Predictions in inflationary cosmology from quantum gravity with purely virtual quanta

Marco Piva

In collaboration with:

D. Anselmi (Università di Pisa) E. Bianchi (Penn State University)
Quantum gravity and purely virtual quanta (fakeons)

- Fakeon:

 a degree of freedom that mediates interactions and circulate inside loops but cannot appear as asymptotic state.

Quantum gravity and purely virtual quanta (fakeons)

• Fakeon:

 a degree of freedom that mediates interactions and circulate inside loops but cannot appear as asymptotic state.

Quantum gravity with fakeon

• Degrees of freedom of the theory:

 massless spin-2 $h_{\mu\nu}$, (graviton)
 massive scalar ϕ, (inflaton)
 massive spin-2 $\chi_{\mu\nu}$, (fakeon)

• Parameters:

 M_{Pl}, Λ_{CC}, m_{ϕ}, m_{χ}.

• Physical content in cosmology:

 Scalar perturbations Tensor perturbations No vectors
Predictions in inflationary cosmology

- Amplitudes and spectral indices in de Sitter and quasi de Sitter.

<table>
<thead>
<tr>
<th>A_R</th>
<th>A_T</th>
<th>r</th>
<th>$n_R - 1$</th>
<th>n_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{m_\phi^2 N^2}{3\pi M_{Pl}^2}$</td>
<td>$\frac{4m_\phi^2}{\pi M_{Pl}^2}$</td>
<td>$\frac{2m_\chi^2}{m_\phi^2 + 2m_\chi^2}$</td>
<td>$\frac{12}{N^2}$</td>
<td>$\frac{2m_\chi^2}{m_\phi^2 + 2m_\chi^2}$</td>
</tr>
</tbody>
</table>

Black: Starobinsky inflation.
Predictions in inflationary cosmology

- Amplitudes and spectral indices in de Sitter and quasi de Sitter.

<table>
<thead>
<tr>
<th>A_R</th>
<th>A_T</th>
<th>r</th>
<th>$n_R - 1$</th>
<th>n_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{m^2 N^2}{2\pi M^2_{Pl}}$</td>
<td>$\frac{4m^2_\phi}{\pi M^2_{Pl}} \frac{2m^2_\chi}{m^2_\phi + 2m^2_\chi}$</td>
<td>$\frac{12}{N^2} \frac{2m^2_\chi}{m^2_\phi + 2m^2_\chi}$</td>
<td>$- \frac{2}{N}$</td>
<td>$- \frac{3}{2N^2} \frac{2m^2_\chi}{m^2_\phi + 2m^2_\chi}$</td>
</tr>
</tbody>
</table>

Black: Starobinsky inflation.

- A consistency condition gives a bound on the fakeon mass
 \[m_\chi > m_\phi/4 \]
Predictions in inflationary cosmology

- Amplitudes and spectral indices in de Sitter and quasi de Sitter.

<table>
<thead>
<tr>
<th>A_R</th>
<th>A_T</th>
<th>r</th>
<th>$n_R - 1$</th>
<th>n_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m^2 N^2 / 3\pi M_P^2$</td>
<td>$4m^2 \phi / \pi M_P^2$</td>
<td>$2m^2 / m^2 + 2m^2$</td>
<td>$12 N^2 / m^2 + 2m^2$</td>
<td>$-2 / N$</td>
</tr>
</tbody>
</table>

Black: Starobinsky inflation.

- A consistency condition gives a bound on the fakeon mass
 \[m_\chi > m_\phi / 4 \]

- The bound restricts the possible values for the tensor-to-scalar ratio r
 \[\frac{1}{9} \lesssim \frac{N^2}{12} \lesssim 1. \]

 $N = 60 \quad 0.4 \lesssim 1000 r \lesssim 3,$
 $-0.4 \lesssim 1000n_T \lesssim -0.05.$
Predictions in inflationary cosmology

- Amplitudes and spectral indices in de Sitter and quasi de Sitter.

\[
\begin{array}{|c|c|c|c|c|}
\hline
A_R & A_T & r & n_R - 1 & n_T \\
\hline
\frac{m_R^2 N^2}{3 \pi M_{Pl}^2} & \frac{4 m_R^2}{\pi M_{Pl}^2} \frac{2 m_\chi^2}{m_\phi^2 + 2 m_\chi^2} & \frac{12}{N^2} \frac{2 m_\chi^2}{m_\phi^2 + 2 m_\chi^2} & - \frac{2}{N} & - \frac{3}{2 N^2} \frac{2 m_\chi^2}{m_\phi^2 + 2 m_\chi^2} \\
\hline
\end{array}
\]

- A consistency condition gives a bound on the fakeon mass

\[m_\chi > m_\phi / 4\]

- The bound restricts the possible values for the tensor-to-scalar ratio \(r \)

\[\frac{1}{9} \lesssim \frac{N^2}{12} r \lesssim 1.\]

\[N = 60 \quad 0.4 \lesssim 1000 r \lesssim 3, \quad -0.4 \lesssim 1000 n_T \lesssim -0.05.\]

\(N\) in the range \(n_R = 0.9649 \pm 0.0042\) at 68% CL.
Action and properties

\[S_{\text{QG}}(g) = -\frac{M_{\text{Pl}}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m^2_X} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m^2_\phi} \right] \]

Properties:

- Unitarity

- Renormalizability (once \(\Lambda_{CC} \) is reinstated).

- Violation of microcausality [D. Anselmi and MP, JHEP 11 (2018) 21].

- No violation of macrocausality
 [D. Anselmi and A. Marino, Class. Quantum Grav. 37 (2020) 095003].
Frameworks

Classical background: FLRW
\[g_{\mu\nu} dx^\mu dx^\nu = dt^2 - a(t)^2 (dx^2 + dy^2 + dz^2). \]

De Sitter expansion
\[\varepsilon = - \frac{\dot{H}}{H^2}, \quad \eta = 2\varepsilon - \frac{\ddot{\varepsilon}}{2H\varepsilon}. \]

- Geometric framework
\[S_{\text{geom}}(g) = - \frac{M_{\text{Pl}}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m^2_\chi} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m^2_\phi} \right] \]

\(m_\phi \) and \(H \) are unrelated
\[\varepsilon \sim m^2_\phi (6H^2) \ll 1, \quad m_\chi \sim H \quad \text{or} \quad m_\chi \sim m_\phi. \]
Frameworks

Classical background: FLRW
\[g_{\mu\nu}dx^\mu dx^\nu = dt^2 - a(t)^2(dx^2 + dy^2 + dz^2). \]

De Sitter expansion
\[\varepsilon = -\frac{\dot{H}}{H^2}, \quad \eta = 2\varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon}. \]

- Geometric framework
\[S_{\text{geom}}(g) = -\frac{M_{\text{Pl}}^2}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m_\chi^2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m_\phi^2} \right] \]

\(m_\phi \) and \(H \) are unrelated
\[\varepsilon \sim m_\phi^2(6H^2) \ll 1, \quad m_\chi \sim H \quad \text{or} \quad m_\chi \sim m_\phi. \]

Two possible expansions:
- Expand in \(\varepsilon \) with \(H^2/m_\chi^2 \) fixed;
- Expand in \(\varepsilon \) with \(m_\chi^2/m_\phi^2 \) fixed.
Frameworks

Classical background: FLRW \[g_{\mu\nu}dx^\mu dx^\nu = dt^2 - a(t)^2(dx^2 + dy^2 + dz^2). \]

De Sitter expansion

\[\varepsilon = -\frac{\dot{H}}{H^2}, \quad \eta = 2\varepsilon - \frac{\dot{\varepsilon}}{2H\varepsilon}. \]

- Geometric framework

\[S_{\text{geom}}(g) = -\frac{M^2_{\text{Pl}}}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m^2_\chi} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} - \frac{R^2}{6m^2_\phi}\right] \]

\(m_\phi \) and \(H \) are unrelated

\[\varepsilon \sim m^2_\phi (6H^2) \ll 1, \quad m_\chi \sim H \quad \text{or} \quad m_\chi \sim m_\phi. \]

Two possible expansions:

- Expand in \(\varepsilon \) with \(H^2/m^2_\chi \) fixed;
- Expand in \(\varepsilon \) with \(m^2_\chi/m^2_\phi \) fixed.

- Inflaton framework

\[S_{\text{infl}}(g) = -\frac{M^2_{\text{Pl}}}{16\pi} \int \sqrt{-g} \left[R + \frac{1}{2m^2_\chi} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma}\right] + S_\phi(g, \phi), \]

\[S_\phi(g, \phi) = \frac{1}{2} \int \sqrt{-g} (\nabla_\mu \phi \nabla^\mu \phi - 2V(\phi)), \quad V(\phi) = \frac{m^2_\phi}{2\hat{\kappa}^2} \left(1 - e^{\hat{\kappa}\phi}\right)^2 \]
Action for cosmological perturbations

\[S(u) = \frac{1}{2} \int dt \, a(t)^3 \left[f(t)u^2 - h(t)\dot{u}^2 - g(t)u^2 \right], \quad u \equiv u_\mathbf{k}(t) \]

\[\Downarrow \]

\[S'(U, V) = \frac{1}{2} \int dt \, Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right). \]
Action for cosmological perturbations

\[S(u) = \frac{1}{2} \int dt a(t)^3 \left[f(t)\dot{u}^2 - h(t)\ddot{u}^2 - g(t)u^2 \right], \quad u \equiv u_k(t) \]

\[\Downarrow \]

\[S'(U, V) = \frac{1}{2} \int dt Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right). \]

Procedure:

i) Solve the EOM for the \(V \) by means of the fakeon Green function;

ii) Insert the solution back in \(S' \);

iii) Quantize the new action with the standard methods.
Action for cosmological perturbations

\[S(u) = \frac{1}{2} \int dt \, a(t)^3 \left[f(t)\dot{u}^2 - h(t)\ddot{u}^2 - g(t)u^2 \right], \quad u \equiv u_k(t) \]

\[\downarrow \]

\[S'(U, V) = \frac{1}{2} \int dt \, Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right). \]

Procedure:

i) Solve the EOM for the \(V \) by means of the fakeon Green function;

ii) Insert the solution back in \(S' \);

iii) Quantize the new action with the standard methods.

- The physical variable is still \(u = F(U, V) \).

- After the procedure, the two-point function is

\[\langle uu \rangle = \langle F(U, V)F(U, V) \rangle, \quad \text{with} \quad V = V(U). \]
Fakeon prescription and fakeon Green function

- The fakeon prescription comes from high-energy physics and deals with scattering amplitudes.

\[A_+(p) = A(p + i\epsilon) \]
Fakeon prescription and fakeon Green function

- The fakeon prescription comes from high-energy physics and deals with scattering amplitudes.

\[
\mathcal{A}_+(p) = \mathcal{A}(p + i\epsilon) \quad \mathcal{A}_{AV}(p) = \frac{1}{2} \left[\mathcal{A}_+(p) + \mathcal{A}_-(p) \right].
\]
Fakeon prescription and fakeon Green function

- The fakeon prescription comes from high-energy physics and deals with scattering amplitudes.

\[\mathcal{A}_+(p) = \mathcal{A}(p + i\epsilon) \quad \text{and} \quad \mathcal{A}_{AV}(p) = \frac{1}{2} [\mathcal{A}_+(p) + \mathcal{A}_-(p)]. \]

- Classical level: fakeon Green function.

\[G_f = \frac{1}{2} (G_{adv} + G_{ret}) \]

Example:

\[\ddot{V} + \omega^2 V = \left(\frac{d^2}{dt^2} + \omega^2 \right) V = F(t) \quad \Rightarrow \quad V(t) = (G_f * F)(t). \]

This is enough for tree level correlation functions in cosmology.
Fakeon Green function in FLRW spacetime

- In flat spacetime

\[
\left(\frac{d^2}{dt^2} + A^2 \right) G_f(t, t') = \delta(t - t'), \quad A = \text{const.}
\]

\[
G_f(t, t') = \frac{\sin(A|t - t'|)}{2A}.
\]
Fakeon Green function in FLRW spacetime

- In flat spacetime

\[\left(\frac{d^2}{dt^2} + A^2 \right) G_f(t, t') = \delta(t - t'), \quad A = \text{const.} \]

\[G_f(t, t') = \frac{\sin(A|t - t'|)}{2A}. \]

- In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

\[\left(\frac{d^2}{dt^2} + H^2 n^2_\chi + \frac{k^2}{a^2} \right) G_f(t, t') = \delta(t - t'), \quad n_\chi = \sqrt{\frac{m^2_\chi}{H^2} - \frac{1}{4}}. \]
Fakeon Green function in FLRW spacetime

- In flat spacetime

\[
\left(\frac{d^2}{dt^2} + A^2 \right) G_f(t, t') = \delta(t - t'), \quad A = \text{const.}
\]

\[
G_f(t, t') = \frac{\sin(A|t - t'|)}{2A}.
\]

- In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

\[
\left(\frac{d^2}{dt^2} + H^2 n_\chi^2 + \frac{k^2}{a^2} \right) G_f(t, t') = \delta(t - t'), \quad n_\chi = \sqrt{\frac{m_\chi^2}{H^2} - \frac{1}{4}}.
\]

- There are two cases where \(G_f \) is known
 - \(k/(aH) \rightarrow \infty \) (flat space in conformal time);
 - \(k/(aH) \rightarrow 0 \) (flat space in cosmological time);
Fakeon Green function in FLRW spacetime

- In flat spacetime

\[
\left(\frac{d^2}{dt^2} + A^2 \right) G_f(t,t') = \delta(t-t'), \quad A = \text{const.}
\]

\[
G_f(t,t') = \frac{\sin(A|t-t'|)}{2A}.
\]

- In FLRW spacetime (tensor perturbations in de Sitter in inflaton framework)

\[
\left(\frac{d^2}{dt^2} + H^2 n_\chi^2 + \frac{k^2}{a^2} \right) G_f(t,t') = \delta(t-t'), \quad n_\chi = \sqrt{\frac{m_\chi^2}{H^2} - \frac{1}{4}}.
\]

- There are two cases where \(G_f \) is known
 - \(k/(aH) \to \infty \) (flat space in conformal time);
 - \(k/(aH) \to 0 \) (flat space in cosmological time);

\[
G_f(t,t') = \frac{i\pi \text{sgn}(t-t')}{4H \sinh(n_\chi \pi)} \left[J_{i n_\chi}(\tilde{k}) J_{-i n_\chi}(\tilde{k}') - J_{i n_\chi}(\tilde{k}') J_{-i n_\chi}(\tilde{k}) \right], \quad \tilde{k}' = \frac{k}{a(t')H}.
\]
Projected action

\[
S'(U, V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma U V \right).
\]

\[\downarrow\]

\[
S^{\text{proj}}(U) = S'(U, V(U)), \quad V(U) = -G_f * (\sigma U).
\]
Projected action

\[S'(U, V) = \frac{1}{2} \int dt \ Z \left(\dot{U}^2 - \omega^2 U^2 - \dot{V}^2 + \Omega^2 V^2 + 2\sigma UV \right) . \]

\[\Downarrow \]

\[S^\text{prj}(U) = S'(U, V(U)), \quad V(U) = -G_f \ast (\sigma U). \]

- In de Sitter expansion \(\sigma = \mathcal{O}(\varepsilon) \) and \(V = \mathcal{O}(\varepsilon) \).
 \[\Rightarrow \] the nonlocal term \(\sigma UV = \mathcal{O}(\varepsilon^2) \).

The action can be written in the Mukhanov form

\[S^\text{prj}_w = \frac{1}{2} \int d\tau \left[w'^2 - \bar{k}^2 w^2 + \frac{w^2}{\tau^2} \left(\nu_t^2 - \frac{1}{4} \right) \right] , \quad \bar{k} = k \left(1 + \mathcal{O}(\varepsilon) \right) . \]

- The nonlocalities enter in the correlation functions since the physical variable is still

\[u = U + \alpha V(U), \quad U = U(w). \]
Consistency condition

The fakeon eom’s can always be turned into the form

$$\ddot{V} + m(t)^2 V = \mathcal{O}(\sqrt{\varepsilon}).$$
Consistency condition

The fakeon eom’s can always be turned into the form

$$\ddot{V} + m(t)^2 V = \mathcal{O}(\sqrt{\varepsilon}).$$

Imposing a no-tachyon condition on $m(t)^2$ in the flat-space limit

$$m(t)^2 \bigg|_{k/(aH) \to 0} > 0. \quad \Rightarrow \quad n_\chi \in \mathbb{R}.$$

It can be seen also from the Green function

$$G_f(t, t') \xrightarrow[k \to 0]{} \frac{1}{2Hn_\chi} \sin (Hn_\chi |t - t'|)$$
Consistency condition

The fakeon eom’s can always be turned into the form

$$\ddot{V} + m(t)^2V = \mathcal{O}(\sqrt{\varepsilon}).$$

Imposing a no-tachyon condition on $m(t)^2$ in the flat-space limit

$$m(t)^2|_{k/(aH)\to 0} > 0. \quad \Rightarrow \quad n_\chi \in \mathbb{R}.$$

It can be seen also from the Green function

$$G_f(t, t') \xrightarrow{k\to 0} \frac{1}{2Hn_\chi} \sin (Hn_\chi |t - t'|)$$

All perturbations give the same bound

$$m_\chi > \frac{m_\phi}{4}.$$
Results: Amplitudes and spectral indices

Tensor: up to order ε^2 in the geometric framework;
up to order ε in the inflaton framework.

Scalar: up to order ε in both frameworks.

Vector: Projected away by the fakeon prescription.
Results: Amplitudes and spectral indices

Tensor: up to order ε^2 in the geometric framework; up to order ε in the inflaton framework.

Scalar: up to order ε in both frameworks.

Vector: Projected away by the fakeon prescription.

<table>
<thead>
<tr>
<th>$A_\mathcal{R}$</th>
<th>A_T</th>
<th>r</th>
<th>$n_\mathcal{R} - 1$</th>
<th>n_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{m_\phi^2 N^2}{3\pi M_{P1}^2}$</td>
<td>$\frac{4m_\phi^2}{\pi M_{P1}^2} \frac{2m_\chi}{m_\phi^2 + 2m_\chi^2}$</td>
<td>$\frac{12}{N^2} \frac{2m_\chi}{m_\phi^2 + 2m_\chi^2}$</td>
<td>$- \frac{2}{N}$</td>
<td>$- \frac{3}{2N^2} \frac{2m_\chi^2}{m_\phi^2 + 2m_\chi^2}$</td>
</tr>
</tbody>
</table>

- Higher order corrections

\[A_\mathcal{R} = \frac{G N^2 m_\phi^2}{3\pi} \left(1 - \frac{\ln N}{6N} + \mathcal{O} \left(\frac{1}{N} \right) \right). \]

\[A_T = \frac{8G}{\pi} \frac{m_\chi^2 m_\phi^2}{m_\phi^2 + 2m_\chi^2} \left(1 - \frac{3m_\chi^2}{N(m_\phi^2 + 2m_\chi^2)} \left(1 + \frac{\ln N}{12N} \right) + \mathcal{O} \left(\frac{1}{N^2} \right) \right). \]

With $N = 60$, the first correction to A_T is between 0.3% and 2.5%.
Results: ratio

From the consistency condition $m_\chi > m_\phi / 4$ we have

$$\frac{1}{9} \lesssim \frac{N^2}{12} r \lesssim 1.$$ $\quad N = 60 \quad 0.4 \lesssim 1000r \lesssim 3, \quad -0.4 \lesssim 1000n_T \lesssim -0.05.$
Results: ratio

From the consistency condition $m_\chi > m_\phi / 4$ we have

$$\frac{1}{9} \lesssim \frac{N^2}{12} r \lesssim 1.$$

$N = 60 \quad 0.4 \lesssim 1000r \lesssim 3, \quad -0.4 \lesssim 1000n_T \lesssim -0.05.$

N in the range $n_R = 0.9649 \pm 0.0042$ at 68% CL (from Planck 2018).
Conclusions

New predictions from quantum gravity with purely virtual quanta

- Amplitudes and spectral indices of scalar and tensor perturbations
- Once new cosmological data will be available, \(m_\phi \) and \(m_\chi \) will be fixed and other predictions will be stringent tests of the theory.
Conclusions

New predictions from quantum gravity with purely virtual quanta

- Amplitudes and spectral indices of scalar and tensor perturbations
- Once new cosmological data will be available, m_ϕ and m_χ will be fixed and other predictions will be stringent tests of the theory.

Perspectives

- Higher orders (loop amplitudes, running of spectral indices).
- Different backgrounds (radiation, matter...).
- Other phases of the universe expansion (Reheating?...).
- ...

