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Abstra
t

We investigate the properties of fakeons in quantum gravity at one loop. The theory

is des
ribed by a graviton multiplet, whi
h 
ontains the �u
tuation hµν of the metri
, a

massive s
alar φ and the spin-2 fakeon χµν . The �elds φ and χµν are introdu
ed expli
itly

at the level of the Lagrangian by means of standard pro
edures. We 
onsider two options,

where φ is quantized as a physi
al parti
le or a fakeon, and 
ompute the absorptive part

of the self-energy of the graviton multiplet. The width of χµν , whi
h is negative, shows

that the theory predi
ts the violation of 
ausality at energies larger than the fakeon mass.

We address this issue and 
ompare the results with those of the Stelle theory, where χµν

is a ghost instead of a fakeon.
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1 Introdu
tion

A theory of quantum gravity was formulated in ref. [1℄ by means of a new pres
ription to

treat the poles of the free propagators and turn the ghosts due to the higher derivatives

into fakeons [2℄. The 
lassi
al Lagrangian 
ontains the Hilbert term, the quadrati
 terms

√−gRµνR
µν

and

√−gR2
and the 
osmologi
al term. The fakeons are �fake parti
les�,

whi
h 
ontribute to the 
orrelation fun
tions, but disappear from the physi
al spe
trum.

The idea takes inspiration from the Lee-Wi
k models [3, 4℄, in parti
ular their reformu-

lation as nonanalyti
ally Wi
k rotated Eu
lidean theories [5, 6℄. An essentially unique

3

stri
tly renormalizable theory of quantum gravity emerges from this approa
h, whi
h is

perturbatively unitary up to the e�e
ts due to the 
osmologi
al 
onstant

4

.

In this paper, we investigate the properties of the fakeons in quantum gravity at one

loop. To begin with, we introdu
e auxiliary �elds and make 
hanges of �eld variables, to

�nalize a number of arguments that are available in the literature [8℄ and 
onvert the higher-

derivative a
tion of [1℄ into an equivalent a
tion that does not 
ontain higher derivatives

and is organized so as to fully diagonalize the kineti
 part in the nonlinear 
ase. The new

setting is 
onvenient to 
al
ulate the quantities we are interested in here. It is not equally


onvenient to study the renormalization of the theory (whi
h is not a�e
ted by the fakeon

pres
ription and has been already studied in a variety of approa
hes [9, 10, 11, 12, 13, 14℄).

Quantum gravity is des
ribed by a graviton multiplet, made of the �u
tuation hµν

of the metri
 tensor around �at spa
e, a massive s
alar φ and a massive spin-2 �eld

χµν . To have perturbative unitarity (up to the e�e
ts of the 
osmologi
al 
onstant) the

�eld χµν must be quantized as a fakeon, be
ause its quadrati
 a
tion 
arries the wrong

overall sign. Instead, the quadrati
 a
tion of φ 
arries the right overall sign, so φ 
an be

quantized either as a fakeon or a physi
al parti
le. This leads to two possibilities, whi
h

we 
all graviton/fakeon/fakeon (GFF) theory and graviton/s
alar/fakeon (GSF) theory,

respe
tively.

We study the absorptive part of the self-energy of the graviton multiplet in both 
ases.

A number of te
hniques to 
al
ulate this quantity and, more generally, deal with the

3

This means that the a
tion has a �nite number of independent parameters and admits a �nite number

(two, in our 
ase) of physi
ally 
onsistent quantization pres
riptions.

4

A 
onsistent theory of s
attering with the properties we need may not exist at nonvanishing 
osmolog-

i
al 
onstant. On this topi
, see the dis
ussions of refs. [7℄. The problem 
on
erns every realisti
 theory of

quantum gravity, in
luding the low-energy nonrenormalizable one, whi
h 
an be used as an e�e
tive �eld

theory.
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fakeons, have been developed in ref. [14℄. The approa
h we follow here further simpli�es

the 
omputations and allows us to extend the results in several dire
tions. In parti
ular,

we obtain the width Γχ of the spin-2 fakeon χµν , whi
h is related to the 
entral 
harge C of

the matter �elds, and the width Γφ of φ. The value of Γχ is negative, whi
h means that χµν

is responsible for the violation of mi
ro
ausality. At 
enter-of-mass energies 
lose to the

fakeon massmχ, and for time intervals of the order of 1/|Γχ| (referred to the 
enter-of-mass

frame) the 
ommon notions of past, present and future, as well as 
ause and e�e
t, lose

meaning. Two events 
an be related in a 
ausal way only if they are separated by a time

interval that is mu
h longer than 1/|Γχ|.
The breakdown of 
ausality at very small distan
es is expe
ted, be
ause it is also a

property of the Lee-Wi
k models, where it has been studied in detail [3, 4, 15℄. Although

the quantum gravity theory of [1℄ is not of the Lee-Wi
k type, the fakeon quantization

pres
ription introdu
es an in�nitesimal width that turns the theory into a Lee-Wi
k model

in an intermediate step. From the physi
al point of view, we do not have arguments to


laim that nature must be 
ausal up to in�nite energies, so we regard the violation of

mi
ro
ausality as a key predi
tion of quantum gravity.

We also 
ompare the results of the GFF and GSF theories with those of the Stelle

theory [16℄, re
ently 
onsidered by Salvio and Strumia from the phenomenologi
al point

of view in refs. [12, 13℄, whi
h is a graviton/s
alar/ghost (GSGh) theory. The 
lassi
al

a
tion of the GSGh theory is the same, but its quantization is di�erent in that the Feynman

pres
ription is used for all the poles of the free propagators, in
luding the one of χµν . Then

χµν is a ghost, instead of a fakeon, and does 
ontribute to the absorptive parts, as well as

the 
entral 
harge C. The quantities we 
al
ulate do not exhibit important di�eren
es up

to energies equal to the fakeon mass mχ. For example, the width Γχ is the same in the

GSF and GSGh theories. The di�eren
es start to be
ome important above mχ, where the

opti
al theorem is violated in the GSGh theory.

The 
omputations are performed at vanishing 
osmologi
al 
onstant ΛC , sin
e the 
or-

re
tions due to ΛC are too small for the quantities we study. The results of ref. [14℄ are

re
overed as a parti
ular 
ase. We in
lude results for Pro
a ve
tors and Pauli-Fierz spin-2

�elds.

The paper is organized as follows. In se
tion 2 we isolate the fakeons by working out an

equivalent a
tion of quantum gravity that does not 
ontain higher derivatives. In se
tion 3

we outline the pres
riptions to quantize the theory. In se
tion 4 we 
al
ulate the absorptive

part of the self-energy of the graviton multiplet. In se
tion 5 we 
al
ulate the width Γχ of

3
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χµν and dis
uss the relation between Γχ and the 
entral 
harge C, as well as the violations

of mi
ro
ausality. We also give the width of φ. In se
tion 6 we extend the 
al
ulations

to the Stelle theory and 
ompare the results with those of the GFF and GSF theories.

Se
tion 7 
ontains the 
on
lusions. The appendi
es A and B 
ontain details about some

tools used for the 
al
ulations and other results about the absorptive parts.

2 Isolating the fakeons in quantum gravity

The theory of quantum gravity (
oupled to matter) proposed in ref. [1℄ has a
tion

S
QG

= − 1

2κ2

∫ √
−g
[

2ΛC + ζR + α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

+ Sm(g,Φ), (2.1)

where α, ξ, ζ , ΛC and κ are real 
onstants, with α > 0, ξ > 0 and ζ > 0, and Sm is the

a
tion of the matter se
tor. For example, we 
an take Sm as the 
ovariantized a
tion of the

standard model, or one of its popular extensions, equipped with the nonminimal 
ouplings

that are 
ompatible with the renormalizability.

In this se
tion we isolate the fakeons by means of auxiliary �elds and �eld rede�nitions.

We obtain an equivalent a
tion that does not 
ontain higher-derivatives and is useful for

the 
al
ulations of the next se
tions. In parti
ular, we fully diagonalize the kineti
 part in

the nonlinear 
ase. In the next se
tion we explain how to quantize the theory in the new

setting.

To our knowledge, the new a
tion, whi
h is given by formula (2.10), is not available

in the literature in a 
omplete form. Partial derivations 
an nevertheless be found. For

example, the authors of [8℄ work at ΛC = 0, with no matter se
tor Sm and stop short of

�nalizing the a
tion to 
on
entrate on the analysis of the quadrati
 part around �at spa
e,

sin
e their main interest is to highlight the degrees of freedom.

We assume that Sm is at least quadrati
 in the matter �elds Φ. For simpli
ity, we work

with bosoni
 �elds. The arguments 
an be easily generalized to fermioni
 �elds by using

the tetrad formalism.

De�ning

Λ̂C = ΛC

(

1 +
4

3

ξΛC
ζ2

)

, ζ̂ = ζ
Λ̂C
ΛC

, R̂µν = Rµν +
ΛC
ζ
gµν , R̂ = R +

4ΛC
ζ
,

and adding the integral of a total derivative, the a
tion (2.1) 
an be written in the more

4
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onvenient form

S
QG

= Ŝ
HE

(g) + S
W

(g) +
ξ

12κ2

∫ √−gR̂2 + Sm(g,Φ),

where

Ŝ
HE

(g) = − 1

2κ2

∫ √−g
(

2Λ̂C + ζ̂R
)

(2.2)

is the Hilbert-Einstein a
tion and

S
W

(g) = − α

4κ2

∫ √
−gCµνρσCµνρσ

is the Weyl a
tion, Cµνρσ denoting the Weyl tensor.

2.1 Step 1: massive s
alar

We introdu
e an auxiliary �eld φ̂ and write S
QG

as

S
QG

= Ŝ
HE

(g) + S
W

(g) +
ξ

12κ2

∫ √−g(2R̂− φ̂)φ̂+ Sm(g,Φ).

Then we perform the Weyl transformation

gµν → gµνe
κφ, (2.3)

where

φ = −1

κ
ln

(

1− ξφ̂

3ζ̂

)

. (2.4)

So doing, we obtain the equivalent a
tion

S
QG

= Ŝ
HE

(g) + S
W

(g) + Sφ(g, φ) + Sm(ge
κφ,Φ), (2.5)

where

Sφ(g, φ) =
3ζ̂

4

∫ √−g
[

DµφD
µφ−

m2
φ

κ2
(

1− eκφ
)2
]

, (2.6)

the squared mass of φ being

m2
φ =

ζ

ξ
. (2.7)

5
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2.2 Step 2: spin-2 fakeon

Now we take 
are of the spin-2 fakeon. We have

Ŝ
HE

(g) + S
W

(g) = S̃
HE

(g)− α

2κ2

∫ √
−g
(

R̃µνR̃
µν − 1

3
R̃2

)

,

up to the integral of a total derivative, where

S̃
HE

(g)=− 1

2κ2

∫ √
−g
(

2Λ̃C + ζ̃R
)

, R̃µν = R̂µν ,

Λ̃C =Λ̂C

(

1 +
2

3

αΛ̂C

ζ̂2

)

= ΛC

(

1 +
2

3

(α + 2ξ)ΛC
ζ2

)

, ζ̃ = ζ̂
Λ̃C

Λ̂C
= ζ

Λ̃C
ΛC

.

We introdu
e auxiliary �elds χµν by writing the a
tion S
QG

as

S
QG

= S̃
HE

(g)− ζ̃

2κ2

∫ √
−g
[

2χµν
(

R̃µν −
1

2
gµνR̃

)

− ζ̃

α
(χµνχ

µν − χ2)

]

+Sφ(g, φ) + Sm(ge
κφ,Φ), (2.8)

where χ = χµνg
µν
. At this point, we perform the metri
-tensor rede�nition

gµν → gµν + 2χµν + χµνχ− 2χµρχ
ρ
ν ≡ gµν + ψµν . (2.9)

The linear 
ontribution to ψµν is �xed so that the transformed a
tion 
ontains no terms

that are linear in χµν . The quadrati
 
orre
tions are determined so that the mass terms

of the χµν a
tion get the right Pauli-Fierz form and the limit ΛC → 0 remains regular.

Applying the rede�nition (2.9) to (2.8), we obtain the equivalent a
tion of quantum

gravity we are going to work with in this paper, whi
h reads

S
QG

(g, φ, χ,Φ) = S̃
HE

(g) + Sχ(g, χ) + Sφ(g + ψ, φ) + Sm(ge
κφ + ψeκφ,Φ), (2.10)

where

Sχ(g, χ) = S̃
HE

(g + ψ)− S̃
HE

(g) +

∫

[

−2χµν
δS̃

HE

(g)

δgµν
+

ζ̃2

2ακ2
√−g(χµνχµν − χ2)

]

g→g+ψ

(2.11)

is the a
tion of the fakeon χµν . We �nd

Sχ(g, χ) = − ζ̃

κ2
S
PF

(g, χ,m2
χ)−

ζ̃

2κ2

∫ √
−gRµν(χχµν − 2χµρχ

ρ
ν) + S(>2)

χ (g, χ), (2.12)

6
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where

S
PF

(g, χ,m2
χ) =

1

2

∫ √−g [DρχµνD
ρχµν −DρχD

ρχ+ 2Dµχ
µνDνχ− 2Dµχ

ρνDρχ
µ
ν

−m2
χ(χµνχ

µν − χ2)
]

(2.13)

is the 
ovariantized Pauli-Fierz a
tion and S
(>2)
χ (g, χ) are 
orre
tions that are at least 
ubi


in χ. The squared mass of the spin-2 fakeon is

m2
χ =

ζ̃

α
. (2.14)

The transformations (2.3), (2.4) and (2.9) are ultralo
al (i.e. they depend on the �elds,

but not their derivatives), so the Ja
obians are identi
ally one in dimensional regularization.

This means that we 
an use the new a
tion S
QG

(g, φ, χ,Φ) of formula (2.10) as the a
tion

of quantum gravity at the level of the fun
tional integral.

So far, we have kept the 
osmologi
al 
onstant di�erent from zero, but in many sit-

uations it may be negle
ted. When that is the 
ase, it is 
onvenient to repla
e the �eld

rede�nition (2.9) with

gµν → gµν + 2χµν , (2.15)

so that, instead of (2.10), we have

S
QG

(g, φ, χ,Φ) = S
H

(g) + S ′
χ(g, χ) + Sφ(g + 2χ, φ) + Sm(ge

κφ + 2χeκφ,Φ), (2.16)

where

S
H

(g) = − ζ

2κ2

∫ √
−gR,

is the Hilbert a
tion and S ′
χ(g, χ) is the new χ a
tion, still given by (2.11), but with ΛC = 0

and ψµν repla
ed by 2χµν . We �nd

S ′
χ(g, χ)=−2

∫

δ2S
H

δgµν(x)δgρσ(y)
χµν(x)χρσ(y)dxdy +

ζ2

2ακ2

∫ √
−g(χµνχµν − χ2)

−8

3

∫

δ3S
H

δgµν(x)δgρσ(y)δgαβ(z)
χµν(x)χρσ(y)χαβ(z)dxdydz (2.17)

+
ζ2

2ακ2

∫ √−g(5χχµνχµν − 4χµνχ
µρχνρ − χ3) + S(>3)

χ (g, χ).

where S
(>3)
χ (g, χ) are 
orre
tions that are at least quarti
 in χµν , whi
h are not needed in

the 
al
ulations of this paper. Note that the nonminimal 
ouplings of the quadrati
 part

− ζ

κ2
S
PF

(g, χ,m2
χ)−

ζ

4κ2

∫ √
−g
(

4χχµνR
µν − 8χµνχ

νρRµ
ρ + 2Rχµνχ

µν − Rχ2
)

7
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of S ′
χ(g, χ) di�er from those of (2.12), and the χ squared mass is now

m2
χ =

ζ

α
. (2.18)

Formulas (2.11) and (2.17) show that the verti
es of the χ a
tions are related to the verti
es

of the Hilbert-Einstein a
tion, apart from 
orre
tions proportional to m2
χ.

The new a
tions (2.10) and (2.16) are 
onvenient to 
al
ulate the quantities we are

interested in, but make the renormalizability of the theory mu
h less evident than it was

in the original �eld variables (2.1). On general grounds, the only e�e
t of a perturbative


hange of �eld variables on the divergent se
tor of the theory is to require extra �eld

renormalizations, whi
h are generi
ally nonpolynomial, yet perturbatively lo
al. A pre
ise

mat
h between the divergent parts, 
al
ulated before and after the �eld rede�nition, 
an be

worked out by relating them to the renormalizations of the 
omposite operators involved

in the transformation [17℄.

3 Quantization

Expanding the metri
 tensor around �at spa
e as gµν = ηµν + 2κhµν , where ηµν = diag(1,

−1, −1, −1), the graviton se
tor is des
ribed by the graviton multiplet

GA = {hµν , φ, χρσ}, (3.1)

made of the �u
tuation hµν of the metri
, the massive s
alar φ and the massive spin-2 �eld

χµν .

Assuming that |ΛC| is su�
iently small, so that both ζ̃ and ζ̂ are positive, the a
tion

Sχ of formula (2.12) 
arries the wrong overall sign. This means that, to have perturbative

unitarity (up to 
orre
tions due to the 
osmologi
al 
onstant), χµν must be quantized as

a fakeon, following the pres
ription of ref. [1℄. Instead, the quadrati
 a
tion Sφ of eq.

(2.6) 
arries the right overall sign, so φ 
an be quantized either as a fakeon or a physi
al

parti
le. This leads to two possibilities, whi
h we 
all graviton/fakeon/fakeon (GFF) theory

and graviton/s
alar/fakeon (GSF) theory, respe
tively. Being perturbatively unitary (up to

the e�e
ts of the 
osmologi
al 
onstant) and renormalizable, they are both good 
andidates

to des
ribe quantum gravity. We 
ould also view φ and χµν as part of the matter se
tor.

We de�ne the GFF and GSF pres
riptions by introdu
ing two in�nitesimal widths ǫ

and E in the propagators as follows:

8
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(a) repla
e p2 with p2 + iǫ everywhere in the denominators of the propagators, where

p denotes the momentum;

(b) turn the χ poles into fakeons by means of the repla
ement

1

p2 −m2
χ + iǫ

→
p2 −m2

χ

(p2 −m2
χ + iǫ)2 + E4

; (3.2)

(c) [only in the GFF 
ase℄ turn the φ poles into fakeons by means of the repla
ement

1

p2 −m2
φ + iǫ

→
p2 −m2

φ

(p2 −m2
φ + iǫ)2 + E4

. (3.3)

(d) 
al
ulate the diagrams in the Eu
lidean framework, nonanalyti
ally Wi
k rotate

them as explained in refs. [5, 6, 2℄, then make ǫ tend to zero �rst and E tend to zero last.

Note that be
ause of the Wi
k rotation involved in point (d) the distributions appearing

on the right-hand sides of eqs. (3.2) and (3.3) do not give the prin
ipal value (whi
h would

require to integrate on real energies).

An equivalent, and often more e�
ient, way to formulate the graviton/fakeon pres
rip-

tion is to 
ombine point (a) with the requirement that, in evaluating the loop integrals,

(a′) every threshold involving a fakeon must be over
ome by means of the average 
on-

tinuation, whi
h is the arithmeti
 average of the two analyti
 
ontinuations that 
ir
umvent

the threshold.

The spa
e of the 
omplexi�ed external momenta is divided into disjoint regions of

analyti
ity. All of them 
an be unambiguously rea
hed from the Eu
lidean region by

means of the average 
ontinuation.

The free propagator of the metri
 �u
tuation hµν reads

〈hµν(p)hρσ(−p)〉0 =
i(ηµρηνσ + ηµσηνρ − ηµνηρσ)

2ζ̃(p2 −m2
h + iǫ)

, (3.4)

where m2
h = −2ΛC/ζ , in the de Donder gauge. We re
all that the 
utting equations [18℄

(whi
h are the diagrammati
 equations that lead to the opti
al theorem) are formally

satis�ed even when 
osmologi
al 
onstant is nonvanishing, as long as it is negative [1℄,

although a 
onsistent theory of s
attering likely does not exist in that 
ase.

The free propagator of χµν reads

〈χµν(p)χρσ(−p)〉0 = −iκ
2

ζ̃

p2 −m2
χ

(p2 −m2
χ + iǫ)2 + E4

Π
(2)

µνρσ(p,m
2
χ), (3.5)

9
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where

Π
(2)

µνρσ(p,m
2
χ) =

1

2

(

πµρπνσ + πµσπνρ −
2

3
πµνπρσ

)

, πµν = ηµν −
pµpν
m2
χ

, (3.6)

are spin-2 and spin-1 on-shell proje
tors, respe
tively.

The free φ propagator reads

〈φ(p)φ(−p)〉0GFF =
2i

3ζ̂

p2 −m2
φ

(p2 −m2
φ + iǫ)2 + E4

, 〈φ(p)φ(−p)〉0GSF =
2i

3ζ̂

1

p2 −m2
φ + iǫ

,

in the GFF and GSF 
ases, respe
tively.

The physi
al �elds are the physi
al 
omponents of hµν (obtained by proje
ting away

the unphysi
al 
omponents and the Faddeev-Popov ghosts in the usual ways), the massive

s
alar φ (in the GSF theory only) and the matter �elds Φ.

The Fo
k spa
e V of the physi
al states is the Hilbert spa
e built as follows. Consider

the states |n〉 obtained by a
ting on the va
uum |0〉 by means of the 
reation operators of

the physi
al �elds. Then, build the metri
 spa
e F made of the �nite linear 
ombinations

of the states |n〉. Finally, 
omplete F to the Hilbert spa
e V by means of the Cau
hy

pro
edure.

The spa
e V is a proper subspa
e of the total Fo
k spa
e W , whi
h also 
ontains the

states built with the 
reation operators of the fakeons (a†χ in the GSF theory and a†χ, a
†
φ

in the GFF theory). The free Hamiltonian H
free

is bounded from below in V , although

it is not bounded from below in W (due to the negative 
ontributions brought by χµν).

Perturbative unitarity is the statement that the proje
tion from W onto V is 
onsistent,

i.e. the states that are proje
ted away are not generated ba
k in the 
utting equations and

the opti
al theorem. More details are given in se
tions 5 and 6.

Before turning to the 
omputations, let us re
all that the standard quantization pre-

s
ription [16℄ is just made of point (a) for every pole. Then φ is a physi
al parti
le, but

χµν is a ghost, due to the overall minus sign that multiplies the right-hand side of (3.5).

In that 
ase the Fo
k spa
e is the whole W .

Another interesting possibility has been pointed out by Avramidi and Barvinsky in ref.

[10℄, where it was noted that for ΛC > 0, ξ < 0 the a
tion (2.1) is positive de�nite in the

Eu
lidean framework and the theory is asymptoti
ally free (when matter is swit
hed o�).

However, ξ < 0 makes the squared mass of φ negative. The fakeon pres
ription of ref. [1℄

works for poles lo
ated on the real axis, irrespe
tively of the sign of the residue at the pole.

Ta
hyons do not fall in that 
lass, so we 
annot guarantee in this moment that a proper

generalization of the pres
ription (3.3) exists for ξ < 0.

10
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2Im dΠ

2

Figure 1: Pro
esses involving the absorptive part of the graviton-multiplet self-energy

4 Absorptive part of the self-energy

The absorptive part of the self-energy of the graviton multiplet is important be
ause it

allows us to extra
t physi
ally observable quantities, as explained in se
tion 5. In Fig. 1

we show a basi
 pro
ess where the absorptive part plays a key role. On the right-hand

side, we have the squared modulus of the transition amplitude between some initial states,

denoted by the 
ontinuous lines, and some �nal states, denoted by the dashed lines. The

wiggled line denotes the graviton multiplet. Integrating on the phase spa
e Π of the �nal

states, we obtain twi
e the imaginary part of the amplitude shown on the left-hand side.

In this se
tion, we ignore the initial states, whi
h leads us to 
onsider the absorptive parts

MAB ≡ 〈GA(p)GB(−p)〉1 loop
abs

(4.1)

of the matrix 〈GAGB〉 of the graviton-multiplet two-point fun
tions at one loop. For sim-

pli
ity, we set the 
osmologi
al 
onstant to zero, but the pro
edure 
an be easily generalized

to ΛC 6= 0. The gauge-dependent 
ontributions are 
al
ulated in the de Donder gauge.

We 
an throw away the diagrams where the fakeons propagate inside the loop. Indeed,

a

ording to the pres
ription of the previous se
tion, in those 
ases we are lead to 
al
ulate

the average 
ontinuation above the thresholds, whi
h has no absorptive part. Then we 
an

drop S ′
χ(g, χ) from the a
tion (2.16) and work with the simpli�ed a
tion

S ′
QG

(g, φ, χ,Φ) = S
H

(g) + Sφ(g + 2χ, φ) + Sm(ge
κφ + 2χeκφ,Φ). (4.2)

The tadpole diagrams do not 
ontribute to the absorptive parts, so we 
an fo
us on the


ubi
 verti
es. Expanding (4.2) to the 
ubi
 order in χµν-φ-Φ, we obtain a further simpli�ed

11
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a
tion for the GSF theory, whi
h is

SGSF
QG

(g, φ, χ,Φ)=S
H

(g) + Sφ(g, φ) + Sm(g,Φ)

−1

2

∫ √
−g
[

(2χµν + κφgµν)T
µν
m (g,Φ) + 2χµνT

µν
φ (g, φ)

]

, (4.3)

where

T µνm (g,Φ) = − 2√−g
δSm(g,Φ)

δgµν
, T µνφ (g, φ) = − 2√−g

δSφ(g, φ)

δgµν
, (4.4)

are the energy-momentum tensor of the matter �elds and the one of φ, respe
tively.

In the GFF 
ase, the �eld φ 
an also be ignored inside the loop, whi
h means that we


an work with

SGFF
QG

(g, φ, χ,Φ) = S
H

(g) + Sm(g,Φ)−
1

2

∫ √−g(2χµν + gµνκφ)T
µν
m (g,Φ). (4.5)

We 
olle
t the results about MAB into the one-loop absorptive part Γ
abs

of the Γ

fun
tional. We 
an de
ompose Γ
abs

as

ΓGFF
abs

=Γhh
abs

+ Γm
abs

, (4.6)

ΓGSF
abs

=Γhh
abs

+ Γφh
abs

+ Γφφ
abs

+ Γm
abs

, (4.7)

in the GFF and GSF 
ases, respe
tively, where Γhh
abs

in
ludes the 
ontributions of the

h bubble and the bubble of Faddeev-Popov ghosts, while in the other 
ases the �elds


ir
ulating in the loop are spe
i�ed by the supers
ripts.

The 
ontributions Γhh
abs

are gauge dependent and 
an be 
olle
ted into �eld rede�nitions,

up to 
ubi
 
orre
tions (whi
h do not 
ontribute to MAB). Their expressions 
an be read

from formulas (4.8)-(4.9) of ref. [14℄ in the limit α → 0, ξ → 0. The result is

Γhh
abs

= −
∫

δS
H

(g)

δgµν
∆gµν , ∆gµν =

iκ3

480πζ
θ(−�) (61�hµν − 42ηµν�h + 42ηµν∂

ρ∂σhρσ) .

(4.8)

Formula (4.8) 
an be rewritten as

Γhh
abs

= −
∫

δS
QG

δgµν
∆gµν , (4.9)

up to 
ubi
 
orre
tions.

The 
ontributions Γφh
abs

are also gauge dependent away from the φ peak. They 
an be


al
ulated with the te
hniques explained in appendix A. We �nd

Γφh
abs

= −
3iκ2m2

φ

32π

∫ √
−gφθ(−�−m2

φ)
(

�+m2
φ

) 1

�

(

2�+m2
φ

)

φ. (4.10)

12
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The other 
ontributions to Γ
abs

are gauge independent. We �nd

Γφφ
abs

=
i

16π

1

120

∫ √
−gRµνθ(r)θ(1− r)

√
1− r

[

(1− r)2Rµν +
1

8
(4 + 12r − r2)gµνR

]
∣

∣

∣

∣

g→g+2χ

+
iκ

512π

∫ √
−gφθ(r)θ(1− r)

√
1− r

[

72m2
φκφ− r(2 + r)�R

]

∣

∣

∣

g→g+2χ
, (4.11)

where r = −4m2
φ/� and the substitutions g → g + 2χ are to be performed on the whole

integrands.

Now we turn to Γm
abs

. Equation (4.3) shows that these 
orre
tions are related to the

two-point fun
tion of the energy-momentum tensor T µνm of equation (4.4). We 
an write

Γm
abs

= Γϕ
abs

+ Γψ
abs

+ ΓV
abs

,

where Γϕ
abs

, Γψ
abs

and ΓV
abs

are the 
ontributions of s
alar �elds, fermions and gauge ve
tors,

respe
tively.

On general grounds, the matter �elds Φ of mass mΦ give an expression of the form

ΓΦ
abs

=
i

16π

∫ √−gRµνθ(rΦ)θ(1− rΦ)
√
1− rΦ

×
[

PΦ(rΦ)

(

Rµν − 1

3
gµνR

)

+QΦ(rΦ)g
µνR

]
∣

∣

∣

∣

g→(g+2χ)eκφ
, (4.12)

where rΦ = −4m2
Φ/� and PΦ(rΦ), QΦ(rΦ) are polynomials that 
an be 
al
ulated as

explained in appendix A.

In the 
ase of Ns s
alar �elds of mass mϕ, with a
tion

Ss =
1

2

Ns
∑

i=1

∫ √−g
[

gµν(∂µϕ
i)(∂νϕ

i)−m2
ϕϕ

i2 +
1

6
(1 + 2ηs)Rϕ

i2

]

,

we �nd that Γϕ
abs

is given by formula (4.12) with

Pϕ(r) =
Ns

120
(1− r)2, Qϕ(r) =

Ns

576
(4ηs − r)2. (4.13)

In the 
ase of Nf Dira
 fermions of mass mψ, Γ
ψ
abs

is given by the same formula with

Pψ(r) =
Nf

60

(

3− r − 2r2
)

, Qψ(r) =
Nf

144
r(1− r).

In the 
ase of Nv gauge ve
tors Vµ, Γ
V
abs

is given by

PV (0) =
Nv

10
, QV (0) = 0.

13
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For 
ompleteness, we also 
onsider Pro
a ve
tors Aµ and Pauli-Fierz symmetri
 tensors

Υµν . The Pro
a a
tion is

S
P

(g, A) =

∫ √
−g
[

−1

4
FµνF

µν +
m2

P

2
AµAµ +

η
P

2
RµνAµAν +

η′
P

2
RAµAµ

]

, (4.14)

where η
P

and η′
P

parametrize the nonminimal 
ouplings. The 
ontribution ΓP
abs

of N
P


opies of su
h ve
tors to the absorptive part is (4.12) with

P
P

(r) =
N
P

120
(13 + 14r + 3r2) + P nm

P

(r), Q
P

(r) =
N
P

576
(4− 4r + 3r2) +Qnm

P

(r),

where P nm

P

(r) and Qnm

P

(r) are 
orre
tions due to the nonminimal 
ouplings, 
olle
ted in

appendix B. A 
urious fa
t is that ΓP
abs

admits a regular ultraviolet limit (m
P

→ 0) at

η
P

= η′
P

= 0. However, the limit is not 
onformal invariant, sin
e Q
P

(0) 6= 0, due to

simpli�
ations between powers of m
P

and powers of 1/m
P

. The limit m
P

→ 0 does not

exist if η
P

or η′
P

are nonvanishing.

Equipped with arbitrary nonminimal 
ouplings, parametrized by 
onstants ηi, the 
o-

variantized a
tion of Pauli-Fierz �elds Υµν of mass mΥ reads

Ŝ
PF

(g,Υ, m2
Υ)=S

PF

(g,Υ, m2
Υ) +

1

2

∫ √
−g [η1RµνρσΥµρΥνσ +Rµν(η2ΥµρΥ

ρ
ν + η3ΥµνΥ)

+R
(

η4ΥµνΥ
µν + η5Υ

2
)]

, (4.15)

where Υ = Υµνg
µν
. The 
ontribution ΓPF

abs

of su
h �elds to the absorptive part is rather

involved. We report its high-energy behavior in appendix B, enough to prove that, di�er-

ently from the 
ase of the Pro
a �elds, no values of the nonminimal 
ouplings make the

ultraviolet limit of ΓPF
abs

well de�ned.

In ref. [14℄ the masses of the matter �elds Φ were set to zero and both φ and χµν

were impli
it and quantized as fakeons. This means that the results found there apply

to the GFF theory at rΦ = 0. Indeed, it is easy to 
he
k that formula (4.6) at rΦ = 0

agrees with the result of [14℄, apart from the expression of ∆gµν , whi
h is mu
h simpler

now. The reason behind the 
hange of ∆gµν is that the two 
al
ulations are done with

di�erent 
lassi
al Lagrangians, (2.1) versus (2.10) or (2.16), related by perturbative �eld

rede�nitions. Normally, a 
hange of �eld variables on the 
lassi
al a
tion a�e
ts the Γ

fun
tional by modifying the 
ontributions that vanish on the solutions of the �eld equations.

A general method to work out the 
hange of ∆gµν dire
tly does exist [17℄ and requires to

extend the 
al
ulations to the 
omposite �elds involved in the transformation.
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5 The fakeon width

The diagram of Fig. 1 does not allow us to extra
t physi
al quantities for generi
 values

of the 
enter-of-mass energy squared s = p2, be
ause the graviton gives gauge-dependent


ontributions, su
h as (4.8) and (4.10), whi
h 
an be turned into 
ubi
 
orre
tions by

means of �eld rede�nitions. If we want a physi
al quantity for generi
 s, the diagrams

of Fig. 1 must be a

ompanied by other diagrams that 
ontribute to the same order and

involve triangles (vertex 
orre
tions) and boxes. Computations of this type have been done

extensively in the standard model [19℄ and 
an be generalized to the theory of quantum

gravity studied here with some e�ort. However, for the time being, we 
on
entrate on the

fakeon widths, whi
h are physi
al quantities that 
an be extra
ted just from the bubble

diagrams.

Assume that s is very 
lose to m2
χ. Then the leading 
ontributions of the (non-

amputated) two-point fun
tions 〈GA(p)GB(−p)〉 toMAB are given by 〈χµν(p)χρσ(−p)〉1 loop
abs

,

whi
h 
arry a double pole 1/(s−m2
χ)

2
. The vertex 
orre
tions are next-to-leading, and so

are the 
ontributions su
h as 〈hµν(p)χρσ(−p)〉1 loop
abs

, sin
e they give at most simple poles

1/(s −m2
χ). The gauge-dependent 
ontributions, su
h as 〈hµν(p)hρσ(−p)〉1 loop

abs

, are next-

to-next-to-leading, as are the box 
orre
tions.

This means that the 
oe�
ient of the double pole must be physi
al by itself at the

fakeon peak. For example, it is straightforward to 
he
k that it is gauge independent.

Spe
i�
ally, assuming that the masses of the matter �elds Φ are mu
h smaller than mχ

and s ∼ mχ, we �nd

〈χµν(p)χρσ(−p)〉1 loop
abs

= C(s)
κ4

8πζ2
s2

(s−m2
χ)

2
Π

(2)

µνρσ(p, s) +O((s−m2
χ)

0), (5.1)

whereΠ
(2)

µνρσ(p, s) 
an be read from (3.6) and

C(s) = Cm + Cφ(s), Cm =
Ns + 6Nf + 12Nv

120
, Cφ(s) =

1

120
θ(1− rφ)(1− rφ)

5/2,

(5.2)

with rφ = 4m2
φ/s. Sin
e we are not making assumptions about the mass of φ, we must

take Cφ(s) as a fun
tion of s.

The quantity Cm is known as 
entral 
harge in 
onformal �eld theory. By analogy, we


an de�ne C(s) as the total 
entral 
harge and Cφ(s) as the 
entral 
harge of the massive

s
alar φ. The fun
tion Cφ(s) appearing in (5.2) holds in the GSF theory, where φ is

15
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quantized as a physi
al �eld, while Cφ(s) = 0 in the GFF theory. The 
entral 
harges of

the graviton and the fakeons are identi
ally zero.

If we want, we 
an in
lude N
P

Pro
a ve
tors with no nonminimal 
ouplings and small

masses m
P

. Then C(s) = Cm + C
P

+ Cφ(s), with

C
P

=
13

120
N
P

.

In the presen
e of Pauli-Fierz �elds Υµν and when the Pro
a nonminimal 
ouplings are

swit
hed on, the total 
entral 
harge is a 
ompli
ated fun
tion of r
P

= 4m2
P

/s, rΥ = 4m2
Υ/s

and the nonminimal 
ouplings.

Resumming the self-energies, we 
an obtain the 
orre
ted propagators of the graviton

multiplet. In parti
ular, at the χ peak we have the two-point fun
tion

〈χµν(p)χρσ(−p)〉s∼m̄2
χ
= −iκ

2

ζ

Zχ
s− m̄2

χ + im̄χΓχ
Π

(2)

µνρσ(p, s), (5.3)

where m̄χ is the 
orre
ted χ mass and Γχ is the χ width. We �nd

Γχ=−
κ2m3

χ

8πζ
C +mχO

(

m4
χ

M4
Pl

)

= −mχαχC +mχO(α2
χ),

Zχ=1 +O(αχ), m̄2
χ = m2

χ [1 +O(αχ)] , (5.4)

where M
Pl

is the Plan
k mass, C = C(m2
χ) and αχ = m2

χ/M
2
Pl

is a sort of �fakeon/graviton

stru
ture 
onstant�.

The negative sign of Γχ implies that mi
ro
ausality is violated. We 
an illustrate this

e�e
t in simple terms by means of the Breit-Wigner distribution and its Fourier transform.

We have

i

E −m+ iΓ
2

−→ sgn(t)θ(Γt) exp

(

−imt − Γt

2

)

, (5.5)

so when Γ < 0 the theta fun
tion pi
ks the future instead of the past.

Note that the negative overall sign in front of the propagator (5.3) is 
onsistent with

unitarity. Indeed, we �nd

2Im
[

i〈χµν(p)χρσ(−p)〉s∼m̄2
χ

]

= −2κ2

ζ

Zχm̄χΓχ
(s− m̄2

χ)
2 + m̄2

χΓ
2
χ

Π
(2)

µνρσ(p, s) > 0, (5.6)

in agreement with the opti
al theorem. In parti
ular, when we take the limit Γχ → 0−, we

obtain

2Im
[

i〈χµν(p)χρσ(−p)〉s∼m̄2
χ

]

−→
Γχ→0−

2πκ2

ζ
Zχδ(s− m̄2

χ)Π
(2)

µνρσ(p, s). (5.7)
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Let us dis
uss a hypotheti
al s
attering pro
ess 
ontaining fakeons among the �nal

states. In that 
ase we must take the imaginary part of the zeroth order χµν propagator,

whi
h however vanishes be
ause of the quantization pres
ription (3.5). This means that

a pro
ess of this type has vanishing 
ross se
tion and 
annot o

ur. It is impossible to

dete
t χµν �before it de
ays into something else�, whi
h is 
onsistent with 
alling χµν a

�fake parti
le� and stating that it does not belong to the subspa
e V of the physi
al �elds.

The di�eren
e between the peak of a fakeon and the peak of a resonan
e is that the one of

a fakeon is just a geometri
 shape and no physi
al parti
le is asso
iated with it. In some

respe
ts, this behavior resembles the one of the �anomalous thresholds� [20℄. In parti
ular,

the quantity 1/|Γχ| 
annot be viewed as the lifetime of the fakeon. We 
ould interpret it

as the amount of time during whi
h 
ausality is meaningless. More details are given in the

next se
tion, where we 
ompare the results of the GFF and GSF theories with those of the

theory that has ghosts.

If we repeat the 
al
ulation around the φ peak, under the assumption that the masses

of the matter �elds are negligible with respe
t to mφ, we �nd the width

Γφ =
η2sκ

2m3
φ

48πζ
=
mφ

6
αφη

2
s ,

where αφ ≡ m2
φ/M

2
Pl

. We expe
t that Γφ is mu
h smaller than |Γχ|, be
ause it is only

sensitive to the s
alar nonminimal 
oupling ηs. No sign of mi
ro
ausality violation is

present here, sin
e Γφ > 0.

We do not have 
ompelling arguments to predi
t the values of the masses mχ and

mφ, but it is 
on
eivable that they are smaller than the Plan
k mass. Taking mχ ∼ mφ ∼
1011GeV, for de�niteness, and assuming the matter 
ontent of the standard model (Ns = 4,

Nf = 45/2, Nv = 12), we obtain αχ ∼ 7·10−17
and Γχ ∼ −16keV. Formχ ∼ mφ ∼ 1012GeV

we would have Γχ ∼ −16MeV. The dumping fa
tor e−Γt/2
appearing in formula (5.5) tells

us that the violation of 
ausality o

urs within time intervals of the order of 4 · 10−20
s for

mχ ∼ 1011GeV, in the 
enter-of-mass frame, and 4 · 10−23
s for mχ ∼ 1012GeV. However,

the os
illating fa
tor e−imt strongly suppresses those e�e
ts up to energies of the order of

the fakeon mass. Other massive parti
les with masses smaller than mχ 
ould be present

in nature, besides those 
ontained in the standard model, and make C and |Γχ| larger by
one or two orders of magnitude.

More e�ort is ne
essary to work out physi
al quantities away from the peaks, su
h

as the 
ross se
tion σ as a fun
tion of the 
enter-of-mass energy

√
s. So far we have set
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the 
osmologi
al 
onstant ΛC to zero, but it is not di�
ult to extend the 
al
ulations to

nonvanishing ΛC .

6 Comparison with the Stelle theory

In this se
tion we 
ompare the results found in the GFF and GSF theories with those that


an be obtained in the Stelle GSGh theory, to emphasize the di�eren
es and the e�e
ts of

the ghosts. The GSGh quantization pres
ription is just made of point (a) of se
tion 3, so

φ is a physi
al s
alar and χµν is a spin-2 ghost.

The absorptive part of the self-energy of the graviton multiplet in
ludes extra bubble

diagrams, whose bubbles are made of: (i) two χ legs, (ii) one χ leg and one φ leg, (iii)

one χ leg and one h leg. In total,

ΓGSGh
abs

= ΓGSF
abs

+ Γχh
abs

+ Γχφ
abs

+ Γχχ
abs

.

For the 
al
ulations, we use the a
tion (2.17). The 
orre
tions 
an be evaluated straight-

forwardly, but their expressions are quite lengthy, so we 
ontent ourselves with the analysis

of the results around the χ peak. There, Γχχ
abs

does not 
ontribute, be
ause its threshold

is s = 4m2
χ. Similarly, Γχφ

abs

has a threshold at s = (mχ + mφ)
2
. Sin
e the φ mass is

presumably not very di�erent from the χ mass, Γχφ
abs

is also negligible at the χ peak. In

the end, only Γχh
abs

is important. We �nd formula (5.1) with the modi�ed 
entral 
harge

C(s) = Cm + Cφ(s) + C
Gh

(s), C
Gh

(s) = −(tχ − 1)θ(tχ − 1), (6.1)

where tχ = s/m2
χ. The 
ru
ial fa
tor (tχ− 1) in C

Gh

(s), brought by formula (A.1), implies

that the spin-2 ghost 
ontribution C
Gh

(s) to the 
entral 
harge is subleading around the

peak. The value of Γχ is still the one of formula (5.4), to the lowest order.

For su�
iently small time intervals, where the ghost is still �alive�, we do not have to

resum the powers of the width Γχ. Indeed, the Stelle theory admits the pro
ess of Fig.

2, whi
h does not obey the opti
al theorem. The right-hand side is positive, while the

left-hand side is negative, sin
e

2Im [i〈χµν(p)χρσ(−p)〉0] =
2κ2

ζ
Im

[

1

s−m2
χ + iǫ

]

Π
(2)

µνρσ(p, s)

=−2πκ2

ζ
δ(s−m2

χ)Π
(2)

µνρσ(p, s) 6 0.
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2Im dΠ

2

Figure 2: Breakdown of the opti
al theorem in the GSGh theory

The GFF and GSF theories, on the other hand, just give 0 = 0 in this 
ase, sin
e

the left-hand side has no imaginary part due to the fakeon pres
ription (3.2), while the

right-hand side vanishes sin
e the fakeon is proje
ted away from the physi
al spe
trum.

This is another way of saying that the proje
tion in question is 
onsistent.

In some sense, the fakeons 
an be viewed as �auxiliary �elds with nontrivial kineti


terms�. They 
ir
ulate inside the Feynman diagrams, but 
annot enter or exit the diagrams.

They mediate intera
tions, but 
annot be observed dire
tly. We 
ould even integrate them

out (following the rules of the nonanalyti
 Wi
k rotation or the average 
ontinuation), but

the resulting theory would be nonlo
al and more di�
ult to handle.

7 Con
lusions

We have studied various aspe
ts of the theory of quantum gravity proposed in ref. [1℄, after


onverting its higher-derivative a
tion into an a
tion with two-derivative kineti
 terms. The

graviton multiplet is made of the �u
tuation hµν of the metri
 tensor around �at spa
e,

a massive s
alar φ and a massive spin-2 �eld χµν . The �eld χµν is quantized as a fakeon,

be
ause its kineti
 a
tion has the wrong overall sign. The s
alar φ 
an be quantized either

as a fakeon or a physi
al parti
le, whi
h leads to two options, the GFF and GSF theories.

At high energies the nature of {hµν , φ, χµν} as a multiplet emerges 
learly, the main duty

of χµν and φ being to �es
ort� the graviton hµν and wipe away most ultraviolet divergen
es

it 
reates, to ensure renormalizability. At low energies, both χµν and φ de
ouple and the

ordinary low energy, nonrenormalizable theory is retrieved.

The a
tion of quantum gravity is stri
tly renormalizable, whi
h makes it essentially

unique (when matter is swit
hed o�), be
ause it 
ontains a �nite number of parameters

19



1

8

A

3

R

e

n

o

r

m

and 
an be quantized in just two physi
ally 
onsistent ways. As in the standard model,

the matter se
tor 
annot be predi
ted from �rst prin
iples, sin
e it is always possible to

add heavy parti
les and/or fakeons.

We have 
al
ulated the absorptive part of the self-energy of the graviton multiplet and

used it to 
ompute, among other things, the width Γχ of the fakeon χµν and the width

Γφ of the s
alar φ. The former is negative and proportional to the 
entral 
harge C.

The graviton and the fakeons do not 
ontribute to C, while the other physi
al �elds give

positive 
ontributions. Perturbative unitarity holds, i.e. the opti
al theorem is satis�ed.

However, the negative sign of Γχ shows that the theory predi
ts the violation of 
ausality

for 
enter-of-mass energies larger than the fakeon mass mχ, at distan
es or time intervals

smaller than 1/|Γχ|. There, the notions of past, present and future lose meaning. Said

in di�erent words, the theory implies that 
ausality is not a prin
iple of nature, but an

approximation that is pra
ti
ally useful when two events are separated by a time interval

longer than 1/|Γχ|. Sin
e at present quantum gravity is the only intera
tion of nature that

predi
ts the violation of mi
ro
ausality, the experimental dete
tion of su
h e�e
ts 
ould

be the �rst sign that gravity is indeed quantized.

The 
al
ulations of this paper 
an be extended to in
lude the vertex 
orre
tions and the

box 
ontributions, along the lines of analogous 
omputations done in the standard model

[19℄, to a
hieve gauge independen
e away from the peaks and obtain the 
omplete 
ross

se
tion σ(
√
s).
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Appendi
es

A Cal
ulations of absorptive parts

In this appendix we re
all how to 
al
ulate the absorptive parts of the one-loop diagrams.

Consider the integral

I(p,m1, m2) =

∫

dDk

(2π)D
S(k,m1)S(p+ k,m2), S(k,m) =

1

k2 −m2 + iǫ
.
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Using the Feynman parameters and renormalizing the divergen
e away (be
ause it does

not 
ontribute to the absorptive part), we �nd

I(p,m1, m2) = − i

16π2

∫ 1

0

dx ln
[

m2
1x+m2

2(1− x)− p2x(1− x)− iǫ
]

.

The absorptive part is

I
abs

(p,m1, m2) =− 1

16π

∫ 1

0

dxθ(p2x(1− x)−m2
1x−m2

2(1− x))

=− 1

16π
θ
(

p2 − (m1 +m2)
2
)

√

1− (m1 +m2)2

p2

√

1− (m1 −m2)2

p2
. (A.1)

Similarly, we 
an treat the integrals

Iµ1···µn(p,m1, m2) =

∫

dDk

(2π)D
kµ1 · · · kµnS(k,m1)S(p+ k,m2) = anp

µ1 · · ·pµn

+an−2p
{µ1 · · · pµn−2ηµn−1µn} + · · ·

(the indi
es between the 
urly bra
kets being 
ompletely symmetrized) by expanding the

results as sums of polynomials built with pµ and ηµν , multiplied by 
onstants ai. The


onstants are 
al
ulated by 
ontra
ting with pµ and ηµν and making the repla
ements

k2→m2
1, (p+ k)2 → m2

2,

p · k =
1

2

[

(p+ k)2 − p2 − k2
]

→ 1

2

(

m2
2 −m2

1 − p2
)

in the numerators, whi
h follow from the fa
t that the tadpoles have no absorptive parts.

We get, for example,

Iµ
abs

(p,m1, m2)=−p
µ

2
(1 + r−) Iabs(p,m1, m2),

Iµν
abs

(p,m1, m2)=

[

pµpν

3

(

1 + r− − r2 + r2−
)

− ηµνp2

12

(

1− 2r+ + r2−
)

]

I
abs

(p,m1, m2),

where ri = m2
i /p

2
and r± = r1 ± r2. We 
an pro
eed similarly to work out the expressions

of all the Iµ1···µn
abs

(p,m1, m2). For the 
al
ulations of this paper, we just need n from 0 to 4.

B Contributions of Pro
a and Pauli-Fierz �elds

Here we 
olle
t a few results about the 
ontributions of Pro
a and Pauli-Fierz �elds to the

absorptive part (4.12) of the graviton-multiplet self-energy. The nonminimal 
ouplings of
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the Pro
a a
tion (4.14) give 
ontributions

P nm

P

(r)=
N
P

60

η
P

r2
[

η
P

(2 + 6r + 7r2)− 2r(1 + 13r + r2)
]

,

Qnm

P

(r)=
N
P

144r2
[

6η′
P

(6η′
P

+ r)(4− 4r + 3r2)

+η
P

(12η′
P

+ r)(8− 10r + 5r2) + η2
P

(16− 24r + 11r2)
]

.

The only way to have a smooth ultraviolet limit is by setting η
P

= η′
P

= 0.

In the 
ase of the Pauli-Fierz a
tion (4.15), we report the �rst terms of the high-energy

expansion, given by

P
PF

(r)=
8N

PF

135r4

[

(3− 2η1 + η2)
2 +

r

4
(45− 6η1 + 5η2)(3− 2η1 + η2) +

9

4
r

]

+O(r−2),

Q
PF

(r)=
4N

PF

81r4
(3− η1 + 2η2 + 6η4)

2 +O(r−3).

We see that if we 
hoose the 
oe�
ients ηi of the nonminimal 
ouplings so that the O(r−4)

terms vanish, the O(r−3) 
annot vanish at the same time. Therefore, it is impossible to

have a smooth ultraviolet limit, in 
ontrast with what happens in the Pro
a theory.
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