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The Ultraviolet BehaviorOf Quantum GravityDamiano Anselmi1 and Marco Piva2Dipartimento di Fisica �Enrico Fermi�, Università di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, Italyand INFN, Sezione di Pisa,Largo B. Pontecorvo 3, 56127 Pisa, ItalyAbstractA theory of quantum gravity has been recently proposed by means of a novel quanti-zation prescription, which is able to turn the poles of the free propagators that are dueto the higher derivatives into fakeons. The classical Lagrangian contains the cosmologicalterm, the Hilbert term, √−gRµνR
µν and √−gR2. In this paper, we compute the one-looprenormalization of the theory and the absorptive part of the graviton self energy. Theresults illustrate the mechanism that makes renormalizability compatible with unitarity.The fakeons disentangle the real part of the self energy from the imaginary part. The for-mer obeys a renormalizable power counting, while the latter obeys the nonrenormalizablepower counting of the low energy expansion and is consistent with unitarity in the limit ofvanishing cosmological constant. The value of the absorptive part is related to the centralcharge c of the matter �elds coupled to gravity.
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1 IntroductionThe problem of quantum gravity is the di�culty to reconcile renormalizability and per-turbative unitarity. A solution has been recently proposed [1] by turning the ghosts dueto the higher derivatives into fakeons [2], or fake degrees of freedom, which contribute tothe correlation functions, but disappear from the physical spectrum. The idea amountsto a novel prescription to treat the poles of the free propagators. It is suggested by thereformulation of the Lee-Wick models [3] as nonanalytically Wick rotated Euclidean the-ories [4, 5]. The fakeons clarify the properties of these models and re�ne their original,incomplete formulation. At the same time, they have a broader range of applications, tothe extent that they can be introduced in models that are not of the Lee-Wick type.Several options for quantum gravity emerge from this approach. A unique one amongthem is strictly renormalizable [1]. Its classical Lagrangian contains the cosmological term
√−g, the Hilbert term √−gR and the quadratic terms √−gRµνR

µν and √−gR2. Theother options are in�nitely many and super-renormalizable, which makes them less attrac-tive from the physical point of view. The proof of perturbative unitarity can be carriedout to the very end [2], once the e�ects of the cosmological constant are neglected. Thereason is that a satisfactory scattering theory has not been developed, yet, in the presenceof a cosmological constant (see refs. [6] for some investigations and proposals on this issue)and it might even not exist. If that were the case, a nonvanishing cosmological constant(generically turned on by the radiative corrections) would signal a unitarity anomaly inthe universe, which would explain why this quantity is so small. Super-renormalizable the-ories of quantum gravity where the cosmological constant is not turned on by the radiativecorrections can be built [1], yet it is hard to argue that they describe the laws of physics.We think that the strictly renormalizable option is at present the best candidate to ex-plain quantum gravity, even if the cosmological constant cannot be turned o� to all orders.In this paper, we compute the key quantities of this theory at one loop. Speci�cally, wework out the absorptive part of the graviton self energy and the one-loop renormalization,both in the pure theory and in the presence of matter.It can be shown [1, 2] that the fakeon prescription does not a�ect the renormalization,which coincides with the one of the Euclidean version of the theory. The one-loop betafunctions can be calculated by working out the divergent parts of the two graviton andthree graviton correlation functions. However, some diagrams with three external gravitonsare very involved. Their computation can be avoided by means of the Ward-Takahashi-Slavnov-Taylor (WTST) identities [7]. The most popular technique to achieve this goal2
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is the background �eld method [8, 9], which incorporates the WTST identities by gauge�xing the theory in a clever way. A more standard approach is the one pursued by Salvioand Strumia in ref. [10, 11]. They replace the computations of the diagrams with threeexternal gravitons with the computations of the (much simpler) diagrams with one externalgraviton and two external matter �elds.In the �rst part of this paper, we compute the one-loop renormalization of the theory bymeans of a third procedure, which does not make use of the background �eld method andremains within the gravity sector. We quantize the theory with the help of the Batalin-Vilkovisky formalism [12] and calculate the divergences of the graviton self energy andthose of the diagrams that renormalize the symmetry transformations of the �elds. Thisapproach gives a few results that are not available in the literature, such as the nonlinearcontributions to the �eld rede�nitions of the metric tensor and the Faddeev-Popov ghosts.Then we turn to the calculation of the absorptive part of the graviton self energy, whichinvolves novel techniques, suggested by the properties of the fakeons. For simplicity, wework in the limit of vanishing cosmological constant. A number of tricks allow us to relatethe absorptive part to the renormalization of the low-energy theory, obtained by expandingthe action around the Hilbert term and treating the higher-derivative terms perturbatively.The calculation obeys the power counting of the ordinary, nonrenormalizable Einstein the-ory, but its outcome is convergent and consistent with unitarity, by a peculiar mechanismdue to the fakeons. The �nal formula of the absorptive part is piecewise local, equal toa contribution due to the so-called central charge c of the matter �elds coupled to grav-ity plus a correction due to the nonminimal couplings of the scalar �elds plus terms thatvanish on the solutions of the �eld equations. The results show that the quantum gravitytheory of ref. [1] gives physical predictions that di�er from those of any other quantizationof the same classical action [8, 9, 10, 11, 13].We use the dimensional regularization. The paper is organized as follows. In section2 we quantize the theory to the extent that is strictly necessary for the calculation of theone-loop renormalization. In section 3 we work out the beta functions at one loop andthe renormalizations of the �elds. In section 4 we complete the quantization of the theoryby detailing the graviton/fakeon prescription for the propagators. Then we calculate theabsorptive part of the graviton self energy by relating it to the renormalization of thetheory expanded around the Hilbert term. Section 5 contains the conclusions and anoutlook about generalizations of the calculations performed here.
3
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2 Quantum gravity in the Batalin-Vilkovisky formalismThe strictly renormalizable theory of quantum gravity proposed in ref. [1] has action
SHD = −µ−ε

2κ2

∫ √
−g

[

2ΛC + ζR+ α

(

RµνR
µν − 1

3
R2

)

− ξ

6
R2

]

, (2.1)where α, ξ, ζ , ΛC and κ are real constants, with α > 0, ξ > 0 and ζ > 0, while µ is thedynamical scale and ε = 4 − D, D being the continued spacetime dimension introducedby the dimensional regularization. The action (2.1) is quantized by means of a novelgraviton/fakeon prescription, which is formulated in detail in section 4. We skip this partfor the time being, because we want to concentrate on the one-loop renormalization, whichcoincides with the one of the Euclidean version of the theory [1, 2].To apply the procedure described in the introduction and handle the WTST identities ina compact form, we use the Batalin-Vilkovisky formalism [12], which is a formal re�nementof the Zinn-Justin approach [14]. We collect the �elds into the row
Φα = {gµν , Cρ, C̄σ, Bτ},where Cρ and C̄σ are the Faddeev-Popov ghosts and antighosts of di�eomorphisms, re-spectively, while Bτ are the Lagrange multipliers for the gauge �xing (also known asNakanishi-Lautrup �elds [15]). We also introduce a row of external sources

Kα = {Kµν , KC
ρ , K

C̄
σ , K

B
τ },conjugate to the �elds, and de�ne the antiparentheses of two functionals X and Y of Φand K as

(X, Y ) ≡
∫

(

δrX

δΦα

δlY

δKα

− δrX

δKα

δlY

δΦα

)

,where the integral is over the spacetime points associated with repeated indices and thesubscripts l, r in δl, δr denote the left and right functional derivatives, respectively.The next step is to extend the action SHD into
S(Φ, K) = SHD + (SK ,Ψ) + SK , (2.2)where Ψ(Φ) is a functional of the �elds, called gauge fermion, which is used to �x thegauge, while

SK = −
∫

Rα(Φ)Kα =

∫

(gµρ∂νC
ρ+gνρ∂µC

ρ+Cρ∂ρgµν)K
µν+

∫

Cσ(∂σC
ρ)KC

ρ −
∫

BσKC̄
σ4
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collects the in�nitesimal symmetry transformations Rα(Φ) of the �elds, coupled to thesources Kα. In particular, the functions
− δrS

δKµν
= Rµν(g, C) ≡ −gµρ∂νC

ρ − gνρ∂µC
ρ − Cρ∂ρgµνare inherited from the in�nitesimal transformations δΣgµν = Rµν(g,Σ) of the metric tensor

gµν under di�eomorphisms, where Σρ are functions of the spacetime point.The action (2.2) satis�es the master equation (also known as Zinn-Justin equation)
(S, S) = 0, (2.3)which collects the gauge invariance of SHD and the closure of the symmetry transformations.The generating functional Z of the correlation functions and the generating functional Wof the connected correlation functions are de�ned by the formulas

Z(J,K) =

∫

[dΦ] exp

(

iS(Φ, K) + i

∫

ΦαJα

)

= exp iW (J,K).The �quantum e�ective action�, i.e. the generating functional Γ(Φ, K) = W (J,K)−
∫

ΦαJαof the one-particle irreducible diagrams, is de�ned as the Legendre transform of W (J,K)with respect to J , where Φα = δrW/δJα. It is easy to see that (2.3) implies that Γ satis�esan analogous master equation
(Γ,Γ) = 0, (2.4)which collects all the WTST identities in a compact form.By renormalizing the action (2.2) and taking advantage of the properties of the Batalin-Vilkovisky formalism, we can work out the beta functions without computing the renormal-ization of the three-graviton vertex and without introducing matter �elds. It is su�cientto renormalize SK (which is relatively easy) and the graviton self energy (which is moredemanding).We expand the metric tensor gµν around the �at-space metric ηµν = diag(1,−1,−1,−1)by writing

gµν = ηµν + 2κhµν ,where hµν is the quantum �uctuation. We further de�ne h ≡ ηµνhµν . The indices of ∂µ,
hµν , the �elds Φα (except gµν) and the sources Kα are raised and lowered by means of the�at-space metric. We raise and lower the indices of the covariant derivatives, the metric
gµν , the Riemann tensor and the Ricci tensor by means of gµν .5
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We choose the gauge fermion
Ψ = µ−ε

∫

C̄µ (σζ + α�)

(

Gµ −
κ2

λ
Bµ

)

,where � = ηµν∂µ∂ν is the �at-space D'Alembertian,
Gµ(g) = ηνρ∂ρgµν − (ω + 1)ηνρ∂µgνρ = 2κ[∂νh

ν
µ − (ω + 1)∂µh] (2.5)is the gauge-�xing function and σ, λ and ω are gauge-�xing parameters.The gauge-�xed action reads

Sgf = SHD + (SK ,Ψ), (2.6)where
(SK ,Ψ) = µ−ε

∫

Bµ (σζ + α�)

(

Gµ −
κ2

λ
Bµ

)

+ Sgh (2.7)and the action Sgh of the Faddeev-Popov ghosts reads
Sgh = µ−ε

∫

[

C̄µ∂ν − (ω + 1)ηµνC̄τ∂τ
]

(σζ + α�) [gµρ∂νC
ρ + gνρ∂µC

ρ + Cρ∂ρgµν ] . (2.8)If we make the �eld rede�nition C̄ ′µ = (σζ + α�) C̄µ on the antighosts, the ghost actionturns into the more conventional form
Sgh = µ−ε

∫

[

C̄ ′µ∂ν − (ω + 1)ηµνC̄ ′τ∂τ
]

[gµρ∂νC
ρ + gνρ∂µC

ρ + Cρ∂ρgµν ] . (2.9)The ghost actions (2.8) and (2.9) are equivalent for our purposes of this paper.3 RenormalizationIn this section we calculate the renormalization of the theory at one loop. Let Scountdenote the one-loop counterterm action. A few standard properties allow us to give Scountan explicit form. First, it is easy to show that the master equations (2.3) and (2.4) implythe identity
(S, Scount) = 0. (3.1)Second, Scount cannot depend on B, KC̄ and KB, because no vertices of the action (2.2)contain them, so no one-particle irreducible diagrams can be built with B, KC̄ and/or6
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KB on the external legs. Third, S does not depend on Kµν and C̄ρ separately, but onlythrough the combination
K̃µν = Kµν + µ−ε (σζ + α�)

∫

δGρ

δgµν
C̄ρ,so the same is true of Scount.On general grounds3, the solution of (3.1) can be written as

Scount = µ−ε

(4π)2ε

∫ √
−g

[

2∆ΛC +∆ζR+∆α

(

RµνR
µν − 1

3
R2

)

− ∆ξ

6
R2

]

+(S,F), (3.2)where ∆ΛC , ∆ζ , ∆α and ∆ξ are constants and F(Φ, K) is a local functional of ghostnumber minus one, equal to the integral of a local function of dimension three. Using(3.1), it is easy to show that F also depends on Kµν and C̄ρ via the combination K̃µν .Then, the dimension of F and its ghost number imply that we can parametrize it as
F(Φ, K) =

∫

∆gµνK̃
µν +

∫

∆CρKC
ρ , (3.3)where ∆gµν and ∆Cρ are the renormalizations of the metric tensor and the Faddeev-Popovghosts, respectively. They generalize the more common multiplications by wave functionrenormalization constants.A straightforward calculation gives

(S,F) =

∫

δSHD
δgµν

∆gµν −
∫

∆RµνK̃
µν −

∫

∆RρKC
ρ , (3.4)where

∆Rµν =−(S,∆gµν) +

∫

∆gαβ
δlRµν(g, C)

δgαβ
+

∫

∆Cτ δlRµν(g, C)

δCτ
,

∆Rρ =−(S,∆Cρ) +

∫

∆Cτ δlRρ(C)

δCτ
,where Rρ(C) = −δrS/δK

C
ρ . To the quadratic order in the �elds, we can parametrize the�eld rede�nitions as

∆Cρ = κ2s1C
ρ + κ3s2h

ρ
µC

µ + κ3s3hC
ρ,

∆gµν = κ2t0gµν + κ3(t1hµν + t2ηµνh)

+κ4[t3h
ρ
µhρν + t4hhµν + ηµν(t5hρσh

ρσ + t6h
2)], (3.5)3A convenient way to prove formulas (3.2) and (3.3) is by interpolating back and forth between thebackground �eld approach and the ordinary approach [16].7
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KC
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Kg CKg C

Kg C

Figure 1: Diagrams that renormalize the symmetry transformations of the �eldswhere si and ti are constants. They can be determined by evaluating the divergent parts ofthe diagrams shown in �g. 1, where the wiggled line denotes the �eld hµν , the continuousline with the arrow denotes the Faddeev-Popov ghosts and the double lines denote eitherthe sources Kg coupled to the gµν transformations or the sources KC coupled to the Ctransformations.The calculation proceeds as follows.1) Using (3.5), the terms proportional to KC
ρ contained in Scount at hµν = 0 are theintegral of

−∆RρKC
ρ = κ2

[(

s1 +
s2
2

)

Cτ (∂τC
ρ) +

s2
2
Cτ (∂ρCτ ) + s3C

ρ(∂τC
τ )
]

KC
ρ .We can work out the values of the constants si by computing the �rst diagram of �g. 1,which gives

∆Cρ =
κ2

12(4π)2αλω2ε

[

3Cρ − 8κ(2ω2 + 1)hρ
µC

µ + κ(4ω2 − 1)hCρ
]

. (3.6)2) The terms proportional to Kµν contained in Scount are equal to the integral of
−∆RµνK

µν = κ2[(t1 − 2s1)K
µν∂µCν + t2K∂ · C] + 2κ3(∂µK

µν)(s2hνρC
ρ + s3hCν)

+κ3[(t3 − 4s1)K
µνhρµ∂νC

ρ − 2s1K
µνCρ∂ρhµν + t3K

µ
ν h

ρ
µ∂ρC

ν + t4K
µνhµν∂ · C

+(t4 − 2t2)K
µνh∂µCν + 2(t5 + t2)Khρ

µ∂ρC
µ + 2t6Kh∂ · C] (3.7)to the �rst order in hαβ, where K ≡ Kµ

µ . We can work out the terms of order κ2 bycomputing the second diagram of �g. 1, which gives
t1π

2ε=− 5

18α
− 1

3αλ
− 1

24αλω2
+

5

18αω
+

1

9ξ
+

1

12ξω2
+

5

36ξω
,

t2π
2ε=

5

72α
− 5

48αλ
− 1

192αλω2
− 5

72αω
− 1

36ξ
− 1

48ξω2
− 5

144ξω
. (3.8)8
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3) The other coe�cients ti are obtained by computing the third and fourth diagramsof �g. 1, which give
t3π

2ε=− 25

72α
− 1

12αλ
− 5

72αω2
+

1

48αλω2
+

5

12αω
+

7

72ξ
+

7

144ξω2
+

1

12ξω
,

t4π
2ε=

25

144α
+

5

144αω2
− 5

24αω
− 7

144ξ
− 7

288ξω2
− 1

24ξω
,

t5π
2ε=

5

32α
+

5

24αλ
+

25

288αω2
+

1

96αλω2
+

25

144αω
− 1

96ξ
− 11

576ξω2
− 7

144ξω
,

t6π
2ε=− 35

576α
− 5

192αω2
− 5

288αω
+

5

576ξ
+

1

128ξω2
+

5

288ξω
. (3.9)4) A separate discussion concerns the coe�cient t0, which may be seen as the renor-malization of the �at-space background metric ηµν (after a rede�nition of t1). Observethat the contribution κ2t0gµν to the �eld rede�nition ∆gµν drops out of (3.7), because itis covariant. It only adds

κ2t0

∫

δSHD
δgµν

gµν (3.10)to the �rst term on the right-hand side of equation (3.4). Since (3.10) is proportionalto the �eld equations, its coe�cient t0 may be gauge dependent. However, (3.10) is alsocovariant, so it may mix with the renormalizations of ΛC , ζ , α and ξ. This means that onlythe combinations of such coe�cients that are not a�ected by t0 are truly gauge independent.It is simple to check that such combinations are ΛC/ζ
2, α and ξ. For convenience, we de�ne

t0π
2ε =

3

16αλ
+

1

64αλω2
− 3

64ξω2
− 3

16ξω
+

A

8
, (3.11)where A is an arbitrary constant that parametrizes the surviving gauge dependence.5) The coe�cients ∆ΛC , ∆ζ , ∆α and ∆ξ of Scount can be worked out by computingthe graviton self energy. We obtain

∆α=−133

10
, ∆ξ =

5

6
+

5ξ

α
+

5ξ2

3α2
, ∆ζ = ζ

(

5

6ξ
+

5ξ

3α2
+ A

)

,

∆ΛC =ΛC

(

− 5

α
+

2

ξ
− 2A

)

− 5ζ2

4α2
− ζ2

4ξ2
. (3.12)As promised, the combinations ζ∆ΛC − 2ΛC∆ζ , ∆α and ∆ξ are independent of the arbi-trary constant A.The beta functions are

βα = − 2κ2

(4π)2
∆α, βξ = − 2κ2

(4π)2
∆ξ, βζ = − 2κ2

(4π)2
∆ζ, βΛC

= − 2κ2

(4π)2
∆ΛC .(3.13)9
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Now we compare our results with those of the literature. To our knowledge, the valuesof the coe�cients si, i = 1, 2, 3, encoded in formula (3.6), and those of the coe�cients ti,
i = 3, 4, 5, 6, of formula (3.9) were not known. The most complete results for the otherquantities are those of Salvio and Strumia, collected in ref. [11]. The notation of thatpaper is related to ours by the rede�nitions

α =
2

f 2
2

, ξ =
2

f 2
0

, ζ = M̄2Pl, ΛC = Λ, ω =
cg
2
− 1, λ = −f 2

2

ξg
,together with σ = 0, κ = 1, while our hµν is equal to the one of [11] divided by two.Formulas (3.13) and the coe�cients t1 and t2 of equations (3.8) agree with those of [11],apart from the following discrepancies: the term −5f 4

2
/(3f 4

0
)M̄2Pl in formula (54a) of [11]should be replaced by −5f 4

2
/(3f 2

0
)M̄2Pl; moreover, the right-hand side of formula (55) shouldbe multiplied by an overall minus sign and its �rst fraction should be multiplied by an extrafactor 1/(cg−2). The authors of [11] have implicitly set t0 = 0. This choice determines theconstant A, which is related to the constant X of [11] by the equation A = −X − 3f 2

0
/4.Finally, we make a nontrivial check of ∆gµν by adding Ns scalar �elds with the minimalaction

Ss = 1

2

Ns
∑

i=1

∫ √
−ggµν(∂µϕ

i)(∂νϕ
i). (3.14)The total action SHD + Ss is renormalizable. Indeed, the external scalar legs of everydiagram carry derivatives, so the vertex √−gϕ4 and the nonminimal term√−gRϕ2 are notgenerated as counterterms, if they are absent at the classical level. No other countertermsare compatible with power counting and invariance under di�eomorphisms.We �nd that the scalar self energy and the scalar-graviton vertex are renormalized bythe �eld rede�nitions ∆gµν found above plus

∆ϕi = − κ2

(4π)2ε

(

A+
3

2ξ

)

ϕi. (3.15)4 Absorptive partIn this section we calculate the absorptive part of the graviton self energy. We work inthe limit ΛC = 0 and include Ns scalar �elds ϕi coupled to gravity by the action (3.14).At the end, we add other types of matter �elds. The calculation gives us the chance toshow that the graviton/fakeon prescription is consistent and leads to physical predictionsthat are di�erent from those obtained by quantizing the classical action (2.1) by means ofstandard prescriptions [8, 9, 10, 11, 13]. 10
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For simplicity, we set the gauge-�xing parameters λ and σ to one, but keep ω arbitraryto check that the physical quantities we compute are gauge independent. However, dueto the complications of some formulas, we report the gauge-dependent results only for
ω = −1/2 (which is the de Donder gauge). The results for arbitrary ω can be downloadedfrom the link [17], together with the Mathematica programs used for the calculations ofthis paper.It is convenient to integrate Bµ out in formula (2.7), which is equivalent to replacingit with the solution

Bµ =
1

2κ2
Gµof its own �eld equation, or making the replacement

(SK ,Ψ) → µ−ε

4κ2

∫

Gµ (ζ + α�)Gµ + Sghin formula (2.6). The free propagator of the metric �uctuation hµν reads
〈hµν(p)hρσ(−p)〉0 =

iIµνρσ

2p2(ζ − αp2)
+

i(α− ξ)$µν$ρσ

6(p2)2(ζ − αp2)(ζ − ξp2)
(4.1)at ω = −1/2, where

Iµνρσ = ηµρηνσ + ηµσηνρ − ηµνηρσ, $µν = p2ηµν + 2pµpν .We de�ne the graviton/fakeon prescription by introducing two widths ε and E as follows:(a) replace p2 with p2 + iε everywhere in the denominators of the propagators;(b) turn the massive poles into fakeons by means of the replacement
1

ζ − u(p2 + iε)
→ ζ − up2

(ζ − u(p2 + iε))2 + E4
,where u is equal to α or ξ.

c) calculate the diagrams in the Euclidean framework, nonanalytically Wick rotatethem as explained in refs. [2, 4, 5], then make ε tend to zero �rst and E tend to zero last.It is convenient to apply the prescription after separating the graviton poles from thefakeon poles by means of a partial fractioning. Speci�cally, we use formulas such as
1

z(1 − az)
=

1

z
+

a

1− az
,

1

z2(1− az)(1 − bz)
=

1

z2
+
a+ b

z
+

1

a− b

(

a3

1− az
− b3

1− bz

)

,(4.2)etc., with z = p2, a = α/ζ and b = ξ/ζ , to decompose the propagator (4.1) as the sum
〈hµν(p)hρσ(−p)〉0 = 〈hµν(p)hρσ(−p)〉0grav + 〈hµν(p)hρσ(−p)〉0fake (4.3)11

http://renormalization.com/Math/QG
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of a graviton part plus a fake part, where the graviton part collects the poles at p2 = 0,while the fake part collects the poles at p2 = ζ/α and p2 = ζ/ξ. Once we apply thegraviton/fakeon prescription as explained above, we obtain
〈hµν(p)hρσ(−p)〉0grav = i

2ζ(p2 + iε)

[

Iµνρσ +
(α− ξ)$µν$ρσ

3ζ2

(

ζ

p2 + iε
+ α + ξ

)]

,

〈hµν(p)hρσ(−p)〉0fake= iαIµνρσ(ζ − αp2)

2ζ [(ζ − α(p2 + iε))2 + E4]

+
i$µν$ρσ

6ζ3

(

α3(ζ − αp2)

(ζ − α(p2 + iε))2 + E4
− ξ3(ζ − ξp2)

(ζ − ξ(p2 + iε))2 + E4

)

.We compute the absorptive part of the graviton self energy at ΛC = 0. Recall that theabsorptive part of an amplitude is equal to its imaginary part, so the one of a diagram isequal to minus its real part. The calculation involves three bubble diagrams with externallegs hµν . The loop can be made of scalar �elds, Faddeev-Popov ghosts or hµν itself.The scalar contributions are not interested by the fakeons, so they coincide with those ofEinstein gravity. The same conclusion applies to the contributions of the Faddeev-Popovghosts, as is evident by working with the action (2.9). So, we focus on the bubble diagramof the metric �uctuation hµν .Now we prove that the fakeons do not a�ect the real part of this diagram, so wecan drop them and replace the propagators (4.1) with 〈hµν hρσ〉0grav. The hµν bubblediagram obviously contains two propagators. Decomposing each of them as shown informula (4.3), we obtain the sum of three terms: (i) the pure graviton contributions,where each propagator is replaced by its graviton part 〈hµν hρσ〉0grav; (ii) the pure fakeoncontributions, where each propagator is replaced by its fakeon part 〈hµν hρσ〉0fake; (iii) themixed contributions, where one propagator is replaced by its graviton part and the otherpropagator is replaced by the fakeon part.The contributions of type (ii) and (iii) can be dropped, because they are purely imag-inary. To see this, recall that the diagram must be calculated in the Euclidean frameworkand then nonanalytically Wick rotated as explained in refs. [2, 4, 5]. Moreover, we must�rst work at �nite E , let ε tend to zero while E is �nite and nonzero, and �nally let Ealso tend to zero. Varying the energy p0 of the external momentum p, the poles of thepropagators may pinch the integration domain. When p0 is located below the thresholdsof the pinchings, the result of the loop integral is purely imaginary. Indeed, an overallfactor i is brought by the residue theorem, applied to the integral on the loop energy k0.After that, the iε prescription is redundant below the thresholds, which allows us to let
ε → 0 at the level of the integrand. Since the integrand is real in this limit, the result of12
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the integral is purely imaginary.In case (iii), no threshold is located on the real p0 axis for E > 0, ε → 0, since thepinchings occur far away (at a distance roughly equal to E). Then, the Wick rotation isanalytic for real p and the result is purely imaginary (for every E > 0 and so also when Etends to zero).In case (ii) the iε prescription is redundant from the beginning, because only thefakeons circulate in the loop. Some thresholds of the pinchings lie on the real axis of thecomplex p0 plane. Again, the result is purely imaginary below the thresholds. We can reachthe regions above the thresholds by means of the average continuation [2, 4, 5], which isthe arithmetic average of the two analytic continuations that circumvent the thresholds.Clearly, the average continuation of a function that is purely imaginary in a real intervalof the complex p0 plane, is purely imaginary on the entire real p0 axis.In conclusion, we can concentrate on the contributions of type (i), which can be evalu-ated by using 〈hµν hρσ〉0grav as the propagator of hµν . If we make some further steps, we canprove that the surviving contributions are uniquely determined by the divergent part of thegraviton self energy, calculated in the low-energy expansion, which means expanding theaction SHD of formula (2.1) around the Hilbert term ∫ √−gR and treating the parameters
α and ξ perturbatively. At the same time, the result obtained with this method is exactin α and ξ.To show these properties, we �rst make some observations about the expansion inquestion. It can be worked out by starting from the self energy diagram studied in theprevious section and expanding its integrand in powers of α and ξ. Since the verticesdepend on such parameters polynomially, it is su�cient to concentrate on the expansionsof the propagators. When we expand the propagator (4.1), or its ω 6= −1/2 version, wejust obtain poles at p2 = 0. It is su�cient to truncate the expansion of the propagatorto the quadratic order in α and ξ, because higher powers simplify the poles and justmultiply polynomials of the momentum. Inside the bubble diagram, these corrections givemassless tadpoles (polynomials times a single massless propagator) and are set to zero bythe dimensional regularization.It is obvious [and easy to check, using formulas of type (4.2)] that the propagator,once truncated to the quadratic order in α and ξ, coincides with 〈hµν hρσ〉0grav, up topolynomials, which, again, are negligible for our purposes. Thus, the absorptive part ofthe graviton self energy can be calculated by means of the low-energy expansion. It remainsto show that it is uniquely determined by the divergent part.Since no parameters of positive dimensions in units of mass are present (the cosmolog-13
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ical constant being set to zero), the result of the loop integral, calculated by expandingthe integrand in α and ξ, must be a polynomial times ln(−p2), where p is the externalmomentum. Then it is clear that the divergent part and the absorptive part of the diagramare unambiguously related to each other. A quick way to see this is by means of the chainof relations
1

ε
→ 1

2
lnΛ2 → 1

2
ln

Λ2

−p2
→ −1

2
ln(−p2)

prescr−→ −1

2
ln(−p2 − iε)

abs−→ i
π

2
θ(p2). (4.4)The �rst arrow relates the poles of the dimensional regularization to the logarithms ofan ordinary cuto� Λ. The second and third arrow relate them to the logarithms of theexternal momentum p. The fourth arrow restores the Feynman prescription (which is theonly prescription to be used at this point, since no fakeons have survived). The last arrowextracts the contribution to the absorptive part.To summarize, the absorptive part of the graviton self energy can be calculated fromthe divergent part of the expansion in powers of α and ξ and the result is exact in αand ξ. Thanks to this, the outcome is guaranteed to be gauge invariant (after applying�eld rede�nitions and procedures analogous to the ones described in the previous section,adapted to the power counting of the low-energy expansion).Note that we have slightly modi�ed the prescription given ref. [1] to make gaugeinvariance manifest. Strictly speaking, the widths ε and E break gauge invariance, whichmust be recovered in the limit ε → 0 followed by E → 0. In general, it might be necessary toadd corrections proportional to ε and/or E to implement the recovery of gauge invariance.The graviton/fakeon prescription formulated in this section is optimized to make this extrae�ort unnecessary.Let us comment on how the chain of relations (4.4) is modi�ed in the case of the fakeons.There we have

1

ε
→ 1

2
lnΛ2 → 1

2
ln

Λ2

−p2
→ −1

2
ln(−p2)

prescr−→ −1

4
ln(−p2)2

abs−→ 0, (4.5)so no absorptive part survives. The explanation of the fourth arrow can be found in ref. [1]and amounts to the fakeon prescription. In practice, the ultraviolet behavior of a two-pointfunction is governed by two types of logarithms of the momentum. One, ln(−p2 − iε), isinherited from the Feynman prescription, which is associated with the physical degrees offreedom. The other one, (1/2) ln(p2)2, is inherited from the fakeon prescription. From thepoint of view of the ultraviolet divergences, they are both equal to −2/ε, which is whywe had to use the tricks described above to disentangle them. Their di�erence gives the14
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absorptive part, due to the identity
− ln(−p2 − iε) +

1

2
ln(p2)2 = iπθ(p2). (4.6)Because of the fakeons, the imaginary and real parts of a loop diagram are unrelatedto each other. The divergent part obeys the renormalizable power counting of the higher-derivative theory, while the absorptive part obeys the (nonrenormalizable) power countingof the low-energy expansion and is consistent with unitarity. Contributions of higherdimensions (multiplied by large powers of α and ξ) can appear in the absorptive part,multiplied by either side of (4.6), without a�ecting the divergent part. This is the basicmechanism by means of which the fakeons make renormalization and unitarity compatiblewith each other, in the limit of vanishing cosmological constant.At this point, the calculation is straightforward. With the help of �eld rede�nitions ofthe form

∆gµν =κ3
iπ

2
θ(−�) [−2a1�hµν − a2ηµν�h− a3ηµν∂

ρ∂σhρσ − a4∂µ∂νh

− 2a5(∂µ∂
ρhρν + ∂ν∂

ρhρµ) + a6∂µ∂ν∂
ρ∂σhρσ] , (4.7)where ai, i = 1, . . . 6, are functions of �, the absorptive part of the graviton self energy isencoded into the contribution

Γabs = iNsµ
−ε

120(16π)

∫ √
−g

[

Rµνθ(−�c)R
µν +

1

2
Rθ(−�c)R

]

−
∫

δSHD
δgµν

∆gµν (4.8)to the functional Γ, where �c = gρσDρDσ is the covariant D'Alembertian, Dρ being thecovariant derivative. The coe�cients of the �eld rede�nitions (4.7) are rather lengthy, sowe just report them in the simple case ω = −1/2:
2160a1(4π)

2ζ6=−α(α2 − ξ2)2�5 − ζ(α− ξ)2(23α2 + 24αξ + ξ2)�4

−2ζ2(115α3 − 99α2ξ − 27αξ2 + 11ξ3)�3

+4ζ3(89α2 − 106αξ + 17ξ2)�2 + 72ζ4(2α+ ξ)�− 4392ζ5,

3240a2(4π)
2ζ6=(α + 5ξ)(α2 − ξ2)2�5 + 4ζ(α− ξ)2(7α2 + 6αξ − ξ2)�4

+4ζ2(α− ξ)2(55α+ 38ξ)�3 − 48ζ3(7α2 − 53αξ + 46ξ2)�2

+432ζ4(3α + 29ξ)�+ 9072ζ5,

9(a2 + a3)(4π)
2ζ6=−2ζ4(α− ξ)�. (4.9)Their ω-dependent expressions can be found at the link [17]. The other coe�cients of the�eld rede�nition remain undetermined. 15
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Adding (massless) matter �elds of all types and using the results of refs. [18], formula(4.8) turns into
Γabs= iµ−ε

16π

∫ √−g

[

c

(

Rµνθ(−�c)R
µν − 1

3
Rθ(−�c)R

)

+
Nsη

2

36
Rθ(−�c)R

]

−
∫

δSHD
δgµν

∆gµν , (4.10)where ∆gµν is unmodi�ed,
c =

1

120
(Ns + 6Nf + 12Nv)is known as �central charge� (Nf being the numbers of Dirac fermions plus one half thenumber of Weyl fermions and Nv being the number of massless vectors) and η is relatedto the coe�cient of the nonminimal coupling of the scalar �elds, obtained by extending(3.14) into

Ss =
1

2

Ns
∑

i=1

∫ √
−g

[

gµν(∂µϕ
i)(∂νϕ

i) +
1

6
(1 + 2η)Rϕi2

]

.Note that formula (4.10) is nonlocal, because it is the convergent part of an amplitude.Since the nonlocality is just due to the θ function, we can call it piecewise local. We recallthat the amplitudes satisfy nonlocal WTST identities, encoded into the Γ master equation(2.4). Although the �eld rede�nitions and the symmetry transformations involved in suchidentities are nonlocal, their nonlocalities are under control, because they are generatedby other kinds of amplitudes. See [19] for details on the general theory and references.We stress again that formulas (4.8), (4.9) and (4.10) are exact in α and ξ, even if weworked them out by means of an expansion. The results (4.8) and (4.10) are gauge invariantand gauge independent, as they should, apart from the last term, which vanishes on thesolutions of the SHD �eld equations. In particular, we have veri�ed that every dependenceon ω can be absorbed into a suitable ∆gµν . On the other hand, the contributions of thematter �elds cannot be absorbed into a piecewise local rede�nition ∆̄gµν of the metrictensor, because they do not vanish on the solutions of the SHD �eld equations.It is worth to point out that when the Feynman prescription is used for all the poles ofthe free propagators, which is what is done in the ordinary approaches [8, 9, 10, 11, 13],the absorptive part of the graviton self energy receives nontrivial contributions from thespin-2 ghosts. This proves that the graviton/fakeon prescription leads to a di�erent theory.Finally, we can check that the physical degrees of freedom are indeed the gravitonand the matter �elds by showing that the graviton self energy satis�es the correct opticaltheorem. At the perturbative level, the optical theorem and the unitarity equation SS† = 116
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are encoded into the so-called cutting equations [20]. Since the absorptive part of thegraviton self energy is determined by the low-energy expansion, it satis�es the cuttingequations of that expansion, which are consistent with unitarity at vanishing cosmologicalconstant [21]. Then, the cut propagators of the complete theory, which encode the physicalspectrum, coincide with those of the low-energy expansion, which are determined by theHilbert term and the matter action. Thus, they receive contributions from the gravitonand the matter �elds, but not the fakeons.5 Conclusions and outlookIn this paper we have studied the theory of quantum gravity proposed in ref. [1], bycomputing its renormalization at one loop and the absorptive part of the graviton selfenergy. The theory is the unique strictly renormalizable one of a larger class of theories,where the ghosts are eliminated by turning the poles of the free propagators that are dueto the higher derivatives into fakeons. The fakeons are degrees of freedom that contributeto the correlation functions (to the extent that they make the theory renormalizable) butdisappear from the physical spectrum, saving perturbative unitarity.The renormalization coincides with the one of the Euclidean version of the theoryand the results we have found are consistent with those that can be found the literature.Without making use of the background �eld method, we managed to save the calculationof the diagrams with three external graviton legs by computing the renormalization ofthe symmetry transformations and using the WTST identities. We have extended theresults available in the literature by computing the �rst nonlinear corrections to the �eldrenormalizations of the metric tensor and the Faddeev-Popov ghosts.The absorptive part of the graviton self energy is a key quantity to appreciate the crucialdi�erences between the theory of quantum gravity studied here and other quantizationsof the same classical action. At zero cosmological constant, a number of tricks allow usto relate it to the renormalization of the theory expanded around the Hilbert term. The�nal result is the sum of a term proportional to the central charge c of the matter �eldscoupled to gravity, plus a term due to the nonminimal coupling of the scalar �elds, pluscorrections that vanish on the solutions of the �eld equations. The correct optical theoremis satis�ed, with no contributions from the fakeons.We conclude by mentioning some interesting outlooks. With some additional e�ort,the calculation of the absorptive part can be extended to ΛC 6= 0. However, contributions17
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similar to those of massive tadpoles (which are divergent, but have no absorptive part) arepresent, so the relation (4.4) cannot be applied straightforwardly. Since the free propagator
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