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Abstrat

We investigate the properties of fakeons in quantum gravity at one loop. The theory

is desribed by a graviton multiplet, whih ontains the �utuation hµν of the metri, a

massive salar φ and the spin-2 fakeon χµν . The �elds φ and χµν are introdued expliitly

at the level of the Lagrangian by means of standard proedures. We onsider two options,

where φ is quantized as a physial partile or a fakeon, and ompute the absorptive part

of the self-energy of the graviton multiplet. The width of χµν , whih is negative, shows

that the theory predits the violation of ausality at energies larger than the fakeon mass.

We address this issue and ompare the results with those of the Stelle theory, where χµν

is a ghost instead of a fakeon.
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1 Introdution

A theory of quantum gravity was formulated in ref. [1℄ by means of a new presription to

treat the poles of the free propagators and turn the ghosts due to the higher derivatives

into fakeons [2℄. The lassial Lagrangian ontains the Hilbert term, the quadrati terms

√−gRµνR
µν

and

√−gR2
and the osmologial term. The fakeons are �fake partiles�,

whih ontribute to the orrelation funtions, but disappear from the physial spetrum.

The idea takes inspiration from the Lee-Wik models [3, 4℄, in partiular their reformu-

lation as nonanalytially Wik rotated Eulidean theories [5, 6℄. An essentially unique

3

stritly renormalizable theory of quantum gravity emerges from this approah, whih is

perturbatively unitary up to the e�ets due to the osmologial onstant

4

.

In this paper, we investigate the properties of the fakeons in quantum gravity at one

loop. To begin with, we introdue auxiliary �elds and make hanges of �eld variables, to

�nalize a number of arguments that are available in the literature [8℄ and onvert the higher-

derivative ation of [1℄ into an equivalent ation that does not ontain higher derivatives

and is organized so as to fully diagonalize the kineti part in the nonlinear ase. The new

setting is onvenient to alulate the quantities we are interested in here. It is not equally

onvenient to study the renormalization of the theory (whih is not a�eted by the fakeon

presription and has been already studied in a variety of approahes [9, 10, 11, 12, 13, 14℄).

Quantum gravity is desribed by a graviton multiplet, made of the �utuation hµν

of the metri tensor around �at spae, a massive salar φ and a massive spin-2 �eld

χµν . To have perturbative unitarity (up to the e�ets of the osmologial onstant) the

�eld χµν must be quantized as a fakeon, beause its quadrati ation arries the wrong

overall sign. Instead, the quadrati ation of φ arries the right overall sign, so φ an be

quantized either as a fakeon or a physial partile. This leads to two possibilities, whih

we all graviton/fakeon/fakeon (GFF) theory and graviton/salar/fakeon (GSF) theory,

respetively.

We study the absorptive part of the self-energy of the graviton multiplet in both ases.

A number of tehniques to alulate this quantity and, more generally, deal with the

3

This means that the ation has a �nite number of independent parameters and admits a �nite number

(two, in our ase) of physially onsistent quantization presriptions.

4

A onsistent theory of sattering with the properties we need may not exist at nonvanishing osmolog-

ial onstant. On this topi, see the disussions of refs. [7℄. The problem onerns every realisti theory of

quantum gravity, inluding the low-energy nonrenormalizable one, whih an be used as an e�etive �eld

theory.
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fakeons, have been developed in ref. [14℄. The approah we follow here further simpli�es

the omputations and allows us to extend the results in several diretions. In partiular,

we obtain the width Γχ of the spin-2 fakeon χµν , whih is related to the entral harge C of

the matter �elds, and the width Γφ of φ. The value of Γχ is negative, whih means that χµν

is responsible for the violation of miroausality. At enter-of-mass energies lose to the

fakeon massmχ, and for time intervals of the order of 1/|Γχ| (referred to the enter-of-mass

frame) the ommon notions of past, present and future, as well as ause and e�et, lose

meaning. Two events an be related in a ausal way only if they are separated by a time

interval that is muh longer than 1/|Γχ|.
The breakdown of ausality at very small distanes is expeted, beause it is also a

property of the Lee-Wik models, where it has been studied in detail [3, 4, 15℄. Although

the quantum gravity theory of [1℄ is not of the Lee-Wik type, the fakeon quantization

presription introdues an in�nitesimal width that turns the theory into a Lee-Wik model

in an intermediate step. From the physial point of view, we do not have arguments to

laim that nature must be ausal up to in�nite energies, so we regard the violation of

miroausality as a key predition of quantum gravity.

We also ompare the results of the GFF and GSF theories with those of the Stelle

theory [16℄, reently onsidered by Salvio and Strumia from the phenomenologial point

of view in refs. [12, 13℄, whih is a graviton/salar/ghost (GSGh) theory. The lassial

ation of the GSGh theory is the same, but its quantization is di�erent in that the Feynman

presription is used for all the poles of the free propagators, inluding the one of χµν . Then

χµν is a ghost, instead of a fakeon, and does ontribute to the absorptive parts, as well as

the entral harge C. The quantities we alulate do not exhibit important di�erenes up

to energies equal to the fakeon mass mχ. For example, the width Γχ is the same in the

GSF and GSGh theories. The di�erenes start to beome important above mχ, where the

optial theorem is violated in the GSGh theory.

The omputations are performed at vanishing osmologial onstant ΛC , sine the or-

retions due to ΛC are too small for the quantities we study. The results of ref. [14℄ are

reovered as a partiular ase. We inlude results for Proa vetors and Pauli-Fierz spin-2

�elds.

The paper is organized as follows. In setion 2 we isolate the fakeons by working out an

equivalent ation of quantum gravity that does not ontain higher derivatives. In setion 3

we outline the presriptions to quantize the theory. In setion 4 we alulate the absorptive

part of the self-energy of the graviton multiplet. In setion 5 we alulate the width Γχ of

3
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χµν and disuss the relation between Γχ and the entral harge C, as well as the violations

of miroausality. We also give the width of φ. In setion 6 we extend the alulations

to the Stelle theory and ompare the results with those of the GFF and GSF theories.

Setion 7 ontains the onlusions. The appendies A and B ontain details about some

tools used for the alulations and other results about the absorptive parts.

2 Isolating the fakeons in quantum gravity

The theory of quantum gravity (oupled to matter) proposed in ref. [1℄ has ation

S
QG

= − 1

2κ2

∫ √
−g
[

2ΛC + ζR + α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

+ Sm(g,Φ), (2.1)

where α, ξ, ζ , ΛC and κ are real onstants, with α > 0, ξ > 0 and ζ > 0, and Sm is the

ation of the matter setor. For example, we an take Sm as the ovariantized ation of the

standard model, or one of its popular extensions, equipped with the nonminimal ouplings

that are ompatible with the renormalizability.

In this setion we isolate the fakeons by means of auxiliary �elds and �eld rede�nitions.

We obtain an equivalent ation that does not ontain higher-derivatives and is useful for

the alulations of the next setions. In partiular, we fully diagonalize the kineti part in

the nonlinear ase. In the next setion we explain how to quantize the theory in the new

setting.

To our knowledge, the new ation, whih is given by formula (2.10), is not available

in the literature in a omplete form. Partial derivations an nevertheless be found. For

example, the authors of [8℄ work at ΛC = 0, with no matter setor Sm and stop short of

�nalizing the ation to onentrate on the analysis of the quadrati part around �at spae,

sine their main interest is to highlight the degrees of freedom.

We assume that Sm is at least quadrati in the matter �elds Φ. For simpliity, we work

with bosoni �elds. The arguments an be easily generalized to fermioni �elds by using

the tetrad formalism.

De�ning

Λ̂C = ΛC

(

1 +
4

3

ξΛC
ζ2

)

, ζ̂ = ζ
Λ̂C
ΛC

, R̂µν = Rµν +
ΛC
ζ
gµν , R̂ = R +

4ΛC
ζ
,

and adding the integral of a total derivative, the ation (2.1) an be written in the more

4
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onvenient form

S
QG

= Ŝ
HE

(g) + S
W

(g) +
ξ

12κ2

∫ √−gR̂2 + Sm(g,Φ),

where

Ŝ
HE

(g) = − 1

2κ2

∫ √−g
(

2Λ̂C + ζ̂R
)

(2.2)

is the Hilbert-Einstein ation and

S
W

(g) = − α

4κ2

∫ √
−gCµνρσCµνρσ

is the Weyl ation, Cµνρσ denoting the Weyl tensor.

2.1 Step 1: massive salar

We introdue an auxiliary �eld φ̂ and write S
QG

as

S
QG

= Ŝ
HE

(g) + S
W

(g) +
ξ

12κ2

∫ √−g(2R̂− φ̂)φ̂+ Sm(g,Φ).

Then we perform the Weyl transformation

gµν → gµνe
κφ, (2.3)

where

φ = −1

κ
ln

(

1− ξφ̂

3ζ̂

)

. (2.4)

So doing, we obtain the equivalent ation

S
QG

= Ŝ
HE

(g) + S
W

(g) + Sφ(g, φ) + Sm(ge
κφ,Φ), (2.5)

where

Sφ(g, φ) =
3ζ̂

4

∫ √−g
[

DµφD
µφ−

m2
φ

κ2
(

1− eκφ
)2
]

, (2.6)

the squared mass of φ being

m2
φ =

ζ

ξ
. (2.7)

5
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2.2 Step 2: spin-2 fakeon

Now we take are of the spin-2 fakeon. We have

Ŝ
HE

(g) + S
W

(g) = S̃
HE

(g)− α

2κ2

∫ √
−g
(

R̃µνR̃
µν − 1

3
R̃2

)

,

up to the integral of a total derivative, where

S̃
HE

(g)=− 1

2κ2

∫ √
−g
(

2Λ̃C + ζ̃R
)

, R̃µν = R̂µν ,

Λ̃C =Λ̂C

(

1 +
2

3

αΛ̂C

ζ̂2

)

= ΛC

(

1 +
2

3

(α + 2ξ)ΛC
ζ2

)

, ζ̃ = ζ̂
Λ̃C

Λ̂C
= ζ

Λ̃C
ΛC

.

We introdue auxiliary �elds χµν by writing the ation S
QG

as

S
QG

= S̃
HE

(g)− ζ̃

2κ2

∫ √
−g
[

2χµν
(

R̃µν −
1

2
gµνR̃

)

− ζ̃

α
(χµνχ

µν − χ2)

]

+Sφ(g, φ) + Sm(ge
κφ,Φ), (2.8)

where χ = χµνg
µν
. At this point, we perform the metri-tensor rede�nition

gµν → gµν + 2χµν + χµνχ− 2χµρχ
ρ
ν ≡ gµν + ψµν . (2.9)

The linear ontribution to ψµν is �xed so that the transformed ation ontains no terms

that are linear in χµν . The quadrati orretions are determined so that the mass terms

of the χµν ation get the right Pauli-Fierz form and the limit ΛC → 0 remains regular.

Applying the rede�nition (2.9) to (2.8), we obtain the equivalent ation of quantum

gravity we are going to work with in this paper, whih reads

S
QG

(g, φ, χ,Φ) = S̃
HE

(g) + Sχ(g, χ) + Sφ(g + ψ, φ) + Sm(ge
κφ + ψeκφ,Φ), (2.10)

where

Sχ(g, χ) = S̃
HE

(g + ψ)− S̃
HE

(g) +

∫

[

−2χµν
δS̃

HE

(g)

δgµν
+

ζ̃2

2ακ2
√−g(χµνχµν − χ2)

]

g→g+ψ

(2.11)

is the ation of the fakeon χµν . We �nd

Sχ(g, χ) = − ζ̃

κ2
S
PF

(g, χ,m2
χ)−

ζ̃

2κ2

∫ √
−gRµν(χχµν − 2χµρχ

ρ
ν) + S(>2)

χ (g, χ), (2.12)

6
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where

S
PF

(g, χ,m2
χ) =

1

2

∫ √−g [DρχµνD
ρχµν −DρχD

ρχ+ 2Dµχ
µνDνχ− 2Dµχ

ρνDρχ
µ
ν

−m2
χ(χµνχ

µν − χ2)
]

(2.13)

is the ovariantized Pauli-Fierz ation and S
(>2)
χ (g, χ) are orretions that are at least ubi

in χ. The squared mass of the spin-2 fakeon is

m2
χ =

ζ̃

α
. (2.14)

The transformations (2.3), (2.4) and (2.9) are ultraloal (i.e. they depend on the �elds,

but not their derivatives), so the Jaobians are identially one in dimensional regularization.

This means that we an use the new ation S
QG

(g, φ, χ,Φ) of formula (2.10) as the ation

of quantum gravity at the level of the funtional integral.

So far, we have kept the osmologial onstant di�erent from zero, but in many sit-

uations it may be negleted. When that is the ase, it is onvenient to replae the �eld

rede�nition (2.9) with

gµν → gµν + 2χµν , (2.15)

so that, instead of (2.10), we have

S
QG

(g, φ, χ,Φ) = S
H

(g) + S ′
χ(g, χ) + Sφ(g + 2χ, φ) + Sm(ge

κφ + 2χeκφ,Φ), (2.16)

where

S
H

(g) = − ζ

2κ2

∫ √
−gR,

is the Hilbert ation and S ′
χ(g, χ) is the new χ ation, still given by (2.11), but with ΛC = 0

and ψµν replaed by 2χµν . We �nd

S ′
χ(g, χ)=−2

∫

δ2S
H

δgµν(x)δgρσ(y)
χµν(x)χρσ(y)dxdy +

ζ2

2ακ2

∫ √
−g(χµνχµν − χ2)

−8

3

∫

δ3S
H

δgµν(x)δgρσ(y)δgαβ(z)
χµν(x)χρσ(y)χαβ(z)dxdydz (2.17)

+
ζ2

2ακ2

∫ √−g(5χχµνχµν − 4χµνχ
µρχνρ − χ3) + S(>3)

χ (g, χ).

where S
(>3)
χ (g, χ) are orretions that are at least quarti in χµν , whih are not needed in

the alulations of this paper. Note that the nonminimal ouplings of the quadrati part

− ζ

κ2
S
PF

(g, χ,m2
χ)−

ζ

4κ2

∫ √
−g
(

4χχµνR
µν − 8χµνχ

νρRµ
ρ + 2Rχµνχ

µν − Rχ2
)

7
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of S ′
χ(g, χ) di�er from those of (2.12), and the χ squared mass is now

m2
χ =

ζ

α
. (2.18)

Formulas (2.11) and (2.17) show that the verties of the χ ations are related to the verties

of the Hilbert-Einstein ation, apart from orretions proportional to m2
χ.

The new ations (2.10) and (2.16) are onvenient to alulate the quantities we are

interested in, but make the renormalizability of the theory muh less evident than it was

in the original �eld variables (2.1). On general grounds, the only e�et of a perturbative

hange of �eld variables on the divergent setor of the theory is to require extra �eld

renormalizations, whih are generially nonpolynomial, yet perturbatively loal. A preise

math between the divergent parts, alulated before and after the �eld rede�nition, an be

worked out by relating them to the renormalizations of the omposite operators involved

in the transformation [17℄.

3 Quantization

Expanding the metri tensor around �at spae as gµν = ηµν + 2κhµν , where ηµν = diag(1,

−1, −1, −1), the graviton setor is desribed by the graviton multiplet

GA = {hµν , φ, χρσ}, (3.1)

made of the �utuation hµν of the metri, the massive salar φ and the massive spin-2 �eld

χµν .

Assuming that |ΛC| is su�iently small, so that both ζ̃ and ζ̂ are positive, the ation

Sχ of formula (2.12) arries the wrong overall sign. This means that, to have perturbative

unitarity (up to orretions due to the osmologial onstant), χµν must be quantized as

a fakeon, following the presription of ref. [1℄. Instead, the quadrati ation Sφ of eq.

(2.6) arries the right overall sign, so φ an be quantized either as a fakeon or a physial

partile. This leads to two possibilities, whih we all graviton/fakeon/fakeon (GFF) theory

and graviton/salar/fakeon (GSF) theory, respetively. Being perturbatively unitary (up to

the e�ets of the osmologial onstant) and renormalizable, they are both good andidates

to desribe quantum gravity. We ould also view φ and χµν as part of the matter setor.

We de�ne the GFF and GSF presriptions by introduing two in�nitesimal widths ǫ

and E in the propagators as follows:

8
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(a) replae p2 with p2 + iǫ everywhere in the denominators of the propagators, where

p denotes the momentum;

(b) turn the χ poles into fakeons by means of the replaement

1

p2 −m2
χ + iǫ

→
p2 −m2

χ

(p2 −m2
χ + iǫ)2 + E4

; (3.2)

(c) [only in the GFF ase℄ turn the φ poles into fakeons by means of the replaement

1

p2 −m2
φ + iǫ

→
p2 −m2

φ

(p2 −m2
φ + iǫ)2 + E4

. (3.3)

(d) alulate the diagrams in the Eulidean framework, nonanalytially Wik rotate

them as explained in refs. [5, 6, 2℄, then make ǫ tend to zero �rst and E tend to zero last.

Note that beause of the Wik rotation involved in point (d) the distributions appearing

on the right-hand sides of eqs. (3.2) and (3.3) do not give the prinipal value (whih would

require to integrate on real energies).

An equivalent, and often more e�ient, way to formulate the graviton/fakeon presrip-

tion is to ombine point (a) with the requirement that, in evaluating the loop integrals,

(a′) every threshold involving a fakeon must be overome by means of the average on-

tinuation, whih is the arithmeti average of the two analyti ontinuations that irumvent

the threshold.

The spae of the omplexi�ed external momenta is divided into disjoint regions of

analytiity. All of them an be unambiguously reahed from the Eulidean region by

means of the average ontinuation.

The free propagator of the metri �utuation hµν reads

〈hµν(p)hρσ(−p)〉0 =
i(ηµρηνσ + ηµσηνρ − ηµνηρσ)

2ζ̃(p2 −m2
h + iǫ)

, (3.4)

where m2
h = −2ΛC/ζ , in the de Donder gauge. We reall that the utting equations [18℄

(whih are the diagrammati equations that lead to the optial theorem) are formally

satis�ed even when osmologial onstant is nonvanishing, as long as it is negative [1℄,

although a onsistent theory of sattering likely does not exist in that ase.

The free propagator of χµν reads

〈χµν(p)χρσ(−p)〉0 = −iκ
2

ζ̃

p2 −m2
χ

(p2 −m2
χ + iǫ)2 + E4

Π
(2)

µνρσ(p,m
2
χ), (3.5)

9
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where

Π
(2)

µνρσ(p,m
2
χ) =

1

2

(

πµρπνσ + πµσπνρ −
2

3
πµνπρσ

)

, πµν = ηµν −
pµpν
m2
χ

, (3.6)

are spin-2 and spin-1 on-shell projetors, respetively.

The free φ propagator reads

〈φ(p)φ(−p)〉0GFF =
2i

3ζ̂

p2 −m2
φ

(p2 −m2
φ + iǫ)2 + E4

, 〈φ(p)φ(−p)〉0GSF =
2i

3ζ̂

1

p2 −m2
φ + iǫ

,

in the GFF and GSF ases, respetively.

The physial �elds are the physial omponents of hµν (obtained by projeting away

the unphysial omponents and the Faddeev-Popov ghosts in the usual ways), the massive

salar φ (in the GSF theory only) and the matter �elds Φ.

The Fok spae V of the physial states is the Hilbert spae built as follows. Consider

the states |n〉 obtained by ating on the vauum |0〉 by means of the reation operators of

the physial �elds. Then, build the metri spae F made of the �nite linear ombinations

of the states |n〉. Finally, omplete F to the Hilbert spae V by means of the Cauhy

proedure.

The spae V is a proper subspae of the total Fok spae W , whih also ontains the

states built with the reation operators of the fakeons (a†χ in the GSF theory and a†χ, a
†
φ

in the GFF theory). The free Hamiltonian H
free

is bounded from below in V , although

it is not bounded from below in W (due to the negative ontributions brought by χµν).

Perturbative unitarity is the statement that the projetion from W onto V is onsistent,

i.e. the states that are projeted away are not generated bak in the utting equations and

the optial theorem. More details are given in setions 5 and 6.

Before turning to the omputations, let us reall that the standard quantization pre-

sription [16℄ is just made of point (a) for every pole. Then φ is a physial partile, but

χµν is a ghost, due to the overall minus sign that multiplies the right-hand side of (3.5).

In that ase the Fok spae is the whole W .

Another interesting possibility has been pointed out by Avramidi and Barvinsky in ref.

[10℄, where it was noted that for ΛC > 0, ξ < 0 the ation (2.1) is positive de�nite in the

Eulidean framework and the theory is asymptotially free (when matter is swithed o�).

However, ξ < 0 makes the squared mass of φ negative. The fakeon presription of ref. [1℄

works for poles loated on the real axis, irrespetively of the sign of the residue at the pole.

Tahyons do not fall in that lass, so we annot guarantee in this moment that a proper

generalization of the presription (3.3) exists for ξ < 0.

10
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2Im dΠ

2

Figure 1: Proesses involving the absorptive part of the graviton-multiplet self-energy

4 Absorptive part of the self-energy

The absorptive part of the self-energy of the graviton multiplet is important beause it

allows us to extrat physially observable quantities, as explained in setion 5. In Fig. 1

we show a basi proess where the absorptive part plays a key role. On the right-hand

side, we have the squared modulus of the transition amplitude between some initial states,

denoted by the ontinuous lines, and some �nal states, denoted by the dashed lines. The

wiggled line denotes the graviton multiplet. Integrating on the phase spae Π of the �nal

states, we obtain twie the imaginary part of the amplitude shown on the left-hand side.

In this setion, we ignore the initial states, whih leads us to onsider the absorptive parts

MAB ≡ 〈GA(p)GB(−p)〉1 loop
abs

(4.1)

of the matrix 〈GAGB〉 of the graviton-multiplet two-point funtions at one loop. For sim-

pliity, we set the osmologial onstant to zero, but the proedure an be easily generalized

to ΛC 6= 0. The gauge-dependent ontributions are alulated in the de Donder gauge.

We an throw away the diagrams where the fakeons propagate inside the loop. Indeed,

aording to the presription of the previous setion, in those ases we are lead to alulate

the average ontinuation above the thresholds, whih has no absorptive part. Then we an

drop S ′
χ(g, χ) from the ation (2.16) and work with the simpli�ed ation

S ′
QG

(g, φ, χ,Φ) = S
H

(g) + Sφ(g + 2χ, φ) + Sm(ge
κφ + 2χeκφ,Φ). (4.2)

The tadpole diagrams do not ontribute to the absorptive parts, so we an fous on the

ubi verties. Expanding (4.2) to the ubi order in χµν-φ-Φ, we obtain a further simpli�ed

11
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ation for the GSF theory, whih is

SGSF
QG

(g, φ, χ,Φ)=S
H

(g) + Sφ(g, φ) + Sm(g,Φ)

−1

2

∫ √
−g
[

(2χµν + κφgµν)T
µν
m (g,Φ) + 2χµνT

µν
φ (g, φ)

]

, (4.3)

where

T µνm (g,Φ) = − 2√−g
δSm(g,Φ)

δgµν
, T µνφ (g, φ) = − 2√−g

δSφ(g, φ)

δgµν
, (4.4)

are the energy-momentum tensor of the matter �elds and the one of φ, respetively.

In the GFF ase, the �eld φ an also be ignored inside the loop, whih means that we

an work with

SGFF
QG

(g, φ, χ,Φ) = S
H

(g) + Sm(g,Φ)−
1

2

∫ √−g(2χµν + gµνκφ)T
µν
m (g,Φ). (4.5)

We ollet the results about MAB into the one-loop absorptive part Γ
abs

of the Γ

funtional. We an deompose Γ
abs

as

ΓGFF
abs

=Γhh
abs

+ Γm
abs

, (4.6)

ΓGSF
abs

=Γhh
abs

+ Γφh
abs

+ Γφφ
abs

+ Γm
abs

, (4.7)

in the GFF and GSF ases, respetively, where Γhh
abs

inludes the ontributions of the

h bubble and the bubble of Faddeev-Popov ghosts, while in the other ases the �elds

irulating in the loop are spei�ed by the supersripts.

The ontributions Γhh
abs

are gauge dependent and an be olleted into �eld rede�nitions,

up to ubi orretions (whih do not ontribute to MAB). Their expressions an be read

from formulas (4.8)-(4.9) of ref. [14℄ in the limit α → 0, ξ → 0. The result is

Γhh
abs

= −
∫

δS
H

(g)

δgµν
∆gµν , ∆gµν =

iκ3

480πζ
θ(−�) (61�hµν − 42ηµν�h + 42ηµν∂

ρ∂σhρσ) .

(4.8)

Formula (4.8) an be rewritten as

Γhh
abs

= −
∫

δS
QG

δgµν
∆gµν , (4.9)

up to ubi orretions.

The ontributions Γφh
abs

are also gauge dependent away from the φ peak. They an be

alulated with the tehniques explained in appendix A. We �nd

Γφh
abs

= −
3iκ2m2

φ

32π

∫ √
−gφθ(−�−m2

φ)
(

�+m2
φ

) 1

�

(

2�+m2
φ

)

φ. (4.10)

12
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The other ontributions to Γ
abs

are gauge independent. We �nd

Γφφ
abs

=
i

16π

1

120

∫ √
−gRµνθ(r)θ(1− r)

√
1− r

[

(1− r)2Rµν +
1

8
(4 + 12r − r2)gµνR

]
∣

∣

∣

∣

g→g+2χ

+
iκ

512π

∫ √
−gφθ(r)θ(1− r)

√
1− r

[

72m2
φκφ− r(2 + r)�R

]

∣

∣

∣

g→g+2χ
, (4.11)

where r = −4m2
φ/� and the substitutions g → g + 2χ are to be performed on the whole

integrands.

Now we turn to Γm
abs

. Equation (4.3) shows that these orretions are related to the

two-point funtion of the energy-momentum tensor T µνm of equation (4.4). We an write

Γm
abs

= Γϕ
abs

+ Γψ
abs

+ ΓV
abs

,

where Γϕ
abs

, Γψ
abs

and ΓV
abs

are the ontributions of salar �elds, fermions and gauge vetors,

respetively.

On general grounds, the matter �elds Φ of mass mΦ give an expression of the form

ΓΦ
abs

=
i

16π

∫ √−gRµνθ(rΦ)θ(1− rΦ)
√
1− rΦ

×
[

PΦ(rΦ)

(

Rµν − 1

3
gµνR

)

+QΦ(rΦ)g
µνR

]
∣

∣

∣

∣

g→(g+2χ)eκφ
, (4.12)

where rΦ = −4m2
Φ/� and PΦ(rΦ), QΦ(rΦ) are polynomials that an be alulated as

explained in appendix A.

In the ase of Ns salar �elds of mass mϕ, with ation

Ss =
1

2

Ns
∑

i=1

∫ √−g
[

gµν(∂µϕ
i)(∂νϕ

i)−m2
ϕϕ

i2 +
1

6
(1 + 2ηs)Rϕ

i2

]

,

we �nd that Γϕ
abs

is given by formula (4.12) with

Pϕ(r) =
Ns

120
(1− r)2, Qϕ(r) =

Ns

576
(4ηs − r)2. (4.13)

In the ase of Nf Dira fermions of mass mψ, Γ
ψ
abs

is given by the same formula with

Pψ(r) =
Nf

60

(

3− r − 2r2
)

, Qψ(r) =
Nf

144
r(1− r).

In the ase of Nv gauge vetors Vµ, Γ
V
abs

is given by

PV (0) =
Nv

10
, QV (0) = 0.
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For ompleteness, we also onsider Proa vetors Aµ and Pauli-Fierz symmetri tensors

Υµν . The Proa ation is

S
P

(g, A) =

∫ √
−g
[

−1

4
FµνF

µν +
m2

P

2
AµAµ +

η
P

2
RµνAµAν +

η′
P

2
RAµAµ

]

, (4.14)

where η
P

and η′
P

parametrize the nonminimal ouplings. The ontribution ΓP
abs

of N
P

opies of suh vetors to the absorptive part is (4.12) with

P
P

(r) =
N
P

120
(13 + 14r + 3r2) + P nm

P

(r), Q
P

(r) =
N
P

576
(4− 4r + 3r2) +Qnm

P

(r),

where P nm

P

(r) and Qnm

P

(r) are orretions due to the nonminimal ouplings, olleted in

appendix B. A urious fat is that ΓP
abs

admits a regular ultraviolet limit (m
P

→ 0) at

η
P

= η′
P

= 0. However, the limit is not onformal invariant, sine Q
P

(0) 6= 0, due to

simpli�ations between powers of m
P

and powers of 1/m
P

. The limit m
P

→ 0 does not

exist if η
P

or η′
P

are nonvanishing.

Equipped with arbitrary nonminimal ouplings, parametrized by onstants ηi, the o-

variantized ation of Pauli-Fierz �elds Υµν of mass mΥ reads

Ŝ
PF

(g,Υ, m2
Υ)=S

PF

(g,Υ, m2
Υ) +

1

2

∫ √
−g [η1RµνρσΥµρΥνσ +Rµν(η2ΥµρΥ

ρ
ν + η3ΥµνΥ)

+R
(

η4ΥµνΥ
µν + η5Υ

2
)]

, (4.15)

where Υ = Υµνg
µν
. The ontribution ΓPF

abs

of suh �elds to the absorptive part is rather

involved. We report its high-energy behavior in appendix B, enough to prove that, di�er-

ently from the ase of the Proa �elds, no values of the nonminimal ouplings make the

ultraviolet limit of ΓPF
abs

well de�ned.

In ref. [14℄ the masses of the matter �elds Φ were set to zero and both φ and χµν

were impliit and quantized as fakeons. This means that the results found there apply

to the GFF theory at rΦ = 0. Indeed, it is easy to hek that formula (4.6) at rΦ = 0

agrees with the result of [14℄, apart from the expression of ∆gµν , whih is muh simpler

now. The reason behind the hange of ∆gµν is that the two alulations are done with

di�erent lassial Lagrangians, (2.1) versus (2.10) or (2.16), related by perturbative �eld

rede�nitions. Normally, a hange of �eld variables on the lassial ation a�ets the Γ

funtional by modifying the ontributions that vanish on the solutions of the �eld equations.

A general method to work out the hange of ∆gµν diretly does exist [17℄ and requires to

extend the alulations to the omposite �elds involved in the transformation.
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5 The fakeon width

The diagram of Fig. 1 does not allow us to extrat physial quantities for generi values

of the enter-of-mass energy squared s = p2, beause the graviton gives gauge-dependent

ontributions, suh as (4.8) and (4.10), whih an be turned into ubi orretions by

means of �eld rede�nitions. If we want a physial quantity for generi s, the diagrams

of Fig. 1 must be aompanied by other diagrams that ontribute to the same order and

involve triangles (vertex orretions) and boxes. Computations of this type have been done

extensively in the standard model [19℄ and an be generalized to the theory of quantum

gravity studied here with some e�ort. However, for the time being, we onentrate on the

fakeon widths, whih are physial quantities that an be extrated just from the bubble

diagrams.

Assume that s is very lose to m2
χ. Then the leading ontributions of the (non-

amputated) two-point funtions 〈GA(p)GB(−p)〉 toMAB are given by 〈χµν(p)χρσ(−p)〉1 loop
abs

,

whih arry a double pole 1/(s−m2
χ)

2
. The vertex orretions are next-to-leading, and so

are the ontributions suh as 〈hµν(p)χρσ(−p)〉1 loop
abs

, sine they give at most simple poles

1/(s −m2
χ). The gauge-dependent ontributions, suh as 〈hµν(p)hρσ(−p)〉1 loop

abs

, are next-

to-next-to-leading, as are the box orretions.

This means that the oe�ient of the double pole must be physial by itself at the

fakeon peak. For example, it is straightforward to hek that it is gauge independent.

Spei�ally, assuming that the masses of the matter �elds Φ are muh smaller than mχ

and s ∼ mχ, we �nd

〈χµν(p)χρσ(−p)〉1 loop
abs

= C(s)
κ4

8πζ2
s2

(s−m2
χ)

2
Π

(2)

µνρσ(p, s) +O((s−m2
χ)

0), (5.1)

whereΠ
(2)

µνρσ(p, s) an be read from (3.6) and

C(s) = Cm + Cφ(s), Cm =
Ns + 6Nf + 12Nv

120
, Cφ(s) =

1

120
θ(1− rφ)(1− rφ)

5/2,

(5.2)

with rφ = 4m2
φ/s. Sine we are not making assumptions about the mass of φ, we must

take Cφ(s) as a funtion of s.

The quantity Cm is known as entral harge in onformal �eld theory. By analogy, we

an de�ne C(s) as the total entral harge and Cφ(s) as the entral harge of the massive

salar φ. The funtion Cφ(s) appearing in (5.2) holds in the GSF theory, where φ is
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quantized as a physial �eld, while Cφ(s) = 0 in the GFF theory. The entral harges of

the graviton and the fakeons are identially zero.

If we want, we an inlude N
P

Proa vetors with no nonminimal ouplings and small

masses m
P

. Then C(s) = Cm + C
P

+ Cφ(s), with

C
P

=
13

120
N
P

.

In the presene of Pauli-Fierz �elds Υµν and when the Proa nonminimal ouplings are

swithed on, the total entral harge is a ompliated funtion of r
P

= 4m2
P

/s, rΥ = 4m2
Υ/s

and the nonminimal ouplings.

Resumming the self-energies, we an obtain the orreted propagators of the graviton

multiplet. In partiular, at the χ peak we have the two-point funtion

〈χµν(p)χρσ(−p)〉s∼m̄2
χ
= −iκ

2

ζ

Zχ
s− m̄2

χ + im̄χΓχ
Π

(2)

µνρσ(p, s), (5.3)

where m̄χ is the orreted χ mass and Γχ is the χ width. We �nd

Γχ=−
κ2m3

χ

8πζ
C +mχO

(

m4
χ

M4
Pl

)

= −mχαχC +mχO(α2
χ),

Zχ=1 +O(αχ), m̄2
χ = m2

χ [1 +O(αχ)] , (5.4)

where M
Pl

is the Plank mass, C = C(m2
χ) and αχ = m2

χ/M
2
Pl

is a sort of �fakeon/graviton

struture onstant�.

The negative sign of Γχ implies that miroausality is violated. We an illustrate this

e�et in simple terms by means of the Breit-Wigner distribution and its Fourier transform.

We have

i

E −m+ iΓ
2

−→ sgn(t)θ(Γt) exp

(

−imt − Γt

2

)

, (5.5)

so when Γ < 0 the theta funtion piks the future instead of the past.

Note that the negative overall sign in front of the propagator (5.3) is onsistent with

unitarity. Indeed, we �nd

2Im
[

i〈χµν(p)χρσ(−p)〉s∼m̄2
χ

]

= −2κ2

ζ

Zχm̄χΓχ
(s− m̄2

χ)
2 + m̄2

χΓ
2
χ

Π
(2)

µνρσ(p, s) > 0, (5.6)

in agreement with the optial theorem. In partiular, when we take the limit Γχ → 0−, we

obtain

2Im
[

i〈χµν(p)χρσ(−p)〉s∼m̄2
χ

]

−→
Γχ→0−

2πκ2

ζ
Zχδ(s− m̄2

χ)Π
(2)

µνρσ(p, s). (5.7)
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Let us disuss a hypothetial sattering proess ontaining fakeons among the �nal

states. In that ase we must take the imaginary part of the zeroth order χµν propagator,

whih however vanishes beause of the quantization presription (3.5). This means that

a proess of this type has vanishing ross setion and annot our. It is impossible to

detet χµν �before it deays into something else�, whih is onsistent with alling χµν a

�fake partile� and stating that it does not belong to the subspae V of the physial �elds.

The di�erene between the peak of a fakeon and the peak of a resonane is that the one of

a fakeon is just a geometri shape and no physial partile is assoiated with it. In some

respets, this behavior resembles the one of the �anomalous thresholds� [20℄. In partiular,

the quantity 1/|Γχ| annot be viewed as the lifetime of the fakeon. We ould interpret it

as the amount of time during whih ausality is meaningless. More details are given in the

next setion, where we ompare the results of the GFF and GSF theories with those of the

theory that has ghosts.

If we repeat the alulation around the φ peak, under the assumption that the masses

of the matter �elds are negligible with respet to mφ, we �nd the width

Γφ =
η2sκ

2m3
φ

48πζ
=
mφ

6
αφη

2
s ,

where αφ ≡ m2
φ/M

2
Pl

. We expet that Γφ is muh smaller than |Γχ|, beause it is only

sensitive to the salar nonminimal oupling ηs. No sign of miroausality violation is

present here, sine Γφ > 0.

We do not have ompelling arguments to predit the values of the masses mχ and

mφ, but it is oneivable that they are smaller than the Plank mass. Taking mχ ∼ mφ ∼
1011GeV, for de�niteness, and assuming the matter ontent of the standard model (Ns = 4,

Nf = 45/2, Nv = 12), we obtain αχ ∼ 7·10−17
and Γχ ∼ −16keV. Formχ ∼ mφ ∼ 1012GeV

we would have Γχ ∼ −16MeV. The dumping fator e−Γt/2
appearing in formula (5.5) tells

us that the violation of ausality ours within time intervals of the order of 4 · 10−20
s for

mχ ∼ 1011GeV, in the enter-of-mass frame, and 4 · 10−23
s for mχ ∼ 1012GeV. However,

the osillating fator e−imt strongly suppresses those e�ets up to energies of the order of

the fakeon mass. Other massive partiles with masses smaller than mχ ould be present

in nature, besides those ontained in the standard model, and make C and |Γχ| larger by
one or two orders of magnitude.

More e�ort is neessary to work out physial quantities away from the peaks, suh

as the ross setion σ as a funtion of the enter-of-mass energy

√
s. So far we have set
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the osmologial onstant ΛC to zero, but it is not di�ult to extend the alulations to

nonvanishing ΛC .

6 Comparison with the Stelle theory

In this setion we ompare the results found in the GFF and GSF theories with those that

an be obtained in the Stelle GSGh theory, to emphasize the di�erenes and the e�ets of

the ghosts. The GSGh quantization presription is just made of point (a) of setion 3, so

φ is a physial salar and χµν is a spin-2 ghost.

The absorptive part of the self-energy of the graviton multiplet inludes extra bubble

diagrams, whose bubbles are made of: (i) two χ legs, (ii) one χ leg and one φ leg, (iii)

one χ leg and one h leg. In total,

ΓGSGh
abs

= ΓGSF
abs

+ Γχh
abs

+ Γχφ
abs

+ Γχχ
abs

.

For the alulations, we use the ation (2.17). The orretions an be evaluated straight-

forwardly, but their expressions are quite lengthy, so we ontent ourselves with the analysis

of the results around the χ peak. There, Γχχ
abs

does not ontribute, beause its threshold

is s = 4m2
χ. Similarly, Γχφ

abs

has a threshold at s = (mχ + mφ)
2
. Sine the φ mass is

presumably not very di�erent from the χ mass, Γχφ
abs

is also negligible at the χ peak. In

the end, only Γχh
abs

is important. We �nd formula (5.1) with the modi�ed entral harge

C(s) = Cm + Cφ(s) + C
Gh

(s), C
Gh

(s) = −(tχ − 1)θ(tχ − 1), (6.1)

where tχ = s/m2
χ. The ruial fator (tχ− 1) in C

Gh

(s), brought by formula (A.1), implies

that the spin-2 ghost ontribution C
Gh

(s) to the entral harge is subleading around the

peak. The value of Γχ is still the one of formula (5.4), to the lowest order.

For su�iently small time intervals, where the ghost is still �alive�, we do not have to

resum the powers of the width Γχ. Indeed, the Stelle theory admits the proess of Fig.

2, whih does not obey the optial theorem. The right-hand side is positive, while the

left-hand side is negative, sine

2Im [i〈χµν(p)χρσ(−p)〉0] =
2κ2

ζ
Im

[

1

s−m2
χ + iǫ

]

Π
(2)

µνρσ(p, s)

=−2πκ2

ζ
δ(s−m2

χ)Π
(2)

µνρσ(p, s) 6 0.
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2Im dΠ

2

Figure 2: Breakdown of the optial theorem in the GSGh theory

The GFF and GSF theories, on the other hand, just give 0 = 0 in this ase, sine

the left-hand side has no imaginary part due to the fakeon presription (3.2), while the

right-hand side vanishes sine the fakeon is projeted away from the physial spetrum.

This is another way of saying that the projetion in question is onsistent.

In some sense, the fakeons an be viewed as �auxiliary �elds with nontrivial kineti

terms�. They irulate inside the Feynman diagrams, but annot enter or exit the diagrams.

They mediate interations, but annot be observed diretly. We ould even integrate them

out (following the rules of the nonanalyti Wik rotation or the average ontinuation), but

the resulting theory would be nonloal and more di�ult to handle.

7 Conlusions

We have studied various aspets of the theory of quantum gravity proposed in ref. [1℄, after

onverting its higher-derivative ation into an ation with two-derivative kineti terms. The

graviton multiplet is made of the �utuation hµν of the metri tensor around �at spae,

a massive salar φ and a massive spin-2 �eld χµν . The �eld χµν is quantized as a fakeon,

beause its kineti ation has the wrong overall sign. The salar φ an be quantized either

as a fakeon or a physial partile, whih leads to two options, the GFF and GSF theories.

At high energies the nature of {hµν , φ, χµν} as a multiplet emerges learly, the main duty

of χµν and φ being to �esort� the graviton hµν and wipe away most ultraviolet divergenes

it reates, to ensure renormalizability. At low energies, both χµν and φ deouple and the

ordinary low energy, nonrenormalizable theory is retrieved.

The ation of quantum gravity is stritly renormalizable, whih makes it essentially

unique (when matter is swithed o�), beause it ontains a �nite number of parameters
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and an be quantized in just two physially onsistent ways. As in the standard model,

the matter setor annot be predited from �rst priniples, sine it is always possible to

add heavy partiles and/or fakeons.

We have alulated the absorptive part of the self-energy of the graviton multiplet and

used it to ompute, among other things, the width Γχ of the fakeon χµν and the width

Γφ of the salar φ. The former is negative and proportional to the entral harge C.

The graviton and the fakeons do not ontribute to C, while the other physial �elds give

positive ontributions. Perturbative unitarity holds, i.e. the optial theorem is satis�ed.

However, the negative sign of Γχ shows that the theory predits the violation of ausality

for enter-of-mass energies larger than the fakeon mass mχ, at distanes or time intervals

smaller than 1/|Γχ|. There, the notions of past, present and future lose meaning. Said

in di�erent words, the theory implies that ausality is not a priniple of nature, but an

approximation that is pratially useful when two events are separated by a time interval

longer than 1/|Γχ|. Sine at present quantum gravity is the only interation of nature that

predits the violation of miroausality, the experimental detetion of suh e�ets ould

be the �rst sign that gravity is indeed quantized.

The alulations of this paper an be extended to inlude the vertex orretions and the

box ontributions, along the lines of analogous omputations done in the standard model

[19℄, to ahieve gauge independene away from the peaks and obtain the omplete ross

setion σ(
√
s).
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Appendies

A Calulations of absorptive parts

In this appendix we reall how to alulate the absorptive parts of the one-loop diagrams.

Consider the integral

I(p,m1, m2) =

∫

dDk

(2π)D
S(k,m1)S(p+ k,m2), S(k,m) =

1

k2 −m2 + iǫ
.
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Using the Feynman parameters and renormalizing the divergene away (beause it does

not ontribute to the absorptive part), we �nd

I(p,m1, m2) = − i

16π2

∫ 1

0

dx ln
[

m2
1x+m2

2(1− x)− p2x(1− x)− iǫ
]

.

The absorptive part is

I
abs

(p,m1, m2) =− 1

16π

∫ 1

0

dxθ(p2x(1− x)−m2
1x−m2

2(1− x))

=− 1

16π
θ
(

p2 − (m1 +m2)
2
)

√

1− (m1 +m2)2

p2

√

1− (m1 −m2)2

p2
. (A.1)

Similarly, we an treat the integrals

Iµ1···µn(p,m1, m2) =

∫

dDk

(2π)D
kµ1 · · · kµnS(k,m1)S(p+ k,m2) = anp

µ1 · · ·pµn

+an−2p
{µ1 · · · pµn−2ηµn−1µn} + · · ·

(the indies between the urly brakets being ompletely symmetrized) by expanding the

results as sums of polynomials built with pµ and ηµν , multiplied by onstants ai. The

onstants are alulated by ontrating with pµ and ηµν and making the replaements

k2→m2
1, (p+ k)2 → m2

2,

p · k =
1

2

[

(p+ k)2 − p2 − k2
]

→ 1

2

(

m2
2 −m2

1 − p2
)

in the numerators, whih follow from the fat that the tadpoles have no absorptive parts.

We get, for example,

Iµ
abs

(p,m1, m2)=−p
µ

2
(1 + r−) Iabs(p,m1, m2),

Iµν
abs

(p,m1, m2)=

[

pµpν

3

(

1 + r− − r2 + r2−
)

− ηµνp2

12

(

1− 2r+ + r2−
)

]

I
abs

(p,m1, m2),

where ri = m2
i /p

2
and r± = r1 ± r2. We an proeed similarly to work out the expressions

of all the Iµ1···µn
abs

(p,m1, m2). For the alulations of this paper, we just need n from 0 to 4.

B Contributions of Proa and Pauli-Fierz �elds

Here we ollet a few results about the ontributions of Proa and Pauli-Fierz �elds to the

absorptive part (4.12) of the graviton-multiplet self-energy. The nonminimal ouplings of
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the Proa ation (4.14) give ontributions

P nm

P

(r)=
N
P

60

η
P

r2
[

η
P

(2 + 6r + 7r2)− 2r(1 + 13r + r2)
]

,

Qnm

P

(r)=
N
P

144r2
[

6η′
P

(6η′
P

+ r)(4− 4r + 3r2)

+η
P

(12η′
P

+ r)(8− 10r + 5r2) + η2
P

(16− 24r + 11r2)
]

.

The only way to have a smooth ultraviolet limit is by setting η
P

= η′
P

= 0.

In the ase of the Pauli-Fierz ation (4.15), we report the �rst terms of the high-energy

expansion, given by

P
PF

(r)=
8N

PF

135r4

[

(3− 2η1 + η2)
2 +

r

4
(45− 6η1 + 5η2)(3− 2η1 + η2) +

9

4
r

]

+O(r−2),

Q
PF

(r)=
4N

PF

81r4
(3− η1 + 2η2 + 6η4)

2 +O(r−3).

We see that if we hoose the oe�ients ηi of the nonminimal ouplings so that the O(r−4)

terms vanish, the O(r−3) annot vanish at the same time. Therefore, it is impossible to

have a smooth ultraviolet limit, in ontrast with what happens in the Proa theory.
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