{4}}.$$

- There are two cases where G_f is known
 - \circ $k/(aH) \to \infty$ (flat space in conformal time);
 - \circ $k/(aH) \rightarrow 0$ (flat space in cosmological time);

$$G_{\mathrm{f}}(t,t') = \frac{i\pi \mathrm{sgn}(t-t')}{4H \sinh{(n_{\chi}\pi)}} \left[J_{in_{\chi}}(\check{k})J_{-in_{\chi}}(\check{k}') - J_{in_{\chi}}(\check{k}')J_{-in_{\chi}}(\check{k}) \right], \qquad \check{k}^{(\prime)} = \frac{k}{a(t^{(\prime)})H}.$$

Projected action

$$S'(U,V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma U V \right).$$

$$\Downarrow$$

$$S^{\text{prj}}(U) = S'(U,V(U)), \qquad V(U) = -G_f * (\sigma U).$$

Projected action

$$S'(U,V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma U V \right).$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$S^{\mathrm{prj}}(U) = S'(U,V(U)), \qquad V(U) = -G_{\mathrm{f}} * (\sigma U).$$

• In de Sitter expansion $\sigma = \mathcal{O}(\varepsilon)$ and $V = \mathcal{O}(\varepsilon)$. \Rightarrow the nonlocal term $\sigma UV = \mathcal{O}(\varepsilon^2)$.

The action can be written in the Mukhanov form

$$S_w^{\mathrm{prj}} = \frac{1}{2} \int \mathrm{d}\tau \left[w'^2 - \bar{k}^2 w^2 + \frac{w^2}{\tau^2} \left(\nu_{\mathrm{t}}^2 - \frac{1}{4} \right) \right], \qquad \bar{k} = k \Big(1 + \mathcal{O}(\varepsilon) \Big).$$

 The nonlocalities enter in the correlation functions since the physical variable is still

$$u = U + \alpha V(U), \qquad U = U(w).$$

Consistency condition

The fakeon eom's can always be turned into the form

$$\ddot{V} + m(t)^2 V = \mathcal{O}(\sqrt{\varepsilon}).$$

Consistency condition

The fakeon eom's can always be turned into the form

$$\ddot{V} + m(t)^2 V = \mathcal{O}(\sqrt{\varepsilon}).$$

Imposing a no-tachyon condition on $m(t)^2$ in the flat-space limit

$$m(t)^2 \big|_{k/(aH) \to 0} > 0.$$
 \Rightarrow $n_{\chi} \in \mathbb{R}.$

It can be seen also from the Green function

$$G_{\rm f}(t,t') \underset{k\to 0}{\longrightarrow} \frac{1}{2Hn_{\chi}} \sin\left(Hn_{\chi}|t-t'|\right)$$

Consistency condition

The fakeon eom's can always be turned into the form

$$\ddot{V} + m(t)^2 V = \mathcal{O}(\sqrt{\varepsilon}).$$

Imposing a no-tachyon condition on $m(t)^2$ in the flat-space limit

$$m(t)^2 \big|_{k/(aH) \to 0} > 0.$$
 \Rightarrow $n_{\chi} \in \mathbb{R}.$

It can be seen also from the Green function

$$G_{\rm f}(t,t') \underset{k\to 0}{\longrightarrow} \frac{1}{2Hn_{\chi}} \sin\left(Hn_{\chi}|t-t'|\right)$$

All perturbations give the same bound

$$m_{\chi} > \frac{m_{\phi}}{4}$$
.

Results: Amplitudes and spectral indices

Tensor: up to order ε^2 in the geometric framework;

up to order ε in the inflaton framework.

Scalar: up to order ε in both frameworks.

Vector: Projected away by the fakeon prescription.

Results: Amplitudes and spectral indices

Tensor: up to order ε^2 in the geometric framework;

up to order ε in the inflaton framework.

Scalar: up to order ε in both frameworks.

Vector: Projected away by the fakeon prescription.

$A_{\mathcal{R}}$	A_T	r	$n_{\mathcal{R}}-1$	n_T
$\frac{m_\phi^2 N^2}{3\pi M_{\rm Pl}^2}$	$\frac{4m_{\phi}^2}{\pi M_{\rm Pl}^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$\frac{12}{N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$	$-\frac{2}{N}$	$-\frac{3}{2N^2} \frac{2m_{\chi}^2}{m_{\phi}^2 + 2m_{\chi}^2}$

· Higher order corrections

$$\begin{split} A_{\mathcal{R}} & = & \frac{GN^2m_{\phi}^2}{3\pi} \left(1 - \frac{\ln N}{6N} + \mathcal{O}\left(\frac{1}{N}\right)\right). \\ A_{T} & = & \frac{8G}{\pi} \frac{m_{\chi}^2m_{\phi}^2}{m_{\phi}^2 + 2m_{\chi}^2} \left(1 - \frac{3m_{\chi}^2}{N(m_{\phi}^2 + 2m_{\chi}^2)} \left(1 + \frac{\ln N}{12N}\right) + \mathcal{O}\left(\frac{1}{N^2}\right)\right). \end{split}$$

With N = 60, the first correction to A_T is between 0.3% and 2.5%.

Results: ratio

From the consistency condition $m_\chi > m_\phi/4$ we have

$$\frac{1}{9}\lesssim \frac{N^2}{12}r\lesssim 1.$$

$$N=60 \qquad 0.4\lesssim 1000r\lesssim 3, \qquad -0.4\lesssim 1000n_T\lesssim -0.05.$$

Results: ratio

From the consistency condition $m_\chi > m_\phi/4$ we have

$$\frac{1}{9}\lesssim \frac{N^2}{12}r\lesssim 1.$$

$$N=60 \qquad 0.4\lesssim 1000r\lesssim 3, \qquad -0.4\lesssim 1000n_T\lesssim -0.05.$$

N in the range $n_{\mathcal{R}} = 0.9649 \pm 0.0042$ at 68% CL (from Planck 2018).

Conclusions

New predictions from quantum gravity with purely virtual quanta

- Amplitudes and spectral indices of scalar and tensor perturbations
- Once new cosmological data will be available, m_{ϕ} and m_{χ} will be fixed and other predictions will be stringent tests of the theory.

Conclusions

New predictions from quantum gravity with purely virtual quanta

- Amplitudes and spectral indices of scalar and tensor perturbations
- Once new cosmological data will be available, m_{ϕ} and m_{χ} will be fixed and other predictions will be stringent tests of the theory.

Perspectives

- Higher orders (loop amplitudes, running of spectral indices).
- Different backgrounds (radiation, matter...).
- Other phases of the universe expansion (Reheating?...).
- ...