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Abstract

The search for purely virtual quanta has attracted interest in the past. We consider

various proposals and compare them to the concept of fake particle, or “fakeon”. In

particular, the Feynman-Wheeler propagator, which amounts to using the Cauchy principal

value inside Feynman diagrams, violates renormalizability, unitarity and stability, due to

the coexistence of the prescriptions ±iε. We contrast the Feynman, fakeon and Feynman-

Wheeler prescriptions in ordinary as well as cut diagrams. The fakeon does not have

the problems of the Feynman-Wheeler propagator and emerges as the correct concept of

purely virtual quantum. It allows us to make sense of quantum gravity at the fundamental

level, and places it on an equal footing with the standard model. The resulting theory of

quantum gravity is perturbative up to an incredibly high energy.
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1 Introduction

A normal particle can be real or virtual, depending on whether it is on shell or off shell.

For a variety of reasons, it is interesting to consider the possibility of having quanta that

are purely virtual. This means quanta that propagate inside the scattering processes, but

cannot be directly observed, because they do not belong to the physical spectrum, i.e. the

set of asymptotic states.

Sings of interest for purely virtual particles have been present in the literature for a

long time, at the classical and quantum levels. Dirac considered the Abraham-Lorentz

force in classical electrodynamics, which effectively describes the recoil on an accelerated

pointlike electric charge due to the emission of radiation. It is well-known that, under

certain assumptions, this effect can be described by means of a higher-derivative equation,

which has undesirable runaway solutions. Dirac “virtualized” the runaway solutions by

trading them for violations of microcausality [1, 2]. A similar trick can be applied to

higher-derivative gravity [3], still at the classical level. Feynman and Wheeler studied a

version of classical electrodynamics where the Green function is half the sum of the retarded

and advanced potentials [4] and recovered causality by means of an involved emitter-

absorber theory. The same Green function, that is to say, the Cauchy principal value of

the unprescribed propagator 1/(p2 −m2), appears in many contexts. Differently from the

retarded and advanced potentials and the Feynman propagator, it does not contain the on

shell δ function, so it may be viewed as a candidate to describe purely virtual particles.

As such, Bollini and Rocca in ref. [5] and later Plastino and Rocca in ref. [6] studied it at

the quantum level and claimed they could make some sense out of it.

The interest for purely virtual quanta was not misplaced, but, for a variety of reasons

that we explain in this paper, the principal value of 1/(p2−m2) cannot be the right answer

at the quantum level, because it generates serious problems when it is used inside Feynman

diagrams. First, it violates the locality of counterterms by generating nonlocal ultraviolet

divergences similar to those of ref. [7], whose removal destroys the basic structure of

the theory. Second, it generates imaginary parts that are inconsistent with the optical

theorem and unitarity. Third, it violates stability, since the ones that are normally known

as pseudothresholds become true thresholds, which leads to processes where the incoming

energy is equal to a difference of frequencies, rather than the sum.

The problems are due to the coexistence of the ±iε prescriptions within the same

diagram. In ref. [7] Aglietti and the current author showed that for finite ε, these types of

diagrams have nonlocal divergent parts in Minkowski spacetime. Although the analysis of
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[7] was performed in higher derivative theories, its main conclusions extend to infinitesimal

widths and the principal-value propagator.

To fix a bit of terminology, the principal-value propagator will be called Feynman-

Wheeler (FW) propagator, when it is used inside Feynman diagrams. The degrees of

freedom it propagates will be called FW particles.

In the end, the FW particles lack a consistent physical interpretation and are even

problematic at the mathematical level, due to the nonlocal divergences. The correct notion

of purely virtual quantum turns out to be the fakeon [8, 9], which is encoded in a new

prescription to quantize the poles of a free propagator. Although the fakeon propagator

tends to the principal value of 1/(p2 − m2) in the classical free-field limit, it radically

differs from it at the quantum level and when self-interactions are turned on [10]. Not

surprisingly, the nature of a purely virtual quantum is... purely quantum, so the classical

limit is not enough to infer the quantum nature of the fakeon.

The fakeons do not violate stability, because the pseudothresholds play no significant

role. Actually, the thresholds associated with a Feynman diagram that involves fakeons

are exactly the ones that are found by means of the usual Feynman prescription. The

locality of counterterms is still valid, because the divergent part of a diagram coincides

with the one of its Euclidean version [9]. Finally, unitarity is fulfilled, since the imaginary

parts of the amplitudes do not receive contributions from the thresholds of the processes

that involve fakeons. This means that such processes have zero chances to turn the fakeons

into real particles, which is the reason why the fakeons remain virtual and do not belong

to the set of asymptotic states.

It is worth to stress that the properties just listed hold at the fundamental level,

not just at the effective one. In no other case we can really drop a particle from the

physical spectrum (letting aside gauge artifacts, such as the Faddeev-Popov ghosts and the

unphysical modes of the gauge fields). In particular, we cannot drop unstable particles.

For example, although the muon decays, it can be observed before it does. In the end,

only the fakeon fulfills the requirements to be called a purely virtual quantum, which is

possible because it is a thoroughly new concept.

An important application of the fakeon prescription is that it allows us to make sense

of quantum gravity as a quantum field theory [8], by reconciling unitarity and renormaliz-

ability. The resulting theory propagates the graviton, a massive scalar field φ, which can

be either a physical particle or a fakeon, and a massive spin-2 fakeon χµν . The masses

mφ and mχ are free parameters. Presumably, their values are smaller than the Planck

mass, or even much smaller. If so, the quantum gravity theory obtained from the fakeon
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quantization turns out to be perturbative up to an unbelievably high energy, an energy so

high that we think it deserves to be named “God’s energy”. At the same time, it leads to

the troubling scenario of an infinite desert with no new physics between the Planck scale

and God’s energy.

Something that the Dirac virtualization, the FW idea and the fakeon have in common

is that they all lead to violations of causality at very small distances (in different ways

in the three cases) [13, 10]. Physically, the violation of microcausality is not a high price

to pay, since we do not have arguments in favor of absolute causality. It must also be

recalled that it is not straightforward to define the concept of causality in quantum field

theory, even in flat space1, since it is hard to accurately locate spacetime points when

we describe on-shell particles by means of relativistic wave packets. Both the Bogoliubov

condition [15] and the Lehmann-Symanzik-Zimmermann requirement that fields commute

at spacelike separated points [16] are off shell and do not easily translate into properties

of the S matrix.

Clearly, the ideas of causality and time ordering make sense only as long as the notion

of time makes sense. At the experimental level, the shortest time interval we can measure

directly is 10−17-10−18 seconds [11]. The theory of quantum gravity based on fakeons

predicts that time loses meaning at distances smaller than the Compton wavelength 1/mχ

of the fakeon χµν (or the larger between 1/mχ and 1/mφ, if both χµν and φ are fakeons).

This means 10−36s, i.e. almost twenty orders of magnitude away from our present accuracy,

if the masses mχ, mφ are assumed to be around 1012GeV. The simplest attempts we can

think of to amplify the effect do not lead too far. Actually, in some cases the universe

conspires to recover causality for free [12]. In the classical limit, we may have to downgrade

the violation of causality to an unusual form of the equations of motion and a fuzziness of

their solutions [10, 12], which still lead to predictions that can be tested experimentally.

Finally, we stress that even if time loses sense at small scales, scattering processes in

momentum space make sense to arbitrarily high energies.

The paper is organized as follows. In section 2 we calculate the nonlocal divergent parts

of the bubble diagrams involving Feynman-Wheeler particles. In section 3 we evaluate their

finite parts. In section 4 we analyze their imaginary parts and show that they violate the

optical theorem. In section 5 we discuss the problems of the FW particles with stability.

In section 6 we compute the bubble diagrams with circulating fakeons and show that the

fakeon prescription is consistent with the locality of counterterms, unitarity and stability.

In section 7 we extend the analysis to three and two spacetime dimensions, which confirm

1See section 6.1 of [14] for an illuminating discussion.
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the properties found in four dimensions. In section 8 we discuss the impact of the fakeon

idea on the perturbative nature of quantum gravity. Section 9 contains the conclusions.

2 Bubble diagram with FW particles: nonlocal diver-

gent part

In this section we show that the FW propagator

P 1

p2 −m2
, (2.1)

where P denotes the Cauchy principal value, leads to nonlocal ultraviolet divergences when

it is used inside Feynman diagrams. Note that in this paper we do not attach factors of i

to the vertices and the propagators.

Specifically, we consider the bubble diagram where one virtual particle is quantized by

means of the Feynman +iε prescription and the other virtual particle has the propagator

(2.1). The loop integral reads

ΣFW(p) =

∫

ks6Λ

d3k

(2π)3

+∞
∫

−∞

dk0
2π

1

(p− k)2 −m2
1 + iε

P 1

k2 −m2
2

,

where k = (k0,k), ks = |k| and Λ is a cutoff. We take different masses m1 6= m2, because

the nonlocal divergent part that we want to compute vanishes for m1 = m2.

We anticipate that, apart from the locality of counterterms, which is lost, other common

properties continue to hold. For example, although the cutoff Λ breaks Lorentz invariance,

the breaking does not affect the finite parts and the logarithmic divergences we find be-

low. In section 3 we switch to the dimensional regularization, which is manifestly Lorentz

invariant.

Writing

P 1

k2 −m2
2

=
1

2

(

1

k2 −m2
2 − iε

+
1

k2 −m2
2 + iε

)

,

we can decompose ΣFW(p) as the sum

ΣFW(p) =
1

2

(

Σ(p) + Σ′(p)
)

, (2.2)

where Σ(p) is the usual self-energy, with two propagators quantized à la Feynman [its
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expression being given by formula (6.1) of section 6], and

Σ′(p) =

∫

ks6Λ

d3k

(2π)3

+∞
∫

−∞

dk0
2π

1

(p− k)2 −m2
1 + iε

1

k2 −m2
2 − iε

.

Since Σ(p) does not contain nonlocal divergent parts, we omit it for the moment and focus

on Σ′(p). The crucial point is that Σ′(p) involves both prescriptions ±iε. The nonlocal

divergent part is due to the conflict between them.

Writing p = (p0,p), we apply the residue theorem to evaluate the integral on the loop

energy k0, which gives

Σ′(p) =
i

4

∫

ks6Λ

d3k

(2π)3
1

ω1ω2

(

1

p0 − ω1 + ω2 + iε
− 1

p0 + ω1 − ω2 − iε

)

, (2.3)

where ω1 =
√

k2
s + p2s − 2kspsu+m2

1, ω2 =
√

k2
s +m2

2, ps = |p| and u = cos θ, θ being the

angle between k and p.

Let us start from the case p2 > 0 and choose a reference frame where ps = 0. Then, it

is easy to check that

(ω1 − ω2)
2
6 (m1 −m2)

2. (2.4)

If we assume p2 > (m1 −m2)
2, (2.4) gives (p0)2 > (ω1 − ω2)

2, which means that the ±iε

prescriptions in (2.3) are unnecessary. Then we obtain

Σ′(p) =
i

8π2

Λ
∫

0

k2
sdks
ω1ω2

(

1

p0 − ω1 + ω2

− 1

p0 + ω1 − ω2

)

. (2.5)

It is easy to check that the integrand behaves as

m2
1 −m2

2

(p0)2ks
+O

(

1

k3
s

)

for large ks, which means that Σ′(p) has the nonlocal ultraviolet divergence

Σ′
div(p) =

i ln Λ2

(4π)2
m2

1 −m2
2

p2
. (2.6)

To check Lorentz invariance, we repeat the calculation for p2 > 0 without taking

ps = 0. In that case, the inequality (2.4) non longer holds, in general. However, we have

(p0)2 − (ω1 − ω2)
2 = p2 + p2s(1− u2) +O (1/ks), so when ks is sufficiently large we do have
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(p0)2 > (ω1−ω2)
2 and we can repeat the arguments above, ignoring the ±iε prescriptions.

At the end, we find the same nonlocal divergent part (2.6).

Finally, if p2 < 0 we take p0 = 0. We need to compute

Σ′(p) =
i

8π2

Λ
∫

0

k2
sdks
ω1ω2

∫ 1

−1

du

ω2 − ω1 + iε
.

For large ks, the divergent part is given by

Σ′
div(p) =

i

8π2

Λ
∫

0

dks

∫ 1

−1

du

[

1

ps(u+ iε)
+

m2
1 −m2

2 + p2s(1 + u2)

2ksp2s(u+ iε)2

]

=
Λ

8πps
− i(m2

1 −m2
2)

(4π)2p2s
ln Λ2 (2.7)

(after suitably rescaling ε). The logarithmic divergence agrees with (2.6). In addition, we

have a nonlocal linear divergence. We do not attach a particular meaning to it, because it

depends on the regulator and indeed disappears using the dimensional regularization (see

next section).

The nonlocal divergent parts we have just calculated are very similar to those found

in ref. [7] in higher-derivative theories with finite widths ε. They have the same origin:

the coexistence of propagators with both positive and negative widths within the same

Feynman diagram.

Note that the nonlocal divergent part (2.6) cancels out in the bubble diagram

ΣFW-FW(p) = P
∫

dDk

(2π)D
1

(p− k)2 −m2
1

1

k2 −m2
2

=
1

2

(

ΣFW(p) + Σ∗
FW(p)

)

(2.8)

made of two FW propagators, since the result must be symmetric under the exchange of

m1 and m2. For future purposes, we have written (2.8) in arbitrary dimension D.

Since (2.6) does not cancel out in mixed bubble diagrams ΣFW(p), it must be subtracted

away by means of a nonlocal counterterm, which destroys the locality of the theory. In

the end, we must conclude that a theory propagating FW particles is mathematically

unacceptable.

3 Bubble diagram with FW particles: finite part

In this section we work out the finite part of Σ′(p), which allows us to highlight the physical

problems of the theories that propagate FW particles.
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We start by taking m2 = 0. For p2 > 0 we choose a reference frame where ps = 0.

Using (2.3) and denoting m1 by m, we obtain

i(4π)2Σ′(p) = −m2

p2
ln

4Λ2

m2
− p2 −m2

p2
ln

p2 −m2 + iε

p2
. (3.1)

Note the negative imaginary part

2Im[−iΣ′(p)] = −m2 − p2

8πp2
θ(m2 − p2), (3.2)

which is problematic for unitarity (see next section).

To switch to the case of generic masses, it is convenient to use the dimensional regular-

ization [17]. The calculation by means of Feynman parameters exhibits some unexpected

features. Indeed, we cannot use the Feynman parameters for Σ′(p) as we would ordinarily

do. We must first change the sign of one propagator to have +iε in both of them. After a

translation of the loop momentum k, we get

Σ′(p)=−
∫

dDk

(2π)D
1

(p− k)2 −m2
1 + iε

1

−k2 +m2
2 + iε

=−
∫ 1

0

dx

∫

dDk

(2π)D
1

[

iε− (1− 2x)k2 + p2 x(1−x)
1−2x

−m2
1x+m2

2(1− x)
]2 ,

where D denotes the continued spacetime dimension. At this point, we break the x integral

into the sum of two pieces, the integral on 0 6 x 6 1/2 and the integral on 1/2 6 x 6 1.

The two are defined by opposite iε prescriptions, since the coefficients of k2 have opposite

signs.

We can check the method in the simple case m2 = 0, m1 = m, where we get, after

expanding around D = 4,

i(4π)2Σ′(p)=−
[

2

4−D
+ 2− γE + ln(4π)

]

m2p2

(p2)2 + ε2
+

1

2
ln
(

(p2)2 + ε2
)

+
m2 lnm2

p2 − iε
− m2

2

[

ln(p2 + iε)

p2 + iε
+

ln(p2 − iε)

p2 − iε

]

−p2 −m2 + iε

p2 + iε
ln(p2 −m2 + iε).

This result agrees with (3.1) for p2 > 0 upon the cutoff identification

lnΛ2 =
2

4−D
+ 2− γE + ln π. (3.3)
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With generic masses, we proceed as follows. After breaking the x integral into the

sum of the integrals on 0 6 x 6 1/2 and 1/2 6 x 6 1, we rescale ε and convert the

second integral into another integral on 0 6 x 6 1/2 by means of the change of variables

x → 1− x. So doing, we get

Σ′(p) = U(p2 + iε,m2
1, m

2
2)− U(p2 − iε,m2

2, m
2
1), (3.4)

where

U(a, b, c) =
iΓ

(

4−D
2

)

(4π)D/2

∫ 1/2

0

dx(1 − 2x)2−D [ax(1− x)− (1− 2x)(bx− c(1− x))](D−4)/2 .

(3.5)

The x integration is relatively straightforward and, after the expansion around D = 4, we

obtain

i(4π)2U(p2, m2
1, m

2
2) =

v+
2p2

(

ln
4Λ2

m2
2

− z ln
1 + z

1− z

)

, (3.6)

where ln Λ2 is defined as in (3.3) and

z =

√
u+u−

v+
, u± = (m1 ±m2)

2 − p2, v± = p2 ∓m2
1 ±m2

2. (3.7)

Since Σ′ turns into its complex conjugate under the replacement m1 ↔ m2, we can

assume, with no loss of generality, that m1 > m2. If we define

x =

√

|u+u−|
v+

, y =

√

|u+u−|
v−

, z′ =

√
u+u−

v−
,

we find the table

p2 range z ln 1+z
1−z

∣

∣

p2→p2+iε
z′ ln 1+z′

1−z′

∣

∣

p2→p2−iε

u+ < 0 x ln
(

1+x
1−x

)

y ln
(

1+y
1−y

)

0 < x < 1, 0 < y < 1

−v+ < 0 < u+ −2x arctan(x) −2y arctan(y) x > 0, y > 0

u− < 0 < −v+ −2x arctan(x)− 2πx −2y arctan(y) x < 0, y > 0

−p2 < 0 < u− x ln
(

1+x
1−x

)

− 2iπx y ln
(

1+y
1−y

)

−1 < x < 0, 0 < y < 1

−v− < 0 < −p2 x ln
(

1+x
x−1

)

− iπx y ln
(

1+y
y−1

)

+ iπy x < −1, y > 1

0 < −v− x ln
(

1+x
x−1

)

− iπx y ln
(

1+y
y−1

)

+ iπy x < −1, y < −1

(3.8)
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Finally, if we use (6.1) for Σ(p), formula (2.2) gives

ΣFW(p) =
1

2

(

V (p2 + iε,m2
1, m

2
2) + U(p2 + iε,m2

1, m
2
2)− U(p2 − iε,m2

2, m
2
1)
)

, (3.9)

where V (a, b, c) is given by formula (6.2) of section 6. In the case of ΣFW-FW, formula (2.8)

gives

ΣFW-FW(p)=
1

4

(

V (p2 + iε,m2
1, m

2
2) + U(p2 + iε,m2

1, m
2
2)− U(p2 − iε,m2

2, m
2
1) (3.10)

−V (p2 − iε,m2
1, m

2
2)− U(p2 − iε,m2

1, m
2
2) + U(p2 + iε,m2

2, m
2
1)
)

.

Now we analyze the meaning of these results.

4 Unitarity

In this section, we study the imaginary parts of the amplitudes and show that the theory

propagating FW particles is not consistent with the optical theorem.

The optical theorem is another way to express the unitarity of the S matrix. Writing

S = 1 + iT , the identity S†S = 1 becomes −iT + iT † = T †T and can be rephrased

diagrammatically by means of cut diagrams, which are diagrams divided into two parts by

a cut that crosses internal legs [18, 14]. One side of the cut is due to the factor T of T †T .

There, the diagram is unshadowed and the vertices and propagators are those given by the

usual Feynman rules (once the usual factors of i are restored in vertices and propagators).

The other side of the cut is due to the factor T † of T †T . It is shadowed and the vertices

and propagators are the complex conjugates of those given by the Feynman rules. Finally,

“cut propagators” account for the legs crossed by the cut. The cut lines represent the

product of T † and T in T †T .

The cut diagrams encode the imaginary part of the amplitude and the cross section for

the production of the particles circulating in the loop. This means that, beyond appropriate

thresholds, the virtual particles of the loop may turn into real particles.

Let us start from the usual bubble diagram Σ(p), where both propagators are defined

by means of the Feynman prescription. There, the true threshold is p2 = (m1 +m2)
2 (i.e.

u+ = 0) and above it, the imaginary part Im(−iΣ) is nontrivial. From formula (6.4) of

section 6 we find

2Im(−iΣ) =

√
u+u−

8πp2
θ(−u+). (4.1)

This result obeys the optical theorem, which states in this case that 2Im(−iΣ) is equal to

the sum of the cut diagrams shown in fig. 1, where the cut propagator is the top one of
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Figure 1: Cut diagrams that give the imaginary part of −2i times the bubble diagram

fig. 2. It means that for p2 > (m1 +m2)
2 the incoming particle can decay into the virtual

particles circulating in the loop, which are then turned into real particles.

For future use, we recall that one cut diagram is obtained by replacing the two internal

propagators of Σ(p) by the cut propagators

(2π)θ(p0 − k0)δ((p− k)2 −m2
1), (2π)θ(k0)δ(k2 −m2

2). (4.2)

The other cut diagram is obtained by flipping the signs of the arguments of the θ functions.

The Landau equations [19] provide a systematic method to identify the potential thresh-

olds of a loop integral, where the amplitude may be nonanalytic. It is well known that

in the case of Σ(p) the Landau equations give a second potential threshold, which is

p2 = (m1 −m2)
2 (i.e. u− = 0). However, that threshold is not associated with any pinch-

ing singularities of the integral Σ(p), which means that it is not a true threshold. For this

reason, it is commonly called pseudothreshold.

When we consider Σ′(p), we find that the two potential thresholds exchange roles

and p2 = (m1 − m2)
2 becomes the true threshold, while p2 = (m1 + m2)

2 becomes a

pseudothreshold. Moreover, the imaginary part of −iΣ′ is nonvanishing below its true

threshold, which means for p2 < (m1 − m2)
2, not above it. Specifically, using (3.8),

formulas (3.4) and (3.6) allow us to derive

2Im(−iΣ′) = −
√
u+u−

8πp2
θ(u−). (4.3)

The troubles with FW particles are evident from this formula. Indeed, taking Σ′ = iT ,

the optical theorem −iT + iT † = T †T interprets the left-hand side of (4.3) as a forward

scattering amplitude and implies that the right-hand side is the total cross section for the

production of the virtual-turned-into-real particles in all final states. In particular, since

T †T > 0, the right-hand side of (4.3) should be nonnegative, which is evidently false for

11



20
A
1
R
en
or
m

p

θ(p0)(2π)δ(p2 −m2)

0

π[θ(p0)− θ(−p0)]δ(p2 −m2)

Feynman

fakeon

Feynman-Wheeler

Figure 2: Cut propagators in the various cases

p2 > 0. Basically, (4.3) says that at p2 > 0 an incoming particle has a negative probability

to decay into the final particles! Moreover, (4.3) is singular for p2 = 0, which means that

for p2 → 0± the cross section is infinite. Such a singularity is clearly absent in the usual

case, as formula (4.1) shows.

The result (4.3) also admits an interpretation in terms of cut diagrams. Precisely, for

p2 > 0 the right-hand side of (4.3) is still equal to the sum of the cut diagrams of fig. 1,

but the left diagram has cut propagators

(2π)θ(p0 − k0)δ((p− k)2 −m2
1), −(2π)θ(−k0)δ(k2 −m2

2), (4.4)

while the right diagram is obtained from the left one by flipping the signs of the arguments

of the θ functions.

The important point is that the sign of the argument of second θ function of formula

(4.4) is reversed with respect to the one of (4.2), which leads to instability (see the next

section).

The result is confirmed at p2 < 0, but with a caveat. Indeed, (4.3) is positive for p2 < 0,

but the cut diagram with propagators (4.4) looks negative for both p2 > 0 and p2 < 0.

The reason why there is no contradition is that the cut diagrams give integrals that are

divergent for p2 < 0, so the final result may have an unexpected sign. If we use the cutoff

Λ on the ks integral, it is easy to check (choosing e.g. p0 = 0) that the resul is (4.3) plus

the linear divergence met in formula (2.7). If we use the dimensional technique, the linear

divergences are set automatically to zero and we just find (4.3).

Diverging imaginary parts are quite unusual. However, they should be expected when

both prescriptions ±iε are present in the same diagram, since in ref. [7] it was found that

both the locality and hermiticity of counterterms are violated in such cases.

In the end, we do have a negative Im(−iΣ′) for p2 > 0, which means that the theory

can be at most pseudounitary, but not unitary. Since the right-hand side of the identity

12



20
A
1
R
en
or
m

−iT +iT † = T †T cannot be positive definite, it should at best be replaced by T †HT , where

H is a matrix that has both positive and negative eigenvalues. However, pseudounitarity

is not a viable concept for a physically meaningful theory.

In total, the imaginary part of −2iΣFW follows from formula (3.9) and is equal to

2Im(−iΣFW) =

√
u+u−

16πp2
[θ(−u+)− θ(u−)] . (4.5)

It can be obtained as the sum of the cut diagrams of fig. 1 with one cut propagator given

by the top line of fig. 2 and the other cut propagator given by the bottom line of that

figure. Explicitly, one cut diagram has propagators

(2π)θ(p0 − k0)δ((p− k)2 −m2
1), sgn(k0)πδ(k2 −m2

2), (4.6)

and the other one is obtained by flipping the signs of the arguments of the θ and sign

functions.

If the FW particles were purely virtual, their cut propagator and Im(−iΣFW) would

have to vanish, to be consistent with the optical theorem. Indeed, we know that the cut

diagrams are related to the cross section for the production of the particles circulating in the

loop. Purely virtual particles can never be produced, by definition. Since Im(−iΣFW) is not

zero, we must conclude that a FW particle is not purely virtual. Moreover, Im(−iΣFW)

is nonvanishing even for p2 < (m1 − m2)
2. This result is difficult to interpret, since it

amounts to the production of particles with negative energies and leads to instability (see

the next section).

Note that formula (2.8) gives the extremely simple result

ΣFW-FW(p) = −Im(−iΣFW) = −
√
u+u−

32πp2
[θ(−u+)− θ(u−)] , (4.7)

which means that the amplitude −iΣFW-FW is purely imaginary. Indeed, by definition

ΣFW-FW is real. Consistently with what we have found above, 2Im(−iΣFW-FW) is equal to

the sum of the two cut diagrams of fig. 1 with the cut propagators given by the third line

of fig. 2.

From the result (4.7) we see that the FW propagators break analyticity in an un-

usual way. In section 6 we will see that, instead, fakeons upgrade the common notion of

analyticity to the more general notion of regionwise analyticity.

In ref. [5] the imaginary part of ΣFW(p) is claimed to be just one half the imaginary

part of the usual bubble diagram Σ(p), since the authors miss the contribution from Σ′(p),

which is the piece proportional to θ(u−) in formula (4.5).
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5 Stability

In this section we show that a theory propagating FW particles violates stability. Specifi-

cally, the denominators of (2.3) and (2.5) vanish for

|p0| = ω1 − ω2. (5.1)

These singularities tell us where Σ′(p) may be nonanalytic, which in the case at hand

means that it has branch cuts. The discontinuity of the amplitude around the cuts leads

to the nontrivial imaginary part Im(−iΣ′). As we know, the optical theorem relates the

discontinuity to a physical process that turns the circulating virtual particles into real

particles.

The crucial aspect of formula (5.1) is that the external energy is equated to a difference

of frequencies, rather than a sum. Thus, if we assume p0 > 0, for definiteness, the physical

process associated with Im(−iΣ′) is an external particle of momentum p decaying into

a particle of energy ω1 and a particle of energy p0 − ω1 = −ω2. This means instability,

because the energies of the final particles are unbounded.

Explicitly, for large momentum ks, we have

p0 = ω1 − ω2 ∼ −ps cos θ +
1

2ks

[

m2
1 −m2

2 + p2s sin
2 θ

]

+O
(

1

k2
s

)

. (5.2)

Let us assume m1 > m2 and take, for example, θ = π/2. Then (5.2) has solutions for

arbitrarily large ks and arbitrarily small incoming energies p0. If the incoming particle

is massless, or has a very small mass, it can decay into particles with arbitrarily large

positive and negative energies. Moreover, as we know from the divergent behaviors of

formulas (4.3), (4.5) and (4.7) at p2 = 0, the probability of such an occurrence is huge and

negative. This is an unacceptable dynamics and another reason why the FW propagator

is not good for Feynman diagrams.

6 Fakeons as purely virtual quanta

In this section we explain how the fakeons avoid the problems of the Feynman-Wheeler

particles and provide the correct concept of purely virtual quanta.

The calculations of diagrams with fakeons require crucial modifications with respect to

the calculations of diagrams with Feynman propagators. For this reason, it is convenient

to briefly revisit the standard bubble diagram Σ(p). Using Feynman parameters, the loop
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integral

Σ(p) =

∫

dDk

(2π)D
1

(p− k)2 −m2
1 + iε

1

k2 −m2
2 + iε

gives

Σ(p) = V (p2 + iε,m2
1, m

2
2), (6.1)

where

V (a, b, c) =
iΓ

(

4−D
2

)

(4π)D/2

∫ 1

0

dx [−ax(1 − x) + bx+ c(1− x)](D−4)/2 . (6.2)

Defining u± as in (3.7) and expanding around D = 4, we obtain

i(4π)2V (p2, m2
1, m

2
2) = − ln

4Λ2

m1m2

+
m2

1 −m2
2

p2
ln

m1

m2

−
√
u+u−

p2
ln

m2
1 +m2

2 − p2 +
√
u+u−

2m1m2

,

(6.3)

where ln Λ2 is defined again as in (3.3).

Making (6.3) more explicit, we find [20]

i(4π)2 V (p2 + iε,m2
1, m

2
2) = − ln

4Λ2

m1m2
+

m2
1 −m2

2

p2
ln

m1

m2

−
√
u+u−

p2
θ(u−)

(

ln

√
u+ +

√
u−√

u+ −√
u−

)

+
2
√−u+u−

p2
θ(−u−)θ(u+) arctan

√

−u−

u+

+

√
u+u−

p2
θ(−u+)

(

ln

√−u− +
√−u+√−u− −√−u+

− iπ

)

. (6.4)

To explain how to proceed when the bubble diagram involves circulating fakeons, we

start from the case where one internal leg is a fakeon and the other internal leg is a Feynman

propagator. The loop integral reads

Σf(p) ≡
∫

dDk

(2π)D
1

(p− k)2 −m2
1 + iε

1

k2 −m2
2

∣

∣

∣

∣

f

,

where the fakeon prescription is denoted by means of the subscript f.

The simplest way to formulate the fakeon prescription is to make the Wick rotation

from the Euclidean version of the diagram and complete it nonanalytically by means of an

operation called average continuation [21, 9], which we describe below.

Specifically, we start from the Euclidean version of the diagram Σ(p) and initiate the

Wick rotation, i.e. move analytically from the Euclidean region, where the energies are

purely imaginary, to the Minkowskian region. So doing, the thresholds we find on the real

axis coincide with the ones of Σ(p). In particular, the true threshold is still p2 = (m1+m2)
2,

while p2 = (m1 −m2)
2 is a pseudothreshold. Below the threshold p2 = (m1 +m2)

2 we find
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no obstacle and conclude the Wick rotation as usual. This means that the loop integrals

Σ(p) and Σf(p) coincide and are analytic there:

Σf(p) = Σ(p) for p2 < (m1 +m2)
2. (6.5)

Note that the fact that the pseudothreshold does not behave differently from usual is

crucial for stability, since kinematic relations like (5.1) do not play any role.

Above the threshold p2 = (m1 +m2)
2 the difference between Σf(p) and Σ(p) becomes

apparent. In the case of Σ(p), the threshold is crossed analytically by means of the Feynman

prescription p2 → p2 + iε. This means that the Wick rotation is completed analytically.

In the case of Σf(p) the threshold is crossed by means of the fakeon prescription, which

amounts to taking the arithmetic average of the two analytic continuations around the

threshold, which correspond to the prescriptions p2 → p2 ± iε. This operation, called

average continuation [21, 9], is unambiguous, but not analytic. Hence, we speak about

nonanalytic Wick rotation [21]. Despite being nonanalytic, it returns an analytic function

above the threshold. What is not analytic is just the relation between the two analytic

functions that encode the amplitude below and above the threshold.

We know that Σ(p) is given by formula (6.4). When we replace a particle circulating

in the loop with a fakeon, the only difference is that the iπ of the last line disappears.

Indeed, the iπ of (6.4) is due to having crossed the threshold by means of the analytic

continuation p2 → p2 + iε. The other analytic continuation p2 → p2 − iε gives −iπ, so the

arithmetic average of the two gives zero. At the end, equation (6.5) extends to

Σf(p) =
1

2

(

V (p2 + iε,m2
1, m

2
2) + V (p2 − iε,m2

1, m
2
2)
)

=
1

2

(

Σ(p)− Σ∗(p)
)

= Σ(p) +

√
u+u−

16πp2
θ(−u+). (6.6)

In particular,

2Im(−iΣf) = 0. (6.7)

This result is consistent with the optical theorem. We know that the discontinuity of the

amplitude above the threshold, which is encoded in its imaginary part, is associated with a

physical process where the particles circulating in the loop become real. However, a purely

virtual quantum cannot become real, by definition. This means that when fakeons are

involved such a process has zero chances to occur, i.e. the imaginary part vanishes above

the threshold. Then the potential physical process becomes a fake process.

If we interpret (6.7) in terms of the cutting equations, so that 2Im(−iΣf) equals the

sum of the cut diagrams of fig. 1, we can say that the cut propagator of the fakeon is

identically zero, as shown in fig. 2.
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Analyticity holds above p2 = (m1 + m2)
2 in both cases Σ and Σf, but in different

senses. In the case of Σf, the space of complexified external momenta p is divided into two

disjoint regions of analyticity. One region is located below the threshold and the other one

is located above the threshold. The former is the Euclidean region, the latter is a fakeon

region.

Specifically, if we take formula (6.4) and drop the iπ appearing in the last line, we have

an analytic function for p2 < (m1+m2)
2 and another analytic function for p2 > (m1+m2)

2.

The two are not analytically related to each other. However, the former unambiguously

determines the latter by means of the average continuation.

Note that, in general, there is no way to determine the function below the threshold

from the function above the threshold [9] (although in the particular case at hand it seems

that we may achieve this goal). For example, in three spacetime dimensions we often meet

the square-root function
√
z (z being −p2 − iε or a more complicated function of p2). Its

average continuation on the negative real axis is zero and obviously we cannot recover
√
z

from the zero function.

The new analyticity property of the amplitudes involving fakeons is called “regionwise

analyticity”.

Note that the fakeon prescription is free of nonlocal divergences. Indeed, the divergences

coincide with those of Σ(p), which are local.

If both particles circulating in the loop are fakeons, we need to compute the loop

integral

Σff(p) ≡
∫

dDk

(2π)D
1

(p− k)2 −m2
1

∣

∣

∣

∣

f

1

k2 −m2
2

∣

∣

∣

∣

f

.

We can proceed as above, starting from the Euclidean framework and ending the Wick

rotation nonanalytically by means of the average continuation above the threshold p2 =

(m1 +m2)
2. The result is

Σff(p) = Σf(p) = Σ(p) +

√
u+u−

16πp2
θ(−u+) (6.8)

and again 2Im(−iΣff) = 0.

We can summarize the crucial differences among the calculations of Σ(p), Σf(p), and

ΣFW(p) as follows. Σ(p) can be computed directly in Minkowski spacetime or by means of

the analytic Wick rotation from the Euclidean version of the loop integral; Σf(p) is com-

puted from the Euclidean version, but the Wick rotation is completed nonanalytically by

means of the average continuation; ΣFW(p) is computed directly in Minkowski spacetime,

since the principal-value prescription is inherently Minkowskian. The integral on the loop
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energy picks the same residues in the cases of Σ(p) and Σf(p), but different residues in the

case of ΣFW(p).

In the end, the results obtained with the fakeon propagator are quite different from the

ones due to the FW propagator. With fakeons: (i) the optical theorem, hence unitarity,

holds; (ii) no instability is generated, since the thresholds are the same as usual, which

correspond to kinematics like

|p0| = ω1 + ω2,

instead of (5.1); (iii) finally, there is no problem with the locality of counterterms, since

the divergent part can be computed in the Euclidean region, where, by formula (6.5), Σf

and Σ coincide. Once the amplitude is renormalized there, its average continuation is

renormalized everywhere, like its analytic continuation.

7 Lower dimensions

Now we repeat the analysis of FW particles in three and two spacetime dimensions.

In three dimensions we assume p2 > 0 and make the calculation by adapting formula

(2.3). We obtain

Σ′(p) =
i

8π
√

p2
ln

√

p2 − iε+m1 −m2
√

p2 + iε−m1 +m2

.

The (negative) imaginary part

2Im(−iΣ′) = −θ(u−)

4
√

p2

can be verified by evaluating the cut diagrams of fig. 1 with the rules explained in section

4.

In two dimensions it is more convenient to use the dimensional regularization and

expand the result of (3.5) around D = 2. We find

U(p2, m2
1, m

2
2) =

i

4π
√
u+u−

ln
1 + z

1− z
.

Thus, using (3.8) the discontinuity of the amplitude is

2Im(−iΣ′) = − θ(u−)√
u+u−

,

which is also negative. Again, the result can be verified by computing the cut diagrams of

fig. 1 with the rules of section 4.
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We see that the problems found in four dimensions are essentially confirmed in lower

dimensions.

8 Fakeons, God’s energy and the infinite desert

We point out that the fakeon prescription virtualizes a particle (or a ghost) completely

and eradicates it from the theory. In particular, a theory with fakeons is as fundamental

as the standard model.

If a theory has ghosts, it is not acceptable as a fundamental theory, even if the ghosts

have a finite lifetime and decay. Indeed, an unstable particle or ghost is not really out of

the physical spectrum, in the same way as the muon is not out of the physical spectrum

of the standard model. “Living with ghosts” [22] is not a viable option, even if the ghosts

may be unobservable in common settings.

The only wayout is to quantize the would-be ghosts in a radically different way, that

is to say as fakeons. Then they are really out of the physical spectrum, at all energies.

The most important application of the fakeon prescription is that it allows us to make

sense of quantum gravity as a perturbative quantum field theory [8, 23]. The theory is

described by the action

SQG(g,Φ) = − 1

2κ2

∫

d4x
√
−g

[

2ΛC + ζR+ α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

+ Sm(g,Φ),

(8.1)

where α, ξ, ζ and κ are positive constants, MPl = 1/
√
G =

√
8πζ/κ is the Planck mass, Φ

are the matter fields and Sm is the action of the matter sector. Besides the graviton, the

theory propagates two massive fields: a scalar φ and a spin-2 field χµν . The residue of the

χµν free propagator has the wrong sign, so χµν must be quantized as a fakeon, because the

Feynman prescription would turn it into a ghost. The residue at the φ pole has the correct

sign, so φ can be quantized either as a fakeon or a true particle. The masses mφ =
√

ζ/ξ

and mχ =
√

ζ/α (neglecting small corrections due to the cosmological constant ΛC) are

free parameters and should be determined experimentally. Their values could be smaller,

or even much smaller, than the Planck mass, e.g. mφ ∼ mχ ∼1012GeV. The fine structure

constants that govern the perturbative expansion of (8.1) are the ratios αχ = m2
χ/M

2
Pl and

αφ = m2
φ/M

2
Pl and could be as small as 10−14 [24].

These facts imply that the pure gravitational sector of the theory is perturbative up to

an unbelievably high energy. Indeed, since the action (8.1) is renormalizable, the perturba-

tive expansion is not governed by the ratio E/MPl, where E is the center-of-mass energy,
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but by the running couplings αχ and αφ. The running, in turn, is governed by logarithmic

corrections. It takes a long way to turn the products

αχ ln
E2

µ2
, αφ ln

E2

µ2
,

into quantities of order 1, whatever reference energy µ we take. Precisely, αχ ∼ αφ ∼ 1014

and µ ∼ MPl give the unbelievably high energy

E ∼ 1010
13

MPl,

which we think deserves to be called “God’s energy” for this reason. If we could multiply

the maximum energy we can reach in our laboratories by a factor 10 every year, we would

reach the Planck scale in less than twenty years and God’s energy in one thousand times

the age of the universe.

Note that small couplings αχ and αφ do not mean that the theory is practically free.

For example, φ and χµν have widths that are proportional to their masses times αφ and

αχ, respectively [24]. Since the masses are large, we obtain nonnegligible widths even if αφ

and αχ are small. Actually, the width of χµν is comparable to the widths of the Z and W

bosons and the one of the Higgs boson H .

Of course, when we say that the theory is perturbative up to God’s energy, we refer to

the elementary processes (graviton-graviton scattering, graviton-matter scattering, etc.).

Nonperturbative problems are present at all energies, when they involve large numbers of

particles and gravitons at the same time, as in the classical limit, black holes, etc.

The quantum gravity theory based on the fakeon idea predicts new physics below

the Planck scale (precisely, at energies equal to the masses of φ and χ) and then at

the Planck scale itself. At the same time, it opens up an extremely alarming scenario,

which is the threat of an “infinite desert” from the Planck scale to God’s energy: no new

physics, nothing interesting, forever! Although we can always assume that extra, very

heavy particles and/or fakeons exist in such a huge range of energies without affecting any

fundamental principles, this kind of variety might be rather unexciting.

Long ago Weinberg proposed asymptotic safety as a way to overcome the nonrenor-

malizability of Einstein gravity [25]. The idea relies on the assumption that the ultraviolet

limit is an interacting conformal fixed point with a finite-dimensional critical surface. In

Weinberg’s approach one has to advocate nonperturbative or semi-nonperturbative meth-

ods, which make it difficult to discuss the issue of unitarity. Moreover, assumptions on

the ultraviolet limit are hard to accept, given that it is experimentally out of reach, by

definition.
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A related issue is ultraviolet completeness, which is defined in different ways and some-

times linked to asymptotic safety or asymptotic freedom, although such notions do not

appear to be necessary requirements for completeness. We emphasize that the theory

based on the fakeon idea (which is not asymptotically free [23, 26]) is safe enough and

ultraviolet complete enough, due to its huge perturbative regime. Finally, its nonpertur-

bative sector is candidate to explain even what lies beyond God’s energy. In this sense, it

can be considered ultraviolet complete.

9 Conclusions

The possibility that purely virtual entities might exist in nature is interesting in itself

and has attracted the attention of several scientists in the past, both at the classical

and quantum levels. However, the correct candidate was not identified right away. At

the classical level, Dirac virtualized runaway solutions by renouncing causality at small

distances, while Feynman and Wheeler considered T-symmetric wave emissions in classical

electrodynamics. At the quantum level, Bollini and Rocca picked up on the suggestion of

Feynman and Wheeler and studied the Cauchy principal value as a propagator in Feynman

diagrams.

For a variety of reasons, having both prescriptions ±iε in the same diagram is ex-

tremely dangerous, because it leads to violations of the locality of counterterms, unitarity

and stability. The right purely virtual quanta turn out to be the fakeons, which can be

used to virtualize both ghosts and normal particles. We have compared the Feynman,

fakeon and Feynman-Wheeler prescriptions in the bubble diagram and studied the optical

theorem in four, three and two dimensions. Only the fakeon has an identically vanishing

cut propagator, which means that it remains virtual once the quantum corrections are

turned on.

Fakeons allow us to make sense of quantum gravity at the fundamental level, and place

that theory on an equal footing with the standard model. The theory of quantum gravity

that emerges from the fakeon idea is perturbative up to an unbelievably high energy, which

we named God’s energy. This opens up a frightening scenario: the possibility of an infinite

desert between the Planck scale and God’s energy, with no new physics in sight, basically

forever.
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